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Gastrointestinal (GI) cancers arise in the GI tract and accessory organs,

including the mouth, esophagus, stomach, liver, biliary tract, pancreas, small

intestine, large intestine, and rectum. GI cancers are a major cause of cancer-

related morbidity and mortality worldwide. Exosomes act as mediators of cell-

to-cell communication, with pleiotropic activity in the regulation of

homeostasis, and can be markers for diseases. Non-coding RNAs (ncRNAs),

such as long non-coding RNAs (lncRNAs), can be transported by exosomes

derived from tumor cells or non-tumor cells. They can be taken by recipient

cells to alter their function or remodel the tumormicroenvironment. Moreover,

due to their uniquely low immunogenicity and excellent stability, exosomes

can be used as natural carriers for therapeutic ncRNAs in vivo. Exosomal

lncRNAs have a crucial role in regulating several cancer processes, including

ang iogenes i s , p ro l i fe ra t ion , drug res i s tance , metas tas i s , and

immunomodulation. Exosomal lncRNA levels frequently alter according to

the onset and progression of cancer. Exosomal lncRNAs can therefore be

employed as biomarkers for the diagnosis and prognosis of cancer. Exosomal

lncRNAs can also monitor the patient’s response to chemotherapy while also

serving as potential targets for cancer treatment. Here, we discuss the role of

exosomal lncRNAs in the biology and possible future treatment of GI cancer.
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Introduction
Gastrointestinal (GI) cancers, such as colorectal, esophageal,

gastric, hepatocellular carcinoma, and pancreatic cancer, are

among the most common malignancies diagnosed worldwide.

Based on the GLOBOCAN cancer statistics, GI cancers account

for 26% of newly diagnosed cases and 35% of cancer-related

deaths globally (1, 2). Typically, chemotherapy, surgery, targeted

therapy, and other approaches have been used to treat GI cancer.

Patients with GI cancer who undergo early detection and

therapy have a better prognosis than those who are diagnosed

at an advanced stage (3, 4). Current diagnostic approaches

mostly rely on invasive techniques that are difficult to apply

for screening purposes, such as pathological biopsies or digestive

tract endoscopy. The discovery of novel biomarkers, such as

non-coding RNAs, is important for early diagnosis and more

targeted therapy (4). The development of resistance to

radiotherapy, chemotherapy, immunotherapy, or targeted

therapy still poses a serious obstacle to effective cancer

treatment, despite some recent advances. By deciphering

crucial cellular signaling pathways, recent studies have

demonstrated that ncRNAs also play a key role in the

development of resistance to many cancer treatments (5).

Extracellular vesicles (EVs), also called exosomes, are formed

when multivesicular bodies (MVBs) inside cells fuse with the

plasma membrane. Their sizes range from 40 to 160 nm (average

100 nm) (6). It has been reported that B cells released antigen-

presenting exosomes that triggered a T-cell response (7, 8).

Moreover, exosomes could contain both messenger RNAs

(mRNAs) and microRNAs (miRNAs) which could then be

transported to other recipient cells in order to perform a

specific function (9). Exosomes have been found to contain

DNA, proteins, and RNAs, including non-coding RNAs

(ncRNAs) and long-non coding RNAs (lncRNAs), which can

allow cell-to-cell communication and affect signaling

pathways (10).

The participation of exosomes in the development and

progression of GI cancer has recently attracted more interest

in both research and possible treatment. It has been

hypothesized that cancer cells generate more exosomes

compared with healthy cells (11). Exosomes are actively

secreted by the source cancer cells and are crucial for cancer

cell functioning. Exosomes can also be released by stromal cells,

immune cells, or other cells in the cancer microenvironment.

Exosome-mediated interactions between stromal cells, immune

cells, and cancer cells have been implicated in the development

of several GI cancers (11, 12).

lncRNAs show differential expression levels in cancer cells

and normal tissues (13, 14). They can affect the function of target

molecules, including miRNAs and proteins, and therefore, can

regulate tumor aggressiveness and chemoresistance (15–17). The

best known function of lncRNAs is their ability to act as
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competitive endogenous RNAs (ceRNA), by sponging their

target miRNAs and thereby affecting the expression of the

mRNA targets of the specific miRNAs (18). lncRNAs are

essential regulatory elements in several biological processes,

including RNA processing, transcriptional interference,

chromatin remodeling, and protein degradation (19, 20).

Many studies have concentrated on the significance of

lncRNAs in cancer because they can regulate genetic and

epigenetic alterations which are critical in carcinogenesis and

cancer progression. lncRNAs are essential for the complete

understanding of the biology of cancer (Figure 1). Abnormal

expression of lncRNAs has been linked to tumor development,

invasion, and overall patient survival by primarily affecting the

epigenetic regulation of both oncogenes and tumor suppressor

genes (21–25). Although some putative mechanistic roles have

been clarified, the function of most lncRNAs still remains

unclear (26). According to a recent study, lncRNAs may be

regarded as complex molecular regulators or “fine-tuners”

because of their ability to act in a tissue-/cell- specific manner

(26–30). The role of lncRNAs in several GI cancers has been

established. These lncRNAs may be divided into three classes

based on their function, namely, tumor suppressors, tumor

promoters (oncogenes), and dual-action tumor suppressors/

promoters, and the latter precise function may be context- or

tissue-dependent.
FIGURE 1

The function of exosomal long non-coding RNAs (lncRNAs) in
the biology of cancer. Exosomes can facilitate interactions
between stromal cells, immune cells, and cancer cells in the
tumor microenvironment. Exosomal lncRNAs secreted from
cancer cells can induce drug resistance, immunological
regulation, angiogenesis, cancer growth, and metastasis in
recipient cells. This figure was adapted from Zhang et al. (21).
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In this review, we will focus on exosome-enriched lncRNAs

in the pathogenesis of GI cancers. We also briefly discuss the

dysregulation of exosome-enriched lncRNA expression in GI

cancer and summarize how exosomal lncRNAs can regulate

cancer cell progression by acting as either tumor suppressors or

as oncogenes.
Exosome biogenesis

Exosomes are continuously produced from late endosomes

generated by the invagination of the membrane of MVBs. This

process subsequently leads to the formation of intraluminal

vesicles (ILVs) inside the MVBs (31). During this process, the

invaginated membranes engulf some specific proteins, while the

same process occurs for some other cytosolic components which

are then incorporated within the ILVs. A majority of ILVs are

secreted into the extracellular space after their fusion to the cell

membrane. The term “exosomes” refers to these secreted ILVs

(32, 33).

Exosomes are a class of EVs with a diameter ranging from 30

to 100 nm (34). They are composed of a combination of lipids

and proteins, which are derived from the endosomes from which

they originated. The lipids are mainly composed of cholesterol,

ceramide, and sphingomyelin (35–37). Canonical exosomes

show a biconcave or cup-like shape, which is supposed to be

due to a drying process taking place during their preparation for

study. This is because they display a spheroidal shape in the

aqueous environment under transmission electron microscopy

(TEM) (38). Exosomes mainly show a density ranging from 1. 13

g/ml for B-cell-derived exosomes (39) to 1. 19 g/ml for epithelial

cell-derived exosomes (40), as measured by sucrose gradient

centrifugation. The proteins in the ESCRT (endosomal sorting

complexes required for transport) play a role in the formation of

exosomes. The ESCRT protein family is divided into four

subgroups, i.e., ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III

(41). The detection and transfer of ubiquitinated proteins to

specific domains located on the endosomal membrane by

ubiquitin-binding subunits of ESCRT-0 has been found to

initiate the ESCRT formation process. ESCRT-I then interacts

with ESCRT-II forming a larger complex, which then unites with

the ESCRT-III complex. The latter helps in the budding process.

Eventually, the buds are cleaved from the membrane and form

ILVs. Finally, the ESCRT-III complex is dissociated from the

MVB membrane by the vacuolar protein sorting 4 (Vps4) AAA

ATPase which provides the energy (42).

Some cargoes can be incorporated into MVBs without

binding to ESCRT-0, ESCRT-I, or ESCRT-II protein

complexes. Instead, ALG-2-interacting protein X (Alix), an

ESCRT-interacting protein, binds to the CHMP4 subunit of

the ESCRT-III complex and the pseudoautosomal region 1

(PAR1), a G-protein-coupled membrane receptor, and

subsequently transfers PAR1 to MVBs without requiring
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ubiquitylation. ALIX also binds to syntenin causing syndecans

to bind to CD63. The proteins ALIX, syntenin, syndecan, and

CD63 are all found within MVBs and exosomes but do not

require ubiquitination for their function (43, 44). ESCRT-

independent pathways control the production of exosomes,

which contain tetraspanin cargoes and require lipids for

their activity.

Exosomes are rich in tetraspanins, proteins that possess four

transmembrane domains each with a specific palmitoylation site.

CD9, CD37, CD63, CD81, and CD82 (in addition to other

tetraspanins) are considered to be specific biomarkers for

exosomes, as they are concentrated on the exosome surface

(9). Ceramides can trigger the separation of the lateral phase and

the fusion of microdomains when studied in model membranes.

