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Autoimmune disease, caused by unwanted immune responses to self-antigens,

affectsmillions of people each year and poses a great social and economic burden

to individuals and communities. In the course of autoimmune disorders, including

rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and

multiple sclerosis, disturbances in the balance between the immune response

against harmful agents and tolerance towards self-antigens lead to an immune

response against self-tissues. In recent years, various regulatory immune cells have

been identified. Disruptions in the quality, quantity, and function of these cells have

been implicated in autoimmune disease development. Therefore, targeting or

engineering these cells is a promising therapeutic for different autoimmune

diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid

suppressor cells, and some subsets of innate lymphoid cells are arising as

important players among this class of cells. Here, we review the roles of each

suppressive cell type in the immune system during homeostasis and in the

development of autoimmunity. Moreover, we discuss the current and future

therapeutic potential of each one of these cell types for autoimmune diseases.
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Introduction

Protecting the body against foreign pathogenic agents and

activating repair systems when tissue is damaged are the primary

functions of our immune system. The immune system must

constantly strike a balance between attacking harmful agents and

preventing damage to the body. Disturbances in this balance can

cause autoimmune diseases, in which the immune system

attacks self-tissues. Although investigations have focused more

on the role of adaptive immunity, both innate and adaptive

immunity appear to be involved in the development of

autoimmune diseases (1) . Albeit individual ly rare,

autoimmune disorders comprise a wide range of complex

diseases that affect about 5% of the world’s population. Loss of

self-tolerance leads to the production of autoantibodies against

self-tissues and cells, as well as the emergence of autoreactive T

cells (2). The incidence of autoimmune diseases is increasing

worldwide (3). Within these, type 1 diabetes (T1D), multiple

sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid

arthritis (RA), and Crohn’s disease (CD) are the most common

types of autoimmune diseases, posing enormous health

challenges (4). Currently, the main goal of autoimmune

disease research is to find more effective treatment solutions.

Present treatments can alleviate some autoimmune symptoms

but lack specificity and need to be prescribed for long periods. In

contrast, the use of living drugs, such as regulatory T (Treg) cells,

a subset of T lymphocytes dedicated to inhibiting specific

immune responses, holds the potential to be more specific,

cause less side effects, and be more effective (5). Current drugs

used to treat autoimmune disease include immunosuppressive

drugs, such as ciclosporin (cytokine gene transcription

inhibitor), anti-metabolite drugs, such as azathioprine (purine

synthesis inhibitor), and biologic drugs, such as belimumab

(human monoclonal antibody against B-cell activating factor).

Cell therapy as another approach for treat autoimmune disease

is assumed that are less toxic and can aim to help restore

immune tolerance, as opposed to global non-specific immune

suppression. Therefore, checking the accuracy of these

assumptions is on the agenda of many ongoing studies (5).

Notable examples of such living drugs include immune cells,

such as regulatory B (Breg) and Treg cells. In general, the

superior ability of immune cells, when compared to small

molecules and biologicals, to either maintain or disrupt the

body’s immune balance provides a unique opportunity to treat

autoimmune disorders and accelerate the repair of deregulated

nodes in the immune system (4). Many studies have been

performed on cell-based therapy for various types of

autoimmune diseases. Several types of immune cells, including

Breg and Treg cells, regulatory dendritic cells (DCs), as well as

mesenchymal stem cells, monocytes, and macrophages, have

been shown to relieve inflammation and symptoms of

autoimmune diseases (6, 7). Adoptive immune cell therapies
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have sparked great interest due to their advantages, including

delivery convenience, capacity of naturally homing to target

tissues, and the ability to significantly alter the course of disease,

as supported by preclinical research and promising results from

early clinical trials in autoimmune diseases and transplantation

(8). Here, we review a variety of immune cell-based therapies for

autoimmunity, including their prospects and potential for

treating and reducing the burden of these diseases worldwide.
Regulatory T cells

A subset of naïve T cells develops naturally in the immune

system to maintain immune homeostasis and autoimmune

tolerance (9). During 1970-1980, many efforts were made to

detect CD4+ T cells able to suppress autoimmune diseases in

rodents through reliable molecular markers (10). Finally, in the

mid-1990s, it became clear that this group of CD4+ T cells,

known as regulatory T cells (Treg cells), continuously express

the a chain of the interleukin 2 receptor (IL-2), or CD25, at high

levels (11). CD4+CD25+ cells comprise only 3-10% the

peripheral CD4+ T cell population. Their key role in

autoimmune diseases was clarified when their deletion was

shown to result in a wide range of human-like autoimmune

disorders in healthy mice, including type 1 diabetes, thyroiditis,

and autoimmune gastritis. On the other hand, infusion of

CD4+CD25+ T cel ls inhibited autoimmune disease

development in mice (12). In 2003, it was reported that

CD25+CD4+ T cells in rodents and humans uniquely express

the transcription factor Foxp3 at high levels (13). Mutations in

the Foxp3 gene in both mice and humans cause autoimmune

and inflammatory diseases such as type 1 diabetes (T1D) and

thyroiditis. In addition, the incidence of allergy and

inflammatory bowel disease (IBD), which together cause IPEX

syndrome (immune dysregulation polyendocrinopathy

enteropathy X-linked (IPEX) syndrome), is caused by

dysfunction in FOXP3+ T cells (14). In summary, regulatory T

cells develop in the thymus, are characterized by high

constitutive expression of Foxp3 in the nucleus and CD25 on

the surface, and suppress excessive immune responses against

environmental, microbial, and self-antigens (15).

Treg cells constitute a form of dominant tolerance, directly

suppressing the activation, expansion, and function of effector

immune cells. A number of mechanisms of Treg cell-mediated

immune suppression have been revealed (Figure 1A), from

depletion of IL-2 in the milieu via high surface expression of

CD25 and secretion of anti-inflammatory cytokines, such as IL-

10, IL-35, and TGF-b (contact-independent) to trogocytosis of

CD80 and CD86 receptors in antigen presenting cells (APCs) via

CTLA4 (contact-dependent) (16, 17). Treg cell function is

classically characterized by two main tenets: infectious

tolerance and bystander suppression. Infectious tolerance
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consists of the transfer of suppressive capacity from one cell

population to another and is believed to occur mainly via anti-

inflammatory cytokines that block dendritic cell (DC)

maturation, bestowing DCs with a tolerogenic phenotype and
Frontiers in Immunology 03
drive naïve T cell differentiation into induced Tregs (18, 19),

whereas bystander suppression refers to Tregs’ capacity to

suppress immune responses specific for an antigen distinct

from the one they recognize in the same milieu (20). Both
B

A

FIGURE 1

Treg cell mechanisms of action in autoimmunity and therapeutic application. (A) Treg cells are thought to work via four main routes. Route 1: Treg
cells expand and secrete large amounts of IL-10, enhancing tolerogenic APC activity. Tolerogenic APCs in turn interact with CD4+ T cells, inhibiting
their release of self-inflammatory cytokines. In addition, tolerogenic APCs stimulate the development of a regulatory phenotype in naïve T cells and
induce the production of Treg cells, ultimately suppressing autoimmune reactions. Route 2: The release of IL-2 in the microenvironment is
detected by CD25+ Treg cells, which interact with and induce PD-L1 expression in APCs. PD-L1+ APCs then induce apoptosis in activated PD-1+

Teff cells via PD-1/PD-L1 signaling, inhibiting immune responses, such as those targeting self-antigens. Route 3: The interaction of Treg cells with
autoreactive B cells induces B cell apoptosis via perforin/granzyme-mediated cytotoxicity, preventing autoantibody production. Route 4: Treg cells
convert extracellular ATP into adenosine (ADO), a potent immunosuppressant, using ectoenzymes CD39 and CD73. ADO binds to its receptor in
Teff cells, inhibiting them. (B) Any disruption in routes 1, 2, 3, and 4 can lead to autoimmunity. In Treg cell-based therapy, Treg cells are collected
from peripheral blood, activated, and expanded ex vivo. Finally, Treg cells are injected to suppress immune responses via routes 1, 2, 3, and 4.
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phenomena are local, happening at the level of the

immune microenvironment.

Despite these hallmarks, heterogeneity of the Treg cell

compartment is one of the main challenges of studying Tregs in

autoimmune diseases and at large. Systematic characterization of

Treg cell subsets can lead to a more precise identification of their

roles in various autoimmune diseases and hence the development

of more specific treatment strategies for treatment (21).
Types of regulatory T cells

Treg cells can be divided based on their developmental origin.

Thymic Tregs (tTreg) develop in the thymus. A small fraction of

Treg cells is derived from conventional T cells (Tconv) and

mature peripherally (pTreg) under certain conditions, including

exposure to microbial antigens in the intestinal mucosa. Both

tTregs and pTregs express Foxp3 and have suppressive function.

On the other hand, ex vivo antigenic stimulation in the presence of

cytokines TGF-b and IL-2 can induce Foxp3 expression in Tconv

cells, which are phenotypically and functionally similar to tTreg

and pTreg cells and are known as induced Treg cells (iTreg).

However, iTreg cells differ in terms of functional stability and

specificity and, therefore, come with different advantages and

challenges in treating autoimmune diseases (22).

Type 1 regulatory T (Tr1) cells are a subtype of induced

regulatory cells. Unlike Treg cells, Tr1 cells secrete

immunosuppressive cytokines, such as IL-10 and TGF-b, but
do not express CD25 or Foxp3. In addition, Foxp3+ Treg cells

and Tr1 cells differ in their metabolic programs (23). For

example, in vitro induced Tr1 cells display high rates of

aerobic glycolysis, while Foxp3+ Treg cells prefer oxidative

phosphorylation. Although both Foxp3+ Treg cells and Tr1

cell populations are present in the spleen, Peyers’ patches, and

lymph nodes, Tr1 cells are more abundant in the small intestine,

whereas Foxp3+ Treg cells are more abundant in the large

intestine. Interestingly, mice lacking induced Foxp3+ Treg cells

have a compensatory increase in Tr1 cells in the mesenteric

lymph nodes (24). Transfer of Foxp3+ Treg cells, on the other

hand, results in the generation of Tr1 cells and the development

of antigen specific tolerance in recipient mice in an allogeneic

pancreatic islet transplantation model. Overall, it appears that

Foxp3+ Treg cells are essential for initiating tolerance induction

at the site of inflammation, while Tr1 cells may be important for

the long-term maintenance of immune tolerance in some

settings (25). Consistent with a role for Tr1 cells in immune

tolerance, Tr1 cell dysfunction has been reported in autoimmune

patients, which also indicates their therapeutic potential.

However, a high dose of Tr1 cells is needed to be effective in

treatment. A Phase I trial (NCT03198234) testing a cell product,

T-allo10, containing up to 15% CD49b+LAG-3+ Tr1 cells, is

administered during HLA mismatched hematopoietic stem cell

transplant (HSCT). T-allo10 is created by stimulating donor-
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derived CD4+ T cells with host-derived tolerogenic DCs (DC-10)

in the presence of IL-10. The therapy is well tolerated and T-

allo10 cells detectable in the peripheral blood of patients up to 1

year after transfer, but the effects on GvHD and long-term

tolerance are still being studied (26).

Treg cells can also be classified based on their function.

Curiously, comprehensive analysis of human peripheral blood

Treg cells revealed the existence of subsets of T helper-like Treg

cells, i.e. Treg cells that share chemokine receptor and

transcription factor expression with T helper cells while being

suppressive. For instance, Th1-Treg cells can be characterized as

CXCR3+T-BET+FOXP3+ Treg cells, Th2-Treg cells as

CCR8+GATA3+FOXP3+ cells, and-so-forth (27–29). Recent

work by Levings and colleagues showed that it is possible to

generate Treg cells in vitro that preferentially migrate to Th1-

inflamed sites (30). In this study, interferon-gamma (IFN-g) and
IL-12 were added during Treg cell expansion in vitro, resulting in

epigenetically stable Th1-like CXCR3+T-BET+FOXP3+ Treg

cells (30). In a separate study, investigators discovered that a

larger proportion of activated FOXP3hiCD45RAlo Treg cells in

allogeneic hematopoietic stem cells was associated with less

development of acute GvHD in bone marrow transplant

patients (31). Utilizing tissue-specific and/or Th-like Treg cell

subsets (29, 32) in therapies for autoimmune disorders requires

more research. Yet, one can envision specific subsets of Treg cells

being advantageous in scenarios where certain cytokine

secretion patterns or tissue homing properties are instrumental

for treatment efficaciousness.

