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Marmara University, Turkey
Denis Sarigiannis,
Aristotle University of
Thessaloniki, Greece
Rong Zhang,
Hebei Medical University, China

*CORRESPONDENCE

Weidong Li
lwd@ahcdc.com.cn

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Environmental health and Exposome,
a section of the journal
Frontiers in Public Health

RECEIVED 07 July 2022
ACCEPTED 18 November 2022
PUBLISHED 14 December 2022

CITATION

Teng J, Li J, Yang T, Cui J, Xia X,
Chen G, Zheng S, Bao J, Wang T,
Shen M, Zhang X, Meng C, Wang Z,
Wu T, Xu Y, Wang Y, Ding G, Duan H
and Li W (2022) Long-term exposure
to air pollution and lung function
among children in China: Association
and e�ect modification.
Front. Public Health 10:988242.
doi: 10.3389/fpubh.2022.988242

COPYRIGHT

© 2022 Teng, Li, Yang, Cui, Xia, Chen,
Zheng, Bao, Wang, Shen, Zhang,
Meng, Wang, Wu, Xu, Wang, Ding,
Duan and Li. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Long-term exposure to air
pollution and lung function
among children in China:
Association and e�ect
modification

Jingjing Teng1†, Jie Li2,3†, Tongjin Yang1, Jie Cui1, Xin Xia1,

Guoping Chen1, Siyu Zheng1, Junhui Bao1, Ting Wang4,

Meili Shen4, Xiao Zhang5, Can Meng1, Zhiqiang Wang1,

Tongjun Wu1, Yanlong Xu1, Yan Wang1, Gang Ding1,

Huawei Duan4 and Weidong Li1*

1Anhui Center for Disease Control and Prevention, Public Health Research Institute of Anhui
Province, Hefei, China, 2Department of Occupational and Environmental Health, School of Public
Health, Capital Medical University, Beijing, China, 3Beijing Key Laboratory of Environmental
Toxicology, School of Public Health, Capital Medical University, Beijing, China, 4Chinese Center for
Disease Control and Prevention, National Institute for Occupational Health and Poison Control,
Beijing, China, 5National Center for Chronic and Non-communicable Disease Control and
Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

Background: Children are vulnerable to the respiratory e�ects of air pollution,

and their lung function has been associated with long-term exposure to low air

pollution level in developed countries. However, the impact of contemporary

air pollution level in developing countries as a result of recent e�orts to improve

air quality on children’s lung function is less understood.

Methods: We obtained a cross-sectional sample of 617 schoolchildren

living in three di�erently polluted areas in Anhui province, China. 2-year

average concentrations of air pollutants at the year of spirometry and the

previous year (2017–2018) obtained from district-level air monitoring stations

were used to characterize long-term exposure. Forced vital capacity (FVC),

forced expiratory volume in 1 second (FEV1), and forced expiratory flow

between 25 and 75% of FVC (FEF25−75) were determined under strict quality

control. Multivariable regression was employed to evaluate the associations

between air pollution level and lung function parameters, overall and by

demographic characteristics, lifestyle, and vitamin D that was determined by

liquid chromatography tandem mass spectrometry.

Results: Mean concentration of fine particulate matter was 44.7 µg/m3,

which is slightly above the interim target 1 standard of the World Health

Organization. After adjusting for confounders, FVC, FEV1, and FEF25−75

showed inverse trends with increasing air pollution levels, with children in high

exposure group exhibiting 87.9 [95% confidence interval (CI): 9.5, 166.4] mL

decrement in FEV1 and 195.3 (95%CI: 30.5, 360.1)mL/s decrement in FEF25−75

compared with those in low exposure group. Additionally, the above negative

associations were more pronounced among those who were younger, girls,
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not exposed to secondhand smoke, non-overweight, physically inactive, or

vitamin D deficient.

Conclusions: Our study suggests that long-term exposure to relatively high

air pollution was associated with impaired lung function in children. More

stringent pollution controlmeasures and intervention strategies accounting for

e�ect modification are needed for vulnerable populations in China and other

developing countries.

KEYWORDS

air pollution, long-term, lung function, children, e�ect modification

Introduction

Air pollution is ubiquitous and poses a significant threat

to global health. Ambient pollutants get into the body mainly

through breathing, with the potential of irritating airways and

penetrating deeply into the lung, making respiratory system

the primary target of adverse effects. According to the Global

Burden of Diseases Study 2019, air pollution ranked second

among risk factors contributing to chronic respiratory diseases

(1). As children have a higher ventilation rate and usually

spend more time outdoors than adults, they are more prone

to air pollutants-induced respiratory problems. Lung function

is an objective measure of respiratory health and reduced lung

function during childhood has clinical relevance with lung

growth and later respiratory morbidity and mortality (2). Thus,

it is vital to study the impact of air pollution on the lung function

of children.