Furthermore, the particular cone-shaped structure of exosomes

is caused by ceramide, which spontaneously forms a negative

curvature in the endosomal membrane, in order to promote

domain-induced budding. This ceramide-based mechanism

suggests an important role for exosomal lipids in the

production of exosomes (45). Three glycosylphosphatidyl

inositol (GPI)-anchored proteins (CD55, CD58, CD59), and

the palmitoylated protein Lyn, are sorted into exosomes

during the process of red blood cell maturation. Thus, proteins

containing these lipids can selectively enter lipid rafts composed

of cholesterol, sphingomyelin, and ceramides (46, 47). Higher

levels of exosome secretion have been reported in human

immunodeficiency virus type-1 (HIV-1)- infected cells,

resulting in ESCRT-independent exosomal generation.

Investigations have reported that two conventional markers of

exosomes (tetraspanins CD63 and CD81) can be found within

these exosomes, which have the same size as classical exosomal

structures (46, 48). The ESCRT-0 complex is responsible for

clustering the ubiquitinated cargoes (49).
Exosomal long non-coding RNAs
and different GI cancers

Exosomal long non-coding RNAs and
gastric cancer

Gastric cancer (GC) is the fifth most prevalent human

malignancy and the third cause of cancer-related death

according to the Global Cancer Observatory, CANCER

TODAY (GLOBOCAN) 2018 statistics (50). Patients are

frequently diagnosed with metastasis due to presenting at later

stages (51). Most GC patients do not show any clinical

symptoms at the early stages (52), while nausea and vomiting

or upper GI symptoms are reported in some cases, but these are

similar to peptic ulcer and so are not specific for GC (53).

Therefore, most GC patients are at an advanced stage when the

diagnosis is confirmed (54). Recent research has shown that
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exosome-derived lncRNAs are involved in the development,

progression, and drug resistance of GC tumors. Exosomal

lncRNA expression levels can also promote or inhibit the

development of GC.

Additionally, the exosomal membrane structures protect the

lncRNAs from being broken down by enzymes in the body,

thereby enhancing the stability of exosomal lncRNAs. Exosomes

have distinctive characteristics that may be used to identify

them, and their contents can be utilized to determine the cells

from whence they originated. Exosomal lncRNAs can therefore

be used as therapeutic targets, as well as prognostic or diagnostic

biomarkers. Controlling exosome biogenesis and exosomal

lncRNA expression levels may be a potential strategy to

prevent or eliminate GC (55, 56). Figure 2 illustrates the main

steps of exosomal lncRNA biogenesis and release.

The forkhead box protein M1 (FOXM1) is a transcription

factor which is evolutionarily conserved and involved in

regulating cancer development and progression in various

human malignancies (58–60). FOXM1 is upregulated in most

human tumors, such as GC, and plays a substantial role in

regulating the proliferation, migration, and apoptosis of cancer

cells (61, 62). FOXM1 has already been reported in several

studies to be a crucial oncogene correlated with the occurrence

of GC, where it causes the upregulation of FOXM1-related
Frontiers in Oncology 04
LncRNA 1 (FRLnc1), an FOXM1-related lncRNA. This

suggests that FRLnc1 could act as an independent prognostic

indicator for the prediction of survival in GC patients (58, 63).

Furthermore, it has been discovered that GC patient serum

exosomes showed higher FRLnc1 expression (64). Importantly,

FRLnc1 upregulation was significantly associated with

clinicopathological properties, including lymph node

metastasis and advanced TNM stage. Also, cellular assessment

revealed that FRLnc1 knockdown using RNA interference

reduced the proliferation and migration of HGC-27 cells,

while its overexpression enhanced both properties in MKN45

cells. Following cellular treatment with exosomes, the expression

of FRLnc1 was increased in MKN45 cells, and consequently, the

proliferation and migration showed a significant increase. In

conclusion, GC cell-derived exosomes were found to be involved

in promoting the growth and metastasis of malignant cells

through transporting the lncRNA FRLnc1, suggesting that

exosome-transported FRLnc1 could act as a potential

biomarker with possible diagnostic and therapeutic

applications in GC patients. The transport of FRLnc1 via

cancer cell-derived exosomes suggests that this process could

be a novel therapeutic target for GC patients (64).

It has been demonstrated that the phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT) signaling pathway plays a critical
FIGURE 2

The main steps of biogenesis and release of exosomal lncRNAs. Exosome formation commences with the development of early and late-sorting
endosomes by endocytosis of plasma membrane proteins. This process is followed by the formation of intraluminal vesicles (ILVs) from the late-
sorting endosomes via the inward budding of their membrane which encapsulate macromolecules such as proteins, DNAs, and RNAs. Eventually,
late-sorting endosomes develop into multivesicular bodies (MVBs) that secrete ILVs as exosomes. The MVBs can fuse with lysosomes for the
degradation of their contents. Exosomes can either directly transmit their cargo to recipient cells or release it after fusion with the recipient cell
plasma membrane. Moreover, exosomes may create endosomes by three main pathways, namely, endocytosis, macropinocytosis, or phagocytosis.
In response to cellular requirements, the endosomes may release their exosomal contents, combine with lysosomes to be degraded, or fuse with
cell membrane for recycling the exosomes. Then, the release of exosomal lncRNAs leads to the modulation of cell functions through several
mechanisms. They can influence gene expression at post-transcriptional levels via targeting miRNAs, mRNAs, or proteins in the cytoplasm.
Additionally, some lncRNAs have the potential for encoding short peptides. On the other hand, lncRNAs can play a role in the nucleus, by
interacting with chromatins, transcription factors, or enhancer-like RNAs. This figure was adapted from Ahmadpour et al. (57).
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role in the initiation and development of several cancers and

could therefore be a therapeutic target in cancer treatment. The

development and prognosis of GC have been associated with

abnormalities in PI3K/AKT pathways, which play a significant

role in the progression and development of GC (65). Some nc

RNAs have been shown to control this pathway (66–68). For

example, Wang and colleagues assessed the possible role and

mechanism of mesenchymal stem cell (MSC)-derived exosomal

lncRNA LINC01559 in GC development (69). In-silico data

retrieved from online databases including The Cancer Genome

Atlas (TCGA) and the Gene Expression Profiling Interactive

Analysis (GEPIA) showed the presence of LINC01559 in GC

tissues. LINC01559 also demonstrated lower expression in GC

cells compared with MSCs. Silencing studies showed that

LINC01559 knockdown significantly decreased the

proliferation, migration, and stemness of GC cells. The

authors also found that LINC01559 was transported from

MSCs to GC cells via exosomes, and their involvement was

confirmed using immunofluorescence staining and electron

microscopy. Mechanistically, LINC01559 was found to sponge

miR-1343-3p, thereby upregulating PGK1 (phosphoglycerate

kinase 1) and eventually activating the PI3K/AKT pathway.

Furthermore, LINC01559 recruited EZH2 [already well known

to contribute to the development of human cancer (64, 65)] to

the promoter of phosphatase and tensin homolog (PTEN) and

induced its methylation, which eventually resulted in its

repression. Therefore, LINC01559 enhanced GC progression

by targeting both PGK1 and PTEN and, consequently,

triggered the PI3K/AKT pathway. Overall, this study revealed

that LINC01559 promoted GC progression through

upregulation of PGK1 and downregulation of PTEN to

activate the PI3K/AKT pathway, suggesting that LINC01559

could be a therapeutic target in GC (69).

The human stomach mucosa possesses a hypoxic

environment, and GC tissues show even more severe hypoxia

(70). The tissue architecture of GC is exceedingly heterogeneous,

and immune cells, blood vessels, and fibroblasts interact

intricately with cancer cells. The vessels and fibroblast cells of

the tumor microenvironment affect O2 diffusion and perfusion

and, consequently, result in hypoxia. Hypoxia is caused by a

functional and structural abnormality of the tumor vasculature

or disturbances in the regular geometry of the blood vessels (71).

Hypoxia is one of the main properties of solid tumors linked to

tumor growth, invasion, and metastasis (71). Recently, the

molecular mechanism of tumor invasion in GC cells in a

hypoxic environment was investigated (72). To simulate

hypoxic conditions, GC cells were cultured in a medium

treated with 1% O2, while normoxia conditions were created

using 20% O2. The normoxic-cultured GC cells (NGCs) were co-

cultured with medium from the hypoxia-cultured GC cells

(HGCs). Cell scraping and Transwell tests were employed for

the evaluation of the invasion and migration of GC cells. GC-

derived exosomes were extracted using ultracentrifugation. The
Frontiers in Oncology 05
size distribution and exosome amounts were evaluated using

electron microscopy and Western blot analysis. The prostate

cancer gene expression marker 1 (PCGEM1) lncRNA was found

to be highly expressed in HGC-derived exosomes. These

exosomes increased the invasion and migration of NGCs.

Mechanistically, PCGEM1 positively targeted the zinc finger

transcription factor SNAI1, maintaining its stability and

suppressing its degradation to induce the epithelial–

mesenchymal transition (EMT) of GC cells. Taken together,

PCGEM1 was upregulated in GC cells, partially incorporated

into exosomes, to promote the migration and invasion of

recipient GC cells. The authors suggested that exosomal

PCGEM1 could act as a “scaffold” and, in combination with

SNAI1, promote invasion and metastasis in GC (72).

