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Lupus nephritis (LN) is a severe renal disease caused by the massive deposition

of the immune complexes (ICs) in renal tissue, acting as one of the significant

organ manifestations of systemic lupus erythematosus (SLE) and a substantial

cause of death in clinical patients. As mesangium is one of the primary sites for

IC deposition, mesangial cells (MCs) constantly undergo severe damage,

resulting in excessive proliferation and increased extracellular matrix (ECM)

production. In addition to playing a role in organizational structure, MCs are

closely related to in situ immunomodulation by phagocytosis, antigen-

presenting function, and inflammatory effects, aberrantly participating in the

tissue-resident immune responses and leading to immune-mediated renal

lesions. Notably, such renal-resident immune responses drive a second wave

of MC damage, accelerating the development of LN. This review summarized

the damage mechanisms and the in situ immune regulation of MCs in LN,

facilitating the current drug research for exploring clinical treatment strategies.
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Introduction

In the 20th century, Key and Zimmermann discovered the mesangium’s unique

structure and defined mesangial cells (MCs) as a particular cell type (1). The mesangium

comprises mononuclear stellate cells between the glomerular arteries and the glomerular

basement membrane (GBM) (2). It plays a vital role in glomerular functions and is a

primary site of injury in glomerular disorders (3). MCs are derived from the Foxd1+

precursor cells and are estimated to account for nearly one-third of the total number of

glomerular cells (1, 4). Evidence demonstrates that a single hematopoietic stem cell can

differentiate into glomerular MCs (5). Notably, alpha8 integrin (Itga8) is strongly and

exclusively expressed in MCs (6), promoting cellular adhesion while inhibiting their

migration and proliferation (7, 8).
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MCs are damaged in renal diseases, directly or indirectly

affecting the functions of the kidney when the lesions occur and

eventually causing renal failure. Therefore, understanding the

biological features of MCs is particularly important for treating

renal diseases. In recent years, researchers have paid more

attention to MCs and have acquired many impressive findings.
MCs in glomerular homeostasis

MCs maintain glomerular filtration

Morphologically, MCs have a low cytoplasm-to-nucleus ratio

and contain fibrils in the cytoplasm (9), supporting the glomerular

structure and regulating glomerular filtration (Figure 1).

In the glomeruli, endothelial cells are surrounded by GBM

and podocytes (9). The regions where no direct contact occurred

in the MCs and endothelial walls are called extraglomerular

mesangium (10). Extraglomerular mesangium separates MCs

and GBM by ECM secreted from MCs (11). These ECM

components contain bulk microfibers anchored to the

membrane by fibronectin, resulting in a solid structure (12).

MCs can exert mechanical traction on the GBM and vascular

endothelium through these fiber structures and control capillary

pressure and stability, resulting in the appropriate filtration

proportion and plasma ultrafiltration rate of the glomeruli (9,

13). Such a connection also provides a corresponding structural

basis for the correct screening of macromolecules (14, 15). MCs

show structural and functional characteristics of smooth muscle

and fibroblasts; thus, they were defined as myofibroblasts (16).

Besides, MCs regulate the balance of production and

degradation of the mesangial matrix and signaling with other
Frontiers in Immunology 02
cells to maintain the normal homeostasis of the glomeruli

(17–19).
Roles of MCs in innate immunity

In addition to maintaining glomerular structure and

filtration capacity, many studies have demonstrated that MCs

can participate in immune responses.

With an evolutionarily conserved defense mechanism, the

innate immune system acts mainly by directly disrupting the

invading pathogens through phagocytosis and the production of

antimicrobial peptides or proteins (20, 21). This relies on

recognizing pattern recognition receptors (PRRs) to specific

pathogen-associated molecule patterns (PAMPs) (22). MCs

express PRRs and participate in innate immune responses.

MCs mainly express Toll-like receptors (TLRs) family

molecules involved in intrinsic immune regulation. TLRs

activate downstream signaling pathways (e.g., interferon

regulatory factors (IRF) and nuclear factor kappa-B (NF-kB)
pathways) and promote the production of large numbers of

adhesion factors, cytokines, and chemokines (CXCLs) (23–25).

