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The glymphatic system is responsible for waste clearance in the brain. It

is comprised of perivascular spaces (PVS) that surround penetrating blood

vessels. These spaces are filled with cerebrospinal fluid and interstitial fluid,

and can be seen with magnetic resonance imaging. Various algorithms have

been developed to automatically label these spaces in MRI. This has enabled

volumetric and morphological analyses of PVS in healthy and disease cohorts.

However, there remain inconsistencies between PVS measures reported

by different methods of automated segmentation. The present review

emphasizes that importance of voxel-wise evaluation of model performance,

mainly with the Sørensen Dice similarity coefficient. Conventional count

correlations for model validation are inadequate if the goal is to assess

volumetric or morphological measures of PVS. The downside of voxel-

wise evaluation is that it requires manual segmentations that require large

amounts of time to produce. One possible solution is to derive these semi-

automatically. Additionally, recommendations are made to facilitate rigorous

development and validation of automated PVS segmentation models. In the

application of automated PVS segmentation tools, publication of image quality

metrics, such as the contrast-to-noise ratio, alongside descriptive statistics of

PVS volumes and counts will facilitate comparability between studies. Lastly,

a head-to-head comparison between two algorithms, applied to two cohorts

of astronauts reveals how results can differ substantially between techniques.
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The glymphatic system and
perivascular spaces

In the human body, the lymphatic system is the main
pathway for waste clearance (Cueni and Detmar, 2008).
Generally, lymphatic organs are concentrated in regions of
higher energy consumption and production of metabolic waste
(Louveau et al., 2018). The lymphatic system, however, does
not appear to extend to the nervous system, despite the
brain’s vast metabolic demands (Iliff et al., 2013). Instead,
the maintenance and waste management of the neuronal
environment is governed by the glymphatic system (Hladky and
Barrand, 2014; Bakker et al., 2016; Plog and Nedergaard, 2018).
Aptly named, the glymphatic system eliminates waste in the
brain with a system of glial cells and cerebrospinal fluid (CSF).

The prevailing understanding of glymphatic clearance
involves the convective fluid flow of CSF through perivascular
spaces (PVS), which are formed and lined by glial cells.
At the microscopic scale, the glymphatic system comprises
perivascular spaces surrounding the cerebral vasculature, also
termed perivascular units (Figure 1; Troili et al., 2020).
CSF produced in the choroid plexus traverses through the
subarachnoid space to irrigate perforating blood vessels. As
these vessels penetrate deeper into the cortex, the meningeal
layers become continuous with astrocytic endfeet, forming a
CSF-filled chamber that encapsulates the cerebral vascular tree
(Jessen et al., 2015). The astrocytic end feet densely express
aquaporin-4 channels (AQP4) which facilitate the exchange of
CSF and interstitial fluid (ISF) between PVS and extracellular
spaces (Iliff et al., 2013; Huguenard et al., 2017).

Multiple models have been proposed to explain the fluid
flow that occurs in and around perivascular spaces (Hladky and
Barrand, 2014, 2022; Bohr et al., 2022). According to one widely
held model, CSF flushes out from the periarteriolar spaces,
via mechanisms including convective fluid flow and arterial
pulsations, into the interstitial space to flush waste metabolites
towards perivenular spaces (Figure 1; Troili et al., 2020). At the
perivenular spaces, interstitial waste is directed to major areas of
CSF clearance and fluid filtration via dural glymphatic drainage
pathways such as the venous sinuses (Albayram et al., 2022).
This is known as glymphatic flow (Xie et al., 2013; Rasmussen
et al., 2018).

The glymphatic system

Much of our understanding of the glymphatic system
stems from animal models. Animal models have provided
evidence suggesting that the clearance of metabolic waste in
the interstitial space is modulated by sleep/wake states, and that
the restorative effects of sleep may largely be due to glymphatic
processes. For example, Xie et al. (2013) used a mouse model to
demonstrate that the glymphatic system is most active during

FIGURE 1

Schematic of the perivascular unit adapted from Troili et al.
(2020). (Top) Arteries and veins from the subarachnoid space
penetrate the parenchyma, perpendicular to the cortical
surface. (Middle) Metabolites are extruded from arterioles and
into the extracellular space, whilst metabolic waste flows
towards the perivenular spaces for glymphatic clearance from
the neuropil. (Bottom left) Astrocytic endfeet enclosing a
penetrating arteriole which forms the perivascular space.
(Bottom right) Aquaporin-4 trans-membrane channels line the
astrocytic end-feet and facilitate the exchange of cerebrospinal
fluid and interstitial fluid between PVS and extracellular space.
Reproduced under the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/
4.0/).

sleep, compared to awake or anesthetized mice (Xie et al.,
2013). Additionally, glymphatic flow appears to be facilitated
by shrinkage of the neuronal environment leading to greater
interstitial space (Jessen et al., 2015). The importance of AQP4
channels in glymphatic functioning was outlined by Iliff et al.
(2012), when AQP4 knock-out mice showed reduced clearance
of amyloid-β by 55% and developed memory deficits. Iliff et al.
(2012) also showed that this system preferentially mediates the
filtration of solutes of smaller molecular size (<3 kDa), having
clear implications in neurodegenerative diseases characterized
by the harmful accumulation of small neurotoxins such as
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FIGURE 2

A histological slice of the superior frontal gyrus from an
Alzheimer’s disease patient with numerous enlarged perivascular
spaces in the white matter (Roher et al., 2003). PVS appear as
bright tubular structures and are mainly present in white matter
as opposed to gray matter. Adapted from Roher et al. (2003) and
reproduced with permission from Springer Nature, conveyed via
the Copyright Clearance Center, Inc.

amyloid-β (Iliff et al., 2012; Huguenard et al., 2017). In disease
models, glymphatic functions appear to be attenuated. For
example, mouse models of Alzheimer’s disease (AD) exhibited
reduced clearance of amyloid-β from the extracellular space
(Harrison et al., 2020). Similarly, in a diabetes mellitus mouse
model, glymphatic flow was attenuated with delayed clearance
of contrast agents from the interstitial space (Jiang et al., 2017;
Zhang et al., 2019).

