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Background: Coronavirus disease (COVID-19) infection is known for its severe

clinical pathogenesis among individuals with pre-existing comorbidities.

However, the molecular basis of this observation remains elusive. Thus, this

study aimed to map key genes and pathway alterations in patients with COVID-

19 and comorbidities using robust systems biology approaches.

Methods: The publicly available genome-wide transcriptomic datasets from

120 COVID-19 patients, 281 patients suffering from different comorbidities (like

cardiovascular diseases, atherosclerosis, diabetes, and obesity), and

252 patients with different infectious diseases of the lung (respiratory

syncytial virus, influenza, and MERS) were studied using a range of systems

biology approaches like differential gene expression, gene ontology (GO),

pathway enrichment, functional similarity, mouse phenotypic analysis and

drug target identification.

Results: By cross-mapping the differentially expressed genes (DEGs) across

different datasets, we mapped 274 shared genes to severe symptoms of

COVID-19 patients or with comorbidities alone. GO terms and functional

pathway analysis highlighted genes in dysregulated pathways of immune

response, interleukin signaling, FCGR activation, regulation of cytokines,

chemokines secretion, and leukocyte migration. Using network topology

parameters, phenotype associations, and functional similarity analysis with

ACE2 and TMPRSS2—two key receptors for this virus-we identified 17 genes

with high connectivity (CXCL10, IDO1, LEPR, MME, PTAFR, PTGS2, MAOB,

PDE4B, PLA2G2A, COL5A1, ICAM1, SERPINE1, ABCB1, IL1R1, ITGAL,

NCAM1 and PRKD1) potentially contributing to the clinical severity of

COVID-19 infection in patients with comorbidities. These genes are

predicted to be tractable and/or with many existing approved inhibitors,

modulators, and enzymes as drugs.
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Conclusion: By systemic implementation of computational methods, this study

identified potential candidate genes and pathways likely to confer disease

severity in COVID-19 patients with pre-existing comorbidities. Our findings

pave the way to develop targeted repurposed therapies in COVID-19 patients.

KEYWORDS

COVID-19, SARS-CoV-2, viral infections, comorbidities, cardiovascular diseases,
diabetes, obesity, MERS

Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), commonly known as coronavirus disease (COVID-19)

imposed an unprecedented challenge to the global economy,

lifestyle and public healthcare. COVID-19 patients, in general,

show a variable spectrum of clinical phenotypes, ranging from

asymptomatic to symptomatic with mild to severe acute

respiratory distress syndrome (ARDS). SARS-CoV-2 virus

infects all age groups, but those over 60 years of age, especially

those with a history of cardiovascular disease (CVD), obesity,

diabetes, or respiratory diseases, are at an increased risk of

developing severe clinical complications (Goyal et al., 2020;

Grasselli et al., 2020; Holman et al., 2020; Zhou et al., 2020).

CVD is strongly linked to higher SARS-CoV-1, SARS-CoV-

2, and MERS infection mortality rates across many countries

(Madjid et al., 2020; Zhou et al., 2020). Several studies have found

that COVID-19 patients with CVD have not only severe

infection-related symptoms but also myocardial damage and

arrhythmia (Madjid et al., 2020; Shi et al., 2020). Interestingly,

some reports also suggest the association of cardiovascular

complications like thromboembolic events, myocarditis, acute

coronary syndrome, and heart failure in COVID-19 patients with

no prior CVD (Wu and McGoogan, 2020).

Diabetes is another comorbidity strongly associated with the

severity of COVID-19 infection. It is known that people with

diabetes are inclined to contract viral infections due to impaired

immune responses. Further, impaired T cell function, increased

release of inflammatory mediators, especially TNFα and IL-1β,
and elevated levels of ACE2 also played a crucial role in

developing severe COVID-19 symptoms and predisposed to

higher mortality risk (Fang et al., 2020; Fox et al., 2021). Both

CVD and diabetes are strongly linked to obesity, a risk factor that

determines the clinical complications in COVID-19 patients

(Malik et al., 2021). Thus, all these risk factors modulate the

severity of COVID-19 and drastically reduce the patient survival

rate (Hernandez-Garduno, 2020).

The pro-inflammatory cytokine status compromises innate

immune response, and increased expression of the ACE2

receptor is the key molecular feature of COVID-19 and other

chronic morbidity outcomes. Other molecular factors that

determine the risk and severity of COVID-19 infection are

frequently mentioned (Dolan et al., 2020; Facchiano et al.,

2020; Singh et al., 2021). However, biological mechanisms and

specific biomarkers underlying COVID-19 with associated

comorbidities are poorly understood and are still being

investigated. Understanding these biological mechanisms may

help in developing preventive and therapeutic strategies against

COVID-19 infection in patients with such comorbidities.