TLR1-9 mRNA levels are increased in the patients and the MRL/

lpr mice as the LN progressed (26). It is shown that certain viral

nucleic acids promote LN through nucleic acid-specific TLR

(27). MCs express both TLR1-4 and TLR6, especially the highly

expressed TLR3 (24, 26). TLR3 signaling contributes to the

CXCL1 expression in MCs during the development of

inflammatory kidney disease, especially the LN (28).

Activation of TLR3 induces MMP-9 in cultured human MCs

(HMCs), which could be enhanced by tumor necrosis factor-

alpha (TNFa) (29). And, MCs highly express TLR3 to
FIGURE 1

Glomerular structure and MCs' location Glomerular MCs and the mesangial matrix form a stalk that holds and organizes the multiple capillary
loops together. MCs extend outside of the glomerulus to the stalk containing the afferent and efferent arterioles.
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upregulate estrogen receptor alpha (ERa) expression after

binding to the ligand, significantly inducing interleukin-6 (IL-

6) generation in female LN patients (30). This might explain the

predominance of women with lupus. In addition, MCs express

NOD-like receptors (NLRs) and are related to NF-kB and

transforming growth factor-beta (TGF-b)/Smad signaling

pathways (31, 32). MCs also express RIG-I-like receptors

(RLRs), which are upregulated upon induction by either

interferon (IFN) or double-stranded RNAs (dsRNAs),

regulating the generation of cytokines and chemokines (32, 33).

MCs play as non-professional phagocytes. Phagocytosis is

not entirely dependent on “professional” phagocytes. There is

also a group of “non-professional” phagocytes, such as epithelial

cells, endothelial cells, and MCs, exerting phagocytosis function

(34, 35). “Non-professional” phagocytes eliminate the

deposition of apoptotic cells and matrix components as an

essential mechanism for maintaining tissue homeostasis (36,

37). As early as 1962, researchers proposed the presence of

phagocytic, resident infiltrating cells in the renal glomeruli (38).

Later studies have found that apoptotic MCs were engulfed by

neighboring healthy MCs in experimental glomerulonephritis,

which contributes to restoring the integrity of glomerular tuft

(38). And Itga8-cytoskeletal interaction facilitated the

phagocytosis of MCs (39). After perfusion and enzymatic

digestion of the glomeruli, a class of highly adherent

phagocytes expressing Fc and C3 receptors was found in the

mesangium (40, 41). By injecting the macromolecule dextran,

immunoglobulin, and antigen-antibody complexes, it was

observed that MCs gradually removed the above substances by

electron microscopy (39, 42). MCs perform phagocytosis in both

extracellular and intracellular ways. Extracellular decomposition

mainly depends on exosomes carrying lysosomal enzymes, and

MCs also ingest substances for degradation through

endocytosis (40).

MCs are non-professional antigen-presenting cells (APCs).

APCs regulate T cells’ activation, differentiation, and

proliferation by presenting antigens when renal immune

responses occur (43). T-cell activation by APCs requires major

histocompatibility complex (MHC) and co-stimulatory

molecules (43). The MHC gene complex encodes two major

classes of molecules, MHC-I, responsible for the endogenous

antigen presentation pathway, and MHC-II, involved in the

exogenous antigen presentation pathway (42, 44, 45). Co-

stimulatory molecules are surface molecules whose ligands

transduce co-stimulatory signals essential for activating T and

B lymphocytes (46). Many studies have demonstrated that MCs

express both MHC-I and MHC-II molecules, like HLA-DP,

HLA-DQ, and HLA-DR, for endogenous or exogenous antigen

presentation and cross-presentation (47–49). MCs also express

co-stimulatory molecules ICAM-1 and CD80 (B7-1) on the

surface (50–52). With the stimulation of IFNg, the expression

of HLA-DP, HLA-DQ, HLA-DR, ICAM-1, and CD80 are

markedly enhanced in human MCs, and the activated MCs
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can process antigen in vitro, driving the differentiation of CD4 T

cells into Th1 effectors (53). IFNg-activated mouse MCs also

activate CD4 T cell differentiation and proliferation through

MHC-II presentation in vivo and in vitro (52, 53).
Pathological injuries of MCs in LN