In humans, contrast-enhanced magnetic resonance imaging
has been used to show greater clearance of contrast agents
shortly after sleep, compared to waking activity, providing
further evidence that the glymphatic clearance may be most
active during sleep (Lee et al., 2021). Moreover, dysfunctions
of the glymphatic system have been associated with many
diseases in humans, including cerebral small vessel disease, AD,
and multiple sclerosis (Ge et al., 2005; Mogensen et al., 2021;
Natário et al., 2021; Benveniste and Nedergaard, 2022). For
example, ex vivo examination of histological slices from the
white matter of an AD patient revealed enlarged perivascular
spaces (Figure 2) compared to an age-matched control (Roher
et al., 2003). The majority of in vivo research in humans,
however, uses magnetic resonance imaging to evaluate the extent
of perivascular space enlargements.

Characterization of perivascular spaces

Perivascular spaces were first discovered in the early 1800s
and described as état criblé, or diffusely enlarged, for their

widespread occurrence in the basal ganglia. They are also
known as Virchow-Robin spaces, after Virchow and Robin
who hypothesized them to be spaces that are continuous
with perineuronal spaces (Woollam and Millen, 1955). Since
the arrival of neuroimaging techniques in the late 1980s,
enlarged PVS have been observed in vivo (Wardlaw et al.,
2020).

Magnetic resonance imaging (MRI) is the current standard
for in vivo assessment of PVS in humans. MRI is used to evaluate
PVS visibility as a proxy measure of glymphatic dysfunction,
and potential occlusion of drainage pathways (Rasmussen et al.,
2018). PVSs, particularly when enlarged, are observable in MRI
scans (Figures 3, 4; Kwee and Kwee, 2007). Structurally, PVS
are long tubular structures that follow cerebral blood vessels
(Wardlaw et al., 2013). On MR scans, their appearance depends
on the viewing plane and the MRI weighting sequence. On both
T1 and T2 weighted images, PVSs are CSF isointense. Thus,
they are hypointense or dark on T1 images and hyperintense
or light on T2 (Kwee and Kwee, 2007). When viewed along a
parallel axis, such as the sagittal or coronal planes, PVS appear
as long tubular shapes. On axial slices, PVS appear as small
ovoid structures typically less than 3 mm in diameter (Figure 3;
Wardlaw et al., 2013). In rare cases, giant tumefactive PVS can
exceed 15 mm in diameter (Salzman et al., 2005).

The severity of PVS enlargement is graded by a rater
according to established visual rating scales (Figure 3; Patankar
et al., 2005; Adams et al., 2013; Potter et al., 2015a; Paradise et al.,
2020). Subsequently, these severity scores are associated with
features of interest including disease markers and risk factors.
Using visual rating scales, the severity of PVS enlargement
has been associated with and subsequently proposed as a
potential biomarker of various neurodegenerative disorders
such as cerebral small vessel disease, AD, neuroinflammation in
multiple sclerosis, and cerebral amyloid angiopathies (Hansen
et al., 2015; Bakker et al., 2016; Ramirez et al., 2016; Rasmussen
et al., 2018; Granberg et al., 2020). Notably, a general weakness of
T1 and T2 MRI sequences is that it cannot differentiate between
perivenular and periarteriolar spaces (Wardlaw et al., 2020).

Perivascular spaces occur throughout the brain. The most
commonly examined regions are the centrum semiovale (CS)
and the basal ganglia (BG) (Figure 3). The CS is the mass
of white matter (WM) superior to the lateral ventricles, and
the BG, which is adjacent to the lateral ventricles and includes
the caudate and putamen. Importantly, the anatomy and
pathology of PVS are different between regions. In the white
matter, blood vessels from the subpial space penetrate the
cortical surface and into the parenchyma, are lined by a single
leptomeningeal layer: the pia mater (Pollock et al., 1997).
In the basal ganglia, penetrating blood vessels are lined by
two leptomeningeal layers that connect to the subarachnoid
space (Pollock et al., 1997). Thus, the pathophysiology of
PVS differ substantially between these two regions (Wardlaw
et al., 2020). For a review of the differences between cortical
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FIGURE 3

PVS rating scales rely on representative axial slices to assess the severity of PVS enlargement. (Left) A sagittal view of the brain, from a
T1-weighted MRI scan. The red lines indicate the axial slices that have been selected for visual PVS rating. The upper line was chosen to assess
PVS in the centrum semiovale, and the lower line was chosen for the basal ganglia. The centrum semiovale is the mass of white matter above
the lateral ventricles. (Middle) An axial slice of the centrum semiovale corresponding to the top line. (Right) An axial slice of the basal ganglia
corresponding to the bottom line. Visible perivascular spaces are outlined by red circles. For an extensive review of rating scales, please refer to
Paradise et al. (2020).

FIGURE 4

Axial slices of MRI-visible brain lesions, including PVS, white matter hyperintensities, microbleeds, and lacunes. PVS appear as hyperintense and
tubular shapes in T2-weighted MRI scans (Left). White matter hyperintensities are prominent on FLAIR images (Middle-Left). Other lesions that
can be confused with PVS include microbleeds (Middle-Right) and lacunes (Right). In FLAIR scans, lacunes are surrounded by a hyperintense
rim, whereas PVS are not. Imaging artifacts such as Gibbs ringing, and motion artifacts can also hinder the automated detection of PVS. Figures
of microbleeds and lacunes were adapted from Chesebro et al. (2021) and Li et al. (2019), respectively. The figures are reproduced under the
Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). FLAIR, Fluid attenuated inversion
recovery; SWI, susceptibility-weighted imaging.

and basal perivascular spaces, please refer to Wardlaw et al.
(2020).

