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Coal resources play a very important role in the energy structure, especially in

the field of thermal power generation. However, in thermal power generation,

coal resources can’t be used efficiently for various reasons, resulting in a waste

of energy. Due to the advantages of many kinds of elements and rapid

measurement, X-fluorescence spectroscopy (XRF) can rapid measurement a

variety of metal elements in coal. Combined with partial least squares (PLS), the

relationship between a variety of elements and ash in coal can be established,

and the ash value in the measured coal can be quickly obtained, which can

effectively guide the coal combustion process of power plant, so as to improve

the utilization rate of coal. The experimental results show that under the PLS

model, XRF technology has good measurement results for the ash content of

45 calibration set coal samples, in which the determination coefficient of the

fitting curve (R2) reaches 0.946, and the root mean square error (RMSE) is only

1.177%. The accuracy of the model is further predicted under a cross validation.

15 validation set coal samples are brought into the model for prediction.

According to the prediction results, the R2 reaches 0.982, and RMSE is only

0.726%. Finally, four of the 60 samples are randomly selected for stability test,

and the relative standard deviation (RSD) is less than 1%. Therefore, the

quantitative analysis method of XRF method based on PLS model has high

accuracy and stability, which can provide guidance for rapid online

measurement of coal ash and coal blending.
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1 Introduction

According to the statistical bulletin of the people’s Republic

of China on national economic and social development in 2020,

the output of raw coal is 3.9 billion tons, an increase of 1.4%

month on month. China is still a large coal producing country, in

which thermal power generation is the main purpose. According

to statistics, China’s thermal power installed capacity in 2020 is

1.245 billion kW, a year-on-year increase of 4.7%. Therefore, the

structure of coal energy as the main energy will not change in a

short period of time. And as a non-renewable resource, its usage

is increasing year by year. In the environment of advocating clean

energy and developing sustainable renewable economy, the

efficient and clean utilization of coal resources is very

important [1].

The main indicators of coal include calorific value, ash and

volatile content. Ash is the residue of coal sample after complete

combustion under specified conditions. It is an important

indicator to study the characteristics and utilization of coal.

This indicator has a significant relationship with the problems

of corrosion, contamination and slagging in the coking industry

and coal power generation applications. The higher the ash

content of the coal, the lower the effective carbon yield. Based

on this, the furnace type selection and coal ash utilization

research can be carried out. Commercially, the price can be

determined according to the coal ash content [2, 3]. The ash

content in coal comes from minerals, mainly including calcium

oxide, magnesium oxide, silicon oxide and other metal oxides. All

these elements are positively correlated with ash content. The ash

content in coal can be detected by the measurement of these

metal elements.

For ash content detection, coal-fired power plants now

generally apply the fast ash method specified in “GB/T

212–2008 Industrial Analysis Method for Coal”. This

method takes 2–3 h, and the program is redundant, which

seriously lags behind industrial production, so it is difficult to

provide on-site real-time guidance on boiler combustion.

Recently, laser induced breakdown spectroscopy (LIBS) [4],

neutron activation technology (PGNAA) [5], γ-ray

backscattering method [6] can be used for rapid and real-

time detection of ash in coal. For example, Liu et al.

determined 14 elements (Si, Al, Ca and other metal

elements) in ash of coal by laser-induced breakdown

spectrum (LIBS). They digested the coal ash with nitric

acid and hydrofluoric acid, and then added boric acid

solution to decompose fluoride deposits. The results show

that the RSD of the determined elements is less than 5% [7].

Yao et al. extracted the coal ash content from the LIBS through

multivariate analysis. The results showed that a good

consistency was observed between the ash content provided

by the thermogravimetric analyzer and the PLS regression

model coupling of the LIBS measured value with the unknown

sample [8]. However, the measurement stability of LIBS is

poor. Liang et al. designed an online ash detection system for

coal quality based on PGNAA technology and the test results

showed that the dynamic standard deviation of ash

measurement in the system was 0.105%, which realized the

intelligent control of heavy medium block cleaned coal ash

[9]. Although this method has high measurement accuracy, it

has high cost and safety problems such as radiation. Cheng

et al. made accurate measurement of coal ash composition by

γ-ray backscattering and established a correction model for γ-

ray measurement. The test results show that the correction

model improves the measurement accuracy and overcomes

the shortcomings of frequent instrument calibration [10]. The

principle of this method is simple and the operation cost is

low. However, the analysis results are greatly affected by the

change of coal composition, and needs constant calibration

and correction to stabilize the measurement.