Another category of Th-like Treg cells is follicular regulatory

T (Tfr) cells, which inhibit follicular helper T (Tfh) cells. Tfr cells

were first identified in mice and play a vital role in the germinal

center response and antibody production (33). Tfr cells highly

express CXCR5, and, similarly to Tfh cells, require CD28 and

ICOS for their development and maintenance (34). In addition,

while Tfh cells are derived from CD4+Foxp3- precursors, Tfr

cells originate from CD25+Foxp3+ precursors. Recent studies

have also shown that deficiencies in Tfr cells lead to antibody

accumulation and the occurrence of a wide range of

autoimmune diseases (35). Interestingly, when compared to

healthy donors, coronavirus disease 2019 (COVID-19)

convalescent patients with severe disease, which has been

hypothesized to have an autoimmune-like component, had

higher frequencies of effector memory Tfh cells and lower

frequencies of central memory Tfh cells (36).
Using Treg cells to treat
autoimmunity

Based on the characteristics of the different subsets of Treg

cells, different strategies can be adopted for the treatment of

autoimmune diseases using them (Figure 1B). So far, results of

treatments with Treg cells in the early stages of clinical trials for
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1075813
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghobadinezhad et al. 10.3389/fimmu.2022.1075813
patients with transplant rejection, GvHD, and autoimmune

disorders have been promising (37). However, one of the main

challenges of these studies is the isolation of pure Treg cells and

their expansion to an adequate amount for clinical applications, to

reach the so-called clinical dose. Treg cell therapy is based on the

idea that injecting of an efficient dose of Treg cells restores the

balance between effector T cells and immune-regulatory cells

(such as Treg cells) in favor of increasing immune tolerance. Some

clinical studies have shown that Treg cell treatment can effectively

and safely reduce autoimmune symptoms and organ transplant

rejection (38). The first human clinical study for adaptive Treg

transfer was reported by Trzonkowski and colleagues in 2009.

Treg cells (CD4+CD25+CD127- cells) extracted from two donor

families were expanded ex vivo and transferred to GvHDpatients.

Infusion of Treg cells significantly reduced disease symptoms in

subjects with chronic GvHD and resulted in immunosuppression

(39). However, in grade 4 acute GvHD, symptoms improved only

temporarily. Recently, the adoptive transfer of Treg cells to SLE

patients was investigated by Dall’Era and colleagues. Flow

cytometry and whole transcriptome analyses revealed that

accumulation of Treg cells in the skin subdued IFN-g pathway

and increased IL-17 pathway activity. This group reported the

first case of adoptive transfer of Treg cells to SLE patients. In

general, their results showed that this treatment led to an increase

in Treg cells in the inflamed skin and a dynamically change in

local immune response from Th1 to Th17 (40). Achieving good

results using Treg cell adoptive transfer into patients requires

methods to isolate and expand Treg cells from different sources

with high efficiency and purity. In addition, there has been

uncertainty about how well in vitro functional assays correlate

with in vivo activity, and the complexity of modifying protocols to

improve properties such as antigen specificity and homing

receptor expression.
Sources of Treg cells for extraction
and expansion

Treg cells are distributed almost throughout the body;

peripheral blood and umbilical cord blood (UCB) are the most

valuable sources for Treg cell isolation. Currently, the most

common source for the production of autologous Treg

products is peripheral blood. Yet, with the increased prevalence

of cord blood banking, UCB may eventually become a more

abundant and common source for autologous Treg cells (41).

Indeed, using third-party UCB units as an allogeneic source of

Treg cells for therapy is becoming more common. These

products are enriched with naïve Treg cells, which have the

potential to expandmore thanmemory cells, with each UCB unit

containing ca. 6 x 106 such cells (42). According to protocols laid

out by Brunstein and colleagues, this number can be expanded in

vitro more than 27,000 times to reach a clinical dose (43).
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The pediatric thymus is another source of Treg cells that has

recently received attention. Usually, the thymus is removed during

pediatric cardiac surgery (44). The main advantage of using

pediatric thymus is the high number of Treg cells in this organ,

100 times more than in a UCB unit, or about 500 x 106 cells.

Furthermore, the almost complete absence of Tconv cells in the

pediatric thymus hasmade it easier to purify Treg cells, significantly

reducing the possibility of contamination with Tconv cells.

Interestingly, thymus Treg cell (tTreg) immunosuppressive

function is greater than that of Treg cells derived from peripheral

blood or UCB, even in the presence of inflammation. Among other

advantages of tTreg cells, it can be mentioned that they express an

especially high level of CD25, which leads to high sensitivity to IL-2

stimulation even at low doses (45). As IL-2 also drives the activation

of Tconv and natural killer cells (NK cells), stimulating a robust

inflammatory response, it is advantageous that tTreg cells can be

stimulated and expanded with IL-2 in levels at which Tconv cells

and NK cells do not respond (46).

Other Treg sources include non-lymphatic tissues, namely

intestines, lungs, joints, skin, and muscles. Although the

purification methods for these Treg cells are laborious and low

efficiency, efforts to expand tissue Tregs in the laboratory continue

due to their unique characteristics (47). In parallel, efforts are

underway to differentiate induced pluripotent stem cells (iPSC)

into Tregs, as well as to convert Tconv cells into iTreg cells by

inducing Foxp3 expression (48). For example, ectopic Foxp3

expression together with Notch signaling pathway activation by

stromal cells made it possible to produce Treg cells from mouse

iPSCs. This approach will most likely be used in gene therapy for

IPEX (49). Alternatively, iTreg cells can be generated from

CD4+CD25- Tconv cells in the presence of IL-2 and TGF-b.
Currently, iTreg cells are in clinical trials (NCT 01634217) (50).
Comparing autologous with
allogeneic Treg cells

A critical point in cell therapy design is deciding whether to

use autologous or allogeneic cells. With regards to autoimmune

diseases and organ transplantation, all clinical trials thus far have

used the patient’s autologous peripheral blood Treg cells. In

contrast, allogeneic cells are commonly derived from UCB units

with at least 4 HLA alleles in common with the recipient (51, 52).

Although autologous Treg cells have the highest chance of being

accepted by the recipient, their production can be very

challenging. Autologous products must be manufactured

uniquely for each patient, so manufacturing processes must be

robust and reproducible despite the high variability between

donors. On the other hand, the cost of producing autologous

cells for each patient is very high; for this reason, attention has

been drawn to allogeneic cell therapy products (51, 52). In

addition, allogeneic cells can be derived from primary cell
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populations with less variability and, as a result, are more

comprehensively under quality control to reduce patient risks.

Studies on animal models have shown that allogeneic Treg cells

have the same power as donor-derived Treg cells in preventing

graft rejection (53). In humans, UCB-derived Treg cells were safe

and reduced the incidence of acute and chronic GvHD in

transplant patients (51, 52). Although allogeneic cell therapy

products have only been investigated in immunocompromised

people, their main limitation of allogeneic cells in healthy people

is limited survival time due to rejection in the patient (54). In

non-human primates, allogeneic Treg cells in the blood could

not be detected by flow cytometry for more than 3 to 6 weeks

after infusion (54). On the other hand, autologous Treg cells can

be identified by mass spectrometry for more than a year after

injection. Using a flow cytometry-based readout, the percentage

of Tregs in circulation peaked 7-14 days post-transfer and fell

near the detection limit within three months, similar to findings

with allogeneic cells (40, 55). As a result, more research is needed

to determine why the majority of infused Tregs appear to

disappear from circulation in these various contexts.

One of the challenges is not determining the tolerance level for

HLAmismatch in Treg cells. In studies of antiviral T therapy, third-

party virus-specific T cells with the lowest HLA mismatch (one

allele) reduced viral load, which can be exploited for the treatment

of drug-resistant infections after hematopoietic stem cell

transplantation (56). These results suggest that it is not necessary

to fully match the HLAs to effectively transfer Treg cells. Of note, if

the suppressive function of Treg cells is transferred to other cell

populations, i.e. infectious tolerance, there is no need for the long-

term survival of Treg cells (57). Allogeneic Treg products pose a risk

of alloimmune sensitization, especially in GvHD patients and non-

immunosuppressed patients. However, treatment with allogeneic

specific Treg cell transfer after allogeneic hematopoietic stem cell

transplantation did not lead to severe GvHD (58). Treg cells are

generally less prone to allogeneic sensitization due to their role in

suppressing the immune response compared to Tconv cell transfer.

To increase the probability of allogeneic Treg cell survival in the

patient, genetic modification can be used to remove or edit HLA

molecules. Research in the regenerativemedicine and stem cell field

is driving the field of HLA editing, featuring strategies such as

knocking out b-2 microglobulin to eliminate HLA class I surface

expression) and/or CIIT2 to eliminate HLA class II (59). As such

changes can render the cells susceptible to NK cell-mediated lysis,

complementary strategies seek to increase the expression of non-

classical HLA molecules to inhibit NK cells (59, 60).
Comparing polyclonal with antigen-
specific Treg cells

Selecting between polyclonal Treg cells or antigen-specific

Treg cells is another decision to bemade when designing Treg cell
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therapies. Although producing polyclonal Treg cells requires less

effort, a large number of them need to be injected for their

effectiveness. On the other hand, only a small fraction of Treg

cells is required for antigen-specific Treg cell strategy (61). Using

antigen-specific Treg cells are reduced off-target suppression and

increased potency. Putnam and co-workers expanded alloreactive

Treg products by co-culturing recipient Treg cells with donor B

cells (62). Clinical studies with alloreactive Tregs focus on solid

organ transplantation and GvHD, namely NCT02711826,

NCT01795573, NCT02188719, and NCT02244801.

To circumvent the rarity of antigen-specific Treg cells,

methods of artificially generating antigen-specific Treg cells

have been developed, including ectopic expression of a chimeric

antigen receptor (CAR) or a T cell receptor (TCR), as discussed in

later sections. TCR recognition is HLA-restricted and TCR

affinity towards its cognate antigen is lower than that of CARs.

Moreover, as recognition of antigens by CARs is not limited to

HLA, CAR Treg cell therapy can target more diverse antigens,

including protein, carbohydrate, and glycolipid antigens (63).
Generating Treg cells for
adoptive transfer

CD25 is present on all Treg cells, independently of their

origin, and is a selective marker for Treg cell isolation (64).

Instead of relying on CD25 expression alone, fluorescence-

assisted cell sorting (FACS) CD45RA+CD25+CD127- naïve

Treg cells increases Treg purity (65). Compared to magnetic

selection, closed-system Good Manufacturing Practice (GMP)

compatible FACS can simplify Treg cell isolation based on

multiple markers. Miltenyi’s three-laser MACSQuant Tyto Cell

Sorter allows for GMP-compatible FACS isolation of human

Treg cells by utilizing single-use closed-cartridge systems,

preventing contamination between samples and aerosol

formation. Following isolation, Treg cells are expanded in vitro

to reach clinical dose. Bead-immobilized antibodies, artificial

antigen-presenting cells (APCs), and soluble antibody reagents

are standard methods used to activate Treg cells in vitro.

Many Treg expansion protocols use magnetic beads

covalently attached to anti-CD3 and anti-CD28 antibodies.

However, removing the magnetic beads before infusion has

limited their application due to cell loss and potential

incomplete bead removal. With regards to artificial APCs, co-

stimulatory molecules and an Fc receptor are expressed on the

cell surface. Studies have shown that K562 cells expressing the

co-stimulatory receptor CD86 and the high affinity Fc receptor

CD64 and loaded with anti-CD3 antibody perform better than

anti-CD3/CD28 beads to expand UCB Treg cells. K562 is a

human myelogenous leukemia cell line that is devoid of HLA

and CD80/CD86 and can be readily expanded. By loading these

cells with anti-CD3 monoclonal antibody, the primary signals
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for Treg cell activation are triggered through binding to anti-

CD3 sequestered by CD64 and to CD86. Because these artificial

APCs are lethally irradiated, they gradually disappear from

culture, obviating the need to eliminate them before injection

(66). However, while artificial APCs are particularly successful in

stimulating Treg growth, they complicate the cell production

process by necessitating additional cell testing and batch

validation. For ease of elimination before Treg administration

to the patient, additional activation reagents are available in the

soluble form. For instance, the T cell TransAct is a nanomatrix

polymer conjugated to anti-CD3 and anti-CD28 antibodies.

Since this reagent is soluble, it is easily removed by

centrifugation (67). However, its use in clinical studies has not

yet been reported. Overall, culture and expansion protocols for

Treg cells for clinical use vary, with several research groups

working towards reaching maximum efficiency (38).

Another critical point in the design of cellular therapy is the

choice between fresh or cryopreserved Treg cells. Since

cryopreservation provides several advantages, including the

possibility of long-term storage of the product, increased time for

injection, and hencemore time for release testing,many researchers

have turned to it. However, the reduction in the quality of Treg cells

after cryopreservation is an important limitation of choosing this

strategy for clinical applications. Studies on the decline of the

quality of FOXP3+ Treg cells and CD25highCD127- Treg cells

after cryopreservation have produced contradictory results (68).