SLE is an autoimmune disease with various clinical

manifestations, damaging many systems and organs (54). Loss

of immune tolerance to endogenous nuclear material leads to the

clinical symptoms (55). The progression of renal disease is the

commonly used predictive source of morbidity and mortality in

SLE patients (56–58). LN is one of the most severe organ

manifestations and presents extensive kidney lesions, which is

mainly manifested by the expansion of the glomerular

mesangium and accumulation of extracellular matrix secreted

from MCs.
Excessive proliferation of MCs in LN

Excessive proliferation of MCs is one of the representative

physiological changes in the progression of LN (59, 60). Self-

nucleic acids and IgG anti-dsDNA antibodies can cause the

abnormal activation of proliferation-related pathways in

MCs (Figure 2).

Researchers have found that serum DNA levels correlate

with disease activity (61, 62). High values of cell-free DNAs

(cDNAs) in patients with SLE were first reported in the 1960s

(61). These cDNAs induce MDM2 upregulation, thus negatively

modulating both p53 and p21 in human MCs. MDM2 promotes

cell cycle change from G0/G1 to the S phase in human MCs (63).

However, the mechanisms of how MCs sense DNA or RNA in

LN is still unclear, which might involve classic DNA sensors,

including TLR9, DAI, AIM2, and the cGAS-STING pathway.

Current studies on diabetic nephropathy (DN) have found that

TLR9, located in the cell membrane inside, is upregulated in the

kidney of experimental mice and the primary mouse MCs

treated with high glucose (64). Significant activation of TLR9

is also detected in DN patient-derived MCs, associated with

glucose-induced mtDNA damage (65). In the HBV-associated

glomerulonephritis (HBV-GN) research, expression of AIM2

was detected by immunohistochemistry in renal biopsies from

clinical patients (66). And immunostaining of nephritic kidney

sections of autoimmune MRL/lpr mice revealed elevated TLR3

expression in glomerular MCs and recognized poly(I:C)

RNA (67).

Anti-double strand DNA (dsDNA) antibodies and

pathological IgG are critical pathogenic factors produced by

aberrant activated plasma cells in SLE. They could induce the

excessive proliferation of MCs. Significant cell proliferation is

observed after the soluble IgG treatment in rat MCs (68). Many
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vital proteins related to organismal regulation are aberrantly

expressed in the biopsy specimens from patients with LN.

Abnormal activation of mTORC1 causes mesangium expansion,

and rapamycin treatment suppresses this effect in Foxd1ER(+)

TSC1 mice (69). Tripartite motif-containing 27 (TRIM27), a

member of the TRIM protein family, has a strong expression in

the LN patients ‘ kidneys, lupus animal models, and human MCs

stimulated by LN plasma (60). Downregulation of TRIM27

suppressed the proliferation of mouse MCs in MRL/lpr mice

and cultured human MCs by regulating the FoxO1 pathway (60).

Hypoxia-inducing factor 1a (HIF1a), highly expressed in LN

patients and MRL/lpr mice glomeruli, promotes MC growth

under LN progression (70). Deubiquitinases (DUBs) participate

in the regulatory networks of plentiful substrates directly

implicated in LN progression (71). Ubiquitin-Specific

Peptidases7 (USP7) and USP2-69, members of DUBs, are

upregulated in LN and related to the proliferation of MCs in

MRL/lpr mice and mouse MCs SV40 MES13 cells (71, 72).