In recent years, X-ray fluorescence spectrometry as a

mature technology has been widely used in many fields

because of its advantages of fast analysis speed, wide

measurement range, low anti-interference, analysis of most

elements, and analysis of solid, powder, molten beads, liquid

and other samples [11–13]. The principle is that the X-ray

tube excites the measured sample by generating incident

X-rays. Each element in the excited sample will emit

specific X-fluorescence of the element. The detection

system measures the energy or wavelength of the emitted

X-fluorescence and can convert it into the types of

corresponding elements in the sample [14, 15]. In addition,

the intensity of fluorescent X-rays has a certain relationship

with the content of corresponding elements, based on which,

quantitative analysis of elements can be carried out. The

analysis of ash in coal by X-ray fluorescence spectrometry

has been studied by many researchers. For example, Song et al.

established a melt preparation method for the determination

of SiO2, Al2O3, Fe2O3 and other metal compounds in fly ash,

which improved the determination accuracy. The accuracy

and precision of the final results were acceptable [16]. Wang

et al. prepared samples by melting method and determined the

contents of SiO2, MgO, Al2O3 and TiO2 in coal gangue with

clay and slag national standard samples. The results show that

this method had good measurement accuracy for coal gangues

from different producing areas and can completely replace wet

chemical analysis as a conventional analysis method of coal

gangue [17]. Bao et al. described an X-ray fluorescence

method for direct determination of 23 elements in coal.

The ash content in actual coal was simulated, and the

sample was prepared from a mixture of reference materials

such as graphite and cellulose. The internal standard method,

two-step correction method or scattered radiation empirical

coefficient method were used to obtain low detection limit,

good precision and accuracy [18]. In order to improve the

accuracy of online XRF analysis of granular coal, Jia et al.

established a distance correction method through iteration
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based on the relationship between XRF strength and distance.

By comparing the results before and after the application of

distance correction method, it showed that the measurement

accuracy of online XRF analysis of granular coal was improved

[19]. Pearce et al. directly carried out multi-element analysis

of coal powder by X-ray fluorescence spectrometry. The

relative standard deviation of chlorine, sulfur and

phosphorus in coal and the calculated slagging index and

scaling coefficient were less than 7% [20]. Feng et al. applied

the partial least squares (PLS) model to the concentration

measurement of coal elements. The non-linear self-absorption

and inter element interference were described effectively and

accurately. The PLS model obtains the same calibration

quality and reduces the predicted root mean square error

(RMSEP) from 4.47% to 3.77% [21].

Partial Least Squares (PLS) has become one of the most

important modeling methods in quantitative analysis because

of its high prediction accuracy [22]. This method overcomes

the collinearity problem and solves the problems of

insufficient samples and multiple dependent variables to a

certain extent. It belongs to a small sample modeling method.

It combines the advantages of principal component analysis

(PCA) and multiple linear regression (MLR) analysis, and it

can quickly and accurately find out the relationship between

independent variables and dependent variables. The ash

value in coal is positively correlated with the content of

the metal elements (Al, Fe, Ca, etc.) contained therein.

Therefore, the strong correlation between the various

elements in coal and ash can be established through the

PLS model.

Therefore, X-ray fluorescence spectroscopy has becomemore

and more widely used in coal measurement methods, which can

quickly and accurately analyze ash in coal. In the analysis

algorithm, partial least squares (PLS) combine the advantages

of PCA and MLR to accurately predict the ash value in coal. In

this paper, the advantages of rapid analysis of various elements in

coal ash by X-ray fluorescence and modeling by PLS algorithm

can predict the ash content in coal with high accuracy and high

stability. Leave-one-out cross validation was added to the PLS

model to further verify the accuracy of the model, and the

prediction results were also very accurate. This method is

expected to provide a theoretical basis for coal burning

detection in power plants.

2 Materials and methods

2.1 Coal sample

In the experiment, 60 coal samples used for combustion and

power generation in a power plant were collected. These

samples were all from different regions or cities in Shanxi

Province. These coal samples were dried and tested by

chemical methods to obtain the standard value of ash. As

shown in Table 1, the standard value of ash of 60 coal

samples is listed. 60 samples are divided into calibration set

TABLE 1 Standard ash value of 60 coal samples.

Sample Ash (%) Sample Ash (%) Sample Ash (%) Sample Ash (%)

C1 27.40 C16 19.37 C31 35.03 V1 30.64

C2 29.25 C17 40.03 C32 29.59 V2 27.49

C3 33.25 C18 20.08 C33 30.98 V3 26.24

C4 28.67 C19 25.38 C34 31.75 V4 35.43

C5 30.54 C20 35.35 C35 27.51 V5 20.02

C6 23.16 C21 28.29 C36 40.16 V6 37.39

C7 34.4 C22 32.78 C37 34.39 V7 28.57

C8 19.7 C23 28.12 C38 21.02 V8 30.67

C9 30.03 C24 29.36 C39 31.11 V9 32.09

C10 30.63 C25 28.47 C40 24.62 V10 23.91

C11 29.5 C26 29.99 C41 26.94 V11 20.44

C12 21.97 C27 29.37 C42 26.12 V12 25.06

C13 38.91 C28 30.82 C43 31.55 V13 36.03

C14 39.15 C29 27.04 C44 28.79 V14 21.58

C15 21.73 C30 29.97 C45 28.54 V15 27.96
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(45 coal samples, recorded as C1-C45) and validation set