Although it has been reported that the expression of Foxp3, CD25,

and the suppressive activity of Treg cells decreases after thawing,

these characteristics can be restored after reactivation (69). Yet, few

clinical trials using cryopreserved Treg cells have been reported due

to uncertainty regarding the effects of freezing and thawing these

cells (70). This and other parts of the Treg manufacturing process

stand to benefit from advances in the production of Tconv cells for

cancer immunotherapy (71).
Increasing the stability and
efficiency of Treg cells

One factor determining the effectiveness of Treg cells is their

successful migration to both inflammation sites and lymph nodes

(72). Therefore, many researchers are looking for protocols that, in

addition to maximizing Treg stability, also increase their migration

potential, which requires increasing the expression of homing

receptors. For example, Hoeppli and colleagues reported that, by

creating appropriate cell culture conditions, stable expression of

homing receptors such as a4b7 and CXCR3 chemokine receptor

can be induced (30). INF-g and IL-2 addition during Treg cell

expansion increased the expression of CXCR3, enabling Treg cell

migration towards CXCL10 (30). Importantly, these cells

maintained high expression levels of CXCR3 after injection into

mice and in the absence of INF-g and IL-2. Concomitant expression
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to migrate to lymphoid tissues and the site of inflammation.

Interestingly, Parmer and colleagues found that adding fucose to

the surface of Treg cells induces sialyl-Lewis Xmoiety formation on

the P-selectin ligand, increasing the viability of UCB Treg cells in

GvHD likely by increasing the binding potential to E-selectin (73).

Indeed, this strategy is being investigated in the NCT 02423915

phase I/II clinical trial, which assesses the effectiveness and safety of

fucosylated Treg cells in reducing or preventing GvHD in humans.

In addition to optimizing culture conditions, two other

strategies, creating antigen-specific Treg cells and increasing the

expression of Treg-specific genes, can improve Treg cell function.

For over a decade, studies have shown that antigen-specific Treg

cells are more potent than their polyclonal counterparts. Infusing

Treg cells with donor allospecific TCRs leads to long-term survival

inmice withMHC-mismatched heart transplants (74). This notion

is currently being utilized in the context of autoimmunity, where

the restricted number of disease peptide-MHC complexes allows

for the selection of a few TCRs to engineer Tregs compatible with a

substantial proportion of afflicted people (75). One of the

alternative approaches to TCRs is the engineering of Treg cells to

express a CAR specific for the desired antigen. CARs are

synthesized proteins with combined extracellular antigen binding

domains, so-called single chain fragment variable (scFv), and

intracellular signaling domains (63, 76). Preclinical studies in

mice have demonstrated the promise of this strategy. For

example, in the treatment of experimental autoimmune

encephalomyelitis (EAE), a mouse model of multiple sclerosis,

CAR Treg successfully targeted the myelin glycoprotein of

oligodendrocytes and ameliorated disease. Similar results were

obta ined in the treatment of co l i t i s by target ing

carcinoembryonic antigen (CEA). Further studies showed that

human HLA-A2-specific CAR Treg cells perform better than

polyclonal cells in preventing xenogeneic GvHD (77, 78).
Treg cell-targeted therapy for
autoimmune disease

Our increasing understanding of the role of Treg cells in

autoimmune diseases has made Treg cell-targeted therapies

promising strategies to alleviate these disorders. Two such

strategies, low-dose interleukin-2 (IL-2) administration and

Treg cell adoptive transfer, have received much attention in

recent research and have been tested in clinical trials for several

autoimmune diseases (40, 51, 52, 55, 79–82) (Table 1).
Treg cell adoptive transfer

In its current form, Treg cell adoptive transfer strategy

requires large Treg cell numbers to be clinically effective, in
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the order of 8 x 109 cells. For this purpose, Treg cells are

collected from autologous peripheral blood (40, 79) or

umbilical cord blood (51, 82) and expanded ex vivo using a

number of protocols. As mentioned before, recent research

points toward artificial APCs as key in increasing the number

of tTreg cells obtained. In addition, FOXP3 expression and the

suppressive function of tTreg cells are maintained by artificial

APCs (86–88). Other research has shown the role of various

biological compounds, including retinoic acid, IL-2, rapamycin,

TGF-b (transforming growth factor-b), histone deacetylase

(HDAC) inhibitors, DNA methyltransferase inhibitors, among
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others, in supplying Treg cells with functional and phenotypic

stability (89–91). For instance, a study by Lu and colleagues

determined that tTreg cells displayed higher expansion and

suppressive function in vitro and in vivo following antagomir-

mediated knockdown of miR-146b-5p (92). Another study

elucidated the role of D-mannose in inducing FOXP3

expression and the conversion of naïve T cells into Treg cells

(93). In addition, a systematic review by Dwivedi and colleagues

indicates that prebiotics (substrates that support colonization by

specific non-pathogenic bacteria) and probiotics (non-

pathogenic bacteria or bacterial products found in food
TABLE 1 Recent clinical studies on Treg cell therapy in autoimmune disease.

Autoimmune
disease

Treg therapy Study Patient
No.

Comedications Treg results Refs./Study
ID

Crohn’s Disease ova-Tregs isolated from PBMCs
Single infusion Tr1 intravenously

Phase I/IIa 20 patients – Safe, unknown efficiency, well
tolerated,

(83)

Crohn’s Disease ova-Tregs, infusion Tr1 intravenously Phase I/II 32
participants

Ovasave Well tolerated NCT02327221

Crohn’s Disease Polyclonally expanded CD4+CD25
+CD127lowCD45RA+Tregs, Intravenously

Double-
blind,
placebo-
controlled
trial

24
participants

TR004 Suppression of activation of
lamina propria and mesenteric
lymph node lymphocytes

NCT03185000

Type 1 Diabetes Administration of autologous expanded (ex
vivo) Tregs

Phase I 12 DM1
children

Safe and feasible, lower
requirement for exogenous insulin.
No adverse effects

(79)

Type 1 Diabetes Administration of autologous expanded
Tregs (ex vivo) (CD4+CD127lo/−CD25+

polyclonal Tregs)

Phase I 14 Patients Safe and feasible. Retention of
CD4+CD25hiCD127loFOXP3+Treg
cells

(55)

Type 1 Diabetes A single infusion of CLBS03 Low Dose, a
cell product comprised of autologous, ex
vivo expanded regulatory T-cells
resuspended in sterile infusion solution.

Phase II 113
participants

Not Recruiting NCT02691247

Type 1 Diabetes Administration of autologous expanded
polyclonal Tregs (ex vivo) single dose of
CD4+CD25+CD127low cells and low-dose IL-
2

Phase I Completed. Low-dose IL-2
expands exogenously administered
Tregs

NCT02772679
(84)

Type 1 Diabetes Administration of umbilical cord blood
Tregs combined to insulin

Open-label
phase I/II

40
participants

More effective than insulin
therapy alone. Recruiting

NCT02932826

Active Cutaneous
Lupus

Administration of autologous expanded
Tregs (ex vivo) single dose

Phase I 1
participants

Terminated due to participant
recruitment feasibility

NCT02428309

Active Cutaneous
Pemphigus

Infusion of a single dose autologous
polyclonally expanded Tregs

Open-label
phase I

5
participants

Active, not recruiting NCT03239470

Autoimmune
Diabetes

Umbilical cord blood Tregs combined to
liraglutide therapy

Phase I/II 40
participants

Recruiting NCT03011021

Autoimmune
Hepatitis

Infusion of a single dose autologous
polyclonally expanded Tregs

Open-label
phase I/II

30
participants

Not yet recruiting NCT02704338

Systemic Lupus
Erythematosus

Treg adoptive cell therapy Clinical
study

1
participant

Increased activated Tregs in
inflamed skin with a dynamic shift
from Th1 to Th17 responses

(40)

Inflammatory
Bowel Disease

Single infusion of regulatory Treg cells (type
1 ovalbumin-specific)

Phase I/IIa
clinical
study

Well tolerated, dose-related
efficacy

(85)

Pemphigus
Vulgaris

Polyclonal autologous Treg cells therapy Phase Ia
multicenter
clinical trial

5
participants

Active, not recruiting NCT03239470
f

PBMCs, patients’ peripheral blood mononuclear cells; ova-Tregs, Ovalbumin-specific Treg cells.
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supplements) have a significant effect on the proliferation and

induction of Treg cells in animal models and human cell cultures

(94). More recently, Skartsis and colleagues showed that

culturing human polyclonal Treg cells ex vivo in the presence

of IL-6 and tumor necrosis factor alpha (TNF-a), two

pleiotropic cytokines, in conjunction with CD28 super-agonist,

dramatically boosts their proliferation while maintaining their

phenotype and suppressive function in vitro and in vivo (95).

Altogether, these and ongoing investigations provide practical

methods to continue improving on the generation of adequate

numbers of bona fide human Treg cells for adoptive cell therapy

for the treatment of autoimmune diseases.

Treg cell adoptive therapy has been tested in various

autoimmune diseases (5, 96). For instance, while SLE is

characterized by unusual innate and adaptive immune

responses, mounting evidence shows the essential role of Treg

cells in this complex autoimmune disease, especially in its peak

stages (97–100). In preclinical studies, Treg cell infusion in

autoantibody-positive mice delayed renal complications and

significantly increased their survival rate (101). In a case study

reported by Dall’Era and colleagues, autologous Treg cells were

amplified and administered to one SLE patient. The authors

observed an increased percentage of activated Tregs in diseased

skin (40). In phase I trials focused on T1D, patients treated with

ex vivo expanded polyclonal Treg cells experienced minimal to

no side effects. In one trial, the infused Treg cells were labeled

with deuterium, allowing their tracking in peripheral blood. The

authors found that a small fraction of the infused Tregs could be

detected in peripheral blood up to one year after treatment and

they maintained a Treg phenotype, suggesting that there was no

Treg instability (55). Encouragingly, in some of the trials there

was evidence that treatment of T1D patients with Treg cells can

increase b cell survival and C-peptide levels, concomitantly

reducing dependence on exogenous insulin (55, 79, 80, 102).

Of note, these studies were informed by pioneering studies using

human Treg cells for the treatment of graft-versus-host disease

(GvHD), in which safety and efficacy were demonstrated over

the years (39, 51, 81, 103, 104).

Several strategies to improve on the quality and induction of

Treg cells used for therapy are currently being tested. For

instance, Kasahara and colleagues (105) set out to optimize the

generation of stable induced Tregs (iTregs) to prevent GvHD in

mice, where traditional iTregs have been shown to be ineffective.

Co-culturing naïve T cells with allogeneic dendritic cells in the

presence of TGF-b and retinoic acid resulted in alloantigen-

specific iTregs. Interestingly, vitamin C stabilized Foxp3

expression in adoptively transplanted iTregs in a GvHD

environment. Indeed, vitamin C therapy triggered active DNA

demethylation, particularly at the conserved non-coding

sequence 2 (CNS2) enhancer of the Foxp3 gene locus,

reducing iTreg conversion to pro-inflammatory ex-Treg cells.

GvHD symptoms were suppressed more effectively in vitamin

C-treated iTregs than in untreated iTregs. Importantly, Vitamin
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C also boosted the generation of FOXP3high iTreg population

from human naïve T cells in vitro, which remained stable even

when exposed to IL-6. Vitamin C treatment is thus a promising

molecule in adoptive Treg cell immunotherapy (105). In another

study, Kasagi and colleagues (106) focused on mice with

experimental autoimmune encephalomyelitis (EAE, a model

for MS) and autoimmune diabetes (nonobese diabetic – NOD

mice) and identified a mechanism to create autoantigen-specific

Treg cells in vivo. In brief, the authors used either systemic

sublethal irradiation to cause immune cell death or monoclonal

antibodies to deplete B and CD8+ T cells in animals with

established autoimmune disorders, and then administered self-

antigen-derived peptides. Interestingly, these peptides drove

naïve CD4+ T cells into a Foxp3+ Treg cell fate instead of Teff

cells. Mechanistically, apoptotic cells stimulated professional

phagocytes to release TGF-b, which in turn promoted induced

Treg cell generation. Strikingly, these de novo generated antigen-

specific Treg cells reduced autoimmunity while maintaining

immune responses to bacterial antigens. Independently, Sun

and co-workers (107) developed a method for producing

antigen-specific Treg cells by culturing murine CD4+ T cells

with retinoic acid; adoptive transfer of these cells reversed the

progression of collagen-induced arthritis (CIA) in mice by

suppressing TNF-a. Further testing revealed that the Treg cells

remained stable in vivo after infusion. Altogether, these

techniques aimed at augmenting Treg cell numbers and/or

function might one day be used in the treatment of

autoimmunity in humans (Table 1).

