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Continuous real-time cow
identification by reading ear
tags from live-stream video

John W.M. Bastiaansen*, Ina Hulsegge, Dirkjan Schokker,
Esther D. Ellen, Bert Klandermans, Marjaneh Taghavi
and Claudia Kamphuis

Animal Breeding and Genomics, Wageningen University & Research, Wageningen, Netherlands
In precision dairy farming there is a need for continuous and real-time

availability of data on cows and systems. Data collection using sensors is

becoming more common and it can be difficult to connect sensor

measurements to the identification of the individual cow that was measured.

Cows can be identified by RFID tags, but ear tags with identification numbers

are more widely used. Here we describe a system that makes the ear tag

identification of the cow continuously available from a live-stream video so that

this information can be added to other data streams that are collected in real-

time. An ear tag reading model was implemented by retraining and existing

model, and tested for accuracy of reading the digits on cows ear tag images

obtained from two dairy farms. The ear tag reading model was then combined

with a video set up in amilking robot on a dairy farm, where the identification by

the milking robot was considered ground-truth. The system is reporting ear tag

numbers obtained from live-stream video in real-time. Retraining a model

using a small set of 750 images of ear tags increased the digit level accuracy to

87% in the test set. This compares to 80% accuracy obtained with the starting

model trained on images of house numbers only. The ear tag numbers

reported by real-time analysis of live-stream video identified the right cow

93% of the time. Precision and sensitivity were lower, with 65% and 41%,

respectively, meaning that 41% of all cow visits to the milking robot were

detected with the correct cow’s ear tag number. Further improvement in

sensitivity needs to be investigated but when ear tag numbers are reported

they are correct 93% of the time which is a promising starting point for future

system improvements.
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1 Introduction

With the developments in precision dairy farming, on-farm

data streams are increasing rapidly (Kamphuis et al., 2012; Cerri

et al., 2020). Data are collected by devices such as neck collars

(Rutten et al., 2017), by farm equipment such as milking systems

and feeding stalls (Foris et al., 2019; Deng et al., 2020), and from

measuring devices that analyze milk or other cow output such as

manure and breath air (Negussie et al., 2017). When sensors are

attached to the cow they will collect data on that specific animal

(e.g., activity) and the connection of these data to the cow

identification is easily controlled by properly recording which

sensor is fitted to which cow. However, data is desired in many

locations that can be inside the barn or outside in pasture. For a

sensor that is continuously measuring in a fixed location it is

difficult to connect the collected data to a specific cow. For

instance, when a sensor is measuring breath methane (Huhtanen

et al., 2015) in a barn where cows are moving around, it is

difficult to know which cow is producing the methane being

measured by the sensor at a specific moment (van Breukelen

et al., 2022).

Individual identification of dairy cows in the Netherlands is

possible by the mandatory ear tags that all farm animals have. In

addition, lactating dairy cows are typically fitted with Radio-

Frequency IDentification (RFID) transponders. Standard farm

equipment, like milking robots and feeding stations, identify

which cow is present by reading this transponder. Often this

transponder information is stored, but accessing and matching

this transponder identification to data from other sources is not

always straightforward, and making the cow identification

available in real-time is very difficult or impossible.

Identification by reading the ear tags with imaging equipment

would be a universal solution in precision dairy farming, both

for places where RFID readers are not present, or for animals

that are not fitted with RFID transponders such as dry cows or

young animals. A method for reading ear tag numbers from

images was described by Ilestrand (2017) who tested several

optical character recognition methods. Zin et al. (2020) used

selected images from 4k videos and developed an algorithm for

head detection, ear tag detection, and reading the ear tag number

using a Convolutional Neural Network (CNN). These methods

have been applied to static datasets of previously collected

images. To monitor or manage a dairy farm with precision, a

system is needed that continuously reads the ear tag number and

makes this cow identification available in combination with

other data that are collected in real-time.