Exosomal lncRNAs have a role in GC chemoresistance,

similar to other ncRNAs (14, 73). According to Wang et al.,

downregulation of HOXA transcript at the distal tip (HOTTIP)

increases cisplatin (DDP) sensitivity, whereas increased

HOTTIP levels were seen in GC cells resistant to DDP (74).

HOTTIP can activate DDP resistance by delivering exosomes

from DDP-resistant GC cells to neighboring susceptible cells.

Additionally, HOTTIP functions as a ceRNA, sponging miR-218

to activate HMGA1 in GC cells and increase resistance to

cisplatin. Additionally, elevated serum expression of HOTTIP

has been linked to DDP treatment side effects in GC patients

(74). Figure 3 and Table 1 shows some lncRNAs that are

involved in GI cancer pathogenesis.
Exosomal long non-coding RNAs and
pancreatic cancer

Pancreatic cancer (PC) is among the leading causes of

cancer-related death in developed countries and is classified

into two major types, namely, adenocarcinoma (85% of

diagnosed cases) and pancreatic endocrine tumors (<5%)

(174). Tobacco, obesity, alcohol consumption, age, heredity,

and chronic pancreatitis are the main risk factors for PC

(175). Anorexia, asthenia, abdominal pain, and weight loss are

the main clinical symptoms of the disease, but PC is not easily

diagnosed due to a lack of specific symptoms (176). Additionally,

little progress has been made in discovering preventative or

therapeutic approaches for patients with PC, especially advanced

PC (177). Given the role of ncRNAs in the development and

progression of PC, pancreatic ductal adenocarcinoma (PDAC)

has been reported to be associated with some exosomal

lncRNAs (178).

Tumor-associated macrophages (TAMs), including M2

phenotype cells, are found to infiltrate solid tumors and help

to induce proliferation, invasion, and angiogenesis (179, 180).

M2-polarized TAMs are correlated with a poor prognosis in PC

because of their role in lymphatic metastasis (181). Exosomes are

also found in the bloodstream and tissue microenvironment, and
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it has recently been proposed that exosomes produced by M2

macrophages provide tumor cells with a regulatory transfer of

proteins or signals to regulate their migration. For instance, the

exosome- induced transfer of ApoE protein from TAMs to PC

cells enhanced cell migration (48, 182). The mechanism through

which M2 macrophages affect the proliferation, migration, and

invasion of PC cells via the SBF2-AS1/miR-122-5p/XIAP axis

(XIAP is an inhibitor of apoptosis proteins) has been explored

(96). LPS plus IFN-g and interleukin-4 treatment were used for

transforming THP-1 cells into M1 and M2 macrophages. The

PANC-1 PC cell line highly expressing lncRNA SET-binding

factor 2 antisense RNA1 (SBF2-AS1) was selected as a tumor

model for the extraction and identification of M2 macrophage-

derived exosomes. SBF2-AS1 and XIAP expression levels, the

SBF2-AS1 effects on the malignant phenotype of PC cells, and

interactions between SBF2-AS1, miR-122-5p, and XIAP were

evaluated. The effect of M2 macrophage exosomal SBF2-AS1 on

the malignant phenotype of PANC-1 tumors was assessed in

vivo. The results demonstrated that M2 macrophage-derived

exosomes increased PC cell proliferation, migration, and

invasion. SBF2-AS1 overexpression also showed the same

effect on the progression of PC cells. Mechanistically, SBF2-

AS1 repressed miR-122-5p expression and acted as a ceRNA to

eventually upregulate XIAP expression. Additionally, M2

macrophage-derived exosomes containing SBF2-AS1

restrained the malignant phenotype of PC cells. Taken

together, this study demonstrated that SBF2-AS1 incorporated

into M2 macrophage-derived exosomes sponged miR-122-5p to

upregulate XIAP, which acted as an inhibitor of PC

progression (96).

Angiomotin (AMOT) is an angiostatin-binding protein, also

known as a motin (183). This family of AMOTs has three

members: AMOT, AMOT-like 1 (AMOTL1), and AMOTL2

(183). AMOTL2 has been found to be involved in the

regulation of vascular endothelial cell proliferation, polarity,
Frontiers in Oncology 06
and tube formation, which are due to positive regulation of

the MAPK/ERK1/2 signaling pathway (184). Moreover,

AMOTL2 has been correlated with the progression and

occurrence of some human cancers (185–187). Guo and

colleagues investigated the role of exosomes produced by

hypoxic PC cells in the angiogenesis of PC tumors (98). They

reported that PC cell-derived hypoxic exosomes promoted the

migration and tube formation of human umbilical vein

endothelial cells (HUVECs) (98). The lncRNA UCA1 was

found to be highly expressed in these exosomes and could be

transferred to HUVECs. Additionally, the UCA1 expression

levels in exosomes isolated from serum samples of PC patients

were higher than those in healthy individuals, while it was

correlated with worse prognosis in PC patients. Furthermore,

hypoxic exosomal UCA1 increased the proliferation of cancer

cells, as well as angiogenesis and tumor growth in a mouse

xenograft model. Mechanistically, UCA1 sponged miR-96-5p, to

upregulate AMOTL2 expression. Overall, these findings

demonstrated that hypoxic exosomal UCA1 may enhance

angiogenesis and tumor growth in PC via the miR-96-5p/

AMOTL2/ERK1/2 axis and so could be a novel therapeutic

target for PC (Figure 4) (13, 98).

Another study investigated the role of exosomal lncRNA

colon cancer-associated transcript-1 (CCAT1) isolated from

PANC-1 cells, in PC tumorigenesis via its regulatory effect on

the miR-138-5p/HMGA1 axis (99). Tissues retrieved from

cancer patients and normal healthy tissues were used to

compare CCAT1 and miR-138-5p expression levels. Plasmids

were used to alter CCAT1 and/or miR-138-5p expression in

PANC-1 cells. Isolated exosomes from PANC-1 cells were co-

cultured with HUVECs, and proliferation and apoptosis in both

cells were assessed. Also, the angiogenesis function of HUVECs

was examined in vitro and in vivo. CCAT1, miR-138-5p, and

HMGA1 expression levels were measured, as well as their

interactions. The qRT-PCR results demonstrated that CCAT1
FIGURE 3

Some lncRNAs are involved in the pathogenesis of GI cancers.
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TABLE 1 Summary of the involvement of lncRNAs in different GI cancers.

Cancers lncRNAs Expression
in GI

Model Cell line Sample
(type/

number)

Ref

Gastric H19 Upregul ation Human – Serum/81 (75)

Gastric PCGEM1 Up regulation In vitro AGS, MKN45 – (72)

Gastric Pcsk2-2:1 Downregul
ation

Human – Serum/63 (76)

Gastric GNAQ-6:1 Down
regulation

Human – Serum/43 (77)

Gastric CEBPA-AS1 Upregul ation In vitro,
human

GES-1, SGC-7901, BGC-823 Plasma/281,
tissue/40

(78)

Gastric MIAT Upregul ation Human – Serum/109 (79)

Gastric HCG18 Upregul ation In vitro – – (80)

Gastric HEIH Upregul ation In vitro,
human

AGS, HGC-27, GES-1 Tissue/21 (81)

Gastric HOTTIP Upregul ation Human – Serum/126 (82)

Gastric LINC01559 Upregul ation In vitro, in
vivo, human

MKN74, NCI-N87, MKN-45, HGC-27, AGS Tissue/80 (69)

Gastric SPRY4-IT1 Upregul ation In vitro, in
vivo, human

GES-1, MKN28, SGC7901, BGC823 Tissue,
serum/68

(83)

Gastric ZFAS1 Upregul ation In vitro,
human

BGC-823, MGC-803, SGC-7901, MKN-28, GES-
1

Tissue,
serum/94

(84)

Gastric GC1 Upregul ation In vitro,
human

MGC-803, SGC-7901, MKN-28, MKN-45, AGS,
BGC-823, HGC-27, KATO III, HS-746T, SNU-
5, GES-1

Tissue,
serum/826

(85)

Gastric lnc-SLC2A12-10:1 Upregul ation In vitro,
human

MGC803, BGC823, SGC7901, AGS, GES-1 Plasma/60,
tissue/20

(86)

Gastric UEGC1 Upregul ation In vitro,
human

AGS, KATO III, NCI-N87, Hs 746 T Plasma/10 (87)

Gastric FRLnc1 Upregul ation In vitro,
human

AGS, SNU-1, HS-746T, KATO III, NCI-N87,
HGC-27, MKN45, GES-1

Tissue/60,
blood/68

(64)

Gastric LINC00152 Upregul ation – – Plasma/79 (88)

Gastric SND1−IT1 Upregul ation In vitro, in
vivo

GES-1 – (89)

Gastric X26nt Upregul ation In vitro, in
vivo, human

BGC-823, MGC-803, MKN-45, GES-1 Tissue,
serum/16

(90)

Gastric NR038975 Upregul ation In vitro, in
vivo, human

AGS, MGC-803, BGC-823 Tissue/84 (91)

Gastric RP11−323N12.5 Upregul ation In vitro, in
vivo, human

MKN45, MGC-803 Tissue/67 (92)

Pancreatic NONHSAT105177 Downregul
ation

In vitro, in
vivo, human

HPDE, PDAC, SW1990, Capan1, PATU8988,
HS766T, BXPC3, Panc1

Tissue/– (93)

Pancreatic ENST00000560647 Upregul ation In vitro PANC-1 – (94)