IgG anti-dsDNA also drive the expansion of MCs through

microRNAs, which are short non-coding RNAs that act as guide

molecules in RNA silencing by inducing mRNA degradation or

blocking protein translation (73). Research has demonstrated that

diverse miRNAs are downregulated in LN induced by anti-dsDNA

antibodies and could inhibit MCs’ proliferation through multiple

signaling pathways, including miR-10a, miR-16, miR-124, miR-

133, miR-155, miR-98-5p, miR-146b-5p, and hsa−miR−371−5p

(74–81). Further, some miRNAs exert positive regulatory effects

on the proliferation of MCs. As such, miR-148a-3p expression is

significantly higher in the glomeruli, and overexpression of miR-

148a-3p accelerates MMCs’ expansion (82).
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Increased matrix production of MCs
in LN

Another landmark event in the progression of LN is the

ECM expansion in the mesangium, derived from an aberrant

increasing matrix generation of MCs. Anti-dsDNA antibodies

enhance the synthesis of fibronectin (FN), alpha-smooth muscle

actin (a-SMA), and TGF-b in cultured human MCs through

PKC activation, thus giving rise to the occurrence of kidney

fibrosis (83). Oligonucleosomes (ON) are abundant in the

circulation and renal biopsies of patients with LN. Rat and

mouse MCs stimulated by ON significantly increase the total

matrix protein and collagen synthesis (84). The raised

expression of TLR2 is observed in glomeruli of LN patients

and MRL/lpr mice. TLR2 facilitates glomerular mesangial matrix

deposition by activating the MyD88/NF-kB pathway in LN (85).

Excessive proliferation and increased matrix production of

MCs are not the only typical features of LN. Still, they are also

observed in many other types of nephropathy, such as DN,

IgAN, and HBV-GN. High glucose, the most critical risk factor

in DN, can drive MCs’ proliferation and secretion of ECM

components via multiple signal pathways (86–88). IgA immune

complexes can induce MC activation and proliferation in IgAN

(89, 90). And many viruses have been demonstrated to promote

MCs’ proliferation, leading to renal lesions. In addition, factors

such as hypoxia also contribute to the proliferation of MCs and

the subsequent fibrosis in DN (91, 92). This suggests that

different and similar mechanisms exist in various kidney

diseases. Although these are pathogenic factors in other

conditions, we cannot rule out their possible roles in LN.
FIGURE 2

Factors and key proteins that regulate MCs proliferation in LN Anti-dsDNA antibody, cell free-DNA, Immune complex, and miRNA affect the
proliferation of MCs through multiple signaling pathways. Many proteins of MCs are aberrantly expressed in LN leading to excessive proliferation.
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Pathologic MCs shape tissue-
resident immunity in LN

Pathologic MCs produce a mass of
inflammatory mediators

Many inflammatory mediators have been implicated in the

development and progression of LN, including cytokines,

chemokines, and glycosaminoglycans (59). Contents of IFN-a,
TNFa, IL-6, and hyaluronan (HA) are increased in serum and

renal parenchyma of patients and mice with active LN. Some

endogenously inflammatory signaling pathways (e.g., NF−kB,
MAPK, JNK, and AKT) induce hyperactivity in renal stromal

cells and immune cells by LN pathogenic factors. MCs are one of

the essential sources of these inflammatory mediators during the

progression of LN (Table 1).

Anti-dsDNA antibodies could enhance the inflammation of

MCs. They deposit in the glomerular mesangium and bind to

MCs surface in both human and murine LN (94, 95). The

intracellular inflammatory-related pathways in injured MCs

are activated to produce inflammatory mediators induced by

pathological anti-dsDNA antibodies (106). Anti-DNA

antibodies could also induce hyaluronan synthetase II (HASII)

transcription, leading to overexpression of hyaluronan in human

MCs (96). Some researchers have reported that anti-dsDNA

antibodies isolated from SLE patients caused the activation of the

PERK/ER stress pathway, activating NF-kB, a crucial

transcription factor in regulating inflammatory processes,

leading to the secretion of inflammatory cytokines in HMCs

(97, 98). In vivo experiments in rats also show that antibodies

result in a time- and dose-dependent increase of IL-1b and IL-6

in MCs (97). IL-6, IL-1b, TNFa, MCP-1, and hyaluronan are

highly produced in MCs and secreted to the glomeruli. They play

crucial roles in the recruitment and retention of lymphocytes at

sites of inflammatory renal tissue by binding or inducing

chemokines/cytokines synthesis and upregulating the

expression of adhesion molecules (96).