Real-time data on the production of milk, methane, or

manure, or observed deviations from expected production or

expected behavior, may lead to alerts to inspect the cow, or to
Frontiers in Animal Science 02
immediate interventions in the feeding regime or other

management factors for a specific cow. Also, camera systems

are already studied to extract data for precision dairy farming by

monitoring locomotion (Van Hertem et al., 2018; Russello et al.,

2022) or assessing individual feed intake (Lassen et al., 2022). In

these cases identification by reading ear tag numbers may not

require additional hardware, only additional software to read the

ear tag numbers from the images. Precision dairy farming is all

about retrieving information about individual cows. Cow

identification by reading ear tag numbers allows for quick

adaptable and real-time cow identification. Addition of

identification to image based data collection allows targeted

interventions at cow level. The aim of this study was to

develop a system that makes the ear tag identification of the

cow continuously available from a live-stream video and to test

the performance of such a system on a commercially operated

dairy farm.
2 Materials and methods

Section 2.1 describes the development of the ear tag

detection and digit recognition model using images of ear tags

collected at two commercial Dutch dairy farms. Section 2.2

describes the infrastructure that was set up to test the model

performance for predicting ear tag numbers in real-time from

live-stream video on a different dairy farm at the Wageningen

University & Research Dairy Campus. No specific animal care

protocol was needed for this study. The data collection was done

by video equipment installed in commercially operated dairy

farms without interaction with the cows present.
2.1 Ear tag detection and
digit recognition

The ear tag reading model was developed on images

extracted from recorded video footage. The recording was

produced with an experimental setup at two commercial dairy

farms in the Netherlands with 90 and 95 milking cows

respectively. All cows on these farms were fitted with ear tags

that display a black number on a yellow background, as part of

the national identification and registration program. A video

station with a Foscam FI9901 camera (Shenzhen FOSCAM

Intelligent Technology Co., China) was installed inside a

milking robot on these two farms. The milking robot unit was

chosen as the location to test the video station because all

milking cows are known to pass through here several times

per day. The video stream content was cached in Audio Video
frontiersin.org
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Interleave (AVI) format and stored on a Solid State Drive (SSD).

The ear tag reading model was developed and implemented in

Python 3.8 using the Open Computer Vision Library (OpenCV

4.1.2). The video stream was read using the OpenCV command

`VideoCapture` which transmits every frame of the video as an

image for processing. Images are processed in three consecutive

steps: (1) detecting the presence of an ear tag and segmenting the

ear tag image from the image; (2) processing the ear tag image;
Frontiers in Animal Science 03
and (3) digit number recognition (Figure 1). Each of these steps

are described in more detail below.

2.1.1 Detecting and segmenting ear tag images
Ten images were extracted from the video per second.

Detecting the presence or absence of an ear tag in an image

was based on the presence of the yellow background color of the

ear tag. To extract the color, each image was converted from Red,
FIGURE 1

Steps in ear tag recognition algorithm. Applied functions (openCV python): 1cvtColor(frame, cv2.COLOR_BGR2HSV), 2inRange(frame, [22, 95,
90], [40, 255, 255]) and threshold(image, 127, 255, 0), 3findContours(frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE), 4resize(crop_img,
dim, interpolation = cv2.INTER_LINEAR), 5GaussianBlur(image, (5, 5), 0), 6detailEnhance(image, sigma_s = 20, sigma_r = 0.10), afloodFill(image,
[height + 2, width + 2], (100, 100), (0, 255, 255), (60, 60, 110), (70, 150,200), cv2.FLOODFILL_FIXED_RANGE), bcvtColor(image,
cv2.COLOR_BGR2GRAY) and threshold(grayImage, 127, 255, cv2.THRESH_BINARY), cGaussianBlur(blackAndWhiteimage, (21, 21), 2), dCanny
(blackAndWhiteImage, threshold1 = 20, threshold2 = 30,apertureSize = 7), eHoughLinesP(edges, 1, np.pi/180, 30, minLineLength = 50,
maxLineGap = 50), frad2deg(np.arctan2(y2 - y1, x2 - x1), Itransforms.Compose([transforms.Resize([64, 64]), IItransforms.CenterCrop([54, 54]),
IIItransforms.ToTensor(), IVtransforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]).
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Green, Blue (RGB) to Hue, Saturation, Value (HSV) color space.