Pancreatic HULC Upregul ation In vitro,
human

hTERT-HPNE, Panc-1, MiaPaCa-2, BxPC-3 Serum/42 (95)

Pancreatic SBF2-AS1 Upregul ation In vitro, in
vivo

PANC-1, BxPC-3, SW1990, Capan-2, THP-1 – (96)

Pancreatic Sox2ot Upregul ation In vitro, in
vivo, human

BxPC-3, Capan-1, Hs 766 T Blood/61 (97)

Pancreatic UCA1 Upregul ation In vitro, in
vivo, human

PANC-1, MIA PaCa-2, BxPC-3, Aspc-1,
Sw1990, HEK293T

Serum/46 (98)

Pancreatic CCAT1 Upregul ation In vitro, in
vivo, human

HPDE6-C7, PANC-1, BxPC-3, MIA PaCa-2,
Capan-2

Tissue,
serum/93

(99)

Pancreatic MALAT1, CRNDE Upregul ation Human – Serum/– (100)

(Continued)
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TABLE 1 Continued

Cancers lncRNAs Expression
in GI

Model Cell line Sample
(type/

number)

Ref

Pancreatic SNHG11 Upregul ation In vitro, in
vivo

HPDE6-C7, PANC-1, AsPC1, SW1990, HS766T – (101)

Pancreatic linc-ROR Upregul ation In vitro, in
vivo, human

CCC-HPE-2, PANC-1, AsPC-1, MIA-PACA-2,
CFPAC-1, BxPC-3, HEK293T, 3T3-L1

Serum/48 (102)

Pancreatic LINC01133 Upregul ation In vitro, in
vivo, human

CFPAC-1, AsPC-1, Panc-1, SW1990, HPDE Tissue/32 (103)

Pancreatic LINC00623 Upregul ation In vitro, in
vivo, human

AsPC-1, BxPC-3, CFPAC-1, MIAPaCa-2,
PANC-1, HPNE, HEK-293T

Tissue/133,
serum/73

(104)

Colorectal HOTTIP Downregul
ation

Human – Serum/100 (105)

Colorectal LNCV6_116109, LNCV6_98390,
LNCV6_38772, LNCV_108266,
LNCV6_84003, LNCV6_98602

Upregul ation Human – Plasma/50 (106)

Colorectal H19 Upregul ation In vitro, in
vivo, human

HCT116, SW480 Tissue/10 (107)

Colorectal GAS5 Upregul ation Human – Tissue,
serum/158

(108)

Colorectal CRNDE, H19, UCA1, HOTAIR Upregul ation Bioinformatics HCT116, HT29, LoVo – (109)

Colorectal CRNDE-h Upregul ation In vitro, in
vivo, human

HCT116, SW480 SW620, HT-29, LoVo, FHC Tissue/50,
serum/148

(110)

Colorectal CRNDE-p Upregul ation In vitro, in
vivo, human

NCM460, HT-29, SW480, HCT-116, SW620,
LoVo, SW48, DLD-1, Caco2, HT-15

Serum/411 (111)

Colorectal MALAT1 Upregul ation In vitro, in
vivo, human

LoVo, HCT-8, SW620, SW480 Tissue/45 (112)

Colorectal KCNQ1OT1 Upregul ation In vitro, in
vivo, human

FHC, HEK-293T, SW480, SW1463, HT-29,
CT26

Tissue/20 (113)

Colorectal SNHG10 Upregul ation In vitro, in
vivo, human

SW480, NK92-MI Tissue/30 (114)

Colorectal HOTTIP Upregul ation In vitro, in
vivo, human

HCT116, SW620, LoVo, HT29, SW480,
SW1116, Caco2

Tissue,
blood/95

(115)

Colorectal CCAT2 Upregul ation Human – Tissue,
blood/75

(116)

Colorectal NNT−AS1 Upregul ation In vitro,
human

HCnEpC, LoVo, RKO, SW48, HCT116 Tissue,
blood/40

(117)

Colorectal LINC02418 Upregul ation In vitro,
human

DLD-1, SW480, HT29, HCT116, SW1116,
LOVO, FHC, HEK293T

Tissue/60,
blood/155

(118)

Colorectal LINC00659 Upregul ation In vitro LOVO, SW48 – (119)

Colorectal UCA1 Upregul ation In vitro, in
vivo, human

HCT116, DLD1, SW480, RKO, HT-29,
HCoEpiC, 293T

Tissue,
blood/68

(120)

Colorectal RPPH1 Upregul ation In vitro, in
vivo, human

HCT8, SW620, HT29, 293T Tissue/61 (121)

Colorectal APC1 Downregul
ation

In vitro, in
vivo, human

HCT116, DLD-1, SW480, LOVO, SW1116 Tissue/110 (122)

Colorectal CCAL Upregul ation In vitro, in
vivo, human

SW480, HCT116, HEK293T Tissues/30 (196)

Colorectal ADAMTS9-AS1 Downregul
ation

In vitro, in
vivo, human

DLD‐1, SW480, HT29, HCT116, SW1116,
LOVO

Tissue/109,
serum/130

(123)

Colorectal 91H Upregul ation In vitro,
human

HCT-8, HCT-116, FHC Serum/232 (124)

Colorectal FOXD2-AS1, NRIR, XLOC_009459 Upregul ation Human – Serum/203 (125)

Colorectal LINC00152 Downregul
ation

In vitro,
human

SW480-7 Serum/18 (126)

(Continued)
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TABLE 1 Continued

Cancers lncRNAs Expression
in GI

Model Cell line Sample
(type/

number)

Ref

Colorectal lnc-HOXB8-1:2 Upregul ation In vitro,
human

LoVo, 293 T, THP-1 Tissue/105 (127)

Colorectal LINC01315 Upregul ation In vitro SW480, HCT116 – (128)

Colorectal PCAT1 Upregul ation In vitro, in
vivo

HUVEC, NCM460, HCT116, SW480, T84 – (129)

Colorectal WEE2-AS1 Upregul ation In vitro, in
vivo, human

HCT 116, HT-29, HEK293T Tissue,
plasma/50

(130)

Colorectal PVT1 Upregul ation In vitro, in
vivo, human

HCT116, LoVo Tissue,
serum/40

(131)

Colorectal SPINT1-AS1 Upregul ation Human – Tissue/150,
serum/45

(132)

Esophageal ZFAS1 Upregul ation In vitro, in
vivo, human

EC9706, Eca109, TE-13, TE-1, TTN Tissue/136 (133)

Esophageal PART1 Upregul ation In vitro, in
vivo, human

TE1, TE6, TE8, TTn, KYSE-450 Serum/79 (134)

Esophageal POU3F3 Upregul ation In vitro,
human

KYSE450, TE12, Het-1a Blood/78 (135)

Esophageal NR_039819, NR_036133, NR_003353,
ENST00000442416.1, ENST00000416100.1

Upregul ation Human – Tissue/20,
blood/317

(136)

Esophageal AFAP1-AS1 Upregul ation In vitro, in
vivo

PBMC, KYSE410 – (137)

Esophageal UCA1 Downregul
ation

In vitro, in
vivo, human

EC18, Kyse140 Tissue/15,
plasma/30

(138)

Esophageal LINC01711 Upregul ation In vitro, in
vivo, human

ESC Tissue/137 (139)

Esophageal PCAT1 Upregul ation In vitro, in
vivo, human

KYSE30, KYSE70, KYSE140, KYSE150,
KYSE180, KYSE410, KYSE450, KYSE510,
COLO680N

Tissue,
serum/39

(140)

Esophageal FMR1-AS1 Upregul ation Human – Tissue/394 (141)

Esophageal RP5-1092A11.2 Upregul ation In vitro,
human

EC109, KYSE30, KYSE150 Tissue,
plasma/6

(142)

Esophageal FAM225A Upregul ation In vitro,
human

ECA109, TE-1, KYSE150, KYSE-410, HET-1A,
HUVEC

Tissue/30 (143)

Esophageal RP11-465B22.8 Upregul ation In vitro, in
vivo, human

TE-1, KYSE-150, KYSE-510, HEEC, THP-1 Tissue/26 (144)

Oral TIRY Upregul ation In vitro,
human

TCA8113 Tissue/145 (145)

Oral CAF Upregul ation In vitro, in
vivo, human

HSC-3 Tissue/140 (146)

Oral APCDD1L-AS1 Upregul ation In vitro,
human

SCC-4, HSC-3, TSCC1, SCC090, HN-4, NHOK Tissue/40 (147)

Oral LBX1-AS1 Upregul ation In vitro, in
vivo

SCC-4, CAL-27 – (148)

Hepatocellular FAL1 Upregul ation In vitro,
human

HepG2.2.15, LO2, Huh7, HepG2, SMMC-7721 Tissue,
serum/30

(149)

Hepatocellular TUC339 Upregul ation In vitro THP-1, U937, HL-7702 – (150)

Hepatocellular H19 Upregul ation In vitro HUVECs, Huh7, Sk-Hep – (151)

Hepatocellular LUCAT1, CASC9 Upregul ation In vitro,
human

HepG2, Hep3B, SNU398, SNU449, SNU182,
SNU475, PLC/PRF5, Huh-7

Tissue/60,
serum/14

(152)

Hepatocellular Linc-ROR Upregul ation In vitro HepG2, PLC-PRF5 – (153)

Hepatocellular CTD-2116N20.1, AC012074.2, RP11-
538D16.2, LINC00501, RP11-136I14.5

Upregul ation Human – Tissue/364 (154)
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and HMGA1 were upregulated, while miR-138-5p was

downregulated in PC cells and tissues. CCAT1 knockdown

suppressed proliferation while inducing apoptosis in PANC-1

cells. PANC-1 cell-derived exosomal CCAT1 significantly

reduced the proliferation and increased the apoptosis in

HUVECs. Downregulation of exosomal CCAT1 suppressed

the angiogenic function of HUVECs both in cell culture and

xenograft mouse models, while CCAT1 upregulation reversed

these effects and promoted angiogenesis. Mechanistically,

CCAT1 upregulated HMGA1 through sponging miR-138-5p.