Compared with short-term exposure, studying long-term

exposure to air pollution has more implications because of

greater effect and less reversibility of lung function. Both cross-

sectional and longitudinal studies have shown that long-term

exposure to air pollution may affect lung function among

children. For example, a multicenter study taking advantage

of data from several European birth cohorts found that the

annual average concentrations of fine particulate matter (PM2.5)

and nitrogen dioxide (NO2) at the current address were

negatively associated with forced vital capacity (FVC) and

forced expiratory volume in 1 second (FEV1) (3). The Dutch

population-based Prevention and Incidence of Asthma and

Mite Allergy cohort study demonstrated that exposure to all

pollutants during the preschool period was associated with

reduced growth of FEV1 (4). However, most of the previous

studies were conducted in developed countries with typically

low pollution levels (e.g., PM2.5 below 20 µg/m3). Indeed,

more than 90% of global children were exposed to levels of

air pollution above the World Health Organization (WHO) air

quality guideline (5). China is the world’s largest developing

country where the air pollution level is much higher than

that in developed countries. A few multicity studies carried

out between 2009 and 2012 have linked long-term exposure

to high level of air pollution to the impaired lung function of

Chinese children (6, 7). To tackle this severe environmental

issue and protect public health, the central government of

China released a 5-year action plan in 2013, aiming at

improving air quality and reducing heavy pollution days.

With the implementation of supportive clean air actions, the

population-weighted mean PM2.5 concentration was estimated

to decrease from 61.8 µg/m3 in 2013 to 42.0 µg/m3 in

2017 (8). Despite the remarkable reduction, few studies have

examined the association between long-term air pollution

exposure and children’s lung function in the context of moderate

air pollution. Additionally, understanding factors that modify

the respiratory effects of air pollution is crucial for screening

high-risk subpopulations and designing targeted invention

measures. Available investigations mainly focused on sex and

asthma status (9), although studies simultaneously exploring the

modification effects of demographic characteristics, lifestyle, and

micronutrients are needed.

To address these knowledge gaps, we examined the

associations of long-term exposure to air pollution with a

range of lung function parameters and if there is an exposure-

response relationship in 617 schoolchildren who resided in

three differently polluted areas in a less developed province,

China, between 2017 and 2018. Furthermore, whether the above

associations varied by age, sex, secondhand smoke exposure,

body mass index (BMI), physical exercise, and serum vitamin

D were also tested.

Methods

Study population

Three districts were, respectively chosen from three cities

located in Anhui province, central China, based on historical

air monitoring quality data and hereafter referred to as low,

moderate, and high polluted areas. Amultistage cluster sampling

strategy was used to recruit schoolchildren from these polluted
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areas. In the first stage, one primary school and one secondary

school were randomly selected within each district. In the second

stage, one class was randomly selected from grades 1–6 of

primary school and grades 7–8 of secondary school. In the final

stage, 26 children were randomly selected from each selected

class. Children were eligible if they were aged 6–15 years, had

lived in the current address for at least 2 years, and showed no

respiratory symptoms in the previous 14 days before spirometry.

A total of 620 schoolchildren participated in this study between

October 2017 to May 2018. Among these, three children had

incomplete data on the questionnaire, resulting in 617 children

being included in the final analysis. With this sample size, we

have 80% power to detect a Cohen’s f of 0.126 considering a type

I error of 5%.

Data collection

According to the air quality data from environmental

monitoring stations near to school, annual average

concentrations of particulate matter with aerodynamic

meter ≤10µm (PM10), PM2.5, NO2, sulfur dioxide (SO2),

ozone (O3), and carbon monoxide (CO) during 2017–2018

were calculated to characterize the long-term exposure levels of

schoolchildren. In addition, 2-day (current day and 1 day before

spirometry, lag01) moving average of PM2.5 concentration was

calculated as a surrogate of short-term exposure.

Through face-to-face interviews, a standardized

questionnaire was administered to all participants by

experienced investigators to collect data on sociodemographic

characteristics, lifestyle factors, self-reported chronic diseases,

and medication history. Physical measurements including

height and weight were also performed with participants in

light clothing without shoes. Besides, 5mL of venous blood and

50mL of urine were obtained from each participant after an

overnight fast of 8 h.

Secondhand smoke exposure was defined as exposure to

passive tobacco smoking at least once per week. Children who

got <180min per week of moderate and/or vigorous activities

were considered physically inactive. Vegetable and fruit intake

was categorized as insufficient if less than four servings were

consumed per day, otherwise as sufficient. Parental education

was divided into two classes, high school or below and college

or above. BMI was calculated by dividing weight (kg) by squares

of height (m). Age- and sex-specific BMI z-score was further

calculated based on WHO growth reference, and a BMI z-score

equal to or above the corresponding 85th percentile was deemed

as overweight/obesity (10).