Many grading scales have been developed to quantitatively
assess the severity of PVS in MRI (Patankar et al., 2005;
Adams et al., 2013; Wardlaw et al., 2013; Laveskog et al., 2018;
Paradise et al., 2020). The most widely adopted is Wardlaw’s
scale which assesses PVS severity in the CS, BG and midbrain
(Potter et al., 2015c). According to Wardlaw’s scale, the rater
selects a single representative axial slice for each region. If
PVSs are observable in the midbrain, it is assigned a score
of 1, otherwise it is assigned a score of 0. For the CS and
BG, each PVS is counted (Figure 3) and the region is rated

according to a 5-point rating scale (0 = no PVS found; 1 = 1–
10; 2 = 11–20; 3 = 21–40, 4 = more than 40 present).
The 5-point rating scale has high inter-rater and test-retest
reliability, and has been used to objectively link PVS and
glymphatic dysfunction with markers of disease (Paradise et al.,
2020).

Limitations of visual rating scales

By assigning a simple rating to different counts of PVS,
the grading scale is a highly replicable and convenient
method of assessing perivascular spaces (Paradise et al., 2020).
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However, the reduction of PVS counts to a simple severity
score restricts deeper analyses of glymphatic dysfunction
that may be region-specific or associated with specific
morphological changes (Zong et al., 2016; Barisano et al.,
2021b). For example, asymmetric distributions of PVS
between hemispheres has been related to an increased risk
of post-stroke and post-traumatic epilepsy (Duncan et al.,
2018; Yu et al., 2022). When there is a large difference
in PVS counts between hemispheres, Wardlaw’s scale
instructs the rater to use the hemisphere with the higher
PVS count (Potter et al., 2015b,c). Moreover, longitudinal
analyses of PVS are difficult to perform due to the
coarseness of the grading scale, and the use of different
scales between publications has led to difficulties comparing
results and conducting meta-analyses (Granberg et al.,
2020).

Multiple algorithms have been developed to facilitate or
improve the consistency of PVS grading (Descombes et al.,
2004; Zong et al., 2016; González-Castro et al., 2017; Dubost
et al., 2019a,b; Jung et al., 2019; Sepehrband et al., 2019;
Goryawala et al., 2021; Williamson et al., 2022). For example,
Jung et al. (2019) applied a convolutional neural network (CNN)
to increase the signal-to-noise ratio (SNR) of PVS, thereby
enhancing its appearance and improving detection (Figure 5;
Jung et al., 2019). Others have automated the quantification
of PVS in axial slices to assign severity scores (Dubost
et al., 2019a,b). However, these algorithms do not enable
the volumetric or morphological examination of perivascular
spaces visible in MRI (Valdes Hernandez et al., 2013). Thus,
the remaining review will focus on methods for automatically
segmenting perivascular spaces.

Automated segmentation of
perivascular spaces

Perivascular spaces are small structures that occur
repeatedly throughout the brain. The average volume of a
single MRI-visible perivascular space is less than 5 mm3, whilst
the total PVS volume in a young and healthy individual can
average 5,000 mm3 (Zong et al., 2016; Barisano et al., 2021b).
With a resolution of 1 mm3 isotropic (each voxel is 1 mm in
length, width, and height), this would require manual labeling
of 5,000 voxels to complete PVS segmentation in the average
subject. Thus, manual delineation of 3D PVS is laborious and
time-consuming. Despite this, the manual segmentation of
perivascular spaces is a worthy endeavor for which multiple
research groups have dedicated time and resources, in order to
develop high quality algorithms (Park et al., 2016; Zong et al.,
2016; Zhang et al., 2017; Boespflug et al., 2018; Lian et al., 2018;
Schwartz et al., 2019; Smith et al., 2020, Preprint; Sepehrband
et al., 2021; Lynch et al., 2022, Preprint). The goal of automatic

segmentation algorithms is to label such structures, eliminating
the need for manual labeling, thereby expediting detailed
analyses of PVS.

Several studies have published automated methods for
segmenting perivascular spaces (Table 1; Ramirez et al., 2016;
Ballerini et al., 2017; Dubost et al., 2017; Lian et al., 2018).
Broadly, these algorithms can be categorized as either (1)
classical image processing techniques or (2) machine learning
(ML) algorithms. Both have been applied with varying levels of
success.

In the classical approaches, a computerized pipeline with
explicit parameters is set-up and optimized to search for PVS
(Ballerini et al., 2016, 2017). For example, seed clusters selected
based on intensity thresholds within the white matter can be
filtered based on their size, linearity, length, and width (Figure 6;
Boespflug et al., 2018). One disadvantage of these methods is
that they often require further optimization for different datasets
depending on the imaging protocols (Ballerini et al., 2016).

In comparison, ML-based algorithms undergo training
with example data to perform a certain task (Bengio,
2013). In PVS segmentation, the algorithm is trained
with manually labeled images, over many iterations or
epochs, to learn the features associated with PVS. After
training, ML algorithms can be used to label PVS structures
on new and unseen data. Although the initial stages
are computationally expensive, the results are generally
worthwhile as ML algorithms can learn complex features
that cannot be defined via classical techniques (Bengio et al.,
2012).