Interestingly, miR-138-5p overexpression reversed the

promoting effects of CCAT1 on the angiogenic ability of

HUVECs in vitro. Collectively, this study suggested that

PANC-1 cell-derived exosomal CCAT1 promoted the
Frontiers in Oncology 10
angiogenic function of HUVECs via the miR-138-5p/HMGA1

axis (99).
Exosomal long non-coding RNAs and
colorectal cancer

Colorectal cancer (CRC) is the third most common human

malignancy and ranks as the fourth cause of cancer-related

mortality around the globe (50, 188, 189). Although intensive

investigations and some therapeutic advances have been made,

still more than 50% of CRC patients do not survive, which is

mainly due to late diagnosis and treatment (190). Therefore,

early diagnosis could improve survival in CRC patients. The
TABLE 1 Continued

Cancers lncRNAs Expression
in GI

Model Cell line Sample
(type/

number)

Ref

Hepatocellular ASMTL-AS1 Upregul ation In vitro, in
vivo, human

HepG2, Huh7, HCCLM3, SMMC7721, THLE-2 Tissue/70 (155)

Hepatocellular CRNDE Upregul ation Human – Serum/166 (156)

Hepatocellular SENP3-EIF4A1 Downregul
ation

In vitro, in
vivo, human

HL-7702, SMMC-7721, MHCC97L, HuH7,
Hep3b

Tissue,
plasma/50

(157)

Hepatocellular LINC00161 Upregul ation Human – Serum/20 (158)

Hepatocellular linc-FAM138B Downregul
ation

In vitro, in
vivo, human

SK-Hep-1, HepG2 Tissue/40 (159)

Hepatocellular DLX6-AS1 Upregul ation In vitro, in
vivo, human

SMMC-7721, HepG2, HL-7702, THP-1 Tissue/76 (160)

Hepatocellular MALAT1 Upregul ation In vitro, in
vivo, Human

HUVEC, Huh-7, Hep3B Tissue/82 (161)

Hepatocellular ENSG00000248932.1, ENST00000440688.1
ENST00000457302.2

Upregul ation Human – Blood/200 (162)

Hepatocellular ATB Upregul ation Human – Serum/79 (163)

Hepatocellular HULC Upregul ation In vitro,
human

HepG2, SMMC7721, LO2 Tissue,
serum/30

(164)

Hepatocellular MMPA Upregul ation In vitro, in
vivo, human

Hep3B, BEL7404 Tissue/265 (165)

Hepatocellular FAM72D-3 Upregul ation In vitro,
human

HepG2, Hep3B, SNU-423, PLC/PRF/5 Serum/45 (166)

Hepatocellular EPC1-4 Downregul
ation

In vitro,
human

HepG2, Hep3B, SNU-423, PLC/PRF/5 Serum/45 (166)

Hepatocellular ENSG00000258332.1, LINC00635 Upregul ation Human – Serum/55 (167)

Hepatocellular RN7SL1 Upregul ation Human – Plasma/77 (168)

Hepatocellular SNHG16 Upregul ation In vitro, in
vivo, human

Huh-7 Tissue/23,
plasma/10

(169)

Hepatocellular PCED1B-AS1 Upregul ation In vitro,
human

Huh-7, HepG2 Tissue/45 (170)

Hepatocellular TUG1 Upregul ation In vitro, in
vivo, human

HepG2 Tissue/120 (171)

Hepatocellular TUC339 Upregul ation In vitro Hep3B, HepG2, PLC/PRF/5 – (172)

Hepatocellular RP11-583F2.2 Upregul ation Human – Serum/60 (173)
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current diagnostic methods for CRC detection and screening,

such as carcinoembryonic antigen (CEA) blood test and

colonoscopy, are limited in their clinical application due to

low diagnostic power, high costs, and invasive procedures

producing discomfort (191, 192). Discovering the molecular

mechanisms involved in the pathogenesis of CRC may help to

develop novel biomarkers with improved potential for patient

diagnosis (193). A number of lncRNAs are known to be involved

in the underlying mechanisms responsible for the development

and progression of CRC (194). Exosomal lncRNAs may also

function as prognostic biomarkers in patients with CRC. For

instance, a recent work has investigated the role of circulating

exosomal lncRNAs as new CRC biomarkers and the function of

lncRNAs in the development of CRC (123). They identified a

new lncRNA, called ADAMTS9-AS1, which was downregulated

in CRC tissues, while the data retrieved from the TCGA

demonstrated that it was significantly associated with clinical

outcomes. Moreover, ADAMTS9-AS1 suppressed the

proliferation of SW1116 and HT29 cells, induced cell cycle

arrest, and inhibited tumor growth in vivo. Accordingly, the

in-silico analysis suggested that lncRNA-ADAMTS9-AS1

upregulation preferentially targeted genes associated with cell

proliferation and migration. Exploring the involved mechanism

of act ion, the authors found that ADAMTS9-AS1

downregulated b-catenin, indicating that the Wnt pathway

was involved in the regulatory role of ADAMTS9-AS1 on gene

expression to suppress CRC tumorigenesis. Exosomal

ADAMTS9-AS1 was shown to have diagnostic potential in

CRC with an area under the curve (AUC) of 0.835 and a 95%
Frontiers in Oncology 11
confidence interval of 0.777–0.911 in the receiver operating

characteristic (ROC) curve. Collectively, this study suggested

that ADAMTS9-AS1 could suppress tumorigenesis in CRC

through negative regulation of the Wnt signaling pathway.

Accordingly, targeting this lncRNA could have prognostic and

therapeutic potential in CRC patients, while exosomal

ADAMTS9-AS1 could be a novel diagnostic biomarker (123).

Numerous human cancers have been shown to express the

lncRNA H19 in large quantities. Compared with normal

fibroblasts (NFs), cancer-associated fibroblasts (CAFs) in CRC

have higher levels of H19 expression. Researchers discovered

that the exosomes produced by CAFs might transfer the lncRNA

H19 to nearby cells and activate the Wnt/b-catenin signaling

pathway in CRC cells, to promote carcinogenesis and cell growth

(107). The expression of lncRNA-UCA1 was higher in CRC

patient tissues and plasma exosomes. Mechanistically, UCA1

can act as a ceRNA by sponging miRNA-143, thereby

controlling the expression of MYO6. Researchers found that

after treatment of CRC patient-derived cells with exosomal

UCA1, the miR-143 expression was decreased, while the

MYO6 expression was increased, thus promoting the growth

of CRC cells (120). Exosomes may encapsulate lnc HEIH, which

can subsequently be delivered into normal GI cells to induce the

production of EZH2 and promote carcinogenesis by increasing

the methylation of the GSDME promoter (81). Together, these

findings suggest that dysregulation of exosomal lncRNAs might

serve as biomarkers for CRC patients.

Exosomal lncRNA UCA1 controls cell proliferation in

addition to mediating chemoresistance in CRC. Cetuximab-
FIGURE 4

The lncRNA-UCA1 derived from exosomes of hypoxic cancer cells induces angiogenesis via the miR-96-5p/AMOTL2 axis in pancreatic cancer (PC).
In summary, the hypoxic microenvironment, a crucial component of solid tumors, encourages the release of exosomes from tumor cells and
increases tumor angiogenesis. Human umbilical vein endothelial cells (HUVECs) responded well to hypoxic exosomes produced by PC cells in terms
of tube formation and cell migration. Exosomes derived from hypoxic PC cells were shown to have significant levels of the long non-coding RNA
(lncRNA) UCA1, which could then be transferred to HUVECs via the exosomes. microRNA (miR)-96-5p was sponged by UCA1, which counteracted
the suppressive effects of miR-96-5p on its target gene AMOTL2 expression. Hypoxic exosomal UCA1 might act as a potential target for PC therapy
by promoting tumor development and angiogenesis through the miR-96-5p/AMOTL2/ERK1/2 axis. This figure was adapted from Guo et al. (85).
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resistant cells expressed considerably more UCA1 than

cetuximab-sensitive cells. Further research revealed that

exosomal transfer of UCA1 from cetuximab-resistant CRC

cells could increase the cetuximab resistance of recipient cells

(195). lncRNA CCAL can increase the oxaliplatin (Oxa) and 5-

FU resistance of CRC cells, and CAF-derived exosomes could

deliver CCAL to these cells (196).