Yellow pixels in the converted image were identified by having

Hue between 27 and 40, Saturation between 95 and 255, and

Value between 90 and 255. A rectangular bounding box was

drawn around the yellow pixels by the model, to identify the area

of the ear tag. When the bounding box had a minimum width

and height of 50 pixels it was considered to have detected an ear

tag in the image. This threshold of 50 pixels was determined

empirically and is specific for the current setup of video

resolution and the distance between the camera and the head

of the cow. A detected ear tag was segmented from the image by

extracting the area within the bounding box. This segmented

area is subsequently called the “ear tag image” and submitted to

the ear tag image processing step.
2.1.2 Processing ear tag images
Pre-processing the ear tag images consisted of applying

Gaussian smoothing and image details enhancement using

cv2.GaussianBlur and cv2.detailEnhance functions, respectively.

To correct skewness of the ear tag in the image, flood fill was

applied (cv2.floodFill) to fill the holes in the pre-processed image

with the yellow color of the ear tag. The image was then

converted to a gray scale image using cv2.cvtColor and to a

black and white image using cv2.threshold. Gaussian smoothing

and Canny edge detection were applied to the black and white

image using cv2.GaussianBlur and cv2.Canny respectively, to

find the contours of the ear tag. The contours were necessary to

rotate each ear tag image such that its baseline was horizontal,

allowing for effective number recognition. The longest straight

line in the shape of the ear tag was used to find the base of the ear

tag. A probabilistic Hough transform was applied using

cv2.HoughLinesP to identify the baseline. For number

recognition, the images were rotated, resized, cropped and

normalized using the Torchvision.transforms functions

ToTensor, resize, CenterCrop, and Normalize, respectively.

Further details related to the image pre-processing are shown

in Figure 1, including the parameter settings for all the functions.
2.1.3 Ear tag number recognition
The ear tag image processing steps resulted in images that

were formatted to 64 by 63 pixels. A set of 750 of these ear tag

images were randomly selected for developing the ear tag

number recognition model. This set included ear tag images

from 140 different cows. Each digit on the selected ear tag images

was annotated with the correct value using labelImg (https://

github.com/tzutalin/labelImg), resulting in 3,000 annotated

digits (i.e. 4 digits per image). These annotated ear tag images

were randomly divided in a training set (n = 600 images; 2,400

digits), a validation set (n = 75 images; 300 digits) and a test set

(n = 75 images; 300 digits).

The model for recognition of digits in the processed ear tag

images was developed by retraining an existing house number
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model (model-54000.pth, Goodfellow et al., 2013). This deep

CNN model was trained on the Street View House Number

dataset (Netzer et al., 2011). This model was chosen because of

the similarity of house numbers to ear tag numbers. The house

number model was retrained using the training and validation

set of ear tag images. The retraining was performed using a batch

size of 32 with the stochastic gradient descent (SGD) optimizer

(Yang and Yang, 2018) with learning rate set to 0.01, momentum

term set to 0.9 and weight decay set to 0.0005. A step decaying

learning rate scheduler (StepLR) was used with a step size of

10.000 epochs and gamma of 0.9. The loss function employed

during retraining was cross-entropy loss. The early stopping

patience was set to 100 epochs, meaning that the retraining

stopped when no improvement was observed in the last 100

epochs. Full details of the model are described in the github

repository (https://github.com/potterhsu/SVHNClassifier-

PyTorch/blob/master/README.md).

To assess the improvement of the existing model when

retrained on ear tag images, we first applied the pretrained

model-54000.pth without retraining, to predict the 4 digits on

the 75 ear tags in the test set. Then, the model-54000.pth was

retrained using the training and validation set of ear tag images.