The unrestricted access to genome-wide transcriptome and

viral genome data has accelerated the novel scientific discoveries

related to COVID-19 infection and treatments. However, this

exponential growth of gene expression datasets, which largely

varies in experimental designs, sample sizes, array platforms,

statistical methods, and analytic findings, presents both

opportunities as well as challenges to biologists in identifying

novel molecular drug targets. In recent years, multidimensional

computational approaches have proven their robustness,

efficiency, and applicability in exploring diverse large-scale

biological datasets (Banaganapalli et al., 2020; Mujalli et al.,

2020). These computational methods were developed using

machine learning techniques and were trained on massive

amounts of multi-omic (genomics, transcriptomics,

proteomics, and metabolomics) datasets. Using comprehensive

computational methods, our gene expression meta-analysis aims

to map the unique and shared genes and pathways from

transcriptomic datasets of COVID-19 patients (with severe or

fatal phenotype) suffering from chronic diseases (CVD, diabetes,

obesity, and lung diseases). This study may provide a novel

insight into a better understanding of why COVID-19 patients

with pre-existing comorbidities are more likely to develop severe

clinical complications as well.

Methods

Datasets selection

Microarray transcriptome data from 120 COVID-19 (critical,

severe, and deceased status) and from 281 patients with chronic

morbidities (153 CVD, 64 atherosclerosis, 33 diabetes, and

31 obesity) were extracted from the Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and China National

GeneBank databases (https://db.cngb.org/). Datasets from other

lung viral infections such as respiratory syncytial virus (RSV, 145),

influenza (95), and MERS (12) were also compared with COVID-

19 in order to reduce the background noise signals by excluding

common viral infection biomarkers. The full details of biological
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specimens, RNA isolations, hybridizations, and data analysis

methods are mentioned in their corresponding publications.

The full details of the gene expression datasets used in this

study are shown in Supplementary Table S1.

Raw CEL files processing, normalization,
filtration and differentially expressed
genes identification

Each gene expression dataset initially underwent preprocessing,

normalization, and filtration separately using the robust multiarray

average algorithm in R package software version 4; (http://www.R-

project.org/). The robust multiarray average (RMA) in R-affy and

Lumi packages, exclusively built for the Illumina microarray

platform, were used to perform background data correction and

normalization. The RMA technique was chosen over other packages

due to its power to detect little differential change, stable variance on

a log scale, and minimize false-positive results. Then the limma

package was used to select DEGs and paired t-test to analyze the

statistical significance of the observed DEG patterns. The

Benjamini–Hochberg correction method was used for p-value

adjustment to the false discovery rate (FDR). The cutoff point

for DEG selection was set at FDR 0.05 and |log2FC| > 1.5. The non-

variant probes, the housekeeping probes, and those that are not

assigned to any gene were filtered out, leaving known curated gene

sets with the variant probes for further analysis.

Identification of differentially expressed
genes which are unique and/or shared
across different categories of the diseases

To identify both unique and shared genes in comorbidities

and COVID-19, all DEGs, including upregulated and

downregulated genes, were assigned to their respective

category. Shared genes were then identified using the VENN

tool, available in VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/

venny/). At first, the “unique DEGs for comorbidities group”

were identified by intersecting genes between comorbidities and

respiratory viral infections like RSV, MERS, etc. Then, the

“unique DEGs to COVID-19” were identified by intersecting

genes between COVID-19 and other viral lung infections. Finally,

unique DEGs from both groups were compared against each

other to identify shared genes between the comorbidities set and

COVID-19 sets (Banaganapalli et al., 2021).

Functional analysis of category-specific
differentially expressed genes (DEGs)

To explore the pathways shared between DEGs, all the genes

were first grouped into three categories: COVID-19, chronic

comorbidities, and lung infections. Further Enriched Clustering

Ontology analysis of each DEG group was performed using the

web-based tool Metascape (https://metascape.org/).

Cell/tissue-specific expression of the
identified genes

In order to determine cell and tissue distribution of the

identified genes and also to generate visualization summaries of

gene functions, all the query gene lists were uploaded to three

different online web tools. ARCHS4 web-tool resource in EnrichR

(http://amp.pharm.mssm.edu/Enrichr) contains most published

RNA-seq data from humans and mice. TSEA web tool (http://

genetics.wustl.edu/jdlab/tsea/) uses RNA-seq data from 45 tissues

collected from 189 individuals, and the PaGenBase database in

Metascape (http://metascape.org) combines gene expression

patterns from literature and data mining.

Target genes prediction and ACE2/
TMPRSS2 similarity analysis

The Open Target Platform is an online portal (https://www.

opentargets.org/) that was used to retrieve associated drug

targets. This platform contains information about the

pharmacological targets of drugs used in clinical practice.

Measuring gene functional similarity is an essential tool for

gene clustering, function prediction, and disease identification.

We performed the correlation between gene expression and gene

functional similarity of the query genes as a group withACE2 and

TMPRSS2 using the open-source tool eXploring-Genomic

Relations for enhanced interpretation web tool (XGR) (http://

galahad.well.ox.ac.uk:3040/). We considered the best-match

score of 0.5 or above for selecting the gene-drug association.