The clinical potential of the lncRNA RPPH1 in CRC patients

has been investigated in the study of Liang et al. (121). Their

findings revealed that RPPH1 was upregulated in CRC tissues

and was correlated with advanced TNM stage and poor survival

in CRC patients. The experimental analysis demonstrated that

RPPH1 promoted tumor metastasis in cell and xenograft animal

studies. Mechanistically, RPPH1 induced the EMT of CRC cells

via interacting with and preventing b-III tubulin (TUBB3)

ubiquitination. According to studies, overexpression of TUBB3

was functionally linked to enhanced cell motility and invasion of

EMT-induced cells (197, 198). Moreover, exosomal RPPH1

derived from CRC cells was found to be transported into

macrophages to mediate M2 polarization in recipient cells and

promoted the proliferation and metastasis of CRC cells.

Additionally, detectable plasma levels of exosomal RPPH1

were higher in treatment-naive patients, while they were

reduced after tumor resection. Interestingly, plasma exosomal

RPPH1 showed better diagnostic power (AUC = 0.86) in CRC

patients compared with the conventional tumor markers CEA

and CA-19-9. Taken together, this study suggested that RPPH1

could be a novel biomarker with diagnostic and therapeutic

potential in CRC patients (121).

MELK belongs to the AMP-activated protein kinase-related

kinase (AMPK) family, which is known to regulate various

biological processes, such as cell cycle, proliferation, apoptosis,

and cancer development (199–201). In CRC, MELK expression

was found to be significantly higher in tumor specimens

compared with healthy tissue and may contribute to cell cycle

progression and cancer development (202). Exosomal lncRNAs

have been reported to directly or indirectly control MELK

expression levels in CRC (203). Zhao et al. reported that

serum exosomal LINC02418 could be used as a potential

diagnostic biomarker for CRC patients (118). They found that

LINC02418 was upregulated both in cell lines and CRC tissues.

Mechanistically, LINC02418 upregulated MELK via sponging

miR-1273g-3p and acted as a ceRNA. Additionally, the

diagnostic performance of cell-free LINC02418 and exosomal

LINC02418 according to ROC and AUC curves revealed that

exosomal LINC02418 could distinguish CRC patients from

healthy individuals (AUC = 0.8978, 95% confidence interval =

0.8644–0.9351) with better performance compared with cell-free

LINC02418 (AUC = 0.6784, 95% confidence interval = 0.6116–

0.7452). Taken together, these findings demonstrated that

LINC02418 was upregulated in CRC and played a role in CRC

tumorigenesis via the miR-1273g-3p/MELK axis (118).
Frontiers in Oncology 12
Natural killer (NK) cells are a substantial component of the

immune system, which act as a surveillance system against

tumors by eradicating cancer cells by direct killing or

indirectly by secreting cytokines following their activation

(204). NK cells can also inhibit tumor growth and metastasis.

Some exosomal non-coding RNAs modulate the activity of NK

cells (205). For instance, hepatocellular carcinoma (HCC) cell-

derived exosomal circUHRF1 was demonstrated to induce NK

cell exhaustion and reduce tumor infiltration by NK cells (206).

Recently, a study has explored the mechanism involved in the

exosome-mediated immune escape of CRC cells from attack by

NK cells by transferring lncRNA cargoes (114). To establish an

EMT model of SW480 cells, transforming growth factor beta

(TGF-b) was used, and then the effect of the EMT-derived

exosomes (EMT-exo) on the activity of NK cells was

investigated. RNA sequencing was employed to identify the

exosomal lncRNAs and target genes. The effect of exosomal

lncRNAs on the proliferation of CRC tumors was confirmed in

vivo. The results demonstrated that EMT-exo inhibited several

characteristic functions of NK cells, including cell growth,

cytotoxic activity, and IFN-g production, as well as perforin-1

and granzyme B release. RNA sequencing also demonstrated the

upregulation of lncRNA SNHG10 in EMT-exo relative to non-

EMT-exo. Furthermore, SNHG10 was also upregulated in tumor

tissues and was correlated with poor survival of CRC patients.

Exosomal SNHG10 overexpression (oe-lnc-SNHG10 exo)

inhibited NK cell viability and cytotoxicity. NK cell RNA

sequencing showed upregulation of 114 genes in the oe-lnc-

SNHG10 exo group, including the inhibin subunit beta C

(INHBC), which plays a role in TGF-b signaling. INHBC

knockdown reversed the effect of oe-lnc-SNHG10 exo on NK

cells. oe-lnc-SNHG10 exo increased tumor growth through

upregulation of INHBC in vivo, while it reduced the

expression of perforin, granzyme B, and NK1.1 in cancer

tissues. Collectively, this study showed that CRC cell-derived

exosomal SNHG10 inhibited the antitumor activity of NK cells

through upregulation of INHBC, suggesting that exosomal

lncRNAs can help immune escape by suppressing NK cells

and could be a potential therapeutic strategy for CRC (114).

The programmed death receptor 1 (PD-1) has been reported

in several studies to mediate resistance to immune attack in

cancer (207–209). The programmed death ligand 1 (PD-L1)/

ubiquitin-specific protease 22 (USP22) axis has been found to

control tumor immune escape (210–212). USP22 is considered

to be an oncogene and can enhance the stability of substrate

proteins through the inhibition of proteasomal degradation

(213). PD-L1 was stabilized due to USP22 interactions. USP22

prevented PD- L1 proteasome degradation and led to its

deubiquitination (211). It was discovered that exosomal

lncRNA inhibited USP22 to facilitate PD-L1 ubiquitination

(113). In this regard, the potential mechanistic involvement of

lncRNA KCNQ1OT1 in tumor immune escape has been
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explored (113). Differentially expressed lncRNA and miRNAs

were identified in healthy and tumor tissue samples using the

GEO database and microarray analysis. RT-qPCR was employed

to measure KCNQ1OT1, miR-30a-5p, USP22 as an oncogene,

and PD-L1 expression levels. The interaction between

KCNQ1OT1 and miR-30a-5p was confirmed by a dual-

l u c i f e r a s e r epor t e r a s s a y and r ibonuc l eopro t e in

immunoprecipitation (RIP) assay. Cell Counting Kit (CCK)-8,

colony formation, scratch wound healing, and apoptosis assay

were employed to assess tumor cell functions following

treatment. The effect of USP22 on PD-L1 ubiquitination was

studied by protein half-life assay and ubiquitination

measurement. Finally, the effects of treatment on tumor

growth and immune escape were explored in BALB/c mice

and BALB/c nude mice. The results showed that KCNQ1OT1

was upregulated in tumor tissues and cancer cell-derived

exosomes. KCNQ1OT1 overexpression promoted the

malignant behavior of cancer cells due to the autocrine effect

of cancer cell-derived exosomes. In turn, these exosomes

mediated their effects through the miR-30a-5p/USP22 axis to

modulate PD-L1 ubiquitination and suppress CD8+ T-cell

responses, which eventually contributed to CRC development.

Overall, this study found that KCNQ1OT1 was transferred by

cancer cell-derived exosomes to regulate PD-L1 ubiquitination

through the miR-30a-5p/USP22 axis to enhance CRC immune

escape (113).
Exosomal long non-coding RNAs and
esophageal cancer

Esophageal squamous cell carcinoma (ESCC) is among the

most aggressive malignancies, with a 5-year survival rate of only

15%–25% (214). ESCC patients often are diagnosed only at

advanced stages and are resistant to conventional therapeutic

regimens (50). Concurrent chemoradiotherapy (CCRT) is

considered to be the standard therapy for these patients (215).

A combination of cisplatin-based chemotherapy and

radiotherapy (RT) has been shown in several randomized

clinical trials to improve the 5-year survival rate in ESCC

patients compared with those treated with RT alone (216).

Although overall survival has been improved in patients

receiving CCRT, cisplatin resistance often develops in patients

with locally advanced cancer and is the main problem in the

treatment of these patients (217). Exosomal lncRNAs have been

reported in a number of studies to directly or indirectly

participate in ESCC development and progression (133,

135, 218).

Fascin1 (FSCN1) is a member of the Fascin family and is

involved in various biological processes like cell migration,

motility, adhesion, and intercellular interaction (219). FSCN1

is differentially expressed in cancer cells, where it organizes actin

filaments into pseudopodia and enhances ECM degradation by
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matrix metalloprotease (MMPs) and, therefore, contributes to

the malignant phenotype and development and progression of

tumors (220). The regulatory relationship between exosomal

lncRNAs and cancer cell malignancy by regulating FSCN1 has

been demonstrated (139). In this study, they investigated the

potential effect of exosomal lncRNA LINC01711 on the

treatment and prognosis of ESCC. Their results demonstrated

that LINC01711 was upregulated in ESCC tissues, while its

expression levels were associated with poor survival in patients

(139). LINC01711 knockdown was shown to suppress the

malignant phenotype of ESCC cells, while it also induced

apoptosis. Mechanistically, LINC01711 sponged miR-326 to

upregulate its target gene fascin actin-bundling protein 1

(FSCN1). Moreover, xenograft animal studies demonstrated

that exosomal LINC01711 (LINC01711-Exo) promoted tumor

growth in vivo. Overall, exosomal LINC01711 enhanced the

proliferation, migration, and invasion of ESCC cells through the

miR-326/FSCN1 axis and, therefore, promoted ESCC

development and progression (139).