Measurement of lung function

Lung function tests were performed by two trained

technicians following the guidelines of the American Thoracic

Society and European Respiratory Society (11). The child,

standing and wearing a nose clip, was asked to blow at

least three times into MasterScreen Pneumo spirometer

(CareFusion, Germany) with a disposable mouthpiece.

Acceptable reproducibility was obtained if the differences

between the two highest FVC values and FEV1 values were both

≤150mL (or within 5%). For children whose lung function

results did not meet this standard, a maximum of eight blows

were required. An expert panel conducted quality control on

all reports of lung function tests, and calibration was done

daily using a 3L syringe. FVC, FEV1, and forced expiratory

flow between 25 and 75% of FVC (FEF25−75) were derived

from the best curve. FEV1/FVC is the ratio of FEV1 to FVC.

Moreover, the predicted values of FVC, FEV1, and FEF25−75

were calculated based on the 2012 Global Lung Function

Initiative reference equation taking age, sex, and height into

account (12). Poor lung function was defined as observed FVC

<85% predicted value, FEV1 <85% predicted value, FEF25−75

<75% predicted value, and FEV1/FVC<85% according to

relevant cutoff values applicable to children (13, 14).

Serum vitamin D detection

The serum was separated by centrifugation and stored

at −80◦C. Serum level of 25(OH)D (sum of 25(OH)D2 and

D3) was detected by liquid chromatography tandem mass

spectrometry (AB6500, U.S.). The reference standard was

purchased from Sigma-Aldrich (U.S.) and other analytical

grade chemical reagents were commercially available from

Merck (Germany). In brief, 150 µL of serum was pipetted

into a microtube and mixed with 15 µL internal standard

(1,000 ng/mL). Then 150 µL aqueous zinc sulfate and 300 µL

acetonitrile were added to precipitate protein, and the tube

was vortexed for 30 s and left for 15min at room temperature.

After adding 750 µL hexane, the mixture was vortexed for 30 s

and centrifugated at 13,000 rpm for 5min. Following drying

under nitrogen gas of 0.5mL supernatant, the residue was

reconstituted using 200 µL mobile phase for further analysis.

All samples were performed in duplicate, and the coefficients of

variation for intra- and inter-assay were <10%.

Statistical analysis

Differences between exposure groups were tested using

analysis of variance for continuous variables and chi-square

test for categorical variables. Multivariable linear regression

models were used to examine the associations between long-

term air pollution exposure levels and lung function parameters.

The model was adjusted for age (continuous), sex (boys/girls),

height (continuous), weight (continuous), secondhand smoke

exposure (yes/no), physical activity (active/inactive), vegetable

and fruit intake (sufficient/insufficient), and parental education
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(high school or below/college or above). Similar to previous

studies that accounted for the confounding effect of short-

term exposure (15, 16), PM2.5 concentration on lag01 days of

lung function measurement was also included as a covariate.

When testing the linear trends of lung function parameters with

increasing air pollution levels, the exposure group was modeled

as an ordinal variable. For associations with the prevalence

of poor lung function, multivariable logistic regression models

were employed with the same covariates.

Effect modification of the above associations was further

evaluated through subgroup analyses stratified by age, sex,

secondhand smoke exposure, BMI, physical activity, and

serum vitamin D. To this end, age was dichotomized as 11

years or younger and 12 or older, and vitamin D was also

dichotomized with its median (i.e., 16.6 ng/mL) as a cutoff value.

For a more straightforward comparison between subgroups,

marginally adjusted means or probability was computed for all

combinations of exposure group and stratified variable, which

are weighted averages reflecting confounder distribution in the

total population (17). To respect 0 and 1 bounds, the predicted

probability and its confidence interval (CI) were first generated

on the logit scale and then transformed back to the probability

scale. The interaction was formally tested by introducing a

product term between exposure group and modifier, and a

Wald test evaluating the joint significance of all associated

cross-product terms was used to assess statistical significance.

Furthermore, the joint impacts of air pollution and secondhand

smoke on lung function were investigated by classifying the

participants into six groups according to air pollution levels

and secondhand smoke exposure status, with schoolchildren in

the low exposure group and not exposed to secondhand smoke

as reference.

Several sensitivity analyses were conducted as follows: (a)

using percent predicted values instead of observed values of

lung function parameters as dependent variables; (b) excluding

children exposed to secondhand smoke; (c) excluding children

with a self-reported diagnosis of asthma; (d) additionally

adjusted for short-term NO2 or O3.

All analyses were done with R (version 3.6.0) and a P-value

< 0.05 was considered statistically significant. Mean differences

and odds ratio (OR) and their 95% CI were reported for results

of linear and logistic regression models, respectively.