Causal signaling network analysis

The interaction network of genes associated with ACE2 and

TMPRSS2 was built using the SIGnaling Network Open

Resources (SIGNOR 2.0) (http://signor.uniroma2.it). The

SIGNOR 3.0 web-based tool can be used to predict activation

or inactivation, connections, and interactions between

biomolecules and signaling molecules. All interactions with a

relaxed layout and score of “0.3–0.7″ were selected.

Mouse phenotype enrichment analysis

The mouse phenotype model is an impactful resource for

prioritizing key candidate genes involved in disease processes. In

this study, we used the Mammalian Phenotype (MP) enrichment
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analysis in ToppGene (https://toppgene.cchmc.org/) to

determine the associated phenotype of genes. Mouse

phenotype characteristics associated with query gene knockout

were acquired from the Mouse Genome informatics database

(MGI) (http://www.informatics.jax.org/).

Results

Data preprocessing and differentially
expressed genes identification

We initially collected gene expression datasets from COVID-

19, comorbidities (CVD, atherosclerosis, diabetes, and obesity),

and lung infection (RSV, influenza, and MERS) patients

(Supplementary Table S1). Each dataset was preprocessed

separately using appropriate R packages and algorithm

implemented in the R program and the differences in the

gene expression profiles between patients and healthy

participants were evaluated. Figure 1 illustrates an overview of

our experimental workflow. DEGs were identified and ranked for

each dataset based on their log2FC and volcano plots across all

processed datasets were generated (Figure 2). For COVID-19

datasets, only DEGs of severe, critical and critical and deceased

patients against the healthy individuals were selected.

Subsequently, upregulated and downregulated genes were then

grouped and added to their respective category, as shown in

Figure 3.

Top shared differentially expressed genes
across COVID-19 and comorbidities
datasets

In total, the comorbidities category independently contains

4,092 significantly altered genes; 10,005 in the lung infection

FIGURE 1
Schematic workflow of the study.
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FIGURE 2
Differential expression volcano plots across data sets. Volcano plots of the gene expression data from (A–I) the comorbidities category, (G–M)
lung infection category including influenza and (P,Q)MERS infection category. The horizontal axis represents the log2 (fold change) and the vertical
axis represents the-log10 (p-value). The colored dots represent the significant DEGs with adjusted p-values < 0.05. DEGs, differentially expressed
genes.
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categories, of which 4,641 and 2,291 genes were mapped from

MERS and COVID-19 datasets, respectively. To identify the

genes that are unique to COVID-19 pathogenesis, we mapped

the common genes between COVID-19 vs. comorbidities

category and eliminated them. We initially compared other

lung infection datasets to comorbidities category as well. The

shared DEGs were excluded and unique to comorbidities DEGs

were retained for further analysis. Subsequently, the COVID-19

dataset was also compared to the lung infection category and

COVID-19 unique DEGs were selected for further analysis. Our

analysis showed that 2,532 genes were unique to comorbidities

and 1,290 genes were unique to COVID-19 (Figures 3A,B). These

unique DEGs were intersected to identify 274 genes shared

between comorbidities and severe COVID-19 datasets,

suggesting their potential role in the clinical severity of

COVID-19 (Figure 3C) with comorbidities. Protein-Protein

Interaction (PPI) network of these genes was generated with

Cytoscape 3.9.1 (Figure 4). Based on the computation of a

comprehensive set of topological parameters and centrality

measures with the Cytoscape plugin NetworkAnalyzer, we

identified 13 top-ranked genes: ITGAX, ICAM1, CCL3,

TYROB, PFCGR3B, PTGS2, CXCL10, GZMB, PLEK, ITGAL,

NCAM1, KLRK1, and SERPINE1 (Figure 4).

Cell and tissue-specific distribution of the
identified genes

We investigated the tissue and organ specific expression of

the 274 unique genes. Several genes have enriched expressions

in multiple organs, tissues, or cell types where they play a role

in transcriptional regulation, epigenetic modification,

differentiation and pathogenesis. Three online

Bioinformatics tools, EnrichR web-tool (http://amp.pharm.

mssm.edu/Enrichr), TSEA web-tool (http://genetics.wustl.

edu/jdlab/tsea) and PaGenBase database in Metascape

(http://metascape.org) were used to determine whether the

identified genes are lung-specific or also expressed by other

FIGURE 3
(A-C) Venn diagram of shared and unique genes of Comorbidities and COVID-19 infection. Colors represent different datasets. The overlapping
areas are the shared DEGs. Statistically significant DEGs were defined with p < 0.05 and [log2FC] > 1.5 as the cut-off criterion.
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tissues. Through ARCHS4 resource in ErichR, cells of origin of

identified genes were identified. Our analysis found that 150 of

the identified genes (54.75%) are enriched in lung, spleen,

colon bulk tissue and omentum as well as neutrophil and

macrophages (Figure 5A). In TSEA web-tool, we found an

over-representation of the 274 DEGs in the lung, blood, and

adipose tissue (Figure 5B). The Pattern Gene Database

(PaGenBase), which combines gene patterns from literature

and data mining, was employed to identify tissue/cell-specific

genes. We observe the same enriched pattern of expression in

blood, lung, spleen and the heart (Figure 5C). This may

suggest that dysregulated genes detected in the injured lung

might recapitulate expression changes observed in spleen,

heart, or colon of COVID-19 patients with pre-existing

comorbidities.