The uncontrolled proliferation of cancer cells is the first step

in tumor development. Exosomal lncRNAs have been

discovered to faci l i tate this process in the tumor

microenvironment (21). For instance, lncRNA ZFAS1 was

higher in cancer tissues and could be transmitted between

cancer cells via exosomes in ESCC. ZFAS1 was knocked down

to explore its potential role in the malignant phenotype of ESCC

cells. The expression of exosomal lncRNA ZFAS1 and the

underlying mechanism involved in ESCC progression has been

examined (133). A stable donor and recipient cell culture model

was established. ZFAS1 silencing and overexpression, in

addition to miR-124 inhibition experiments, were conducted

to study their effects on cell proliferation, migration, and

invasion and exosome trafficking in Eca109 cells. The in- vitro

findings were confirmed by in- vivo experiments. The results

demonstrated that ZFAS1 was upregulated and miR-124 was

downregulated in ESCC tissues. ZFAS1 knockdown inhibited

the proliferation, migration, invasion, while it increased the

apoptosis in ESCC cells. Mechanistically, ZFAS1 acted by

sponging miR-124 to upregulate STAT3. Exosomal ZFAS1 also

was found to promote the malignant phenotype in ESCC cells,

while it suppressed apoptosis and caused the same changes in

STAT3 and miR-124 expression levels as seen for ZFAS1

overexpression. Additionally, exosomal ZFAS1 showed the

same effect on tumor growth in vivo. Taken together, this

study demonstrated that exosomal ZFAS1 promoted the

malignant phenotype of ESCC cells through the miR-124/

STAT3 axis and, thus , could contr ibute to ESCC

development (133).

The tumor microenvironment (TME) has been found to

play a substantial role in the development and progression of

ESCC, similar to other cancers. In ESCC patients, the presence of

fibroblast activation protein (FAP)-positive CAFs in the tumor

stroma was reported to correlate with lymph node metastasis
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and poor prognosis (221). Studies have shown that adjacent NFs

promote the recruitment and activation of CAFs (222, 223).

However, CAFs have a greater potential to promote

proliferation, invasion, and chemoresistance in various cancers

compared with NFs (107, 224). Additionally, a number of

studies have reported that CAFs can confer chemoresistance in

cancer cells by releasing soluble factors such as interleukin-6 (IL-

6), IL-11, hepatocyte growth factor (HGF), and TGF-b (225–

228). The role of ESCC-derived exosomal lncRNAs in fibroblast

activation, cancer progression, and cisplatin resistance has been

shown (135). The results demonstrated that cancer cell-derived

exosomal lncRNAs may contribute to cisplatin resistance in

ESCC by transforming NFs into CAFs. Tumor tissues and

normal esophageal epithelial tissues isolated from ESCC

patients were used for the isolation of primary CAFs and

matched NFs. Tong et al. investigated exosomal lncRNA

transport between ESCC cells and NFs using fluorescence

microscopy and qRT-PCR. To identify the lncRNAs involved

in the process, the expression of 14 ESCC-related transcripts was

analyzed in NFs following treatment with ESCC cell-derived

exosomes. Their results revealed the transport of lncRNA

POU3F3 from ESCC cells to NFs via exosomes and that

exosomal POU3F3 contributed to fibroblast activation. In turn,

activated fibroblasts enhanced the growth and cisplatin

resistance of ESCC cells by secretion of IL-6. Furthermore,

evaluation of POU3F3 expression in ESCC patients

demonstrated a significant association between exosomal

POU3F3 expression levels in plasma and the lack of complete

responses and poor prognosis in ESCC patients. Overall, the
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findings in this study showed that exosomal POU3F3 promoted

cisplatin resistance in ESCC, mediated via the transportation of

exosomal POU3F3 from NFs to CAFs contributing to their

transformation (135).

In another study, researchers investigated the effect of M2

macrophage-derived exosomes on the invasion and metastasis of

esophageal cancer (EC) cells via the AFAP1-AS1/miR-26a/ATF2

axis (137). Their results showed that lncRNA AFAP1-AS1

targeted miRNA miR-26a to upregulate act ivat ing

transcription factor 2 (ATF2). Moreover, they showed that

AFAP1-AS1 and ATF2 were both upregulated, while miR-26a

was downregulated in M2 macrophage-derived exosomes. These

exosomes were able to transfer AFAP1-AS1 into EC cells in

order to sponge miR-26a and then upregulate ATF2, to enhance

the invasion and metastasis of EC (Figure 5). Taken together,

they concluded that targeting M2 macrophages and the AFAP1-

AS1/miR-26a/ATF2 axis may be a novel strategy for the

treatment of EC (137).
Exosomal long non-coding RNAs and
oral cancer

Oral cancer arises in the lips or oral cavity. Most oral tumors

originate from the squamous cells lining the organs called oral

squamous cell carcinoma (OSCC) (229). Oral cancer tissues

histologically can have various levels of differentiation and often

show a tendency for metastasis to lymph nodes (230). Globally,

oral and pharyngeal malignancies collectively are the sixth most
FIGURE 5

The M2 macrophage-derived exosomal lncRNA AFAP1-AS1 enhances the migration and invasion of EC cells and tumor metastasis through the
AFAP1-AS1/miR-26a/ATF2 axis. Exosomes from immune or cancer cells can transport bio-macromolecules or lncRNAs to affect the development or
progression of tumors by altering the microenvironment. ATF2 was a direct target of miR-26a, and lncRNA AFAP1-AS1 could selectively sponge
miR-26a to reduce its expression. Exosomes produced by M2 macrophages had reduced miR-26a expression and greater AFAP1-AS1 and ATF2
expression. Additionally, extracellular AFAP1-AS1 might be transferred to KYSE410 cells by combining with exosomes produced by M2 macrophages.
Through the high expression of AFAP1-AS1, M2 macrophage-derived exosomes may downregulate miR-26a and enhance the expression of ATF2,
allowing EC cells to migrate, invade, and metastasize; M2-exosomes that increased AFAP1-AS1 or decreased miR-26a attenuated this effect. This
figure was adapted from Mi et al. (137).
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commonly diagnosed types of cancer (231). Similar to other

types of GI cancer, exosomal lncRNAs have been found to play a

role in the development and progression of oral cancer (232).

lncRNAs can act either as tumor-suppressor genes or as

tumor promoters or oncogenes. However, the development

and spread of cancer is a multistep process that entails mutual

autocrine–paracrine communications (e.g., controlled via

secreted proteins or exosomes) between tumor cells and the

nearby stromal cells (233, 234). CAFs are the most significant

infiltrating non-immune cells within the stroma and promote

tumor growth and metastasis in a paracrine manner (235).

Other cell types such as bone marrow-derived mesenchymal

stem cells, tissue adipocytes, circulating fibrocytes, and

endothelial cells can also develop fibroblast markers during

cancer progression and other inflammatory environments.

However, CAFs are primarily produced from and activated

by NFs. The roles of lncRNAs in CAFs are still not fully

understood. The TME is a significant source of CAFs and

can reprogram NFs so they can become protumorigenic CAFs

(236–241). Therefore, it is necessary to understand how the

stromal microenvironment affects CAF transformation. In this

context, the exosomal lncRNA signature in stromal fibroblasts

(NFs/CAFs) in OSCC was explored, including how the lncRNA

profile changes during the NF/CAF transition (146). Ding et al.

measured lncRNA expression levels in stromal fibroblasts and

studied how they interacted with target miRNAs (146). RNA

sequencing revealed a specific stromal lncRNA signature

during the transformation of NFs into CAFs in OSCC

tissues. Among them, a previously uncharacterized lncRNA

was identified called FLJ22447, also known as LncRNA-CAF,

which was significantly upregulated in CAFs. Interleukin-33

(IL-33) was mainly detected in the stromal space, where it

showed a positive co-expression with Lnc-CAF to upregulate

a-SMA, vimentin, and N-cadherin, which are CAF markers in

fibroblasts. IL-33 silencing inhibited Lnc-CAF-mediated

activation of stromal fibroblast and contributed to reduced

proliferation of cancer cells. Mechanistically, Lnc-CAF

increased IL-33 expression through inhibition of the p62-

dependent autophagy–lysosome pathway without involving

an lncRNA–protein complex. Autophagy induction using

rapamycin suppressed the enhancing effect of Lnc-CAF/IL-33

on cell proliferation by promoting IL-33 degradation.

Subsequently, the cancer cells further upregulated Lnc-CAF

expression in stromal fibroblasts via exosomal transport.

Clinical data demonstrated that high levels of Lnc-CAF/IL-33

in OSCC patients were correlated with advanced TNM stage

and poor survival. Moreover, Lnc-CAF silencing suppressed

tumor growth in vivo as shown by reduced Ki-67 expression

and fewer stromal a-SMA- positive CAFs. Taken together,

Ding et al. reported a stromal lncRNA signature with a role in

the promotion of OSCC progression by transforming NFs into

CAFs via exosomal Lnc-CAF/IL-33 transport (146).
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Exosomal long non-coding RNAs and
hepatocellular carcinoma

Liver cancer accounts for the seventh most common human

malignancy and the second deadliest. HCC is the most commonly

diagnosed type of liver cancer, with a decreasing incidence in Asia

and Italy, but an increasing pattern in the United States, European

countries, and India (242). Chronic viral infections including

hepatitis B virus (HBV) and hepatitis C virus (HCV) (243), along

with non-infectious causes such as alcoholism, non-alcoholic fatty

liver disease (NAFLD), and aflatoxinB1consumption, are themain

risk factors forHCC(244).Mechanistically, underlying factorshave

been identified to cause damage to the DNA, epigenetic changes,

and development of some mutations related to the inactivation of

tumor suppressor genes like tumor protein p53 (TP53), cadherin 1

(CDH1), and the Ras association domain family member 1

(RASSF1). Moreover, activation of proto-oncogenes such as

MYC, VEGFA, and MAPK7 can lead to HCC progression (245–

248). A number of studies have reported the role of exosomal

lncRNAs in the development and progression of HCC (150, 158,

167, 249).