Results

Supplementary Figure S1 displays the geographic locations

of six selected schools in Anhui province, China. The 2-year

mean concentrations of PM10, PM2.5, NO2, SO2, O3, and CO

were 72.4 µg/m3 [standard deviation (SD) = 42.7], 44.7 µg/m3

(SD = 33.3), 31.2 µg/m3 (SD = 19.0), 12.5 µg/m3 (SD =

5.6), 94.1 µg/m3 (SD = 45.9), and 0.8 mg/m3 (SD = 0.3),

respectively (Table 1).While the concentrations of PM10, PM2.5,

and O3 increased from low exposure group to high exposure

group, the concentration of NO2 was highest inmoderate group.

Considering that NO2 is an indicator of vehicle exhaust, this

discrepancy may be explained by more urbanization occurring

in the district where the moderate group was recruited.

The general characteristics and lung function levels of

schoolchildren are shown in Table 1. Although there were no

significant differences across exposure groups in terms of age

and sex, lower proportion of secondhand smoke exposure and

parental education level, and higher BMI were observed for

children with higher exposure levels. The averages of lung

function parameters were 2384.8mL (SD = 743.7) for FVC,

2075.5mL (SD= 636.0) for FEV1, 2451.6 mL/s (SD= 826.1) for

FEF25−75, and 87.4% (SD= 6.8) for FEV1/FVC. The prevalence

of poor lung function for FVC, FEV1, FEF25−75, and FEV1/FVC

was 14.7, 17.3, 16.0, and 33.1%, respectively.

The associations between air pollution exposure and lung

function parameters are presented in Table 2. After adjusting

for covariates, FVC, FEV1, and FEF25−75 showed inverse trends

with increasing air pollution levels (ptrend = 0.030, 0.004, 0.012,

respectively). Specifically, children in the high exposure group

exhibited 73.3 (95% CI: −14.6, 161.2) mL decrement in FVC,

87.9 (95% CI: 9.5, 166.4) mL decrement in FEV1, and 195.3

(95% CI: 30.5, 360.1) mL/s decrement in FEF25−75 compared

with those in the low exposure group. FEV1/FVC, reflecting the

association patterns with FEV1 and FVC, was not significantly

different between groups. As for associations with the prevalence

of poor lung function, the results were generally insignificant

regardless of the increased odds ratio in the high exposure group.

Significant interactions of age and sex with air pollution

were observed in relation to FEF25−75 and FEV1 (pinteraction

= 0.023 and 0.041, respectively). In addition, although no

significant modification effects were found for secondhand

smoke exposure, BMI, physical activity, and serum vitamin D

levels, we did observe significant associations among children

with normal weight, non-regular exercise, lower vitamin D,

or without exposure to secondhand smoke but not their

counterparts (Figure 1). The differences and 95% CI comparing

high vs. low exposure group were −107.9 (95% CI: −195.6,

−20.3) mL for FEV1 and −311.1 (95% CI: −496.6, −125.5)

mL/s for FEF25−75 among children aged 11 years or younger,

−98.6 (95% CI: −191.7, −5.4) mL for FEV1 and −264.9 (95%

CI: −461.1, −68.8) mL/s for FEF25−75 among girls, −189.7

(95% CI: −366.9, −12.4) mL/s for FEF25−75 among children

not exposed to secondhand smoke, −227.3 (95% CI: −397.5,

−57.2) mL/s for FEF25−75 among children with normal weight,

−100.6 (95% CI: −196.5, −4.8) mL for FEV1 and −256.7

(95% CI: −457.9, −55.6) mL/s for FEF25−75 among physically

inactive children, and−274.1 (95% CI:−487.7,−60.5) mL/s for

FEF25−75 among children with lower vitamin D levels. Besides,

stronger associations with the prevalence of poor lung function

for FEF25−75 and/or FEV1/FVCwere found in girls and children

with normal weight or lower vitamin D (Figure 2).
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TABLE 1 Air pollutant concentrations, general characteristics, and lung function parameters among schoolchildren, overall and by exposure group.