Pathological metabolic alterations affect the inflammatory

factors production in MCs. Glycosphingolipid (GSL) catabolic

pathway is elevated in the kidneys of MRL/lpr mice and human

LN patients (102). Neuraminidase (NEU), a key enzyme in the

catabolic pathway of GSL, is observed robust activity and

expression in LN. High NEU1 activity mediates IL-6

production in the MRL/lpr lupus-prone MCs (102).

In addition to affecting the proliferation and matrix

generation, miRNAs also regulate the inflammatory responses

of MCs. Many decreased circulating miRNAs might be

candidate diagnostic biomarkers for active human LN. MiR-

146b, miR-124, and miR-203 attenuate the inflammatory

response of MCs by inhibiting the expression levels of TNF

receptor-associated factor 6 (TRAF6) in LN (74, 75, 107, 108).

MiR-98-5p inhibits the secretion of TNF-a and IL-6 by targeting
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BACH1 in human MCs (80). Blocking hsa-miR-127-3p could

promote the expression of JAK1 and leads to the excessive

activation of the IFN-I signaling pathway in LN (109). TLRs

activate downstream pathways and stimulate the production of

many adhesion factors, cytokines, and chemokines (e.g., TNF-a,
IL-12, IL-6) (110). TLR2 upregulation in MCs of LN patients

and MRL/lpr mice could also induce inflammatory

responses (85).
Pathologic MCs promote regional
immune cell infiltration

MCs could regulate various immune cells in situ of LN, but

the current understanding of the interactions between MCs and

immune cells is still indefinable.

MCs promote the infiltration of macrophages, monocytes,

and T cells in the glomerular mesangium through the activation

of the NF-kB signaling pathway and the NF-kB-regulated
proinflammatory mediators, including IL-6, IL-1b, TNF-a,
MCP-1 (111, 112). De novo macrophage migration inhibitory

factor (MIF) expression is evident in LN MCs examined by in

situ hybridization and immunohistochemistry staining of

biopsies (101). Increased MIF expression is significantly

correlated with the reduction of creatinine clearance, immune

cells’ accumulation, and the severity of histologic lesions (101).

In addition to cytokines, some cell surface proteins of MCs can

also induce the infiltration of immune cells through cell-cell

contacts. CD40L is a transiently expressed T-cell surface

molecule interacting with CD40 on target cells (113). The

expression of CD40 is markedly upregulated in MCs with LN

and promotes T-cell infiltration in the patients’ glomeruli

biopsies (103, 114). The adhesion molecules ICAM-1 and

VCAM-1 are upregulated in the MCs of murine models with

LN (104). ICAM-1 and VCAM-1 could act as renal adhesion

molecules that bind T cells to MHC-II positive cells, thus

promoting antigen recognition and renal injury (52, 105).
Pathologic MCs regulate the
differentiation of immune cells in LN

Aside from promoting the infiltration of immune cells in the

glomerular mesangium, MCs are also related to the

differentiations of immune cells under pathological states

(Figure 3). Resting human MCs constitutively express IL-6 and

chemokine ligand 2 (CCL-2), inducing M2 macrophages

polarization under a co-culture system (99). In LN, PDGF-BB-

stimulated human MCs rather than resting MCs attenuate

classical macrophage activation and drive macrophages into

M2 type (99). Human MCs also promote B-cell survival by

upregulating APRIL and BLyS, essential for B-cell maturation
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TABLE 1 Molecule features of MCs in LN.

ITEM SLE Patients Lupus-Prone Mice Other treatment Related to LN Other Information

CXCL1 ↑ (protein level) (28) ↑ HMCs are treated with poly IC. (protein and mRNA
levels) (28)

Regulated by TLR3 signaling
(28)

MDM2 ↑ (protein level) (63) ↑ HMCs are treated with poly Ic or LN serum. (protein
level) (63, 93)

IFI35 ↑ (mRNA and protein levels)
(93)

↑ HMCs culture with LN serum. (mRNA and protein
levels) (93)

Hypomethylated by MBD2 (93)

IFNgR ↑ (mRNA level) (93) ↑ HMCs culture with LN serum. (mRNA and protein
levels) (93)

Hypomethylated by MBD2 (93)