The retrained model was subsequently applied to predict the 4

digits on the 75 ear tags in the test set. For both models the

probability threshold for reporting a predicted digit was set to

0.95. The performance of the pretrained and retrained models

were compared based on the number of correctly identified

digits per ear tag.
2.2 Model implementation and
evaluation in live-stream video

The ear tag recognition system including the detection,

processing, and number recognition step with the retrained

model was installed on a Raspberry Pi 4 Model B in the

experimental setup at the Wageningen University & Research

facility Dairy Campus (Leeuwarden, the Netherlands). The

Raspberry Pi was connected to a DS-2CD2T43G0 camera

(Hikvision, Hangzhou, China) through ethernet (LAN)

connection. The camera was installed in the milking robot

unit such that when a cow is present in the milking robot the

camera records the head from above and behind (See Figure 2

for the view of the camera). The model analyzed the live-stream

video and continuously reported ear tag numbers in real-time

when an ear tag was detected. These reported ear tag numbers

were transmitted through an Unshielded Twisted Pair (UTP)

cable into the local network. The reported ear tag numbers were

recorded with a timestamp for a 40-hour period between March

13, 2022, 8:00 am and March 14, 23:59 pm. During the same

time period the milking robot was recording the RFID

transponder number and the time when a cow entered the

robot. Based on the transponder numbers, the ear tag numbers
frontiersin.org
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of cows that entered the robot during the test period were

retrieved from the farm management system and added to a

list called the “cow list”. The cow list contains the ear tag

numbers from all the cows that were present in the experiment.

The ability to correctly identify a cow was evaluated based on

the comparison between the predicted ear tag number from the

image and the known ear tag number of the cow from the RFID

transponder readings of the milking robot. To evaluate the reported

ear tag numbers, the numbers transmitted by the model were first

filtered using the cow list. Ear tag numbers where one or more of

the 4 digits was not predicted and mistakes in digit prediction that

resulted in an ear tag number that is not on the cow list were not

reported. Each milking robot visit was classified as either a True

Positive (TP) when only the correct ear tag number was reported, a

False Positive (FP) when incorrect ear tag number(s) were reported,

or a False Negative (FN) when no ear tag number was reported.

False positives included the visits with amix of correct and incorrect

ear tag numbers. The precision of the system was defined as the

proportion of milking robot visits with a TP result out of all

the visits with a positive result, i.e. TP/(TP+FP). The sensitivity of

the system was defined as the proportion of all the cow visits to the

robot for which the correct ear tag was reported by the model, i.e.

TP/(TP+FP+FN).
Frontiers in Animal Science 05
3 Results

3.1 Digit recognition model

Image processing segmented the ear tag area from each of

the 750 images in the development dataset. In the test dataset the

pretrained house number model had an accuracy of digit

prediction of 80% (Table 1). The retrained model predicted

87% of the 300 digits on the 75 ear tag images (i.e. 4 digits

predicted per ear tag) in the test dataset correctly (Table 1), and

98% was predicted correctly in the validation dataset. With the

retrained model, 48 out of 75 ear tags (65%) in the test dataset

had all four digits predicted correctly, compared to 36 out of 75

ear tags (48%) for the pretrained model. Neither of the two

models resulted in a completely failed prediction where none of

the 4 digits in an ear tag number were predicted

correctly (Table 1).
3.2 Model evaluation in live-stream video

During the 40 hour test period the milking robot recorded

248 separate visits made by 60 unique cows. The cow list was

compiled of the ear tags of these 60 unique cows. The median

number of visits per cow was 4, with a range of 1 to 6 visits.

In the 40 hour test period, an ear tag number with 4

recognized digits was reported 25,448 times or 102.6 numbers

reported per visit. Of these reported numbers 11,021 (43%) were

found to match an ear tag in the cow list. Based on the reported

ear tag numbers, 214 separate visits to the milking robot by 52

different cows from the 60 cows on the cow list were predicted.