Total (n = 617) Exposure group P-value

Low (n = 209) Moderate (n = 206) High (n = 202)

Air pollutant

PM10 (µg/m
3) 72.4± 42.7 46.6± 24.8 75.3± 37.8 95.3± 47.1 <0.001c

PM2.5 (µg/m
3) 44.7± 33.3 24.9± 17.9 51.5± 32.9 57.9± 36.2 <0.001c

NO2 (µg/m
3) 31.2± 19.0 17.7± 5.3 46.7± 20.9 29.3± 13.8 <0.001c

SO2 (µg/m
3) 12.5± 5.6 11.4± 3.1 9.7± 4.7 16.5± 6.0 <0.001c

O3 (µg/m
3) 94.1± 45.9 73.1± 26.5 100.5± 48.7 108.8± 50.5 <0.001c

CO (mg/m3) 0.8± 0.3 0.7± 0.2 0.9± 0.3 0.8± 0.3 <0.001c

Characteristics

Age (years) 10.6± 2.2 10.3± 2.3 10.8± 2.1 10.6± 2.3 0.089c

Sex (n, %)

Boys 311 (50.4) 105 (50.2) 103 (50.0) 103 (51.0) 0.979d

Girls 306 (49.6) 104 (49.8) 103 (50.0) 99 (49.0)

Secondhand smoke exposure (n, %)

No 474 (76.8) 142 (67.9) 151 (73.3) 181 (89.6) <0.001d

Yes 143 (23.2) 67 (32.1) 55 (26.7) 21 (10.4)

Physical activity (n, %)a

Inactive 336 (56.1) 105 (52.8) 137 (67.8) 94 (47.5) <0.001d

Active 263 (43.9) 94 (47.2) 65 (32.2) 104 (52.5)

Vegetable and fruit intake (n, %)

Insufficient 299 (48.5) 107 (51.2) 77 (37.4) 115 (56.9) <0.001d

Sufficient 318 (51.5) 102 (48.8) 129 (62.6) 87 (43.1)

Parental education (n, %)b

High school or below 426 (69.8) 61 (30.2) 179 (86.9) 186 (92.1) <0.001d

College or above 184 (30.2) 141 (69.8) 26 (13.1) 16 (7.9)

Height (cm) 143.8± 14.0 142.6± 14.4 143.1± 12.3 145.8± 15.0 0.048c

Weight (kg) 37.0± 12.1 35.1± 11.8 36.6± 10.9 39.4± 13.1 <0.001c

BMI (kg/m2) 17.4± 3.1 16.8± 3.0 17.5± 3.0 18.0± 3.2 <0.001c

BMI z-score 0.0± 1.1 −0.3± 1.3 0.0± 1.1 0.2± 1.2 <0.001c

Overweight/Obesity (n, %) 104 (16.9) 33 (15.8) 32 (15.5) 39 (19.3) 0.524d

Serum vitamin D (ng/mL) 17.5± 3.8 17.7± 3.8 16.5± 3.8 18.3± 3.3 <0.001c

Lung function parameters

FVC (mL) 2384.8± 743.7 2426.9± 770.4 2280.3± 660.2 2447.8± 787.0 0.045c

FEV1 (mL) 2075.5± 636.0 2090.3± 639.2 2033.3± 581.0 2103.0± 685.2 0.498c

FEF25−75 (mL/s) 2451.6± 826.1 2417.5± 797.9 2535.9± 784.6 2400.9± 891.0 0.196c

FEV1/FVC (%) 87.4± 6.8 86.5± 6.4 89.6± 6.1 86.1± 7.4 <0.001c

Percent predicted FVC (%) 97.0± 13.0 101.1± 11.9 93.7± 13.0 96.1± 13.1 <0.001c

Percent predicted FEV1 (%) 95.9± 12.8 98.8± 11.4 94.9± 13.0 93.8± 13.5 <0.001c

Percent predicted FEF25−75 (%) 96.6± 23.1 97.3± 21.7 100.6± 23.4 91.9± 23.7 <0.001c

Percent predicted FEV1/FVC (%) 98.6± 7.6 97.5± 7.1 101.0± 6.8 97.3± 8.3 <0.001c

Low FVC (<85% predicted, %) 91 (14.7) 15 (7.2) 43 (20.9) 33 (16.3) <0.001d

Low FEV1 (<85% predicted, %) 107 (17.3) 24 (11.5) 42 (20.4) 41 (20.3) 0.023d

Low FEF25−75 (<75% predicted, %) 99 (16.0) 29 (13.9) 22 (10.7) 48 (23.8) <0.001d

Low FEV1/FVC (<85%, %) 204 (33.1) 72 (34.5) 48 (23.3) 84 (41.6) <0.001d

The statistics are shown as mean± SD or counts (percentages).
a18 missing values for physical activity; b7 missing values for parental education; cAnalysis of variance; dChi-square test.
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TABLE 2 Multivariable adjusteda associations between air pollution levels and lung function parameters among all schoolchildren.