Evaluation of segmentation
performance

In the evaluation of image segmentation algorithms,
the true positives, false positives, and false negatives are
tallied to compute three main metrics: the Sørensen–Dice
coefficient or F1 score, the sensitivity or detection rate, and
the positive predictive value (PPV) (Equation 1) (Dice, 1945;
Lian et al., 2018; Jung et al., 2019; Siddique et al., 2021).

DSC =
2TP

2TP + FP + FN
; SEN =

TP
TP + FN

; PPV =
TP

TP + FP

Equation 1. DSC, Sørensen–Dice similarity coefficient; SEN,
sensitivity; PPV, positive predictive value; TP, true positives; TN,
true negatives; FP, false positives; FN, false negatives.

The Dice score is a measure of overall segmentation
performance (Dice, 1945). A higher Dice score means better
overall performance. The sensitivity is the percentage of all PVS
voxels that are detected by the algorithm. Whereas the PPV is
the percentage of predicted voxels that were correctly labeled
as PVS. These metrics assess different aspects of the algorithm’s
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TABLE 1 Summary of PVS segmentation methods and their results.

Study Field
strength

Imaging
modality

Description Results

Descombes et al.,
2004

1.5T T1 Reversible jump markov chain monte carlo algorithm. Count correlation = 0.77
ICC = 0.87

Uchiyama et al., 2008 1.5T T1, T2 Computer-aided segmentation of PVS after white
top-hat transformation.

AUC = 0.945

Ramirez et al., 2015 1.5T T1, T2, PD Modified lesion explorer which applies local intensity
thresholding to segment lesions (Ramirez et al., 2011).

ρ = 0.38–0.57

Cai et al., 2015 7T T2 Edge-detection and k-means clustering. FPs = 10.4± 5.0%
FNs = 12.7± 8.9%

Zong et al., 2016 7T T1 vs T2 Semi-automated Frangi filtering. PVS-VF correlations = 0.17–0.74

Wang et al., 2016 1.5T T2, T2*, T1,
FLAIR

Intensity normalization, gamma correction and linear
mapping of BG-PVS, followed by manual correction.

Significant association (p < 0.05) between
computational counts and visual ratings.

Ballerini et al., 2016,
2017

1.5T T1, T2 Frangi filtering optimized with ordered logit models. ρ = 0.67–0.74

Niazi et al., 2018 3T T2 K-means clustering, edge detection and contrast
enhancement.

SEN = 92.9%
Specificity = 93.3%

Boespflug et al.,
2018; Schwartz et al.,
2019

3T T1, T2
FLAIR, PD

mMAPS: multi-modal autoidentification of
perivascular spaces.
MAPS: requires only T1 and FLAIR modalities. Applies
intensity thresholding and morphological constraints.

Volume correlation r = 0.58
Count correlation r = 0.77–0.87
PPV = 77.5–87.5%

Sepehrband et al.,
2019

3T T1, T2 EPC: Frangi filtering: after NLMF followed by
combination of T1 and T2 modalities (EPC).

Inter-class correlation r ≥ 0.83
Scan-rescan correlation r ≥ 0.85

Smith et al., 2020,
Preprint

7T T2 PVSSAS: Perivascular space semi-automatic
segmentation tool. Applies Frangi-filtering with a
graphical user interface to segment PVS in the white
matter.

83% overlap between predicted and manually
segmented PVS voxels.

Bernal et al., 2022 – T2 Comparison between three image filters: Frangi,
Jerman, and RORPO.

Median AUC = 94.2–98.7%
For images with artifacts:
Median AUC = 43.8–71.9%

Park et al., 2016 7T T1, T2 Random Forest (RF) model with normalized 3D Haar
features.

DSC = 64%
SEN = 59%
PPV = 73%

Dubost et al., 2017 1.5T PD GP-Unet for segmentation of BG-PVS. SEN = 62%
FPs per image = 1.5

Zhang et al., 2017 7T T2 Structured RF with an entropy-based sampling
strategy.

DSC = 66%
SEN = 65%
PPV = 68%

Hou et al., 2017 7T T2 RF classifier trained with segmentations derived by
Haar transformation, block-match filtering and Frangi
filtering.

DSC = 67%
SEN = 68%
PPV = 66%

Lian et al., 2018 7T T2 M2-EDN: Multi-scale, multi-channel encoder-decoder
network. A convolutional neural network.

DSC = 77%
SEN = 74%
PPV = 83%

van Wijnen et al.,
2019

1.5T T2 Geodesic convolutional neural network segmentation
from dot annotations.

SEN = 55.3%
FPs per image = 5.1

Jokinen et al., 2020 1.5T T1 uResNet: a U-shaped convolutional neural network
with residual elements (Guerrero et al., 2018).

Volume correlation = 0.91

Boutinaud et al.,
2021

3T T1 3D U-net with an autoencoder. DSC in the WM = 51%
DSC in the BG = 66%

Spijkerman et al.,
2022

7T T1, T2-TSE K-nearest neighbor classifier trained with sato filtered
segmentations (white matter only).

DSC = 61%
ICC = 0.74
Inter-rater DSC = 49%

Sudre et al., 2022,
Preprint

3T T1, T2,
FLAIR

VALDO: a competition between PVS segmentation
algorithms which included three convolutional neural
networks and a random forest (RF). The RF
outperformed the other three models.

Median (IQR) DSC†

Inter-rater = 19.6 (13.5–23.8) %
RF performance = 38.9 (28.9, 49.4) %

Rashid et al., 2022
Preprint

3T T1, T2, SWI,
FLAIR

Multi-channel 2D U-nets trained with data augmented
axial slices.