Out of the 11,021 reported ear tag numbers 10,265 (93%)

corresponded to the cow that was present in the milking robot

according to the recorded transponder number. The 11,021 ear

tag numbers were reported during 156 out of the 248 actual visits

to the milking robot. This means that 37% of the visits to the

milking robot were not detected by the system. Out of the 248

milking robot visits 102 resulted in a TP outcome, 47 in a FP

outcome, and 92 in a FN outcome. The sensitivity of the system

to detect the correct ear tag during a visit was 102 out of 248 visit

or 41% and the precision was 102 out of 156 detected visits

or 65%.
4 Discussion

A system was developed and implemented in the milking

robot unit at Dairy Campus (Leeuwarden, The Netherlands) that

is producing a real-time and continuous reading of ear tag

identification numbers from live-stream video. The system was

build using off-the-shelf video and networking equipment. The

ear tag numbers reported by the system were correct 93% of the
TABLE 1 Number of ear tag images with 0 to 4 correctly identified
digits in the test set.

Correct digits1 Pretrained Retrained

4 36 48

3 21 19

2 14 3

1 4 5

0 – –

Accuracy2 79.7% 86.7%
Pretrained model pretrained with house numbers, or retrained with ear tag images.
1Number of correctly identified digits, 2percentage of correctly identified digits.
FIGURE 2

Direction of view from the video camera in the milking robot.
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time. While the reported ear tag numbers were very often

correct, the sensitivity for detecting the correct ear tag of the

cow present during a milking event was much lower at 41%.

The number recognition model applied here was obtained by

retraining. The model-54000.pth (Goodfellow et al., 2013) was

used as the pretrained model. A pretrained model based on street

numbers was expected to be a good choice given our similar

objective of reading numbers from an object within a varied

background. Retraining was found successful because digit level

accuracy was improved from 80% to 87% with a small dataset of

the target images consisting of only 675 ear tags. Obtaining a

model with 87% digit level accuracy with a dataset that is less

than 0.5% the size of the dataset that was used for the pretrained

model showed that retraining should be preferred in this

situation. Training of the pretrained model took approximately

6 days (Goodfellow et al., 2013) while retraining was very quick

(< 5 hours) which shows the value of retraining for limiting the

computational requirements. Most importantly, the alternative

of capturing and annotating a much larger dataset to train the

model from scratch would require a prohibitive amount of work.

Annotating a dataset of 200k ear tag images at a high speed of 1

digit per second would already take 27.8 working days.

Before the number recognition model is applied, the system

captures ear tag images from a video live-stream. Clearly,

identifying the ear tag in the images is an important

requirement for the system to work. The current system uses

the ear tag color to identify it, and the shape (straight bottom) to

rotate the images to the desired orientation. While ear tags come

in many colors, the dairy cattle approved ear tags in the

Netherlands are all yellow. A change in color will require a

modification of currently implemented ear tag detection

algorithm. For ear tags of different colors modifying the color

thresholds will be easy to implement with some tuning of these

parameters. Other studies have used alternative methods to find

the ear tag or recognize digits such as template matching

(Ilestrand, 2017; Zin et al., 2020). For instance, Zin et al.

(2020), used the shape of the head to find the location of ear

tags, combined with color detection in a following step. They

found 100% accuracy in detection cow heads and subsequently

92.5% accuracy for digit recognition which is similar but higher

than the 87% found in this study for digit recognition. Ilestrand

(2017) shows accuracy for different subsets of images, with the

best images in the “A data” resulting in digit recognition

accuracy of 98% and the poor images in the “C data” resulting

in 81% accuracy using a Support Vector Machine (SVM)

approach. Template matching for digit recognition performed

worse than the SVM with 94% and 67% accuracy in the A data

and C data, respectively.