Estimate (95% CI) P-valuea
Ptrenda

Continuous outcomes

FVC

Low exposure Ref – 0.030

Moderate exposure −8.5 (−165.3, 148.3) 0.915

High exposure −73.3 (−161.2, 14.6) 0.102

FEV1

Low exposure Ref – 0.004

Moderate exposure −17.1 (−156.9, 122.8) 0.811

High exposure −87.9 (−166.4,−9.5) 0.028

FEF25−75

Low exposure Ref – 0.012

Moderate exposure −140.2 (−434.2, 153.8) 0.349

High exposure −195.3 (−360.1,−30.5) 0.020

FEV1/FVC

Low exposure Ref – 0.109

Moderate exposure 0.0 (−3.5, 3.4) 0.991

High exposure −1.1 (−3.1, 0.8) 0.240

Binary outcomes

Low FVC (<85% predicted)

Low exposure Ref – 0.124

Moderate exposure 1.22 (0.26, 5.63) 0.803

High exposure 1.79 (0.72, 4.54) 0.213

Low FEV1 (<85% predicted)

Low exposure Ref – 0.122

Moderate exposure 1.34 (0.31, 5.62) 0.687

High exposure 1.74 (0.77, 3.96) 0.184

Low FEF25−75 (<75% predicted)

Low exposure Ref – 0.026

Moderate exposure 0.68 (0.13, 3.34) 0.635

High exposure 1.68 (0.73, 3.90) 0.225

Low FEV1/FVC (<85%)

Low exposure Ref – 0.121

Moderate exposure 1.56 (0.48, 5.08) 0.457

High exposure 1.64 (0.86, 3.13) 0.131

Estimates are difference for continuous outcomes and odds ratio for binary outcomes.
aAdjusted for age, sex, height, weight, secondhand smoke exposure, physical activity, vegetable and fruit intake, parental education, and mean PM2.5 concentration on the lung function

examination day and 1 day before examination (lag01).

The combined impacts of air pollution and secondhand

smoke are shown in Figure 3. Compared with children in

the low exposure group and not exposed to secondhand

smoke, those exposed to both high level air pollution

and secondhand smoke had the worst lung function,

with 154.4 (95% CI: −1.1, 309.8) mL decrement in FVC,

164.6 (95% CI: 25.9, 303.3) mL decrement in FEV1,

and 305.9 (95% CI: 14.3, 597.5) mL/s decrement in

FEF25−75. Similar analyses related to the prevalence of

poor lung function yielded no significant results (data

not shown).

In the sensitivity analyses, the inverse trends persisted

with regard to associations with percent predicted FEV1

and FEF25−75 (Supplementary Table S1). Regression results

restricting to children not exposed to secondhand smoke or

without self-reported asthma and additionally adjusting for

short-term NO2 or O3 did not differ substantially from those

based on the whole population (Supplementary Table S2).
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FIGURE 1

Marginally adjusted means of FVC (A), FEV1 (B), FEF25−75 (C), and FEV1/FVC (D) by age, sex, secondhand smoke exposure, body mass index
(BMI), physical exercise, and vitamin D (the median value was 16.6 ng/mL). Models were adjusted for age, height, weight, vegetable and fruit
intake, parental education, and mean PM2.5 concentration on the lung function examination day and 1 day before examination (lag01), and sex,
secondhand smoke exposure, and physical exercise when appropriate. Error bars represent 95% CI and asterisk indicates p < 0.05.
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FIGURE 2

Marginally adjusted probability of low FVC (A), FEV1 (B), FEF25−75 (C), and FEV1/FVC (D) by age, sex, secondhand smoke exposure, body mass
index (BMI), physical exercise, and vitamin D (the median value was 16.6 ng/mL). Models were adjusted for age, height, weight, vegetable and
fruit intake, parental education, and mean PM2.5 concentration on the lung function examination day and 1 day before examination (lag01), and
sex, secondhand smoke exposure, and physical exercise when appropriate. Error bars represent 95% CI and asterisk indicates p < 0.05.
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FIGURE 3

Joint analysis of air pollution and secondhand smoke exposure on FVC (A), FEV1 (B), FEF25−75 (C), and FEV1/FVC (D) among all schoolchildren.
Models were adjusted for age, sex, height, weight, physical activity, vegetable and fruit intake, parental education, and mean PM2.5 concentration
on the lung function examination day and 1 day before examination (lag01). Error bars represent 95% CI.

Discussion

To our knowledge, this work represents one of the few

studies that investigated the impact of long-term air pollution

at contemporary exposure levels in developing countries on the

lung function of children in school. Our results showed reduced

FEV1 and FEF25−75 with increasing levels of air pollution. The

negative associations were more pronounced among children

who were younger, girls, not exposed to secondhand smoke,

non-overweight, physically inactive, or vitamin D deficient.

Moreover, air pollution and secondhand smoke exhibited joint

effects on lung function decline.

Among lung function parameters, the largest change

associated with air pollution was found for FEF25−75. The

same pattern has been observed in regions with low (U.S.,

Netherlands, Norway, and Italy) and moderate (Hong Kong,

China) air pollution level (18–22). Since FEF25−75 is more

reflective of small airway dysfunction, our finding suggested that

air pollution might exert more influence on small airways than

on large airways. This is plausible because higher doses of air

pollutants are supposed to deposit in the small airways (23).