STAT1 ↑ (mRNA level) (93) ↑ (MRL/lpr mice, protein
level) (93)

↑ HMCs culture with LN serum. (mRNA and protein
levels) (93)

Hypomethylated by MBD2.
Phosphorylation by IFN-a and
IFN-g (93).

p53 ↑ HMCs are treated with poly IC. (protein level) (63)

p21 ↑ HMCs are treated with poly IC. (protein level) (63)

mTORC1-
S6 kinase

↑ (LN-II, protein level) (69)

TRIM27 ↑ (LN-III, IV, protein level) (60) ↑ (MRL/lpr mice, protein
level) (60)

Regulated by FoxO1 pathway
(60)

HIF1a ↑ (protein level) (70) ↑ (MRL/lpr mice, protein
level) (70)

USP7 ↑ (protein level) (71) ↑ (MRL/lpr mice, mRNA
and protein levels) (71)

JMJD3 ↑ (protein level) (71) ↑ (MRL/lpr mice, protein
level) (71)

USP7 promote the stability of
JMJD3 by deubiquitination (71)

p-NF-kB
p65

↑ (MRL/lpr mice, protein
level) (71)

JMJD3 stabilize NF-kB p65
expression through
demethylation (71)

USP2-69 ↑ (LN-IV, protein level) (72) ↑ Rat MCs are stimulated with IL-1 and anti-thymocyte
serum (ATS). (mRNA and protein levels) (72)

TLR2 ↑ (protein level) (85) ↑ (MRL/lpr mice, protein
level) (85)

↑ HMCs culture with LN plasma. (mRNA and protein
levels) (85)

Col IV ↑ (protein level) (85) ↑ (MRL/lpr mice, protein
level) (85)

Annexin II ↑ (protein level) (94, 95) ↑ ( (NZB*NZW)F1/J
mice, protein level) (94,
95)

FN ↑ (protein level) (83) ↑ ( (NZB*NZW)F1/J
mice, protein level) (83)

↑ HMCs are stimulated with anti-DNA antibodies.
(protein level) (83)

Regulated by PKC (83)

HAS II ↑ HMCs are stimulated with anti-DNA antibodies
isolated from LN patients. (mRNA level) (96)

ER stress
pathway

↑ HMCs are stimulated with anti-DNA antibodies
isolated from LN patients. (protein level) (97, 98)

TGF-b ↑ (protein level) (83) ↑ ( (NZB*NZW)F1/J
mice, protein level) (83)

↑ HMCs are stimulated with anti-DNA antibodies.
(protein level) (83)

Regulated by PKC (83)

IL-1b ↑ HMCs are stimulated with anti-DNA antibodies
isolated from LN patients or PDGF-BB. (mRNA and
protein levels) (97, 99)

TNFa ↑ HMCs are stimulated with anti-DNA antibodies
isolated from LN patients. (mRNA and protein levels)
(97)

MCP-1 ↑ HMCs are stimulated with anti-DNA antibodies
isolated from LN patients. (mRNA and protein levels)
(97)

CCL-2 ↑ HMCs are stimulated with PDGF-BB (mRNA and
protein levels) (99)

(Continued)
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and activation of plasma cells, facilitating human autoimmune

disease progression (100).
Renal-resident immunity drives a
second wave of MC damage in LN

MCs regulate in situ immunity through paracrine

inflammatory mediators or cell-cell contacts. Meanwhile, many

cytokines and autoantibodies produced by immune cells further

aggravate MCs’ damage in LN (Figure 4).

Cytokines, such as PDGF, IL-6, IL-1, and IFN-g, are

accumulated in the kidneys of the mice models and patient

biopsies under LN progression (Table 1). Several LN-associated

cytokines have been shown to contribute to MC proliferation. B

cell-activating factor (BAFF), a member of the TNF family,

promotes the expansion of human MCs, which is mediated via

the BAFF-receptor (BAFF-R) (115). CXCL13 accelerates the

proliferation of human MCs by triggering extracellular signal-

regulated kinase (ERK) tyrosine phosphorylation (116).