Functional enrichment analysis of unique
and shared differentially expressed genes

We used Metascape to generate a graphical

representation of the specific enrichment of biological

processes and pathways shared among COVID-19 infected

patients with comorbidities. First, we interrogated the

biological processes separately using unique to

comorbidities (Supplementary Figure S1A) and to

COVID-19 DEGs (Supplementary Figure S1B) to capture

the pathways for each category. Secondly, we looked

exclusively for pathways enrichment in KEGG and

Reactome for unique comorbidities and COVID-19 gene

sets, respectively (Supplementary Figures S2A,B). Shared

biological processes and pathways were identified as well

FIGURE 4
Protein-protein interaction network of 274 genes shared by the comorbidities and COVID-19 infections and classified by their degree of
centrality. Node size is proportional to the degree of connection. Top gene, with at least 15 connections, includes ITGAX, ICAM1, CCL3, TYROB,
PFCGR3B, PTGS2, CXCL10, GZMB, PLEK, ITGAL, NCAM1, KLRK1 and SERPINE1.
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(Figures 6A,C). Major non-redundant biological process

networks were also generated using WebGestalt (http://

www.webgestalt.org/) (Figure 6B).

Unique genes for comorbidities alone were significantly

enriched in the adaptive immune system, phagosome, neutrophil

degranulation and signaling by interleukins. Unique genes for

FIGURE 5
Tissue/cells-specific enrichment of Shared comorbidities-COVID-19 genes. (A) Enrichr Bar Graph data were collected from Enricher web
(https://amp.pharm.mssm.edu/Enrichr). The length of the bar represents the significance of that specific gene-set or term. The brighter the color,
the more significant that term is. (B) Tissue specific expression analysis (TSEA) network for common genes showing enrichment for genes expressed
in related tissues. (C) Tissue/cell enrichment of the PaGenBase category of Metascape. The darker the color, the more significant that term is.
Colored bars correspond to tissues with an adjusted p-value ≤ 0.01.
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FIGURE 6
Functional enrichment of shared comorbidities-COVID-19 DEGs. (A) Bar graphs showing most significant biological processes. (B) Network
illustrates the major non-redundant biological process. DEGs are enriched in biological processes related to leukocyte migration, T cell activation,
regulation of hemopoiesis and integrin pathway. (C) Top Shared pathways; IL-10, TLRs and TNF signaling. The bar graphs were generated using
Metascape (http://metascape.org) to illustrate the most enriched pathways and the Network was generated using WebGestalt (http://www.
webgestalt.org/).
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COVID-19 were also enriched in the adaptive immune system:

signaling by Rho GTPases, heme biosynthesis and nervous system

development. We observed, as expected, that shared pathways of

identified genes were related to immune response, interleukin

signaling and FCGR activation. Interestingly, among the top

significantly enriched pathways, many are related to immunity

processes such as response to bacteria, cytokines regulation and

secretion of chemokines and regulation of leukocyte migration.

Collectively these analyses support the role of the identified

candidate genes in increasing the severity of clinical symptoms of

COVID-19 infection among patients with pre-existing

comorbidities.

Molecular drug targets identification and
similarity analysis with ACE2 and TMPRSS2

In order to identify drug target, we searched the DisGeNet

database to identify significant disease genes associated with

comorbidities in Metascape. Myocardial ischemia, fatty liver

FIGURE 7
(A) Disease enrichment of shared genes of comorbidities and COVID-19 infection. Bar chart shows significant disease enrichment. (B) List of
diseases related to comorbidities and COVID-19 with the percentage of specific common genes. (C) Network showing the specific drug targets.
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disease, inflammation, vascular disease, and pneumonia were

among the top disease classes represented in DisGeNet for all

shared genes (Figure 7A). We identified 150 genes associated

with top comorbidities (Figure 7B). This subset of genes was first

submitted to the Open Targets Platform for druggability analysis

and identification of potential novel drug targets, for existing

drug repurposing against COVID-19 infection. Using the Open

Targets Platform, 29 out of 150 genes were found to have known

inhibitors/antagonists, modulators or agonists (Supplementary

Table S2) and we prioritized these genes based on their

association to top comorbidities (Figure 7C).

To further refine our drug target list, we performed a

functional similarity analysis of the identified 29 target genes

against Angiotensin-converting enzyme 2 (ACE2) and

Transmembrane protease serine 2 (TMPRSS2), which play an

important role in COVID-19 infection using the XGR web-tool

for enhanced interpretation (http://galahad.well.ox.ac.uk:3020/).