Although we could not disentangle the individual contribution

of each pollutant, PM2.5 and O3 seemed to be responsible for

FEF25−75 reduction considering their concentration contrasts

between cities and the potential of entering into small airways

(18, 24). Smaller particles can more easily penetrate into the

lower respiratory tract, and a number of studies support the

relation between long-term PM2.5 exposure and lower FEF25−75

(18, 24, 25). Due to relatively low water solubility, O3 can

also reach and subsequently be retained in small airways, in

spite of the epidemiological evidence regarding its effect on

FEF25−75 are somewhat inconsistent (26, 27). In addition

to airway flow measure, parameters indicative of mechanical

ventilatory function were also involved here and the negative

association was found with FEV1 but not FVC. This is in line

with many studies reporting a larger association magnitude for

FEV1 than for FVC (18–22), which indicates a greater impact

on airway obstruction than lung size. The observed changes in

lung function, although small from the individual perspective,

may lead to a shift in population distribution. We therefore

further determined the prevalence of lung function parameters

below clinically relevant thresholds and found null associations.

In contrast, prior studies based on data from Chinese children

reported significant effects of chronic air pollution on the
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prevalence of poor lung function (6, 28). We acknowledged

this study might be underpowered to detect such associations.

Differences in age range, air pollution level, and formula used

to calculate percent predicted values might also help explain the

inconsistent results across studies.

Previous studies have established the exposure-response

relationship between long-term air pollution exposure and

respiratory disease mortality (29, 30). As lung function is a

marker of early lung injury, it is interesting to explore the

corresponding relationship using lung function as outcome.

Nevertheless, the existing evidence is limited, especially for

children, and mainly derived from statistical models. A large

longitudinal study in China revealed preliminary results that the

decreases of lung function appeared to be faster up to PM2.5

concentration range of 20–25 µg/m3 and slower thereafter (28).

In the current study, we provided direct evidence that there is

a linear exposure-response relationship between long-term air

pollution and lung function impairment when PM2.5 is in the

range of 25–60 µg/m3, which is valuable for assessing the health

risk of children in developing countries. Likewise, Tsui et al.

(27) found that lifetime exposure to intermediate levels of PM10

(25–85 µg/m3) was linearly associated with lower lung function

in non-asthmatic children from Taiwan, China. In addition,

the fact that lung function started to decrease in the moderate

exposure group whose exposure level was slightly above interim

target 1 (IT-1) values recommended by WHO highlights the

necessity ofmandating IT-1 standard in countries withmoderate

and high air pollution to protect vulnerable population.

It is known that the behaviors and lung development of

younger children are different from those of older children,

leading us to hypothesize that air pollutionmight display distinct

impacts on children of various ages. However, this topic is

understudied before possibly due to the narrow age range of

the study population. Two cross-sectional studies in Rome and

U.S. showed stronger associations of NO2 and blood manganese

with lung function in older children (21, 31). They speculated

that longer cumulative exposure to low-dose air pollution might

account for this observation. Unlike these studies, younger

children seemed to be more vulnerable in this study, suggesting

that the role of cumulative exposure in affecting lung function

is less obvious in relatively high pollution settings. Indeed,

older children generally have higher antioxidant capacity than

younger children, enabling them better protection against air

pollution-related oxidative stress. A Japanese study found a

positive correlation between the serum level of antioxidant

capacity biomarker and age in 77 children (32). Besides, the

adaptive responses may be more evident among older children

as they are exposed to air pollution for a longer period. Relative

to age, researches on sex differences in lung function associated

with air pollution are more abundant, but the results are rather

mixed. While some studies demonstrated a larger reduction of

lung function among girls as seen in this study (19–21), others

found opposite patterns or no significant results (22, 33–35).

The age more or less close to puberty of our subjects lend us

credence that the observed finding may be partially attributed to

estrogen, since estrogen level correlates with symptom severity

of asthma (36).