Antigen-specific Treg cells perform better than polyclonal

Treg cells in the prevention and treatment of autoimmune

disease in animal models (108). This observation has catalyzed

the development of various methods to generate antigen-specific

Treg cells, such as overexpression of TCRs (109, 110), antigen-

stimulated expansion (111, 112), and the utilization of CARs

(77). Recent preclinical studies have shown the high potential of

antigen-specific Treg cells in the treatment of various

autoimmune diseases (83, 105–107). CAR Tregs, in particular,

have received much attention for the immunotherapy of

autoimmune disease (5). The first reports of engineered Tregs,

in 2005, focused on EAE. Transgenic mice were generated

expressing a chimeric receptor comprising an MHC complex

bound to an EAE peptide, MBP89-101, linked to an intracellular

CD3z chain. Adoptive transfer of engineered Tregs from these

transgenic mice not only prevented MBP89-101-induced EAE, but

also treated it one month post-induction, after epitope spreading

had occurred, demonstrating the bystander suppression capacity

of these cells (113). Follow-up studies by the same group

elucidated that these engineered Tregs induced MBP89-101-

specific T cells to secrete IL-10. Adoptive transfer of such non-

transgenic MBP89-101-specific T cells prevented EAE in recipient

mice, indicating that these engineered Tregs could also induce

infectious tolerance (114). More than a decade after those initial

mouse studies, human Tregs engineered with CARs were
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reported. Given the difficulties of modeling autoimmune disease

in humanized mice, these studies targeted GvHD and organ

transplant rejection instead. The first one, published in 2016,

generated CAR Tregs redirected against HLA-A2 using a CAR

comprising an extracellular domain with an anti-HLA-A2 scFv

and an intracellular domain with a tandem CD28-CD3z
signaling domain (77). In this study, HLA-A2 CAR Tregs

successfully prevented xenogeneic GvHD (xGvHD) induction

by co-injected HLA-A2-expressing PBMCs in NSG mice. Two

subsequent studies by different groups confirmed this finding

and further demonstrated the capacity of HLA-A2 CAR Tregs to

suppress a mixed lymphocyte reaction (MLR) between HLA-A2-

positive and HLA-A2-negative PBMCs in vivo (measured by

mouse ear swelling) and protect HLA-A2-expressing human

skin grafts from rejection by HLA-A2-negative PBMCs in NSG

mice (115, 116).

The last two years have seen some engineered cell studies

focused on T1D. In the NOD mouse, a different group

engineered NOD CD4+ T cells by constitutively expressing

Foxp3, making them phenotypically similar to Treg cells in

vitro, and a CAR activated by insulin. Yet, despite being

detectable up to 17 weeks post transfer in vivo, these

“converted” insulin CAR Foxp3+ T cells did not prevent

diabetes in NOD mice (117). Most recently, human Tregs

bearing a humanized HLA-A2 CAR were shown to protect

NSG mice from xGvHD when HLA-A2 was present either in

the co-infused PBMCs or in the mouse host (HLA-A2 transgenic

NSG mice), a closer recapitulation of the human disease (78).

Moreover, these HLA-A2 CAR Tregs trafficked to HLA-A2-

expressing mouse or human islets transplanted in the right

kidney capsule of NSG mice rendered diabetic with

streptozotocin (STZ) treatment and did not impair their

function, whereas conventional T cells engineered in the same

fashion rejected the transplanted islets in less than 2 weeks (78).

Next steps include showing efficacious islet protection and

diabetes prevention/reversal in NOD and more sophisticated

human immune system (HIS) mouse models (118).
Low-dose IL-2 administration

Low-dose IL-2 therapy can be seen as a strategy to fight

various autoimmune diseases complementary to Treg cell

infusion. CD25, the IL-2 receptor (IL-2R) a chain, is

constitutively expressed at high levels by Treg cells. The IL-2R

a chain, along with the b (CD122) and g (CD132) chains, make

up the high affinity IL-2R. In general, IL-2 is an essential factor

for the growth of lymphocytes. Indeed, IL-2 has been FDA

approved for use in cancer immunotherapy since the 1990s, to

stimulate anti-tumor Teff cells and natural killer (NK) cells. Yet,

the high doses of IL-2 required for tumor regression are

commonly accompanied by severe side effects, such as vascular

leak syndrome (119). In addition, IL-2 plays a particularly vital
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role in the division, activity, and stability of Treg cells.

Importantly, unlike Teff cells, Treg cells do not secrete IL-2

and are thus fully dependent on exogenous sources of this

cytokine (120–122). Encouragingly, low doses of IL-2, in the

range of 0.33-4.5 x 106 international units (IU), selectively

enhance the development and maintenance of Treg cells

without Teff cell activation. These observations led

investigators to posit that low-dose IL-2 would be an effective

treatment for autoimmunity by boosting Treg cells (123).

Enhancing Treg: Teff balance in lupus-prone mice treated with

recombinant IL-2 reduced disease progression and increased

survival rate (98). In a study by Johnson and colleagues, NOD

mice treated with IL-2 experienced an increase in the number

and proportion of Treg cells (124). In T1D patients,

administration of low dose IL-2 has no serious side effects, and

only mild to moderate side effects, such as inflammatory

reactions at the injection site and influenza syndrome, have

been reported (125–127). Although low doses of IL-2 increase

Treg cells in T1D, they also increase the number of other cells

expressing IL-2 receptor, such as eosinophils and NK cells (127).

Indeed, a recent study by Dong and colleagues where T1D

patients were treated with autologous polyclonal Treg cells

followed by one or two courses of low-dose IL-2 revealed that,

while IL-2 increased the numbers of both infused and

endogenous Treg cells, it also boosted subsets of NK cells and

CD8+ T cells (84). Hence, more research is needed to

corroborate the use of this strategy to overcome autoimmune

diseases. With regards to GvHD, numerous investigations

showed that treatment with low-dose IL-2 is a beneficial

regimen for achieving tolerance and reducing the risk of

GvHD (128, 129). During this therapy strategy, however, NK

cells were selectively expanded (121). Low-dose recombinant IL-

2 treatment to active SLE patients resulted in substantial Treg

cell growth, improved Treg function in peripheral blood, and

clearly decreased disease activity (130–132). In a pilot study in 37

SLE patients, low-dose IL-2 increased the number of Treg cells

and subsequently reduced the SLE disease activity index scores

(133). A research in primary Sjogren’s syndrome reached the

same outcome, confirming the unique therapeutic impact of

low-dose IL-2 on immune-related diseases (134). In summary,

low-dose IL-2 treatment, while promising, requires significant

investigation before it can be safely employed in clinical practice.

More studies are needed to determine the safe and effective dose

range, including cumulative exposure, unwanted side effects, and

whether there may be long-term complications. Also required

are double-blind, placebo-controlled randomized trials, as well

as basic research into the underlying mechanisms of IL-2

therapy. Efforts are underway to improve low-dose IL-2

therapy specificity. In one vein, investigators are mutating IL-

2, generating muteins with reduced affinity to IL-2Rbg, thus
further increasing their selectivity towards cells expressing very

high levels of CD25, i.e. Treg cells (135). Of note, recent

intriguing work in the mouse aimed at circumventing the issue
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of specificity of IL-2 by generating an artificial molecule, ortho-

IL-2, which only binds to an artificial receptor, ortho-IL-2R,

allowing for the selective maintenance and expansion of Treg

cells engineered to express ortho-IL-2R (136).
Pharmacological targeting of Treg
cells in autoimmune diseases

Understanding the mechanisms behind Treg cell function

and number, and the pathways regulating them has yielded

promising results for autoimmune disease therapy. T cell

differentiation and function is highly dependent on the

function of the mammalian target of rapamycin (mTOR)

signaling pathway, the major nutrient-sensing regulator of cell

growth, with rapamycin being a natural inhibitor of this pathway

(90, 137). Studies have demonstrated that rapamycin can

improve Treg cell lineage and functional stability. This stems

in pa r t f r om the d i ff e r en t i a l r e gu l a t i on o f th e

phosphatidylinositol 3-kinase (PI3K)/AKT pathway in

conventional T (Tconv) cells vs. Treg cells: Tconv cells

donwregulate phosphatase and tensin homologue on

chromosome 10 (PTEN), a negative regulator of the PI3K/Akt

pathway, which together with mTOR controls cell growth,

whereas Treg cells do not. Indeed, genetically deleting PTEN

specifically in Treg cells in the mouse results in Treg cell

destabilization, loss of Foxp3 expression, and Th1-driven

autoimmunity (138). Moreover, mTOR defects disrupt the

differentiation of naïve T cells into Th1, Th2, and Th17 cells,

thus favoring naïve T cell differentiation into Treg cells (139).

Hence , rapamyc in-media ted inh ib i t ion of mTOR

disproportionally negatively affects the growth and

proliferation of Tconv cells compared with Treg cells, resulting

in the inclusion of rapamycin in many Treg cell ex vivo

expansion protocols (70). Recent studies on the use of

rapamycin in model animals with a variety of autoimmune

diseases, such as T1D (140), autoimmune pancreatitis (141),

and SLE (142), show significant expansion of Treg cells and

improvement in disease symptoms. In humans, it should be

noted that rapamycin treatment in SLE patients has been shown

to be safe and effective (143). With regards to IPEX (144),

rapamycin restores Treg cell function, including upregulation of

immune-regulating proteins such as glucocorticoid-induced

TNFR-related protein (GITR). Furthermore, rapamycin

treatment positively impacts the histological and clinical

progression of IPEX (145).

The epigenetic regulation of T-cell-mediated immunity is

also beginning to be targeted in the context of Treg cells and

autoimmune disease. For instance, histone deacetylase (HDAC)

inhibitors have been shown to have anti-inflammatory effects

and can be potential treatments for autoimmune disease patients

(146), enhancing Treg cell function of Treg cells in vitro and in
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vivo (147). Studies have also shown that HDAC11 inhibition

augments Treg suppressive function and prolongs long-term

allograft survival in mice (148). Choi and colleagues reported

that administration of vorinostat, an HDAC inhibitor,

considerably increased the Treg cell number and FOXP3

expression in patients with hematological malignancies who

received allogeneic hematopoietic stem cell transplantation

(149). Severe reduction in GvHD incidence, increased Treg

cell function, and inhibition of Th17 cell differentiation are the

other effects of HDAC inhibitors. Interestingly, culturing RA

patient-derived PBMCs with lipopolysaccharide (LPS) and

HDAC inhibitors in vitro resulted in a greater percentage of

induced Treg cells and higher IL-10 production (150), implying

that HDAC inhibitors could be effective in the treatment of RA.
Regulatory B cells

In a complex and dynamic process, by balancing between

cell division and apoptosis, B cells develop in the bone marrow

and mature into functional B cells, the central players in

humoral immunity (151). At the turn of the 21st century, the

concept of regulatory B cells (Breg cells) was described by Bhan

and Mizoguchi, referring to a subset of B cells with regulatory

characteristics (152). Breg cells, similarly to Treg cells, exert their

function by secreting regulatory cytokines such as TGF-b and

IL-10. In addition, Breg cells can express inhibitory molecules

which suppress autoreactive B cells and pathogenic T cells in a

cell contact-dependent manner (153). Under the appropriate

stimulation conditions and times, all types of B cells can

differentiate into Breg cells. Unsurprisingly, Breg cell

populations are heterogeneous (154) and the suppressive

functions of Breg cells are executed through different

mechanisms in different autoimmune disease models (155). In

addition, it has been shown that dynamic changes in Breg cells

are correlated with the development of autoimmune diseases in

humans (156, 157) (Figure 2).
Breg cell identification and
mechanisms of action

So far, different mechanisms have been described through

which Breg cells exert their impact on the immune response

directly or indirectly. In mice, for example, two subsets of Breg

cells have been identified. The first is a B10 cell subset (IL-10-

producing B cells), characterized as CD19hiCD1dhiCD5+ cells, and

the second is a T2-MZP cell subset (splenic transitional 2-marginal

zone precursor), identified as CD19+CD23+CD21+CD1dhi cells

(158, 159). Both Breg cell subsets secrete IL-10, inhibiting T-cell

proliferation and Th1 cytokine production (IFN-g and TNF-a)
(159, 160). Studies in animalmodels have shown that transferring a
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small number of in vitro expanded Breg cells suffices to protect the

recipient animals against various autoimmune diseases for a long

period of time. This suggests that Breg cells either divide in vivo

and/or can create an efficient immunosuppressive cascade with

other immunosuppressive cells (161). In addition to suppressing

Th1-mediated immune responses, B cells induce the generation of

regulatory Tr1 cells from Teff cells (162, 163). Gray and colleagues

reported that apoptotic cells (ACs) can induce T and B cells to

secrete IL-10 (163). In addition, it has been shown that IL-10

derived from B cells is essential for the induction of IL-10-secreting

T cells. Breg cell function is thus critical to maintaining immune

homeostasis and tolerance (164). However, Breg cells make up only

10% of the circulating B cells in a healthy human (165). Because B

cell-induced suppression is primarily mediated by IL-10

production, IL-10 is the main marker used to identify Breg cells.