We found that 13 genes have a high similarity score (≥0.5) with

FIGURE 8
Similarity analysis and degree of relatedness of drug target genes to ACE2 and TMPRSS2 as a group to each other using eXploring Genomic
Relations for enhanced interpretation. (A) ACE2 and TMPRSS2 showed a high degree of similarity with 13 out of the 29 identified genes. (B) Similarity
analysis of the remaining 16 drug target genes. Drug targets were filtered based on cutoff score ≥ 0.5 as highly similar and ≤ 0.5 as slightly similar to
ACE2 and TMPRSS2.

Frontiers in Physiology frontiersin.org11

Mujalli et al. 10.3389/fphys.2022.1045469

http://galahad.well.ox.ac.uk:3020/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1045469


TABLE 1 Suggested repurposable drugs retrieved from Open Targets platform.

Target Drug Mechanisms
of
action

Indications Phase Molecule
type

Therapeutic area

Identified targets based on COVID-19 comorbidities-association as well as ACE2 and TMPRSS2 similarity score

CXCL10a ELDELUMAB Inhibitor Ulcerative colitis, Crohn’s disease,
Rheumatoid arthritis

II Antibody Immune system disease

NI-0801 Primary biliary cirrhosis II

Allergic contact dermatitis I

IDO1 EPACADOSTAT Inhibitor Lung cancer III Small molecule Lung cancer

LINRODOSTAT Respiratory or thoracic disease

Cancer or benign tumor

LEPR METRELEPTIN Agonist Lipodystrophy IV Small molecule Immune system disease

Liver disease Nutritional or metabolic disease

Obesity

CYCLOSPORINE Modulator Inflammation IV Immune system disease

COVID-19 II Infectious disease

PREDNISOLONE Agonist Thrombocytopenia IV Small molecule Respiratory or thoracic disease

Asthma Cardiovascular disease

Myocarditis

COVID-19 III

MME SACUBITRIL Inhibitor Congestive heart failure IV Small molecule Cardiovascular disease

Myocardial infarction Respiratory or thoracic disease

COVID-19 I

ILEPATRIL Hypertension II Cardiovascular disease

PTAFR RUPATADINE Antagonist Allergy III Small molecule Immune system disease

Rheumatoid arthritis

PTGS2a,b ACEMETACIN Inhibitor Rheumatic disease IV Small molecule Musculoskeletal or connective
tissue disease

Targets based on COVID-19 comorbidities by association only

MAOBc SELEGILINE
HYDROCHLORIDE

Inhibitor Alzheimer’s disease I Small molecule Psychiatric disorder

Nervous system disease

PARGYLINE Hypertension IV Cardiovascular disease

RASAGILINE MESYLATE Parkinson’s disease IV Nervous system disease

PDE4Bd AMLEXANOX Inhibitor Airway obstruction IV Small molecule Respiratory or thoracic disease

DYPHYLLINE

DIPYRIDAMOLE Stroke IV Cardiovascular disease

Coronary artery disease Infectious disease

COVID-19 III

APREMILAST Psoriasis IV Immune system disease

COVID-19 III Infectious disease

PLA2G2A
VARESPLADIB Inhibitor Coronary artery disease II Small molecule Respiratory or thoracic disease

Sickle cell anemia Cardiovascular disease

COVID-19 Hematologic disease

VARESPLADIB METHYL Acute coronary syndrome III Respiratory or thoracic disease

Kidney disease I Cardiovascular disease

COL5A1 COLLAGENASE
CLOSTRIDIUM
HISTOLYTICUM

Hydrolytic
Enzyme

Skin ulcer IV Enzyme Integumentary system disease

Cardiovascular disease

(Continued on following page)

Frontiers in Physiology frontiersin.org12

Mujalli et al. 10.3389/fphys.2022.1045469

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1045469


ACE2 and TMPRSS2 (Figure 8A). Remaining 16 genes with a

similarity score (≤0.5) were also shown (Figure 8B). Our analysis

showed that some genes have similarities to both ACE2 and

TMPRSS2, but some are present only with ACE2, especially,

IDO1,MME, LEPR, ABCB1, and PTARF. We found that only the

PRKD1 gene is similar to TMPRSS2 and not toACE2 (Figure 8A).

These results suggest that genes with the highest similarity to

ACE2 and TMPRSS2 could influence the COVID-19 virus

infection directly, leading to the possibility of molecular

interaction and functional changes in severe COVID-19

patients. Furthermore, it may result in overexpression of

ACE2 and TMPRSS2, which explains the higher infection rate

and disease severity in individuals with comorbidities. Drug

target with high similarity scores to ACE2 and

TMPRSS2 includes CXCL10, ICAM1, SERPINE1, PTGS2,

ABCB1, IDO1, IL1R1, LEPR, MME, PTAFR, ITGAL,

NCAM1 and PRKD1, (all up-regulated except LEPR)

(Table 1) of which six targets overlap with PPI network top

genes including ICAM1, PTGS2, CXCL10, ITGAL, NCAM1,

SERPINE1 (Figure 4). Based on the association to top

comorbidities and ACE2 and TMPRSS2 similarity scores,

17 drug target genes were identified, Marketed drugs for

identified genes are indicated for the treatment of

hypertension, heart failure, kidney failure, lung cancer,

diabetes mellitus, emphysema, pulmonary obstruction, acute

coronary syndrome, allergic rhinitis, inflammation, diabetic

foot fever, diabetes mellitus, rheumatic disease and generalized

lipodystrophy (Table 1). Identified drugs could be tested further

for repurposing to reduce the severity risk among COVID-19-

infected patients. Drug repurposing of marketed or approved

drugs is an effective alternative method to uncover new

indications rapidly.