SEN = 82%
PPV = 84%
ICC (volume) = 0.67

Listed first are the methods that utlize classical image filtering technique. In the second section are methods that have applied machine learning techniques. Reported here are the mean
or range of performance metrics published by the original authors, unless otherwise specified. †Dice similarity coefficient derived with the six-neighborhood connected components rule.
The Dice score is also known as the F1 score. FLAIR, fluid attenuated inversion recovery sequence; PD, proton density sequence; SWI, susceptibility weighted imaging; TSE, turbo-spin-
echo; ICC, intra-class correlation coefficient; AUC, area under the receiver operating characteristic curve; FP, false positive; FN, false negative; VF, volume fraction; DSC, Sørensen-Dice
similarity coefficient; SEN, sensitivity; PPV, positive predictive value; VALDO, vascular lesions detection and segmentation challenge; RF, random forest; NLMF, non-local means filtering;
PVSSAS, perivascular space semi-automatic segmentation tool; RORPO, ranking orientation responses of path openings; EPC, enhanced perivascular contrast.
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FIGURE 5

A convolutional neural network for enhancing PVS visibility in T2-weighted MRI images (Jung et al., 2019). © IEEE 2019.

ability to delineate perivascular spaces. Together, they are useful
for gauging the tendencies of an algorithm’s segmentation
ability. For example, higher sensitivity than PPV indicates the
algorithm prioritizes detection over accuracy. Whereas higher
PPV vs. sensitivity indicates the algorithm prefers accuracy or
correctness over detection.

However, the Dice coefficient is not infallible. A common
problem in medical image segmentation tasks, and especially
PVS segmentation is that of noisy labels (Karimi et al., 2019).
Due to a number of reasons such as poor image quality, rater
fatigue or time constraints, the ground truth can encompass a
number of false positives and false negatives that affects that
Dice coefficient (Wardlaw et al., 2013; Moses et al., 2022). Thus,
the sources of error that affects the Dice score are:

(1) Error in the ground truth (human labels).
(2) Error in the algorithm prediction.

The Dice score aims to measure the latter, but if the ground
truth is not reliable, then its ability to do so is impaired, and
resultant Dice scores are distorted. In the ideal scenario, the
ground truth is perfect and therefore any decrement in the
Dice score is purely due to algorithm error. However, to attain
this perfect ground truth would require high inter and intra-
rater agreement, and robust standards for PVS delineation.
To a great extent this has been achieved with 2D rating
scales, e.g., STRIVE and UNIVERSE, demonstrating high-
concordance across research groups (Wardlaw et al., 2013;
Adams et al., 2015). Currently, there is no guideline for the
voxel-wise segmentation of perivascular spaces in either T1 or
T2-weighted MRI data.

Variations of the Dice metric have been employed, such
as the Dice score with 6-neighborhood connected components
rule, wherein predicted PVS voxels are deemed true-positives

if they are adjacent to a real PVS voxel (Sudre et al., 2022,
Preprint). These do not address the inherent issue of noisy labels
in PVS segmentation, rather they merely inflate the reported
scores. Such modifications make it difficult for comparisons to
be made to similar studies that have employed the traditional
Dice metric (Equation 1). It also obfuscates the fact that PVS
segmentation is a more difficult task compared to other medical
imaging problems, where inter-rater Dice scores of 70%+ are
commonplace, as opposed to PVS segmentation where inter-
rater Dice scores are usually below 50% (Sudre et al., 2022,
Preprint; Liu et al., 2022; Spijkerman et al., 2022). This is likely
due to the nature of the task, as PVS are small, numerous
and occur repeatedly throughout the brain, whilst other lesion
detection tasks such as for tumors or stroke lesions require
delineation of a single, large and prominent object. Thus,
the Dice score is not a perfect metric, but it is the most
rigorous one for the evaluation of algorithm performance in PVS
segmentation.

To our knowledge, no study has directly addressed this
problem of noisy labels in PVS segmentation. One review
that has examined solutions to address noisy labels in medical
images, suggest the use of semi-automatic annotations, wherein
models are trained on incomplete data, then used to aid the
human in the detection of undetected case (Karimi et al., 2019).

Several studies have employed semi-automated methods,
e.g., with the Frangi filter, to efficiently generate PVS maps
(Park et al., 2016; Sepehrband et al., 2021; Langan et al., 2022;
Ranti et al., 2022). Subsequently, these masks can be compared
to the raw predictions to derive Dice similarity coefficients,
and thus measure model performance. The downside is
that segmentation performance is likely to be overestimated,
compared to Dice scores derived with independently generated
manual segmentations.
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FIGURE 6

Schematic of the mMAPS (multi-modal auto-identification of
perivascular spaces) pipeline for the automated segmentation of
PVS adapted from Piantino et al. (2020). It relies on the
sequential application of image filters, intensity thresholds, and
morphological constraints to delineate PVS voxels. (A) A
T2-weighted MRI image is acquired. (B) Voxel intensities are
normalized. (C) White matter (WM) mask (red) applied. (D) Holes
in the WM mask are filled. (E) Edges of the WM mask are eroded.
(F) Frequency map of the voxel intensities. (G) Map of the local
intensity differences. (H) Seed clusters resulting from the
previous steps are extracted and filtered with morphological
constraints. (I) The final segmentation map. Reproduced with
permission of the American Society of Neuroradiology, from
Piantino et al. (2020), conveyed through the Copyright
Clearance Center, Inc.

Whilst the evaluation metrics may be biased, the practical
benefit is that considerable amounts of time and resources
are saved, since correction of automated segmentations may
be less time-consuming than purely manual segmentations.
Whether this advantage outweighs the disadvantage of a biased
model evaluation should be up to the individual researcher.
Interestingly, if a machine learning model is trained on a small
subset of purely manual PVS labels, and subsequently used to
generate a large sample of semi-automated segmentations, then
the bias might be diminished, compared to semi-automated
Frangi labels, since the model was originally trained on
purely human labels.