DLX6 antisense RNA 1 (DLX6-AS1) is an oncogenic lncRNA

with a known function in the development and progression of

various human malignancies like HCC (250). Wang et al.

investigated the involvement and underlying molecular

mechanism of exosomal DLX6-AS1 in HCC (160). The

expression levels of DLX6-AS1, miR-15a-5p, and CXCL17 were

measured in HCC cells and tissues. DLX6-AS1-overexpressing

exosomes were isolated from HCC tissues and then co-cultured

withM2macrophages. MiR-15a-5p and CXCL17 silencing studies

were conducted in macrophages. M2 macrophages were then co-

culturedwithHCCcells to assess the effect of exosomalDLX6-AS1-

mediated macrophage polarization on the malignant phenotype of

cancer cells in vitro and tumormetastasis in vivo. Next,DLX6-AS1/

miR-15a-5p andmiR-15a-5p/CXCL17 interactions were explored.

The results demonstrated the upregulation of DLX6-AS1 and

CXCL17, while miR-15a-5p was downregulated in HCC cells.

HCC-exo positively regulated M2 macrophage polarization to

promote migration, invasion, and EMT in HCC cells. These

effects were enhanced by overexpression of DLX6-AS1;

accordingly, DLX6-AS1 knockdown reversed these cellular

properties. Furthermore, miR-15a-5p targeting enhanced M2

macrophage polarization and further promoted the invasion and

metastasis of HCC. However, inhibition of the C-X-C motif

chemokine 17 (CXCL-17) showed the opposite effects. It is

known that in HCC, CXCL17 correlates with poor prognosis and

low immune infiltration (251).CXCL17 ishighly expressed inHCC

tissues, and its overexpression promoted the migration and

invasion of HCC cells, while its knockdown reversed these effects

(252). Mechanistically, DLX6-AS1 was found to sponge miR-15a-

5p and to upregulate CXCL17. Moreover, in-vivo results revealed

that HCC cell-derived exosomal DLX6-AS1 enhanced lung
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metastasis through induction of M2 macrophage polarization.

Overall, HCC cell-derived exosomal DLX6-AS1 regulated

CXCL17 by sponging miR-15a-5p and, consequently, induced

M2 macrophage polarization, which eventually promoted the

migration, invasion, and EMT of HCC (160).

The Yes-associated protein 1 (YAP1) is a major protein

functioning in the Hippo signaling pathway and regulates several

biological processes like tissue regeneration, morphological

characteristics, metabolism, and carcinogenesis, in addition to

affecting intercellular communication, cell cycle surveillance, cell

signaling, and cytoskeletal remodeling (253–257). Despite the fact

that YAP1 has no direct DNA-binding activity, it is a known

transcriptional co-activator, which regulates gene expression by

interacting with other transcription factors. YAP1 can show dual

functions in tumorigenesis, either as an oncogene contributing to

tumor development or as a tumor- suppressor gene suppressing

carcinogenesis. These contradictory effects depend on the precise

transcription factor towhichYAP1binds and alsoon its subcellular

localization (258).YAP1hasbeenreported tobehighlyexpressed in

blood vessels in HCC tissues, which suggests that YAP1may play a

role in angiogenesis (259). Nevertheless, the molecularmechanism

by which YAP1 affects angiogenesis is not known and requires

further investigation. YAP1 has been reported to be involved in

regulating the expression of lncRNAs (260). Recently, researchers

explored the potential role of YAP1 in exosomal lncRNA-mediated

angiogenesis in HCC (161). They showed that YAP1 knockdown

suppressed the proliferation and tube formation in vascular

endothelial cells, suggesting that it could be a target for anti-

angiogenesis therapy. YAP1 knockdown or inhibition also

enhanced the release of the lncRNA MALAT1-loaded exosomes

into the TME. When these exosomes were co-cultured with HCC

cells, their invasion andmigrationwere increased,whichwas found

to be due to the activation of the extracellular signal-regulated

kinase 1/2 (ERK1/2) signalingpathway.This study shed light on the

underlyingmechanism and novel pathways involving YAP1 in the

development of distant tumor metastasis in anti-angiogenesis

regimens and suggested novel targets to improve the long-term

effectiveness of anti-angiogenesis treatment (161).

In a study by Li et al. (150), the authors reported that exosomal

lncRNA TUC339 derived from HCC cells could regulate the

activation and polarization of macrophages (150). Their findings

showed high levels of the lncRNA TUC339 within HCC exosomes

which could be transferred to THP-1 macrophage cells. TUC339

silencing increased pro-inflammatory cytokines, elevated the

expression of co-stimulatory molecules, and increased

phagocytosis in THP-1 cells, while its overexpression showed the

opposite effects, indicating the role of TUC339 in regulating

macrophage polarization. Furthermore, increased expression

levels of TUC339 were detected in M2 macrophages compared

with theM1 phenotype, while TUC339 was downregulated during

theM2-to-M1 repolarization and vice versa. Accordingly, TUC339

silencing in IL-4-treated macrophages reduced the expression of

M2markers, while TUC339 overexpression in IFN-g+LPS-treated
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macrophages enhanced these markers. These findings suggest that

lncRNA TUC339 plays an essential role in regulating M1/M2

polarization in macrophages. Microarray analysis revealed that a

variety of biological processes like cytokine–cytokine receptor

interactions, CXCR chemokine receptor binding, Toll-like

receptor (TLR) signaling, FcgR-mediated phagocytosis,

cytoskeleton arrangement, and cell growth were associated with

TUC339 expression in macrophages. Overall, this study revealed

undiscovered regulatory functions of lncRNATUC339 loaded into

HCC cell-derived exosomes on the macrophage phenotype, in

addition to complex interactions between cancer cells and

immune cells via exosomal lncRNAs (150).

CD90 (Thy-1) is a GPI-anchored protein of 25– 37 kDa

molecular weight, which is expressed and incorporated into the

cell membrane of various cells, such as T lymphocytes, neurons,

endothelial cells, and fibroblasts. CD90 has been found to play a

role in intercellular interactions, cell–matrix interactions,

apoptosis, cell adhesion, migration, fibrosis, and tumorigenesis

(261). CD90 expression has been found to be elevated in hepatic

stem/progenitor cells (262) and was associated with the malignant

and differentiated phenotype of HCC cells in tumors (263) and a

poor survival rate in HCC patients (264–266). Additionally,

CD90+ HepG2 cells have shown aberrant expression of pro-

and anti-apoptotic genes compared with CD90 − HepG2 cells

(267). Recently, the exosome-mediated interactions of CD90+

HCC cells with endothelial cells have been investigated (151).

Isolation and characterization of exosomes were conducted for

both liver CD90+ cells and HCC cell lines. Isolated exosomes were

used for the treatment of endothelial cells, which also were

transfected with a plasmid encoding lncRNA H19. Then, the

endothelial phenotype in treated cells was assessed using

molecular and functional studies. The results revealed that the

CD90+ cancer cell-derived exosomes affected the phenotype of

endothelial cells to promote angiogenesis and intercellular

adhesion. However, these effects were not seen for parental HCC

cell lines. lncRNA profiling showed high expression of H19 in

CD90+ cells, which was released inside exosomes. H19 silencing

and overexpression demonstrated that H19 was involved in

regulating the phenotype of endothelial cells through exosomes.

Overall, these findings suggested a novel mechanism of action

mediatedbyexosomesbywhichCSC-likeCD90+ cells can affect the

surrounding TME by enhancing angiogenesis. Additionally, the

lncRNAH19 could be a potential therapeutic target in HCC (151).
Conclusion

Exosomal lncRNAs are extremely important in many cancer-

related processes, such as cell growth, metastasis, angiogenesis,

immunomodulation, and drug resistance. Exosomal lncRNAs

carry primary biological information that can be extracted to

help understand, diagnose, and treat GI cancers. Exosomal

lncRNAs can serve as possible cancer biomarkers since their
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levels often correlate with the disease severity in cancer patients.

Exosomal lncRNAs, an emerging class of cancer biomarkers, have

advantages over conventional markers. Exosomal lncRNAs can be

employed as therapy targets in addition to helping with GI cancer

diagnosis and prognosis. Exosomal lncRNAs are involved in the

development of GI cancer and drug resistance; therefore, drugs

which block their activity may be helpful in the treatment of

cancer. However, even in recent studies, the importance of

exosomal lncRNAs in GI cancer is only poorly understood.

Exosomal lncRNAs are predicted to become more significant in

the clinical management of GI cancer as further preclinical

investigation progresses.
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