Signaling network analysis

The signaling causal interaction network (in SIGNOR 3.0) of

the candidate genes showed that 15 out of 17 genes were central

regulators of multiple signaling pathways (Supplementary Figure

S3). Dysregulated pathways includes inflammation, immune

TABLE 1 (Continued) Suggested repurposable drugs retrieved from Open Targets platform.

Target Drug Mechanisms
of
action

Indications Phase Molecule
type

Therapeutic area

Identified targets based on COVID-19 comorbidities-association as well as ACE2 and TMPRSS2 similarity score

OCRIPLASMIN Hydrolytic
Enzyme

Eye disease IV Nervous system disease

Proteolytic
Enzyme

Stroke II Cardiovascular disease

Targets based on ACE2 and TMPRSS2 similarity scores only

IL1R1 ANAKINRA Antagonist Rheumatoid arthritis IV Small molecule Immune system disease

Pericarditis III

COVID-19

ABCB1 ZOSUQUIDAR Inhibitor Leukemia III Small molecule Immune system disease

TARIQUIDAR Inhibitor Lung cancer III Small molecule respiratory or thoracic disease,
cancer or benign tumor

ICAM1a ALICAFORSEN Antisense
inhibitor

Crohn’s disease III Small molecule Immune system disease,
Gastrointestinal disease

ITGALa EFALIZUMAB Inhibitor Immune system disease IV Antibody immune system disease

LIFITEGRAST Antagonist Dry eye syndrome IV Small molecule Immune system disease,
Disorder of visual system

PRKD1 MIDOSTAURIN Inhibitor Systemic mastocytosis IV Small molecule Immune system disease,
Hematologic disease

SERPINE1a
ALEPLASININ Inhibitor Alzheimer disease I Small molecule Nervous system disease

NCAM1a LORVOTUZUMAB
MERTANSINE

Inhibitor leukemia II Antibody Immune system disease,
Hematologic disease

aDrug target that overlapped with PPI network top genes.
bA total of 69 drug phase III and IV were identified from Open Targets platform as inhibitors of PTGS2. Eight drugs, including ASPIRIN, IBUPROFEN, INDOMETHACIN,

ACETAMINOPHEN, NAPROXEN, CELECOXIB, DICLOFENAC SODIUM and DICLOFENAC, are indicated in COVID-19.
cA total of 13 drug phase III and IV were identified from Open Targets platform as inhibitors of MAOB.
dA total of 18 drug phase III and IV were identified from Open Targets platform as inhibitors of PDE4B.
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response, chemotaxis, fibrinolysis, cell adhesion and acute

respiratory distress syndrome (ARDS). Most genes like

PTGS2, PTAFR, MOAB, PRKD1, ABCB1, IL1R1 and LEPR

showed high interaction (with >8 connectivity). Of note,

IDO1 and PLA2G2A were not present in the SIGNOR

3.0 database.

Phenotypic implications of the
identified genes

Finally, we investigated the overall phenotypic association of

shared genes. We performed our analysis using ToppGene

(https://toppgene.cchmc.org/) for mouse phenotype analysis.

We found a consistent phenotype pattern with the gene

ontology and pathway enrichment, including abnormal innate

and adaptive immunity, abnormal macrophage production,

pulmonary interstitial fibrosis, and decreased inflammatory

response (Supplementary Figure S4A). We also performed the

phenotypic association of the 17 candidate genes from Open

Target Platform analysis, to increase the specificity of observed

phenotypes. In addition to the above-mentioned phenotypes,

candidate genes were highly associated with abnormal type IV

hypersensitivity reaction, abnormal body temperature, abnormal

interleukin level and altered susceptibility to infection

(Supplementary Figure S4B).

Discussion

The discovery of new biomarkers that can differentiate and

categorize distinct COVID-19 phenotypes is urgently needed.

Elucidating specific biomarkers to severe COVID-19 disease

phenotype allows early intervention that may improve the

outcome. Patients with pre-existing comorbidities, including

cardiovascular disease, obesity, diabetes, and respiratory

system diseases, are at a greater risk of developing severe

symptoms or fatal with COVID-19 infection. Chronic diseases

share risk factors or disease pathways with infectious disorders,

like the pro-inflammatory state and the attenuation of the innate

immune response (Yang et al., 2020a).