Furthermore, visual comparisons between model
predictions and the ground truth are often conducted
(Figure 7). Certain weaknesses of the algorithm can then
be uncovered, and the algorithm adjusted retrospectively.
Visual inspection is important, since PVS can be easily
confounded with other lesions or imaging artifacts including

lacunes, white matter hyperintensities (WMH) and microbleeds
(Figure 4; Wardlaw et al., 2013; Lian et al., 2018).

Another common method of validating segmentation
performance is to compare quantitative measures of PVS
produced from segmentations, such as total PVS volumes
or counts, with conventional PVS ratings (Boespflug et al.,
2018; Schwartz et al., 2019). A high correlation coefficient is
expected and ensures newer algorithms are commensurate with
established methods. Importantly, the aforementioned methods
of assessing algorithm performance are not infallible and can
be misleading when incorrectly applied. These will be further
discussed in more detail alongside recommendations to avoid
such problems.

Existing approaches

An example of a traditional approach to segmentation is the
multimodal auto-identification of perivascular spaces (mMAPs)
algorithm by Boespflug et al. (2018). This method determines
the likelihood of a voxel being a PVS, based on its intensity
on co-registered T1, T2, FLAIR (Fluid attenuated inversion
recovery) and Proton density (PD) weighted images. Voxels
exceeding a certain probability are grouped into clusters, which
are then deemed to be PVS if they are sufficiently linear in
shape. Their application demonstrated strong correlations to
visual rating scores by experts (r > 0.65) (Boespflug et al., 2018).
Importantly, mMAPS required four imaging modalities: T1,
FLAIR, Proton Density, and T2 sequences.

Schwartz et al. (2019) adapted the mMAPS algorithm to
segment perivascular spaces using only two imaging modalities
(T1-weighted and FLAIR images) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (Jack et al., 2008;
Boespflug et al., 2018; Schwartz et al., 2019). Both the correlation
coefficient, comparing PVS volumes to visual PVS ratings
(r > 0.7), and PPVs (77.5–87.5%) were high. Worth noting
is that neither Dice coefficients nor sensitivity scores were
published. PPV alone is an incomplete assessment of the
algorithm. For example, if an algorithm correctly labeled 100
voxels in an image with 1000 PVS voxels, its PPV would be
100%, neglecting the remaining 900 voxels it missed resulting in
a Dice coefficient of only 18%. Nevertheless, the application of
mMAPS to commonly acquired T1-weighted images marks an
important step towards automated PVS segmentation in clinical
settings.

Another common approach utilizes image filters to highlight
perivascular spaces. In this context, filters are operations that
calculate the resemblance of voxels and its neighbors, to features
of interest such as tubes or edges. For example, the Frangi filter
calculates the “vesselness” of voxels after taking into account
surrounding values in order to highlight vessel-like structures
(Frangi et al., 1998; Ballerini et al., 2016).
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FIGURE 7

Visual assessment of predicted PVS segmentations from different algorithms to the ground truth, adapted from Lian et al. (2018). Visual
comparisons are used to compare algorithms to each other and the ground truth. Red voxels are PVS that have been manually labeled by a
human rater. Cyan voxels were predicted to be PVS by the respective automated method. Yellow arrows and circles indicate low contrast
perivascular spaces that can be used to differentiate segmentation ability of different methods. FT, Frangi filtering; SRF, structured random
forest; M2EDN, multi-channel, multi-scale encoder-decoder network. Reprinted from Lian et al. (2018), with permission from Elsevier, conveyed
through the Copyright Clearance Center, Inc.

One notable approach combined both T1 and T2 scans from
a single subject to produce an image with enhanced perivascular
contrast or EPC (Figure 8; Sepehrband et al., 2019). By dividing
the T1 image by its co-registered T2-weighted counterpart, the
contrast between tissue types is enhanced, and therefore PVS
clusters more discernible from the white matter. Subsequently,
optimized Frangi filtering was applied to automatically label
PVS voxels (Frangi et al., 1998; Ballerini et al., 2016). With
EPC, the PVS-to-white matter contrast was substantially greater
than in either the T1 or T2 image alone, and the number of
manually detected PVS was significantly increased (Sepehrband
et al., 2019). However, compared to T1 or T2 alone, EPC did not
significantly improve count correlations with expert evaluations
(Sepehrband et al., 2019).

Typically, Dice scores are used to compare the prediction
of an algorithm to a ground truth that was generated
independently, usually by manual human segmentation.
However, in this study, the strong Dice scores reported (74–
95%) were comparing the predicted PVS maps before and
after manual correction (Sepehrband et al., 2021). Therefore,
these scores are biased and should be expected to perform
slightly worse when compared against independently produced
segmentations.

Importantly, Sepehrband et al.’s (2021) reported Dice scores
highlight how the metrics can be misleading. Dice scores
of algorithm predictions before and after manual correction

resulted in an average of 95% (Sepehrband et al., 2021).
However, when the segmentations were further corrected aided
by FLAIR images, this resulted in an average Dice score of 74%.
FLAIR images are often used to differentiate PVS structures
from confounds such as WMH and lacunes, thus are able to
identify false positives (Wardlaw et al., 2013). Clearly, the quality
of the segmentations has improved after FLAIR-accompanied
corrections, yet the Dice metric has declined by more than 20%
(Sepehrband et al., 2021). The implication here is that, without
an accompanying FLAIR image the PVS measurements would
have been inflated by false positives, via inclusion of WMHs
mistaken as PVS. It also suggests Frangi filtering may not be
suitable for investigating PVS in disease cohorts without the
additional FLAIR modality (Frangi et al., 1998; Ballerini et al.,
2016). Notably, the correction for FLAIR WMHs may have
removed PVS that reside within the WMHs.