Exposure to secondhand smoke and overweight/obesity

are common among children, both of which appear to affect

lung function. Here, the negative associations were stronger

in children not exposed to secondhand smoke. To support

this finding, many previous cohorts including Framingham

Heart, Normative aging, and UK Biobank studies reported

higher effects on never/former smokers for associations between

PM2.5 and lung function parameters (15, 37, 38). This is not

surprising because smoking may have already damaged lung

function through inflammation, thus masking the additional

effect of air pollution to some extent. However, this does not

necessarily imply that avoidance of exposure to secondhand

smoke is meaningless for children. Notably, the mean levels of

FVC, FEV1, and FEF25−75 were all lower in children exposed to

secondhand smoke, and the largest reduction of lung function

parameters was found in children who lived in the most polluted

area and were exposed to secondhand smoke. As a result,

campaigns protecting children from secondhand smoke should

be advocated as ever. On the other hand, we found children

with normal weight might be more sensitive to the respiratory

effect of air pollution, which could also be explained by the

pre-existing inflammation induced by excess fat. Contradicting

result was reported by the Seven Northeastern Chinese Cities

study (6). In that study, the associations between prevalence of

lung function impairment and air pollutants were strongest in

obese children, followed by overweight children, and weakest

in normal-weight children. The modification of age on the

relationship of BMI with lung function is likely to shed some

light on the discrepancy. In younger children, lung function

tends to be higher with increasing BMI (39). But after puberty,

their relationship is characterized by an inverted U shape, with

lower lung function at both ends of BMI (40). Given our

population composition (about 75% are from primary school),

the detrimental effect of overweight/obesity on lung function

is not expected. This postulation is further evidenced by the

stratified result that the modification of overweight/obesity on

the association between particulate matter and lung function

impairment was more evident in older children than in younger

children (6).

As aforementioned, children take physical activity more

regularly than adults and higher physical activity has a favorable

effect on lung function. Meanwhile, more air pollutants are

inhaled by children during exercise. It remains equivocal on

whether physical activity promotes or attenuates the adverse

health effects of air pollution, which is also a major concern for

many parents and policy makers. In the present study, we found

physically inactive children might be more susceptible than

active children. Similarly, a Chinese nationwide study found

the impact of PM10 on FVC was stronger in inactive children
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(7). Both results add evidence for guiding the behavior of

children during pollution days. Although biological mechanisms

underlying the modification effect of physical activity are not

fully understood, anti-inflammation should be one of the

possible pathways. Olivo et al. (41) found that mice undergoing

10-week exercise training (5 days/week, 1 hour/day) exhibited

lower proinflammatory cytokines in the lung in response to

diesel exhaust particle exposure.

Micronutrients are indispensable for the maintenance of

normal tissue function and their deficiencies can cause deficits

in lung function (42). Previous studies have explored the role

of micronutrients, especially those with antioxidant properties,

in modifying the association between air pollution and lung

function. For instance, Romieu et al. (43) observed a significantly

negative association of O3 at 1 day before spirometry with

FEV1 and FEF25−75 in children with asthma receiving a placebo

but not those receiving vitamin supplement (vitamin C and

E). Although vitamin D is well known for its implication in

calcium homeostasis, there is growing evidence relating vitamin

D to lung function and asthma (44, 45). In Normative aging

study, smokers with vitamin D deficiency were found to have

lower lung function and more rapid lung function decline (46).

To our knowledge, this is the first study demonstrating that

a lower level of vitamin D might aggravate the reduction of

lung function among healthy children exposed to long-term air

pollution. Animal study manifested mice exposed to vitamin D

deficiency had increased airway smooth muscle mass, which is a

feature of airway remodeling of asthma and chronic obstructive

pulmonary disease (47). Given the cross-sectional nature of our

study, however, whether vitamin D supplements can alleviate

the harmful effects of air pollution on the respiratory system

needs further investigations using a well-designed randomized

controlled trial.

This study has several limitations. First, air pollution

data of fixed monitoring stations were used as a proxy of

children’s exposure level as detailed residential address was not

mandatory in the questionnaire, raising concerns of exposure

misclassification. However, suchmeasurement errors should not

be substantial in terms of characterizing long-term exposure and

non-differential misclassification usually biases estimates toward

no association. Second, although we did find an increased

prevalence of poor lung function in the high exposure group

as well as stronger associations in certain subgroups, most

of these results did not reach statistical significance possibly

owing to sample size. Third, only including vitamin D is not

adequate to provide a full picture of nutritional intervention

in alleviating the adverse health effects of air pollution. Fourth,

parental education was severely imbalanced across exposure

groups. Covariate adjustment might not fully remove residual

confounding. Finally, cotinine was not determined to measure

the actual exposure level of secondhand smoke more accurately,

normoderate and vigorous physical activities were differentiated

from each other.

In conclusion, our findings indicate that long-term air

pollution at levels of exposure currently experienced by many

people in developing countries is associated with lower levels

of large and small airway function in Chinese children, with

a stronger impact on the latter. Reducing secondhand smoke

exposure, encouraging physical activity, and supplementing

vitamin D are important public health priorities to mitigate

the burden of respiratory disease among children in China and

other developing countries with comparable air pollution levels.

Future studies measuring individual exposure and analyzing

the data with more advanced methods (e.g., exposome-wide

association) are warranted to provide more insight into

the impact of long-term air pollution on lung growth of

children and the potential effect of air pollution regulation

policies (48, 49).
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