Differential gene expression analysis between patients and

healthy control groups is the common logical method utilized to

identify disease-associated changes. Here, we used

transcriptomic data integration, differential expression

analysis, and co-expression network analysis to identify

underlying genetic factors and elucidate potential target drug

or biomarkers that might explain the contribution of the

comorbidities to increase the severity of COVID-19 infection

symptoms by molecular interactions. Data for other respiratory

illnesses such as influenza virus, RSV and MERS were intersected

with COVID-19 infection DEGs to remove the common viral

pathway genes, which otherwise will be tagged as shared

biomarkers for comorbidities-associated severe COVID-19

symptoms.

Comorbidities-COVID-19 pathogenicity

We identified 274 significant DEGs (|log2FC| >1.5; p < 0.05)

shared between comorbidities and COVID-19. Functional

analysis of shared genes among both comorbidities and

COVID-19 infection revealed a critical involvement and

significant enrichment in immune response processes

including leukocyte migration, interleukin production, T cell

activation, lung vasculature development, cell death and

temperature homeostasis (Figure 5). Shared pathways are

mostly related to interleukin-10, TNF and FOXO signaling

which are involved in cellular processes like apoptosis, cell

cycle, control of cell cycle glucose metabolism and oxidative

stress resistance (Figure 5C).

Based on PPI, biological process and molecular pathway

enrichments, we found that both comorbidities and COVID-

19 have a strong association with symptomatically related

diseases such as early-onset dementia, fatty liver disease,

mesothelioma, vascular diseases, cytomegalovirus, herpes

simplex and Epstein–Barr Virus infections (Figure 6).

COVID-19 infection causes a severe multisystem

inflammatory disease in critically ill patients consisting of

respiratory distress, cardiovascular dysfunction, thrombosis,

neurological manifestations, dysregulated inflammatory

process and fibrosis. The strong link of shared genes with

several diseases can be attributed to the critical role of the

identified genes.

ACE2 and TMPRSS2 correlation and target
genes drug repurposing

ACE2 and TMPRSS2 are the two major host receptors which

contribute to the virulence and the severe pathogenesis of

COVID-19. Our computational analysis of the PPI network

identified several highly interacting genes such as ICAM1,

PTGS2, CXCL10, ITGAL, NCAM1, SERPINE1, IDO1, LEPR,

PTAFR, and PLA2G2A (Figure 4), which also showed a higher

degree of functional similarity with ACE2 and TMPRSS2

(Figure 7) suggesting a potential direct or indirect interaction

with the COVID-19 spike protein (Cuperlovic-Culf et al., 2021).

Systemic inflammation is a hallmark of many infectious

diseases including COVID-19. An appropriate inflammatory

response is essential for eradicating pathogens. Prolonged or

excessive inflammatory response is clearly detrimental and fatal

to the host if not carefully managed. Identified biomarkers could

be categorized as acute phase reacting immunomodulators as

they significantly alter the inflammatory cells’ responses, which

trigger the pro-inflammatory signaling pathway (Hata and
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Breyer, 2004; Vazirinejad et al., 2014; Guo et al., 2019; Kiernan

and MacIver, 2020).

Identified biomarkers were found to be involved in innate

immunity, mostly inmonocyte andmacrophage function and are

essential for immune cell homeostasis. Their early activation/

inactivation results in uncontrolled production, perturbation,

and inadequate recruitment of active immune cells, which in

turn promotes the cellular stress, resident cell’s damage and,

eventually, organ failure. The interplay of these main biomarkers

during infection induced early immune response are discussed

elsewhere (Fang et al., 2020; Goyal et al., 2020; Grasselli et al.,

2020; Holman et al., 2020; Madjid et al., 2020; Shi et al., 2020; Wu

and McGoogan, 2020; Zhou et al., 2020).