Machine learning approaches

Machine learning algorithms differ from classical methods
in that they automatically learn the features of their target
object, such as its shape, intensity, and location. The main ML
models that have been applied to PVS segmentation are random
forests and CNN.
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FIGURE 8

The enhanced perivascular contrast (EPC) pipeline proposed by Sepehrband et al. (2019). In EPC, a T1-weighted image is combined with a
co-registered T2-weighted image to improve the visibility of PVS. (A) Subsequently, non-local means filtering is applied and PVS are
automatically segmented by a Frangi filter. (B) Comparisons between Frangi filtered PVS from a lone T1 image (top), a lone T2 image (middle),
and combined modalities in EPC (bottom). Segmented voxels are labeled in red. Reproduced under the Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/).

The first instance of machine learning for automated
segmentation of PVS, was done by Park et al. (2016) using
a random forest model. With the help of a Frangi filter,
17 MRI images were manually segmented and used to train
random forest models. Compared to models trained with
intensity thresholded images or vessel-ness filtered images, the
random forest performed best when trained on normalized Haar
filters, enabling it to learn discriminative PVS features (Park
et al., 2016). Dice scores for the optimal model averaged 64%.
Sensitivity was lower at 59%, and PPV was 73%. Importantly,
high-resolution MRI images, 7 Tesla (T), with both T1 and T2
modalities were used. The labels used to train the random forests
were initiated using a Frangi filter, then refined manually, i.e.,
semi-automatically. As such the resultant random forests would
likely be biased to detect voxels more strongly detected by the
Frangi filter.

Similarly, Zhang et al. (2017) used a structured random
forest to delineate PVS in 7T images. Here, three different
filters based on vascularity were used to differentiate PVS from
background voxels. This was supplemented with an entropy-
based sampling strategy to select regions of interest from the
image. Similar to Park et al. (2016), an average 66% Dice score,
65% sensitivity and 68% PPV was achieved (Zhang et al., 2017).

The first instance of automated PVS segmentation using a
fully CNN was by Lian et al. (2018). Lian et al. (2018) applied
a multi-scale and multi-channel CNN architecture for this task,
named the M2EDN (Figure 9). The multi-scale feature enables
the model to incorporate both small and large contextual details
to improve PVS detection. Frangi filtering was also used as a
secondary input channel, providing more information to the
model, and lastly initial predictions from the network were used
as a third channel of information to refine predictions in the

Frontiers in Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2022.1021311
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021311 December 13, 2022 Time: 7:5 # 11

Pham et al. 10.3389/fnins.2022.1021311

With 7T, T2-weighted data achieved an average Dice score of
77% was achieved (sensitivity = 74%, PPV = 83%), superseding
the previous machine learning approaches with similar data
parameters (Lian et al., 2018).

To extend this work, it is necessary to explore methods
of automated segmentation with lower quality datasets that
are more accessible than 7T images. Boutinaud et al. (2021)
employed another CNN called the u-net with an autoencoder to
segment 3T, T1 images (Boutinaud et al., 2021). Typically, model
parameters are initialized randomly. However, an autoencoder
enables meaningful initialization of model parameters to
optimize the performance of the final model (Kingma and
Welling, 2013). In this case, it is unclear whether the inclusion of
an autoencoder improved performance. Trained on 40 manually
labeled images, the model achieved a voxel-wise Dice score of
51% in the white matter and 66% in the basal ganglia. Notably,
for PVS clusters larger than 10 mm3, Dice scores above 90%
could be reliably achieved (Boutinaud et al., 2021).

The noticeable decrement in performance compared to
previous ML approaches can be attributed to the lower image
quality and resolution of the data (7T vs. 3T) (Lian et al., 2018).
However, Wang et al. (2021) recently published a study applying
Lian et al.’s (2018) CNN to 3T, T2-weighted data with a Dice
score of 70%. A similar performance level was achieved when
the same CNN was applied to T1-weighted images, suggesting
that the multi-channel and multi-scale architecture is superior
to a regular u-net with an autoencoder (Kingma and Welling,
2013; Huang et al., 2021). For an in-depth discussion of each
of the techniques, please refer to previous work (Barisano et al.,
2022a; Moses et al., 2022).

Limitations of automated
segmentations

With the automated delineation of perivascular spaces, new
ways of understanding the glymphatic system are possible.
However, these studies are based on algorithms with certain
disadvantages. The conventional methods relying on image
processing techniques require further parameter optimization
for different datasets (Ballerini et al., 2016; Smith et al.,
2020, Preprint; Boutinaud et al., 2021; Bernal et al., 2022).
Currently, only one fully automatic segmentation pipeline
is freely available, making it difficult to replicate previous
methods (Boutinaud et al., 2021). Most machine learning
approaches were trained or tested with data from high field
(7T) MRI scanners that are not commonly used clinically (Park
et al., 2016; Zhang et al., 2017; Lian et al., 2018). Several
algorithms require multiple imaging modalities (Boespflug
et al., 2018; Sepehrband et al., 2021). However, the primary
MRI sequences acquired are T1 or T2-weighted images, with
FLAIR sequences less commonly acquired (Schwartz et al.,
2019).

Currently, there is no gold standard for automated
3D PVS segmentation in either T1 or T2 data leading
to highly heterogenous methodologies and results across
research groups. The issue is further compounded by
the different scanner protocols and processing methods
being utilized. Factors affecting the SNR and contrast-
to-noise (CNR) ratios of PVS, including field strength,
signal weighting, or resolution will attenuate PVS
detection (Zong et al., 2016). Therefore, PVS detection
techniques applied to either T1, T2, or both, and for
different image qualities, are yet to be adopted as the gold
standard.