Yet, IL-10-producing B cells can be found as part of B cell

populations with distinct surface markers that perform different
Frontiers in Immunology 12
functions (165). These subsets include CD24hiCD27+ B cells, IL-10-

producing CD24hiCD38hi B cells, CD27intCD38hi plasmablasts,

CD19+TIM1+ B cells, and CD38+CD1d+IgM+CD147+GrB+ B

cells. All of these cells suppress pro-inflammatory responses (156,

157, 166). Interestingly, however, only approximately 20% of B cells

in each of these B cell subgroups generate IL-10. For instance, IL-

10-producing B cells were found tomake up 21% of CD24hiCD27+

B cells, as compared to only 1% of non-CD24hiCD27+ B cells (167).

Conversely, IL-10-producing Breg cells often express different levels

of CD24, CD27, and CD1d.

Breg cells inhibit Th1 cell responses and Th17 cell

differentiation. In addition, they convert naïve CD4+ T cells

into Tr1 and Treg cells (156, 168). Though IL-10 is the main

cytokine involved in Breg-mediated suppression, interaction

with CD80 and CD86 on the surface of Breg cells improves

inhibition of Th1 responses (156, 168). According to recent

research, Breg cells are involved in immune responses to
FIGURE 2

Role of Breg cells in preventing autoimmune reactions. In response to autoantigens, autoreactive B cells interact with T helper (Th) cells via
TCR/MHC and CD40L/CD40, driving B cell differentiation into Breg cells. These IL-10-secreting Breg cells quell inflammatory responses by
inhibiting APCs, increasing Treg cell activity, increasing invariant Natural Killer-like T (iNKT) cell numbers, and suppressing Th1 and Th17 cell
activities.
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infections, cancer, and autoimmune diseases. For example,

Breg1 cells, characterized as CD25hiCD71hiCD73lo B cells,

maintain allergen tolerance by producing allergy-specific IgG4

antibodies and by suppressing allergen-specific T cell

proliferation (169).

Importantly, Breg cells, similarly to other immunosuppressive

cells, can arise via differentiation into induced Breg (iBreg) cells in

response to various stimuli. T cells expressing cytotoxic T

lymphocyte–associated protein 4 (CTLA-4) have been shown to

promote the differentiation of a population of iBreg cells that

modulate immune responses by producing TGF-b and

indoleamine 2,3-dioxygenase (IDO), converting naïve T cells

into TGF-b- and IL-10-producing Treg cells (170). Albeit the

exact role of CTLA-4+ T cells in Breg differentiation is unknown,

it is conceivable that this Breg cell expansionmechanism occurs in

vivo to prevent severe inflammation. In addition, CD1d-mediated

lipid antigen presentation by IL-10–producing B cells

(CD24hiCD38hi Breg cells) is critical for preserving the number

and activity of invariant Natural Killer-like T (iNKT) cells, a cell

subset with immunosuppressive properties (171). CD39+CD73+

Breg cells are responsible for the transition from an adenosine

triphosphate (ATP) driven pro-inflammatory environment to an

adenosine-induced anti-inflammatory environment. Exogenous

ATP can be hydrolyzed to adenosine 5′-monophosphate (AMP)

and adenosine by the concerted action of the ectonucleotidases

CD39 and CD73 (172). In vitro, CD39+CD73+ Breg cells limit

CD4+ and CD8+ T cell proliferation by producing 5′-AMP

following activation with CD40L and IL-4 (172). Interestingly,

IL-35 has been demonstrated to be essential to murine Breg cell-

mediated suppression. Mice deficient in IL-35 specifically in B

cells exhibited worse illness and enhanced resistance to

Salmonella infection in EAE (173). In a mouse model of

experimental autoimmune uveitis, IL-35-induced Breg cells

halted disease progression (174). Still, a role for IL-35 in Breg

cells in humans is yet to be uncovered. Altogether, Breg cells are

increasingly thought to have a complex function in

immunological regulation, with a rising number of inhibitory

mechanisms attributed to them.

Breg cells are an IL-10 producing anti-inflammatory B cell

subset. However, there are no definitive cell surface markers or

lineage-defining transcription factors that define Breg cells,

potentially limiting the therapeutic potential of Breg cells.

Although IL-10 expression has been beneficial in identifying

populations of suppressive B cells in mice and humans, many

surface markers used to classify Breg cells are down- or

upnregulated during inflammatory responses, resulting in

inherent problems in the description of different Breg cell

subsets across different experimental settings, which may

account for some of the discrepancies in described Breg cell

subsets. As a consequence of the variety of Breg cell subsets,

identifying a Breg-cell specific transcription factor, analogous to

Foxp3 in Treg cells, has been a major difficulty in Breg cell -

based therapies (175). The discovery of such a chemical would
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assist to resolve the phenotypic of Breg cells and address the

question of whether these cells constitute a different lineage. So

far, two models of Breg cell formation have been proposed. The

first is that, like thymus-derived Treg cells, Breg cells are a

distinct lineage of B cells in which a specific factor regulates the

expression of genes responsible for their suppressive character.

The second is that in response to certain stimuli, B cells adopt a

regulatory phenotype in order to reduce local inflammation.

Despite significant effort, no study using gene arrays on Breg

cells in both mice and humans has clearly discovered a lineage

specific marker analogous to Foxp3 (169, 173). The inability to

find a distinct transcription factor, along with the variety of the

phenotypic of Breg cells, supports the hypothesis that suppressor

B cells are “reactive,” rather than lineage specific. In contrast to

natural Treg cells, any B cell might possibly develop into a “Breg”

cell in response to the correct environmental signals (176).
Breg cells in autoimmune disease

Abundant evidence now indicates that defects in the number

and/or function of Breg cells are associated with various

autoimmune diseases in mice, with severity of autoimmunity

being inversely correlated with the number of Breg cells (156,

168, 171, 177, 178). Regarding autoimmune diseases, two main

hypotheses are proposed for the role of Breg cells. First,

inflammation is exacerbated by the lack of immunological

suppression caused by Breg cells. A second possibility is that

chronic inflammation is the cause of decreased Breg cell

numbers and function. Currently, human studies on Breg cells

are very limited, and evidence for both theories is largely derived

from studies in animal models. When compared to wild-type

(WT) mice, chimeric mice with an IL-10 deficiency specifically

in B cells suffer from worse arthritis and EAE, accompanied by

increased Th1 or Th17 cell responses, respectively (179, 180).

Adoptive transfer of mouse Breg cell subgroups has also been

proven to inhibit autoimmune disorders, such EAE, arthritis,

and lupus (162, 180, 181). Of note, inflammatory cytokines, such

as IL-6, IL-21, IL-1b, IFN-a, IFN-b and B cell-activating factor

(BAFF), induce Breg cell expansion (160, 182–186). Activation

of CD40 or TLR can increase this effect (182, 187, 188).

Notwithstanding, chronic exposure of B cells to high doses of

proinflammatory cytokines causes a decrease in functional Breg

cells (182). Curiously, commensal bacteria are also involved in

Breg cell expansion. In osteoarthritis mice, IL-1b and IL-6,

whose secretion is influenced by the intestinal microbiota,

directly increase Breg cell differentiation and IL-10 production.

In agreement with a role for the microbiota, mice treated with

antibiotics displayed a significant reduction in Breg cells (183).

New therapies, including those directly targeting Breg cells, are

starting to address ambiguities regarding the role of Breg cells in

autoimmune disease in humans. Suppressive B cells were first

reported in MS patients. Helminth-infected MS patients showed
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a higher number of IL-10–producing CD19+CD1dhi cells that were

associated with a better clinical outcome. T cell proliferation and

IFN-g production were inhibited by B cells derived from MS

patients with helminth infections (189). Although it is not easily

possible to determine the exact mechanism of action in human

studies, it was suggested that the disease symptoms in MS patients

were reduced due to the expansion of IL-10-producing B cells –

Breg cells. In addition, there is a significant decrease in IL-10-

producing B cells in patients with relapsing-remitting MS (RRMS)

compared with recovering patients, as well as healthy individuals

(177). It is noteworthy that treatment with IFN-b for RRMS

patients expands CD24hiCD38hi Breg cells in these patients (177,

185). In EAE studies, while WT mice responded to IFN-b
treatment, B cell-deficient mice did not respond to the treatment

regimen, indicating that Breg cells are critical for the efficacy of

IFN-b treatment also in the mouse (185). Other studies have

reported the development of Breg cells in MS patients treated

with alemtuzumab (an anti-CD52 therapy) and fingolimod (a

sph ingo s in e -1 -phospha t e modu l a to r ) ( 190–192 ) .

Immunomodulatory therapies in MS patients may thus operate,

at least in part, by promoting a change in B cells toward an anti-

inflammatory Breg cell phenotype.

Several studies on the role of Breg cells in SLE have revealed that

SLE patients have defects in the number and function of circulating

Breg cells, resulting from a lack of differentiation of immature

CD19+CD24hiCD38hi cells into Breg cells (156, 182, 193, 194).

Immature B cells in SLE patients do not respond properly to

known signals for Breg cell differentiation: while healthy

immature B cells differentiate into Breg cells upon CD40

stimulation, CD24hiCD38hi B cells isolated from SLE patients do

not produce IL-10 following CD40 activation and are unable to

suppress Th1 responses (156, 193). Moreover, SLE patients’

abundant CD19+FSChi polyclonally activated B cells (iBreg cells)

have a considerably decreased capacity to inhibit Th cell responses

when compared to the same B cell subset in healthy people (194). In

addition, TLR9-activated pDCs cause a marked increase in

immunosuppressive IL-10–producing CD24+CD38hi Breg cells in

healthy people, but not in SLE patients (182).

A study by Borja and colleagues demonstrated that the number

of CD24hiCD38hi Breg cells is lower in RA patients than in healthy

individuals, rendering them unable to suppress Th17 cell responses

and convert naïve CD4+ cells into Treg cells. Indeed, the number of

Breg cells in RA patients is negatively correlated with the activity

and severity of the disease. In the same vein, recent studies have

shown that the levels of B10, IL-10+CD5+CD1dhi B cells, and IL-

10+TIM1+ B cells are higher in healthy people than in RA patients

(168). However, in a study by Kim and colleagues (195), the

number of IL-10+ Breg cells in RA patients was higher than in

healthy individuals. The discrepancies across the studies are most

likely related to the stimuli utilized to induce IL-10 production by B

cells in vitro. The research that showed a decrease in IL-10+ Breg

cells employed either TLRorCD40 activation of B cells,whereas the

study that showed an increase used CD40 ligation in conjunction
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with TLR activation. More research is thus needed to consolidate

the role of Breg cells in RA.

CD24hiCD38hi B cells from individuals with pemphigus

produced less IL-10 after long-term stimulation and had a worse

capacity for inhibiting Th1 responses (196, 197). In contrast to

untreated patients or patients who did not react to therapy,

pemphigus patients who responded to treatment with the B cell-

depleting agent rituximab had higher frequencies of CD24hiCD38hi

B cells and IL-10 production (198). It is possible that Breg cells can

help people with rituximab-resistant pemphigus regain tolerance.