(15 coal samples, recorded as V1-V15). Among them, the

spectral data of calibration set coal samples are used to

establish the ash prediction model, and the validation set

coal samples are used to verify the quantitative analysis

performance of the model. Here, the ash standard value

range of 15 coal samples in the validation set is included in

the calibration set to ensure the accuracy of the validation

results. Four of the 60 coal samples were selected for

repeatability test to verify the stability of XRF for ash detection.

2.2 XRF setup

As shown in Figure 1, XRF experimental device is mainly

composed of X-ray tube (rhodium target), Ultra-high

performance silicon drift detector (SDD), vacuum chamber,

high-voltage power supply, vacuum pump and PC, which

belongs to energy dispersion type. After the high-voltage

power supply supplies power to the X-ray tube, the X-ray is

generated and acts on the sample of the sample table in the

vacuum chamber. The signal light generated by the interaction

between the X-ray and the sample is detected by SDD and

finally input to the PC terminal to obtain the spectrum. During

measurement, the vacuum chamber always maintains a vacuum

of 150 Pa, which is controlled by the vacuum pump. Here, the

current and voltage of the X-ray tube are 0.3 mA and 10 kV

respectively, and the measurement time of each sample is 30 s.

Because X-ray is sensitive to temperature change, which will

affect the accuracy of the final spectral line, the whole

experiment is kept under constant temperature control at 25 an.

2.3 Validation algorithm and model

In PLS modeling, in the given modeling samples, take out most

of the samples to build the model, and leave a small part of the

samples to predict with the newly established model. This process is

repeated until all samples are predicted once and only once. Only

one in the original sample is used as the validation set, while the rest

is left as the calibration set. This step continues until each sample is

treated as a validation data. In addition, the over fitting problem is

avoided by leaving one method for cross validation. The robustness

of the current PLS model is proved by different calibration,

segmentation and prediction samples. The principle is to

establish a linear regression model between independent

variables and dependent variables, as shown in the following

equation:

Y � ApX + B (1)

where Y is the response matrix with m variables and n sample

points, X is the input matrix with p variables and n sample points,

A is the regression coefficient matrix, and B is the correction

coefficient.

Here, the determination coefficient (R2) and root mean

square error (RMSE) of the fitting curve are used to illustrate

the accuracy of the model, and the relative standard deviation

(RSD) is used to illustrate the stability of the repeated

FIGURE 1
XRF experimental setup, here, 1, high-voltage power supply; 2, X-ray tube; 3, vacuum chamber; 4, sample table; 5, vacuumpump; 6, SDD; 7, PC.
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measurement of coal samples by XRF method. R2, RMSE and

RSD are formulated as follows:

R2 � 1 − ∑ Yi − Yj( )2∑ Yj − Y( )2 (2)

where Yi is the predicted mean of the ith sample, Yj is the true

value of the ith sample, and Y is the mean of all the samples.

RMSE �
����������∑ yi − yj( )2

n

√
(3)

where yi is the ith predicted value of the sample, yj is its

corresponding true value, and n is the number of samples.

RSD �

����������∑m

k�1 yk−ya( )2
m−1( )

√
ya

× 100% (4)

where yk is the kth predicted value of a sample, ya is the

predicted mean of a sample, and m is the number of

samples. The closer R2 is to 1, the better the curve fitting is,

and the closer the predicted value is to the standard value. The

closer the RMSE is to 0, the more accurate the prediction is. The

smaller the RSD, the more stable the coal ash value measured by

this method.

3 Results and discussion

3.1 Spectrum

As shown in Figure 2, the XRF spectrum of coal sample is

shown. The abscissa represents the track number, which

corresponds to the energy of each element, and the ordinate

represents the intensity. The metal elements related to ash in the

coal sample are marked in the figure. Because S also affects the

ash value, the strength of element S is also used as an input

variable to establish the model. The spectral data are integrated

and normalized for subsequent model.

3.2 Model analysis

3.2.1 Calibration set modelling
The spectra of 45 samples in the calibration set are

preprocessed. Here, the full spectrum area normalization is

FIGURE 2
XRF spectrum of coal sample.

FIGURE 3
The fitting curve of calibration set.