Contents of IFN-g and HMGB1 in serum are raised in patients

or experimental animal models with LN (93, 117). It has been

observed that lots of the IFN-g/STAT1 pathway-regulated genes

are hypomethylated and related to the pathogenesis of LN (118).

IFN-induced 35-kDa protein (IFI35) is responsible for these

changes in LN (93). IFI35 is regulated by methyl-CpG binding

domain protein 2 (MBD2), which could enhance the

proliferation of human MCs (93). The researchers have found

that HMGB1 expression is specifically increased in lupus

patients compared with other renal disease patients (119).

HMGB1 promotes the cell cycle transition from G1 to the S
Frontiers in Immunology 07
phase by the cyclin D1/CDK4/p16 pathway in mouse MCs (117,

120). Furthermore, HMGB1 could mediate mouse MCs’

proliferation through the PTEN/PI3K/Akt/NF-kB signaling

pathway and exhibit a synergistic pro-inflammatory effect in

MRL/lpr mice (119, 121). Urinary samples of patients with LN

and MRL-1pr/1pr mice contain significant IL-6 activity, and the

high level of IL-6 is associated with MC proliferation (122, 123).

MRL/lpr mice exert enhanced proliferating cell nuclear antigen

(PCNA) in MCs mediated by PI3K/Akt/periostin signaling

pathway induced with PDGF (124). Tumor necrosis factor-

related weak inducer of apoptosis (TWEAK), a member of the

TNF-ligand superfamily, is elevated in the blood and urine of

patients with LN (125), enhancing NF-kB transcriptional

activity and promoting human MC proliferation (125).
The contribution of MC-related
therapeutics to clinical treatment

To achieve rapid remission of active disease, control the

progression of chronic kidney disease (CKD), restrain renal

flares, alleviate morbidity and mortality, minimize treatment-

related toxicity, and preserve fertility, researchers have

developed a variety of drugs and therapeutic regimens for LN

over the years (126). The present treatment options mainly

involve steroids, immunosuppressants, and adjuvant therapies.

First-line treatments for LN include steroids, cyclophosphamide

(CTX), azathioprine, and mycophenolate mofetil (MMF) (127).

Although these medications do not specifically target MCs,

inhibition of MCs proliferation is one of their pharmacological

effects in controlling the progression of kidney deterioration.
TABLE 1 Continued

ITEM SLE Patients Lupus-Prone Mice Other treatment Related to LN Other Information

IL-6 ↑ HMCs are stimulated with PDGF-BB (mRNA and
protein levels) (99)

APRIL ↑ (LN-III, IV, mRNA and
protein levels) (100)

BLyS ↑ (LN-III, IV, mRNA and
protein levels) (100)

MIF ↑ (mRNA and protein levels)
(101)

NEU1 ↑ (MRL/lpr mice and
NZM2410 mice, protein
level) (102)

↑ Primary MRL/lpr lupus-prone MCs are stimulated with
HA-IgG (mRNA and protein levels) (102)

CD40 ↑ (markly regulated in LN-III,
IV, protein level) (103)

ICAM-1 ↑ (in all LN patients, protein
level) (104)

VCAM-1 ↑ (markly regulated in LN-III, M
compared to LN- II protein
level) (104)

↑ (MRL/lpr mice, protein
level) (105)
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The mechanisms of how CTX andMMF inhibit the proliferation

of MCs have been validated. CTX arrests the cell cycle in the G1

phase through cell cycle regulators in human MCs (128). MMF

is one of the immunosuppressive agents, blocking purine

biosynthesis and thereby damaging cell proliferation (129).

Besides, recent research has demonstrated that the

combination of MMF and tacrolimus (TAC) at the half dose is

more therapeutic than monotherapy in inhibiting MC

proliferation in vitro and in vivo (130). TAC is a valid

treatment option for SLE patients with renal involvement
Frontiers in Immunology 08
(131). TAC targets the Smad2 signaling pathway, and MMF

targets the p38 signaling pathway, both of which could inhibit

MC proliferation (130). The combination of TAC and MMF

could significantly benefit patients with LN and shows no severe

adverse effects.