IL-10-producing Breg cells are considerably decreased in frequency

in individuals with CD and ulcerative colitis when compared to

healthy controls (199). Lower levels of suppressive IL-10–

producing Breg cells have also been linked to disease

development in individuals with psoriasis (178), systemic

sclerosis (200, 201), and T1D (202). While more research is

needed to fully comprehend the mechanisms of Breg cell-

mediated suppression in these disorders, there is enough evidence

to conclude that Breg cells are numerically deficient in autoimmune

diseases, a factor likely contributing to loss of immunological

tolerance (203). The few clinical studies on the role of Breg cells

in treating autoimmune disorders are summarized in Table 2.
Breg cellular therapy for
autoimmune diseases

Unlike most current drugs for immune-related diseases, which

targeting the symptoms of the disease and often cause widespread

toxicity in the long term, cellular immunotherapy aims to

accurately target and/or modify the immune cells that lead to

disease progression. As this therapeutic strategy has been effective

in treating several types of cancer, scientists are commencing to

utilize it to treat autoimmune diseases (204). As discussed in the

previous section, Breg cells seem to play a role in modulating

immune responses and fostering immune tolerance. Therefore,

strategies to isolate, expand, and infuse Breg cells, or otherwise

expand endogenous Breg cells, can open new windows for

autoimmune disease therapy (205). B cell-depletion drugs such as

rituximab, an anti-CD20 monoclonal antibody, have yielded

promising results in the treatment of autoimmune diseases (206,

207). For instance, the use of rituximab for treatment of

experimental autoimmune vasculitis has demonstrated that it

depletes B cells by inducing B cell apoptosis, enhancing Treg

cells’ immunomodulatory capacity via IL-10 (208). However,

removing all B cells also eliminates Breg cells that suppress

inflammation. Hence, there is interest in targeting specific subsets

of effector B (Beff) cells or Breg cells for depletion. However,

although there are surface markers that can be used alone or in

combination to enrich for IL-10-producing Breg cells, their

specificity is not very reliable. The lack of specific markers for

Breg cells is the main challenge to realize such treatment strategy

(156, 157, 166, 209).
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Regulatory dendritic cells

Dendritic cells (DCs), first described in the 1970s by Ralph

Steinmann (210), are professional APCs (211). Conventional

DCs stimulate naïve T cells and are often more potent APCs

than macrophages or B cells. Yet, some subsets of DCs in central

and peripheral lymphoid organs instead induce tolerance or

antigen-specific unresponsiveness (212). These subsets of DCs

are collectively known as tolerogenic or regulatory DCs (DCreg)

(213). Low surface expression of major histocompatibility

complex (MHC) and co-stimulatory molecules is the main

feature of DCreg cells, which leads to their weak capacity to

induce Teff cells. Indeed, DCreg cells’ roles are to induce

autoreactive T cell anergy and Treg cell differentiation,

contributing to the maintenance of immune tolerance (214).

DCreg cells have been utilized to treat GvHD (215) and

autoimmune diseases (216). Yet, as with Treg cell-based

therapies, the lack of abundant and sustained sources of the

required numbers of DCreg cells is a major obstacle to the

clinical use of these cells. Therefore, recent research has focused

on finding ways to produce more and purer DCreg cells (217).
DCreg cell generation and function

As mentioned above, various DC subtypes play a vital role in

maintaining immune homeostasis. The regulatory potential of

DCreg cells relies on their immature status and is induced by

signals from tissues (including the tumor microenvironment),

a pop to t i c c e l l s , a nd o th e r immune c e l l s ( 2 18 ) .

Immunosuppressive mediators, pathogenic stimuli, and genetic

manipulation can also induce regulatory function in DCs. DCreg

cells, although weakly, maintain the capacity to present antigen to

T cells. In addition, they reduce co-stimulatory molecule

expression (CD40, CD80, and CD86), as well as production of

proinflammatory cytokines, such as IL-12. Simultaneously,

DCreg cells increase their levels of inhibitory molecules (IDO,

PD-L1, and CD95L) and anti-inflammatory cytokines (IL-10,

TGF-b). Furthermore, DCreg cells are resistant to maturation

signals (219). DCreg cells enhance immune tolerance through

various mechanisms. These mechanisms include Treg cell

generation, T cell apoptosis induction, T cell unresponsiveness

induction (anergy), and inhibition of T cell responses (220).

Various strategies have been described to generate tolerogenic

DCreg cells in mice and humans. Murine bone marrow

precursors (221) and human peripheral blood monocytes (222)
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are the most common cell sources for DCreg cell production.

Thus far, different conditions for the production ofDCs have been

described, with the combination of granulocyte macrophage

colony-stimulating factor (GM-CSF) with IL-4 being the most

frequent approach (223). In vitro, DC exposure to anti-

inflammatory agents, either natural or pharmacological, leads to

the acquisition of DCreg cell properties (Figure 3).

DCreg cell differentiation can be induced in vitro by a variety of

biomolecules encountered under tolerogenic circumstances in vivo.

In models of organ allograft rejection, allergies, and GvHD, for

example, incubating DCs with IL-10 bestows them the ability to

induce Treg cell generation (224, 225). Interestingly, DCs remain

immature with IL-10 signaling, even in the presence of maturation

signals, allowingDCs to reduce the neuropathology associated with

EAE (226, 227). Treatment of human DCs with pro-inflammatory

stimulants and the active form of vitamin D (1,25-

dihydroxyvitamin D3) forces them to express a variety of factors

key to immune tolerance induction, including TRAIL (tumor

necrosis factor (TNF) receptor apoptosis-inducing ligand), IDO,

IL-10, inhibitory receptors CYP24A1 and CD300LF, TGF-b, and
CCL2 (228). Numerous other factors, including vasoactive

intestinal peptide (VIP), thymic stromal lymphopoietin (TSLP),

estrogen, GM-CSF, binding immunoglobulin protein (BiP), TNF-

a, and prostaglandin (PG)E2, are involved in inducing the ability of
DCreg cells to produce Treg cells (229).

The use of pharmaceutical agents has also been successful in

polarizing DCs towards a DCreg cell fate both in vitro and in

disease models (230, 231). These include histamine, anti-

inflammatory agents (e.g. acetylsalicylic acid), adenosine

receptor agonists, as well as immunosuppressive drugs, namely

cyclosporine A, rapamycin, corticosteroids, BAY-117085,

mycophenolatemofetil (MMF), deoxyspergualin, and

tacrolimus (FK506) (232). Prednisolone or dexamethasone

treatment induces the development of DCreg cells with the

ability to induce Treg cells by inhibiting the expression of

molecules involved in antigen presentation, inflammatory

cytokines, chemokines, as well as the NF-kB pathway (233).

On the other hand, rapamycin increases DCreg cells which boost

Treg cell expansion in vitro and in vivo by inhibiting the

mechanistic target of rapamycin (mTOR) (233, 234). DCs

treated with BAY-117085, an irreversible NF-kB inhibitor,

induce Treg cells and suppress established experimental

autoimmune arthritis in mice (232).

Another strategy is to genetically manipulate DCs to modulate

their maturity (219), with liposomes and electroporation being the

most effective gene delivery methods in these cells (235). In this
TABLE 2 Effect of Breg cells on autoimmune symptoms.

Autoimmune disease Breg cell types Stage of study Efficiency Refs.

SLE CD24hiCD38hi Breg cells + rituximab Clinical study Improved clinical response (182)

SLE CD19+CD24hiCD38hi Breg cells Clinical study Maintenance of homeostatic levels of iNKT cells. (171)
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method, DCreg cells are produced by ectopically expressing

immunomodulatory genes, including PDL-1, TGF-b, IL-4, and
CTLA-4. Moreover, antisense oligodeoxy-nucleotides and small

interfering RNAs (siRNAs) can be applied to silence target genes in

DCs, such as CD86, IL-12, and CD40 (236, 237). In mice, these

engineered DCreg cells have been demonstrated to cause T cell

hyporesponsiveness, extend allograft survival, stimulate Treg cell

differentiation, and decrease autoimmune diabetes or delayed-type

hypersensitivity (238–240).

While several strategies for generating DCreg cells have

demonstrated promising outcomes in transplantation and

autoimmune disease mouse models, there are notable differences

in efficacy between mice and humans. Therefore, comprehensive

investigations comparing various DCreg cell-generating

methodologies are required. Naranjo-Gómez and colleagues

(241), for example, evaluated various factors and agents to create

human DCreg cells for clinical applications and found substantial
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variations in DCreg cell properties, underscoring the necessity of

proper agent selection. More recently, Boks and colleagues (242)

examined several agents for creating therapeutic grade DCreg cells

and found that IL-10-treated DCs had the highest tolerogenic

potency, holding clinical potential.
DCreg cells in autoimmune disease

As mentioned above, DCs have a dual role in immune

tolerance, having both inhibitory and activating roles in

autoimmune reactions (243). In the mouse, eliminating DCs

leads to widespread autoimmune disease and transferring bone

marrow from DC-deficient mice into WT mice leads to

autoimmunity in the recipient animals, confirming the central

role of DCs in maintaining immune tolerance (244). In the

presence of pro-inflammatory cytokines, DCs stimulate Teff cells
BA

FIGURE 3

DCreg cells in autoimmune reactions and their use in autoimmune disease therapy. (A) Tolerogenic signals, including anti-inflammatory
cytokines and apoptotic cells, lead to the differentiation of immature dendritic cells (DCs) into regulatory DCs (DCreg cells). DCreg cells are
characterized by PD-L1 expression and IL-10 and TGF-b production. These properties allow DCreg cells to block effector T (Teff) cell
proliferation while inducing regulatory T (Treg) cell differentiation, leading to inhibition of autoimmune reactions. (B) DCreg cells can be
generated for therapy by isolating human peripheral blood monocytes and culturing them with IL-4, GM-CSF, vitamin D3 (vit D3), and IL-10.
The resulting DCreg cells are then expanded in vitro and infused into patients.
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and prevent the production of Treg cell production. In contrast,

in the presence of anti-inflammatory cytokines, DCs induce T

cell anergy and induce of Treg cell generation (245). Adjusting

the production of autoantibodies indirectly through cross-talk

between B cells and Th cells is yet another role of DCs so that

any disturbance in PRR (pattern recognition receptor) signaling

or abnormal cytokine or chemokine production in DCs can shift

the balance between prevention and promotion of autoimmune

disease (246). Furthermore, apoptotic cells that accumulate

owing to DCs’ inability to completely absorb and remove

apoptotic cells might emit danger signals, such as HMGB1

(High mobility group box protein 1) and accessible

autoantigens, causing inflammatory reactions in DCs and

driving autoimmunity (247). Of note, defects in DC apoptosis

may also lead to an increase in DC numbers and autoimmunity.

Indeed, a number of molecules involved in various stages of DC

maturation, activation, differentiation, and migration have

emerged as prospective anti-autoimmune targets (247, 248).

Recent work has demonstrated that dysregulation of DC

function can lead to the disruption of intestinal immune

homeostasis and concomitantly IBD. When PRRs activate

intestinal DCs in response to infectious pathogens, they activate

NF-kB signaling, which results in the production of TNF-a, IL-6,
-12, and -23, as well as inflammasome signaling, which results in the

secretion of IL-18 and IL-1b (249). Effector cytokines activate both

innate immune (NK cells, macrophages, and gd T cells) and

adaptive immune cells (Th1, Th2, and Th17) involved in

intestinal inflammation and IBD pathology (250, 251). Due to

complex roles of intestinal DCs in both mediating intestinal

immune homeostasis and promoting the development of IBD,

much effort has gone into identifying conditioning factors that

drive tolerization of intestinal DCs to prevent, alleviate, or even

reverse colitis. Strikingly, DCreg cells derived using vasoactive

intestinal peptide (DC-VIP) dramatically reduced the severity of

TNBS-induced colitis in mice on both a clinical and

histopathological level. Downregulation of Th1 cell inflammatory

responses and generation of IL-10-producing Treg cells were linked

to the therapeutic impact of DC VIP-DCreg cell injection. In

addition, DCreg cells treated with dexamethasone and vitamin

D3 or pulsed with enterobacterial extract have shown therapeutic

effects in preventing colitis in several animal models (252, 253).
Human DCreg cells and their
therapeutic application in
autoimmune disease

Recent animal studies have enhanced our understanding of

the plasticity of DCs and DCreg cells in regulating inflammation,

maintaining immune homeostasis, especially in autoimmune

disease. The main challenge now is to translate our knowledge

of DCs in mouse models to humans so that the therapeutic
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potential of DCs in autoimmune diseases can be assessed. The

phenotypic differences between human and mouse DC subsets,

as well as limited access to human samples, makes identifying

functional parallels between mouse and human DC subsets

exceedingly challenging. Various subsets of DCreg cells have

been identified in humans that function as immune regulators,

including CD1c+ cDCs in the blood and liver and

CD141+CD14+ DCs in human skin (254, 255). Liver CDs

(CD1c+) show high production of IL-10 upon LPS induction

and induce IL-10-producing Treg cells and IL-4-producing Th2

cells (256). Recent studies have highlighted the specificity of

DCreg cells in patients with autoimmune diseases and their

potential for the treatment of these diseases. DCreg cells from

RRMS patients conditioned with vitamin D3 exhibited a stable

semi-mature phenotype and caused stable antigen-specific T cell

hyporesponsiveness (256). In a study by Harry colleagues, DCs

from RA patients were conditioned with clinical-grade

dexamethasone and vitamin D3, which reduced stimulation of

autologous antigen-specific T cells, inhibited mature DC-

induced T cell activation, and made T cells hyporesponsive to

subsequent stimulation (257). In a phase 1 clinical trial in

patients with T1D, autologous DC therapy was performed.