FIGURE 4
The fitting curve of leave-one-out cross-validation.
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used to calculate the detection intensity of each element. The

intensity value of each element of each coal sample is

recorded as an independent variable and its ash value is

recorded as a dependent variable, which is brought into

the partial least squares model for ash value calculation.

Each element strength of 45 coal samples after data

processing is brought into PLS model for model and

analysis with its standard ash, and then each element

strength is brought into the model to predict its ash value.

The predicted ash value of 45 coal samples is fitted with its

standard value for analysis, and the prediction curve shown in

Figure 3 is obtained. The results show that the fitting degree

between the predicted ash content and the standard ash

content of 45 coal samples under PLS model is 0.946 (R2 =

0.946), and the RMSE is 1.177%. It can be seen that the fitting

curve has a good fitting degree, and the error of the prediction

result is only 1.177%.

In order to further verify the accuracy of the PLS model in

predicting the ash content, we use the leave-one-out cross-

validation. One coal sample was extracted from 45 coal

samples as the predicted coal sample, which was not

included in the calibration set, and the other 44 samples

were used for modeling. In this way, we repeated 45 times

to predict the 45 coal samples respectively. The fitting curve as

shown in Figure 4 was obtained. It can be seen from the figure

that the R2 reaches 0.938, and the RMSE can reach 1.273%.

Therefore, XRF method has good prediction effect on ash

value in coal.

3.2.2 Prediction analysis
After modeling the ash contents of 45 coal samples in the

calibration set by using PLS, the performance of the

prediction model was verified with the 15 coal samples in

the validation set. It is worth noting here that since the ash

values of the 15 validation set coal samples are included in the

ash value of the modeling samples, and none of the

15 samples participate in the modeling. Therefore,

bringing 15 samples into the established ash PLS model can

better reflect the ability of the model to predict unknown

samples. Figure 5 shows the prediction results of the

15 validation coal samples under this model. It can be seen

from the figure that the correlation coefficient R2 of linear

fitting reaches 0.983, and the RMSE of prediction reaches

0.726%. Therefore, X-ray fluorescence spectrometry based on

PLS model has high accuracy in the prediction of ash contents

in coal.

3.2.3 Stability analysis
In the process of industrial production, the detection

stability of ash in coal is very important for XRF method,

which can reflect the stability of continuous measurement of

the same coal sample by XRF method. Here, four samples (R1,

R2, R3 and R4) from three coal samples (C6, C7 and C22) in

the calibration set and one coal sample (V12) in the validation

set were randomly selected for stability test. The four samples

are indicated in bold and underlined in Table 1. Each sample

was measured for five times, and the above data processing

was carried out respectively. The processed data was brought

into the established PLS model to predict the ash value of coal

sample. After each sample was measured for five times, five

ash values could be obtained, and the corresponding RSD

value of these ash values of each coal sample could be

calculated. Figure 6 shows the ash content predicted by

R1-R4 each time. The RSD value measured for each

FIGURE 5
The fitting curve of validation set.

FIGURE 6
Repeatable measurement results of four coal samples.
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sample for five times is marked in the figure. The maximum is

only 1.53% of R1 sample, the minimum is 0.64% of R3 sample,

and the average of RSDs value of the four samples is only

0.97%. Therefore, XRF has high stability for coal ash

detection.

In conclusion, under PLS model, XRF method not only has

high accuracy, but also has high stability.

4 Conclusion

In this paper, XRF is used for quantitative analysis of ash

content in coal. The measured spectrum is normalized by the

full spectrum area. The relationship between the intensity of

each elemental spectral line and the ash content in coal

obtained after data processing is modeled by PLS

algorithm. The R2 of PLS model established by 45 samples

in calibration set reaches 0.946 and RMSE reaches 1.177%.

Leave-one-out cross-validation is used to verify the accuracy

of the prediction model accuracy. The results show that the

linear correlation coefficientl R2 of the model built by PLS also

reaches 0.938. The evaluation results of the prediction

performance of the model using 15 coal samples from the

validation set show that its R2 and RMSE are 0.982 and

0.726%, respectively. The results show that XRF method

has good accuracy in the measurement of ash in coal under

PLS model. The test results of four out of 60 samples randomly

selected show that the RSD value of ash measured by XRF is

less than 1%, indicating that XRF has ash measured by stability

for coal ash prediction. In conclusion, XRF method based on

PLS model has high accuracy and stability for coal ash

measurement. It provides a strong theoretical basis for the

on-line detection of coal ash. Due to the complexity of coal

types, building coal samples into a model will also affect the

final detection accuracy. Therefore, in subsequent research,

we will further explore the influence of application

environment on XRF measurement of coal quality and

adopt classification modeling methods to improve the

model, such as such as dust, vibration, principal

component analysis (PCA), in order to obtain more

accurate detection results and provide theoretical support

for online equipment.
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