Dysregulation of these COVID-19 acute phase pro-

inflammatory genes can greatly induce a detrimental effect by

prolonging the inflammatory response, delayed viral clearance

and thus increasing the risk of severe and prolonged COVID-19

symptoms (Coperchini et al., 2021) For example, only

augmented CXCL10 plasma levels in COVID-19 infected

patients were found to be significantly correlated with the

viral load and disease severity (Guo et al., 2022a; Guo et al.,

2022b) and higher mortality, especially in males (Draxler et al.,

2017). It is worth noting that CXCL10 is not expressed in healthy

individuals and was significantly lower in asymptomatic cases

than in symptomatic patients. Furthermore, COVID-19 patients

have delayed or slow immune dysfunction response, making

these patients more susceptible to suffer from exacerbation and

impaired lung function (Danladi and Sabir, 2021). Increased

expression of PDE4B results in a pro-inflammatory phenotype in

neutrophils and macrophages (Ulm et al., 2013). Selective

inhibitors in the knockout mouse model for severe chronic

obstructive pulmonary disorder (COPD) have established the

beneficial anti-inflammatory effect of PDE4B to improve lung

function and decrease exacerbation rates. Specific inhibition of

these factors significantly alters the functions of specialized

inflammatory cells suggesting that these factors may help in

early diagnosis and could be predictors of clinical symptoms

(Guo et al., 2022a). IDO1 is also an important

immunomodulatory gene in T lymphocyte activation and in

modulating immune tolerance (Veazey et al., 2020; Makaremi

et al., 2022). In preclinical models, pharmacological inhibitors of

IDO1 have therapeutic utility in various diseases, including

cancer, HIV and influenza (Yang et al., 2020b; Chang et al.,

2020; Chi et al., 2020). Interestingly, IDO1 inhibitors suppress the

COVID-19-induced pro-inflammatory cytokine release,

including TNF-α, IL-6, IL-1α and IL-1β in isolated PBMCs

derived from COVID-19-infected rhesus macaques and lower

mortality among critically ill patients with COVID-19 (Song

et al., 2020; Agrawal et al., 2021). This confirms the critical role of

the IDO1 gene network in COVID-19-exaggerated cytokine

release. Moreover, MAOB, ICAM1, SERPINE1, MME, IL1R1,

PLA2G2A, LEPR and PTGS2 have emerged as attractive

pharmaceutical targets for COVID-19 infection treatment

recently (Puccetti and Grohmann, 2007; Iyer et al., 2018; Blair

et al., 2019; Tibbo and Baillie, 2020).

Our analysis also showed that LEPR is downregulated in

COVID-19. The expression of LEPR is inversely related to leptin

concentrations (Potula et al., 2005). LEPR has been shown to

influence both innate and adaptive immune responses (Singh

and Salunke, 2021). Several studies on mouse models of viral

infection addressed the role of LEPR and leptin in the

pathogenesis of infectious diseases (Potula et al., 2005).

Interestingly, global reduction of the LEPRs in obese mice

demonstrated impaired influenza virus viral clearance and

reduced survival (Group et al., 2021). Additionally, LEPR

deficient mouse exhibits increased susceptibility to respiratory

infections suggesting a leptin requirement in the pulmonary

innate and adaptive immune response to infection (Tomazini

et al., 2020).

Arterial thrombosis in the lung and other organs has been

reported in critically ill COVID-19 patients (Bellis et al., 2020).

Platelet Activating Factor Receptor (PTAFR or PAFR) is

exploited by respiratory viruses and bacteria to interact with

human cells and initiate infection (Cauchois et al., 2020). It was

implicated in the entry of H1N1 and H3N2, Dengue and

respiratory syncytial viruses (Mohammed El Tabaa and

Mohammed El Tabaa, 2020). PTAFR deficient mice, as well as

wild-type mice treated with a PTAFR antagonist, had less

pulmonary inflammation and injury and reduced lethality

rates when infected with Influenza A virus (Mohammed El

Tabaa and Mohammed El Tabaa, 2020). These findings show

that PTAFR is a major driver of exacerbated inflammation during

viral infection. Inhibition of PTAFR offers significant protection

against fatal outcomes and lung injury associated with the flu.

PLA2G2A is a potent mediator of the inflammatory process and

also proatherogenic, implicated in various clinical conditions,

including sepsis (Ostadkarampour and Putnins, 2021). Increased

PLA2G2A levels is a significant risk factor for coronary artery

disease and are found to be highly associated with disease severity

in COVID-19 patients (Lahlou et al., 2002). It will be interesting

to explore the potential of these genes as early systemic diagnostic

biomarkers for COVID-19.

Although our study aims to map key genes and pathway

alterations in patients with COVID-19 and comorbidities, our

results at present are observational and there are limitations to

our study. First, there was a lack of data from COVID-19 patients

with comorbidities and present COVID-19 datasets were mostly

published on 2020 before the emergence of Omicron variant.

Second, there was a lack of data on COVID-19 variants effect in

the present study, which may become a focus of future studies as

more datasets are put in the public domain. That will allow the

scientists to explore the effect of different COVID-19 variants

into the specific molecular mechanism and to the clinical severity

of COVID-19. Despite these disadvantages, the present study was

powered by integrated bioinformatics analysis identified DEGs

that exhibited large-fold changes with high statistical
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significance. Moreover, there was consistency between our

findings and the previous studies. Hence, the results of our

analysis could be reliable to a large extent and explain the

specific role of these genes in COVID-19 and indirectly give

insights into how such genes contribute to the severity of

COVID-19 infection. Lastly, there was a lack of experimental

validation for these findings in the present study, which may

become a focus of future studies.

Conclusion

In summary, we used publicly available gene expression

profiles from severe/deceased COVID-19 infected individuals

and patients with comorbidities alone — CVD, atherosclerosis,

diabetes, and obesity, to identify overlapping key genes associated

with the severity of COVID-19 infection. We identified 29 genes

shared between severe COVID-19 and comorbidities. Our results

show that some of the available drugs against the identified genes

are already in use as COVID-19 therapy, suggesting that

identified genes as clinical indicators for COVID-19 disease

severity, central drivers of immune deficit and multiorgan

failure. We recommend that existing drugs for identified

genes can be investigated further for their therapeutic efficacy

and repurposed to treat COVID-19 patients with severe

symptoms.
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