These DCs were generated ex vivo with antisense

oligonucleotides targeting CD40, CD80, and CD86. Treatment

with these modified DCs increased the frequency of

B220+CD11c- B cell populations without any discernible side

effects in diabetic patients (258). In another phase I trial, DCreg

cells generated with NF-kB signaling inhibitors were produced

in RA patients, and tolerance in these patients was increased

with no serious side effects (259). These encouraging results

provide prospective therapeutic methods for treating

autoimmune disorders via inject ion of autologous

tolerogenic DCs.

In recent years, several Phase I or I/II DCreg cell clinical

trials have been concluded, with further trials currently

recruiting participants or have not yet published their findings,

including long-term trials in organ transplant patients (260).

Because these were Phase I or I/II trials, they were designed to

determine whether DCreg cell-based immunotherapy is safe and

well-tolerated, rather than to test whether it is effective; the

results showed that the vast great majority of patients did not

experience serious side effects (258, 261–264). However, no

significant illness improvement was observed in any of these

protocols, even though a small subgroup of treatment group

individuals in the RA (261, 265) and Crohn’s disease (262)

studies reported reduced symptoms.

Despite the challenges in translating DCreg cell therapy from

model animals to humans, technological innovations such as

closed cell culture systems have helped to bring the use of DCreg

cells into the clinic for the treatment of T1D and RA. The first

clinical trial of DCreg cells was conducted in T1D patients.

Autologous DCs were treated ex vivo with antisense

oligonucleotides to reduce CD80, CD86, and CD40 expression.
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In this clinical trial, autologous DCreg cells were safe and did not

cause side effects in T1D patients (258). In the clinical trial for

RA, DCreg cells were developed by treatment with BAY11-7082

and, unlike in the T1D trial, also loaded with antigens.

Improvement of clinical symptoms was observed in patients

with severe RA. However, none of the participants presented

serious side effects, a momentous step in the development of

DCreg cell-based therapies (266, 267).

In another clinical trial (NCT01352858) for RA, monocyte-

derived DCreg cells, were modified with vitamin D3 and

dexamethasone and treated with TLR4 agonist and clinical-

grade MPLA (Monophosphoryl lipid A) (268). The TLR4

ligand is essential for DCs to successfully process and display

antigen on MHC class II molecules, and it may also give DCs the

capacity to move to lymph nodes in a CCR7-dependent manner,

where they can engage with T cells and induce autoantigen-

specific Treg. Produced DCregs by this method show a high

expression level of the MHC-II, while CD80 and 86 expression is

intermediate, and the expression of CD40 is very low (268).

Thus, despite the ability to present antigen, their capacity to

stimulate T cells is lower than that of adult DCs. Furthermore,

these DCreg cells had high TGF-b and IL-10 levels while having

low IL-12, IL-23, and TNF-a levels. In a CIA mouse model,

DCreg cells produced with LPS, vitamin D3, and dexamethasone

greatly reduced the severity and development of arthritis (269).

Human DCreg cells with the potential to suppress autoreactive T

cells in the rheumatoid joint might be generated using a similar

approach. DCreg cells present antigen in conjunction with low

co-stimulatory molecule expression, causing memory T cells to

become hyporesponsive while polarizing naïve T cells to produce

anti-inflammatory cytokines (259). Table 3 summarizes clinical

r e s e a r ch on the u s e o f DCs in th e th e r apy o f

autoimmune disorders.
Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) were first

described 30 years ago as myeloid cells with potent

immunoregulatory capacity (271). Further studies have since

clarified the physiological and pathological roles of MDSCs as

universal immune regulators. There are two major groups of

MDSCs: polymorphonuclear or granulocytic MDSCs (PMN-

MDSCs), morphologically and phenotypically similar to

neutrophils, and monocyte-like MDSCs, which resemble

monocytes (M-MDSCs) (272). Immune suppression is one of

the critical features of MDSCs, allowing these cells to be

distinguishable from neutrophils and monocytes in blood

(273). It has become clear that MDSCs are involved in a wide

range of inflammatory disorders, including autoimmune diseases

(274–276). MDSCs inhibit T cell responses, and induce Treg

cells, thus playing a protective role in autoimmune diseases (277).

Recently, many studies have focused on the role of MDSCs in
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autoimmunity. However, most of these studies were carried out

using animal models and extensive investigations to explain the

exact characteristics of MDSCs in autoimmune diseases in

humans will need to be conducted. The role of MDSCs in

suppressing the immune system shows how these cells can

modulate the immune response and cause cancer cells to

escape from the immune system (277). Unlike information

about the role of MDSCs in tumor progression, our knowledge

of their function and role in autoimmune diseases is controversial

and limited. Recently, however, researchers have drawn attention

to MDSCs’ role and their therapeutic potential in autoimmune

diseases, such as T1D (278), SLE (275, 279), MS (280–282), RA

(283) and IBD (284, 285)
Mechanisms of action of MDSCs
in autoimmunity

Hematopoietic stem cells (HSCs) in bone marrow are the

source of common myeloid progenitor cells, which eventually

produce immature myeloid cells (IMCs). IMCs have no

suppressive activity and are immunologically inactive (286).

Under normal conditions in healthy individuals, IMCs

differentiate into mature and functional macrophages, DCs,

and granulocytes (287). In contrast, in pathological conditions,

especially in the presence of inflammation, infection,

autoimmune disease, cancer or trauma, IMC differentiation

into immune cells is impaired. In these circumstances, IMCs

become activated, proliferate in response to external and internal

factors, and differentiate into MDSCs (288). IMC expansion

leads to the production of MDSCs in peripheral tissues, which

inhibit immune responses by producing suppressive signals

(286). Several factors, including PGE2, macrophage colony-

stimulating factor (M-CSF), IL-3, cyclooxygenase-2 (COX-2),

vascular endothelial growth factor (VEGF), IL-6, stem cell factor

(SCF)-1, and granulocyte/macrophage colony-stimulating factor

(GM-CSF) play essential roles in MDSC growth (286, 289, 290),

while IFN-g, TGF-b, IL-13, and IL-4 are linked to MDSC

activation (286, 291, 292).

MDSCs use various mechanisms to suppress the immune

response, based on either cell-cell contact or soluble

intermediates. Induced nitric oxide synthase (iNOS) and

arginase-1 (Arg-1) are enzymes whose levels are increased in

MDSCs (293). L-Arginine is the common substrate of iNOS and

Arg-1; iNOS catalyzes the production of nitric oxide (NO), a

type of ROS, from arginine, whereas Arg-1 catalyzes the

hydrolysis of L-arginine into urea and ornithine. By limiting

the amounts of L-arginine, a non-essential amino acid, in the

microenvironment, these enzymes restrict T cell activation and

proliferation (286, 294, 295). For example, CD11b+Gr-1+ MDSC

accumulation was observed in the liver of an autoimmune

hepatitis (AIH) mouse model, as well as in secondary

lymphatic tissues and the spleen of IBD and EAE mice (296).
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Notably, in all studies, CD11b+Gr-1+ MDSCs inhibited T

cell proliferation through either NO or cell-cell contact.

Moreover, CD11b+Gr-1low MDSCs were seen in lupus-prone

MRL Faslpr mice that developed autoimmune organ damage. Ex

vivo, these cells suppressed CD4+ T cell proliferation that could

be blocked by an Arg-1 inhibitor, demonstrating that Arg-1 was

the primary suppressive strategy used by MDSCs in this

autoimmune condition (275). Ma and colleagues recently

reported that CD11b+Ly6Chi monocytes sorted from

peritoneal cells dramatically suppressed T cell proliferation ex

vivo that was cell contact-dependent and involved NO and

PGE2. Furthermore, these cells also limited Th1 cell

differentiation while enhancing Treg cell formation in a

pristane-induced lupus mouse model, indicating that these

were monocytic MDSCs (276). Moreover, additional critical

factors utilized by MDSCs to limit T cell proliferation and

cytotoxicity include IL-10, TGF-b, COX-2, IDO, PD-L1, and
PGE2 (297, 298). Of note, Treg cell-mediated suppression is also

aided by MDSCs: Gr-1+CD115+ MDSCs promote Foxp3+ Treg

cell expansion in murine tumor models (299). In addition,

Ly6G+ phagocytic MDSCs can control cytokine secretion by B

cells in the CNS, potentially playing a role in recovery rates in

EAE (300). Nonetheless, further studies are required to elucidate

the involvement of MDSCs in the regulation of Treg and B cells.
Frontiers in Immunology 19
Preclinical studies on MDSCs and their association with

autoimmune disease models are summarized in Table 4.

Generally, studying the role and function of MDSCs in

mouse autoimmunity models and in vitro has yielded

conflicting results. While MDSCs extracted from autoimmune

inflammatory sites inhibit T cell responses in vitro, in vivo

endogenous MDSCs fail to reduce the severity of autoimmune

diseases, such as EAE (282, 308). Interestingly, however,

adoptive transfer of MDSCs induces immune tolerance to self-

antigens and can reduce the severity of some autoimmune

diseases in mice, such as T1D (278), IBD (285), and

inflammatory eye disease (309). Moreover, adoptively

transferred MDSCs generated ex vivo inhibit GvHD and

prevent graft rejection in mice (310–312). For instance, these

early successes in using exogenous MDSCs to suppress

autoimmunity in animal models make them a promising cell-

based immunotherapy target. Sources and processes for

generating exogenous MDSCs are various, with growth factors

and cytokines to expand exogenous MDSCs isolated from bone

marrow or peripheral blood being one such process (310, 313,

314). HSCs and even embryonic stem cells have also been used

as sources of exogenous MDSCs (311).

In humans, peripheral blood-derived monocytes can be

differentiated and expanded in vitro in the presence of PGE2
TABLE 3 Clinical trials using DCs in autoimmune disease therapy.

Autoimmune
disease

DCreg cell therapy Stage of
study

Patient
No.

Status Refs./
Study ID

T1D tolDCs targeting CD80, CD86, CD40 Phase I 10
participants

Completed NCT00445913

T1D tolDCs targeting CD80, CD86, CD40 Phase II 24
participants

Not yet recruiting NCT02354911

T1D tolDCs and Proinsuline-loaded VitD3-tolDCs Phase I 10
participants

Safe and well tolerated and upregulation of B220+
CD11c− B-cell population

NTR5542

T1D Autologous DCs (AVT001) Phase I and
II

24
participants

Active, not recruiting NCT03895996

RA tolDC-Dex-VitD3 loaded with autologous synovial
fluid

Phase I 15
participants

Unknown NCT01352858

RA Dex-tolDCs Phase I 10
participants

Completed NCT03337165

RA Generated DCreg cells by treating with BAY 11-
7082 (Rheumavax)

Phase I 18 patients Well tolerated, decreased in Teff cells and
upregulation of Treg cells

(270)

MS Generated Dex-tolDCs loaded with aquaporine-4-
or myelin-derived peptides

Phase I 20
participants

Completed, NCT02283671

MS VitD3-tolDCs loaded with a pool of myelin
peptides

Phase I and
II

9
participants

Active, not recruiting NCT02618902

MS VitD3-tolDCs loaded with a pool of myelin
peptides

Phase I and
II

16
participants

Recruiting NCT02903537

CD Dex/VitA tolDCs Phase I – – 2007-003469-
42

CD Dex-tolDCs Phase I 3
participants

Terminated (low recruitment) NCT02622763
f

tolDC, tolerogenic dendritic cell; Vit D3, vitamin D3; DCreg cell, regulatory dendritic cell; Dex, dexamethasone.
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to produce large amount of functional and stable MDSCs (315).