Colors of ear tags can vary and therefore it may seem

beneficial to have an algorithm that doesn’t rely on specific

colors. However, we do recommend the use of color because it is
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a very distinctive feature of the ear tags, and color ranges in the

ear tag reading algorithm can easily be adjusted to those used on

a specific farm. Technical differences between ear tags can be

addressed by small changes to the algorithm when they are fixed

differences between farms. However the system will also

encounter variation within farms due to environmental

conditions. Both Ilestrand (2017) and Zin et al. (2020) discuss

variation in lighting conditions and the presence of dirt, hair or

other objects that cause occlusion of ear tags. Ilestrand (2017)

reports results for the best images and poor images separately

and shows large differences, especially in the ability to correctly

read a complete ear tag number. Lighting conditions in our

current study are fairly standardized because artificial light is on

for 24 hours per day in the milking robot. However, outside

conditions such as bright sunlight or reflection of light can affect

the performance of the ear tag reading models. An important

factor for the system presented in this study is the visibility of the

ear tag within the image. The camera is currently positioned

behind the cow (Figure 2) and therefore the position of the cows

head can easily cause occlusion of the ear tag.

The digit level accuracy of 87% achieved with the retrained

number recognition model is quite a bit higher than accuracy

with the pretrained model on the same test set (80%). However,

higher accuracies are reported in other studies. For example, the

pretrained model was reported to have a 97.8% digit level

accuracy when applied to street numbers (Goodfellow at al.,

2013). Achieving such a high accuracy may only be possible with

very large training datasets on the target images. However, our

aim was not to obtain high digit level accuracy but rather to

identify the correct cow by its ear tag number, so we aim for ear

tag number accuracy. Therefore we focused on improvements of

the processes that are downstream from the number recognition

model. For example, we applied a comparison of the predicted

ear tag number with a list of currently present ear tags on the

farm compiled in the cow list. Using this cow list, it is easy to

filter out a part of the erroneous predictions. Zin et al. (2020)

described this same process in their “Ear tag confirmation

process”. For a dairy farm with a finite number of ear tags

present, this step can be very effective. The accuracy of getting

the correct 4 digit ear tag number when an ear tag is detected was

already at 93% in the current system. Further improvements of

the downstream process still need to be investigated. During a

cow visit to the milking robot many images are processed and for

each image the predicted ear tag number can be compared to

those predicted from previous images for consistency. Such a

system could be developed by using a majority vote of the

prediction in a sliding window of consecutive images. A voting

system needs to be tuned such that a real shift from one cow to

another is detected while it is robust against temporary

differences from errors in reading the ear tags. The

aforementioned potential improvements still have to be
frontiersin.or
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investigated but we expect that these will resolve at least some of

the 35 visits where both correct and incorrect ear tag numbers

were reported to a unique and correctly assigned ear tag number.

Precision dairy farming benefits from and may even require

up to date or real-time information on cows. Collecting this

information from automated systems is rapidly increasing. Cow

identification from ear tag reading will especially be useful in

situations where other identification is not easily implemented.

Other approaches have been reported using images to recognize

individual cows from their appearance (Shen et al., 2020). The

disadvantage of such a system is that it is more likely to work for

cow breeds with a pattern (e.g., Holstein Frisian), but perform

more poorly for breeds that are unicolored (e.g., Jersey). More

importantly, a model based on coat pattern or other appearance

traits needs to be trained for recognizing each new cow entering

the herd, whereas the ear tag model stays the same and reads

new numbers with equal accuracy.

The system described here is providing real-time ear tag

numbers from a video live-stream in a commercially operating

dairy farm. The use of retraining, in combination with a simple

technical setup of a camera and a small single board computer,

provides an easy to implement addition to other equipment for

identifying cows in real-time and at a low cost. The sensitivity of the

system is 41%, which may be too low for practical implementation

at this point. However, data from the installed systemwill be used to

further optimize the camera positions and other technical

parameters. Because the accuracy of the reported ear tag numbers

is already high at 93% most improvements are expected from

changing the video capturing setup to obtain the right images for

the retrained number recognition model. In addition, the accuracy

of reported ear tag numbers will also benefit further from

improvements in the downstream processing.
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