Several non-SLE classic drugs developed to attenuate the

condition in patients with LN show effective inhibition against

MC lesions. The researchers have conducted extensive in vitro

and in vivo studies to verify these medicines’ curative effects and

mechanisms. Trifluoperazine (TFP), a calmodulin inhibitor and
FIGURE 3

Immune functions of the pathological MCs Pathological MCs with aberrant phagocytic function exert robust expressions of APCs markers (TLRs,
MHC, co- stimulators). They secret inflammatory cytokines and chemokines, participate in the renal inflammation effect, and regulate immune
cells' infiltration and differentiation by cytokines and cell-cell contacts.
FIGURE 4

Immune cells-derived cytokines drive the second damage to MCs Cytokines like HMGB1, IFNy, and BAFF induce the proliferation of MCs
through various signaling pathways.
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a classic anxiolytic and antipsychotic drug (132), inhibit human

MC proliferation in a dose− and time−dependent manner. By

downregulating the Bcl−2 expression and upregulating the Bax

expression, TFP promotes cell apoptosis (133). And TFP targets

also inhibit the activation of the PI3K/AKT signaling pathway

(133, 134). Thus, TFP treatment significantly reduced blood urea

nitrogen and serum creatinine levels in lupus mice without

apparent side effects (134). Mizoribine (MZR) is a selective

inhibitor of the inosine monophosphate dehydrogenase and a

key enzyme in the de novo pathway of guanine nucleotides (135).

MZR downregulates MCP-1 at both mRNA and protein levels in

human MCs treated with poly (I:C), which is associated with the

pathogenesis of LN (135). ALW (ALWPPNLHAWVP), a

peptide with 12 amino acids, inhibits the binding of polyclonal

anti-dsDNA antibodies to MCs. ALW attenuates LN lesions,

including MC proliferation and inflammatory infiltration in

renal tissues of MRL/lpr mice (136). Quercetin is a polyphenol

extracted from plants and has many biological activities (137).

Quercetin treatment could reduce the expression of pentraxin3

(PTX3) and inhibit the excessive proliferation of human MCs by

blocking the NF-kB signaling pathway (138).
Summary

MCs are stromal cells that are fatal for renal glomerular

homeostasis and the glomerular responses to injury. In LN, the
Frontiers in Immunology 09
aberrant self-nucleic acids, auto-antibodies, and ICs lead to the

first wave of pathogenic damage to MCs. The pathologic MCs

proliferate and secrete excess ECM, resulting in kidney

dysfunction. In the glomerular microenvironment, MCs not

only commit self-injury but also play an essential role in

regulating the formation and function of tertiary lymphoid

organs in tissues, promoting the abnormal physiological

processes of the immune cells by generating massive

inflammatory mediators and facilitating immune infiltrations.

Such renal-resident immune responses drive the second wave of

pathogenic damage to MCs, accelerating kidney dysfunction

(Figure 5). This might be a universal immunopathological

paradigm underpinning the immune-mediated organ damage

in human diseases.

Although MCs’ intra-regional immune-related activity has

been demonstrated (Table 1), precise mechanisms underlying

how MCs regulate immune cells in the glomerular region are

largely unknown. The immune effects of immune cells activated or

amplified by MCs can also affect the morphology and functions of

glomerular stromal cells, causing more significant damage to the

glomeruli in which MC acts as a critical hub. Precise mechanisms

underpinning how MCs maintain homeostasis and how to

interfere with pathological MC-immune cell interactions to

benefit clinical patients are far less clear. More significant

insights into the immunological effects of MCs and their roles

in tissue-resident immunity could uncover new treatment

strategies to target MCs, revolutionizing the treatment of LN.
FIGURE 5

MCs with immune cells form a positive feedback loop to amplify kidney parenchyma in LN ICs' deposition in the mesangium results in the first
wave of pathological damage and activation of MCs, causing excessive proliferation and ECM secretion. The activated and pathological MCs
participate in local immune regulation, inducing immune cell infiltration and abnormal differentiation. Such renal-resident immune responses
increases glomerular local inflammatory mediators and autoantibodies, which drive the second wave of pathological damage to MCs and other
stroma cells in the kidney, eventually causing the progress of LN.
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