Importantly, human MDSCs generated ex vivo suppress CD4+

and CD8+ T cell division via iNOS and Arg-1 (314). These

methods have the potential to be used for cell-based

immunotherapy of autoimmune diseases. However, there are

certain dangers connected with using MDSCs in this context. On

one hand, MDSCs would not be selective for antigen-specific T

cells, potentially blocking both damaging T cell responses to self-

antigens and beneficial immunological responses to pathogens

or malignancies. On the other hand, controlling the migration

and accumulation of the injected MDSCs would also be

problematic and the injection of MDSCs may result in the

release of inflammatory factors. As a result, more thorough

studies in animal models are required before MDSC treatment

can be safely tested in humans.
Innate lymphoid cells

Innate lymphoid cells (ILCs) are a recently unveiled group of

lymphocytes which, despite their lack of TCR expression, have

many parallels with CD4+ T helper cells. ILCs are located at

barrier surfaces and respond rapidly to environmental changes

by local multiplication. As with other innate immune cells, ILCs

are activated before adaptive immunity develops (316). Some

studies report the association and interaction of ILCs with T cells

in allergy and IBD patients. Indeed, ILCs can be harmful when

dysregulated, contributing to chronic inflammation and

autoimmune disorders such as asthma, IBD, GvHD, psoriasis,

RA, and atopic dermatitis (317).
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ILCs are mainly divided into 3 subgroups according to their

function, the cytokines they produce, and their dependence on

different transcription factors. Group 1 ILCs, which include

ILC1s and NK cells; group 2 ILCs or ILC2s, and group 3 ILCs,

encompassing lymphoid tissue inducer (LTi) cells and two

subsets of ILC3s, categorized as natural cytotoxicity receptor

(NCR)-positive and NCR-negative ILC3s. The absence of

specific markers of B, T, and other hematopoietic cell lineages

is usually used to identify ILCs, in addition to differential

expression of markers. For instance, CD127 is expressed on

most ILC1s, but not on mature NK cells. In the same vein, ILC2s

express the prostaglandin D2 receptor CRTH2 and ILC3s

express the natural cytotoxicity receptor NKp44 in humans. In

mice, ILC2s express the IL-33 receptor ST2, whereas ILC3s

express NKp46, allowing for the distinction of these two ILC

subsets (318–320).
The role of ILCs in the pathology of
autoimmune disease

To date, very few studies have implicated ILCs and their

cytokines in RA (321). All three groups of ILCs have been

detected in the peripheral blood of healthy individuals (322). A

study by Ren and colleagues indicated that the numbers of

CD3−CD56+NKp44+CCR6+ cells in peripheral blood, as well as

in synovial fluid, in RA patients were increased compared to

healthy people of the same age (323). In this study, it was found

that CD3−CD56+NKp44+CCR6+ cells were ILC3s, and their

increase is positively associated with the patients’ 28-joint
TABLE 4 Preclinical studies on MDSCs in autoimmune disease.

Autoimmune
disease

Mechanism of study Animal model Effects Refs.

T1D Generation of MDSCs in vitro and transplantation
into diabetic mice

Allogeneic islet transplant into
diabetic C57BL/6 mice

Treg cell proliferation induction at the allograft
site and inhibition of CD8+ T cell responses

(301)

Proteoglycan-induced
arthritis (PGIA)

Cultured MDSC-like cells in combination with
GM-CSF and IL-6

PGIA in BALB/c mice Improvement of disease symptoms after
injection

(302)

IBD CD11b+Gr-1+ MDSC therapy VILLIN-hemagglutinin (HA)
transgenic mice

Reduced T cell proliferation and increased T cell
apoptosis

(285)

RA CD11b+Gr-1+ MDSCs therapy CIA mouse Suppression of Th17 cell expansion and RA
symptom improvement

(283)

RA CD11b+Gr-1+ therapy (both MO-MDSCs and
PMN-MDSCs)

CIA mouse Suppression of inflammatory cytokine
production and RA symptom improvement

(303)

RA PMN-MDSCstherapy CIA mouse RA symptom improvement (304)

Autoimmune
hepatitis

CD11b+Gr1+ MDSC therapy Polymicrobial sepsis in gp130
mice

Potent host-protective anti-inflammatory
functions

(305)

SLE PMN-MDSCs and M-MDSCs expanded in the
spleen and kidney

(NZB x NZW)F1 mice Improved disease symptoms (306)

SLE Gr-1highCD11b+ MDSC therapy (NZB x NZW)F1 mice Inhibition of naïve B cell differentiation (307)

SLE Intravenous injection of BM-derived MDSCs
(CD11c-CD11b+ and Gr-1+ MDSC subsets)

roquinsan/san mice treated with
C57BL/6 murine MDSCs

Induction of Breg cell proliferation by iNOS (279)
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disease activity score (DAS28) (323). A study by a different

group confirmed an increase in ILC3 cell numbers in the

synovial fluid of RA patients (324). Patients with inflammatory

arthritis have also been found to have ILC1-like cells in their

synovial fluid and synovial tissue; this cohort of patients

included mostly RA individuals, but also patients with juvenile

idiopathic arthritis and psoriatic arthritis (PsA) (325). These

cells produced IFN-g in response to a combination of IL-2, -12,

and -15 stimulation (325). Interestingly, ILC1-like cells are more

sensitive to IL-12 and IL-18 activation and generate more IFN

than their peripheral blood counterparts (326). It is thought that

these CD3-CD16-CD56bright cells are either NK cells or non-

cytotoxic ILC1s (327). In fact, recent research found that ILC1s

predominate in the synovial fluid of RA patients (328).
Therapeutic potential of ILCs for
autoimmune disease

The discovery of cytokine pathways implicated in

autoimmune disorders, as well as the identification of ILCs as

prolific makers of these cytokines, suggests that these cellular

actors may play a role in the pathogenesis of these diseases. The

IL−23–IL−17 cytokine axis is involved in the pathogenesis of

various autoimmune diseases (329). For example, the anti−IL

−17 monoclonal antibody secukinumab has been used as an IL-

17 inhibitor in the treatment of AS and PsA (330). Initially, anti

−IL−17 monoclonal antibodies were used to target Th17 cells.

However, it is now known that ILC3s are also an important

source of IL-17. Therefore, ILC3s are increasingly considered as

additional cellular targets for therapeutic interventions in

autoimmune diseases. In addition to producing IL-17, these

cells also produce other disease-promoting cytokines, including

lymphotoxin, GM-CSF, IL-22, and TNF-a. Utilizing selective

inhibitors of ILC3s and LTi cells in autoimmune diseases may be

a useful strategy (331, 332). Tertiary lymphoid organs (TLOs),

also defined as ectopic lymphoid-like structures, are temporary

lymphoid cell aggregates with structural features comparable to

secondary lymphoid organs. Persistent immunological

activation, which can be caused by microbial infection, chronic

allograft rejection, or autoimmune illness, leads to the formation

of such structures (333). This strategy has been effective in

animal models of T1D and arthritis (332, 334). Specific

treatments based on ILCs have not yet been introduced. Anti-

IL-17, anti-IL-23 or anti-LTi cells target a wide range of cells.

Clarifying characteristic pathways for ILCs and research into

gene expression profiles could provide researchers with more

specific targets. It has been shown that CD25-specific

monoclonal antibody therapy preferentially depletes ILC3s in

patients with MS (335). The plasticity of ILCs (336) opens up

another avenue for developing specialized treatment options to

take advantage of this group of immune cells and

transdifferentiate IL17-producing ILC3s into non-harmful cells.
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Conclusion

Success in treating autoimmune diseases with immune cell

therapy will depend on developing treatment approaches with

significant potency and effectiveness. These treatments should also

have lasting effects without side effects. According to a paradigm

put forward by Mous and colleagues, three aspects ought to be

considered for immunotherapies to reach clinical efficacy: host

immune system as the field of effect, growth factors as therapeutic

enhancers, and immune cells as the effective factors. Potentially

confounding biological factors, such as sex, comorbidities, age,

and gut microbiota, must also be carefully evaluated given the

significant variability among the human population. To modify

and alter the treatment based on each patient’s unique and

dynamic immunological state, frequent monitoring of

effectiveness, safety, and validated biomarkers will be required.

It appears that immune cell-based therapies for autoimmune

diseases should be personalized according to the individual’s

immune conditions and re-adjusted as the disease progresses or

improves. Various types of immune regulatory cells, such as Treg

cells, Breg cells, DCreg cells, MDSCs, and ILC subsets, have

increasingly been the subject of extensive studies. Some of these

cells, such as Treg and DCreg cells, have entered the clinical realm,

while others, such as Breg cells, are in the preclinical stage and no

clinical studies have yet been reported. MDSCs and ILC subsets,

on the other hand, are still at the drawing board stage. However,

the results obtained from applying these cell types towards

autoimmune disease therapy have been promising. Continued

comprehensive investigations on overcoming the challenges in

using each one of these immune regulatory cell types are getting us

closer to definitive treatments to several autoimmune diseases and

will eliminate the suffering caused by them.
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207. Aguiar R, Araújo C, Martins-Coelho G, Isenberg D. Use of rituximab in
systemic lupus erythematosus: a single center experience over 14 years. Arthritis
Care Res (2017) 69(2):257–62. doi: 10.1002/acr.22921

208. Gan PY, Dick J, O’Sullivan KM, Oudin V, Cao Le A, Koo Yuk Cheong D,
et al. Anti-CD20 mAb-induced b cell apoptosis generates T cell regulation of
experimental myeloperoxidase ANCA-associated vasculitis. J Am Soc Nephrol
(2021) 32(5):1071–83. doi: 10.1681/ASN.2020060834

209. Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. Chronic
intestinal inflammatory condition generates IL-10-producing regulatory b cell
subset characterized by CD1d upregulation. Immunity (2002) 16(2):219–30. doi:
10.1016/S1074-7613(02)00274-1

210. Steinman RM, Witmer MD. Lymphoid dendritic cells are potent
stimulators of the primary mixed leukocyte reaction in mice. Proc Natl Acad Sci
(1978) 75(10):5132–6. doi: 10.1073/pnas.75.10.5132

211. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu Y-J, et al.
Immunobiology of dendritic cells. Annu Rev Immunol (2000) 18(1):767–811. doi:
10.1146/annurev.immunol.18.1.767

212. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells.
A n n u R e v I mmu n o l ( 2 0 0 3 ) 2 1 ( 1 ) : 6 8 5 – 7 1 1 . d o i : 1 0 . 1 1 4 6 /
annurev.immunol.21.120601.141040

213. Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there
is more than just immune activation. Front Immunol (2012) 3:274. doi: 10.3389/
fimmu.2012.00274

214. Wu J, Horuzsko A. Expression and function of immunoglobulin-like
transcripts on tolerogenic dendritic cells. Hum Immunol (2009) 70(5):353–6. doi:
10.1016/j.humimm.2009.01.024

215. Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in
transplantation. Semin Immunol . (2011) 23(4):252–63. doi: 10.1016/
j.smim.2011.06.007

216. Lo J, Clare-Salzler MJ. Dendritic cell subsets and type I diabetes: focus
upon DC-based therapy. Autoimmun Rev (2006) 5(6):419–23. doi: 10.1016/
j.autrev.2005.12.001

217. Kalantari T, Kamali-Sarvestani E, Zhang G-X, Safavi F, Lauretti E,
Khedmati M-E, et al. Generation of large numbers of highly purified dendritic
cells from bone marrow progenitor cells after co-culture with syngeneic murine
splenocytes . Exp Mol Pathol (2013) 94(2) :336–42. doi : 10.1016/
j.yexmp.2012.12.001

218. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature
(2007) 449(7161):419–26. doi: 10.1038/nature06175

219. Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for
transplant tolerance. Nat Rev Immunol (2007) 7(8):610–21. doi: 10.1038/nri2132

220. Manicassamy S, Pulendran B. Dendritic cell control of tolerogenic
responses. Immunol Rev (2011) 241(1):206–27. doi: 10.1111/j.1600-
065X.2011.01015.x

221. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al.
Generation of large numbers of dendritic cells from mouse bone marrow
cultures supplemented with granulocyte/macrophage colony-stimulating factor. J
Exp Med (1992) 176(6):1693–702. doi: 10.1084/jem.176.6.1693

222. Goxe B, Latour N, Chokri M, Abastado J, Salcedo M. Simplified method to
generate large quantities of dendritic cells suitable for clinical applications.
Immunol Investigations (2000) 29(3):319–36. doi: 10.3109/08820130009060870
Frontiers in Immunology 27
223. Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, et al.
Proliferating dendritic cell progenitors in human blood. J Exp Med (1994) 180
(1):83–93. doi: 10.1084/jem.180.1.83

224. Maldonado RA, von Andrian UH. How tolerogenic dendritic cells induce
regulatory T cells. Adv Immunol (2010) 108:111–65. doi: 10.1016/B978-0-12-
380995-7.00004-5

225. Jonuleit H, Schmitt E, Steinbrink K, Enk AH. Dendritic cells as a tool to
induce anergic and regulatory T cells. Trends Immunol (2001) 22(7):394–400. doi:
10.1016/S1471-4906(01)01952-4

226. Corinti S, Albanesi C, la Sala A, Pastore S, Girolomoni G. Regulatory
activity of autocrine IL-10 on dendritic cell functions. J Immunol (2001) 166
(7):4312–8. doi: 10.4049/jimmunol.166.7.4312

227. Laouar Y, Town T, Jeng D, Tran E, Wan Y, Kuchroo VK, et al. TGF-b
signaling in dendritic cells is a prerequisite for the control of autoimmune
encephalomyelitis. Proc Natl Acad Sci (2008) 105(31):10865–70. doi: 10.1073/
pnas.0805058105
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Bru C, et al. Intraperitoneal administration of autologous tolerogenic dendritic cells
for refractory crohn’s disease: a phase I study. J Crohn’s Colitis (2015) 9(12):1071–8.
doi: 10.1093/ecco-jcc/jjv144
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