The ideal PVS auto-segmentation tool should meet the
following criteria:

(1) Open source and freely available, alongside optimized
parameters or trained weights for datasets of different
image qualities. Publication of algorithms in
code repositories such as Github enable external
reproducibility.

(2) High performance in regards to voxel-wise evaluations
including Dice coefficients, sensitivity and PPV metrics
based on ground truth manual segmentations.

(3) Able to segment PVS throughout the brain,
including the gray and white matter, basal ganglia,
hippocampus, and brainstem.

(4) Robust to noise and able to differentiate PVS from
structurally similar objects such WMH, lacunes,
microbleeds, and imaging artifacts (Figure 4).

Recommendations for model
development

To objectively adhere to the criteria, we make the following
recommendations, which relate to establishing the validity,
robustness and reproducibility of the model.

(1) Validate segmentation performance on multiple open
access datasets.

(2) Benchmark against previously published and
optimized algorithms.

(3) Evaluate against high quality manual segmentations.
(4) Publish PVS voxel counts and volumes, image quality

metrics including CNR, field strength, and voxel size as
descriptive variables.

(5) Report all relevant segmentation metrics: Dice scores,
sensitivity and PPV.

(6) Evaluate algorithm robustness on a noisy dataset,
including images with MRI artifacts, and PVS mimics,
e.g., lacunes, microbleeds, and WMHs (Wardlaw et al.,
2013).
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FIGURE 9

The M2EDN neural network architecture proposed by Lian et al. (2018). M2EDN stands for multi-scale, multi-dimensional encoder-decoder
network. The model features a Frangi filter segmentation as a second input channel. Conv, convolution; ReLU, rectified linear unit; Pool, max
pooling. Reprinted from Lian et al. (2018), with permission from Elsevier, conveyed through the Copyright Clearance Center, Inc.

FIGURE 10

3D PVS segmentation from a T1-weighted MRI scan. PVS voxels are labeled in red (top row), and the corresponding unlabeled slices are in the
bottom row. Basal ganglia PVS are visible in the axial (left), sagittal (middle), and coronal (right) slices.
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(7) Publish visual examples of algorithm predictions with
3D renders and 2D slices, displaying PVS both cross-
sectionally and lengthwise. Examples should be either
the default contrast that was input into the algorithm
or contrast adjusted to improve the visibility of PVS.

Points 1–2 relate to establishing the reproducibility and
benchmarking of the algorithm. Validation of algorithm
should be completed on multiple open access datasets of
inhomogeneous image qualities. Segmentation of PVS can
be conducted in tools such as ITKSnap, Freeview, or Osiris
(Yushkevich et al., 2006; Fischl, 2012; Othman et al., 2016).
Publication of manual segmentations and predictions on open
access datasets would contribute significantly towards progress
in PVS research. Moreover, publishing source codes and
pipelines would enable fair comparisons and benchmarking
of PVS detection methods, allowing for direct comparisons
between approaches. In this regard, ML approaches with trained
weights should be compared to fully optimized versions of
traditional methods, e.g., the Frangi filter, for a fair comparison.

Points 3–5 relate to validating the performance of the
algorithm. Currently, as there is no consensus for automated
methods of PVS segmentation. The gold standard of manual
segmentation should be used as a benchmark for judging
algorithm performance. Semi-automated methods of model
validation may result in inflated and biased Dice scores
(Sepehrband et al., 2021; Langan et al., 2022; Ranti et al., 2022).
Another reason for inflated Dice scores may be the under-
labeling of PVS, which lowers number of PVS that the algorithm
is required to detect. This can be observed by lower-than-
expected average counts of PVS voxels and volumes. In the
same way a study publishes the sample size, and the percentage
of subjects that developed a disease, publishing counts of PVS
voxels in the ground truth would make the resulting Dice scores
more meaningful. An algorithm that performs well on images
with a small number of PVS may not perform as well for MRI
scans with greater volumes of PVS.

Noisy labels are inherent in neuroimaging segmentations.
Many factors can cause PVS voxels to go undetected by manual
raters, including experience, time constraints, image quality
and contrast, and the inclusion/exclusion criteria. Therefore,
an experienced neuroradiologist should validate the integrity of
ground truth segmentations. A detailed guide for detecting PVS
in T2 MRI images has been published by Potter et al. (2015c).
As this guide primarily focuses on T2-weighted axial slices for
the purpose of assigning PVS enlargement scores according
to a rating scale, we make further recommendations to aid
segmenters in producing high-quality 3D PVS segmentations:

(1) All voxels within a cluster should be labeled such
that no hypointense or hyperintense voxels connected
to that cluster remain visible, in T1 or T2-weighted
images, respectively.

(2) Where there are cerebral blood vessels there are PVS,
including the white matter, gray matter, basal ganglia,
hippocampus, and brainstem (Figure 10).

(3) In the white matter, PVS are generally directed towards
the ventricles (Figure 10).

(4) In the basal ganglia, PVS following the lenticulostriate
arteries are most obvious in the sagittal views,
appearing to travel superiorly with an anterior
curvature (Figure 10).

(5) To distinguish PVS from WMHs, where available,
FLAIR images should be used (Wardlaw et al., 2013).
WMHs are visible on all three sequences: T1 (as
hypointense), T2, and FLAIR. On FLAIR sequences, the
PVS are not visible but WMHs are.

Given their numerosity and at times inconspicuous
appearance of PVS in MRI, inexperienced raters may find
it difficult to detect and label PVS clusters in their entirety
(Wardlaw et al., 2013). PVS clusters should be labeled when
there is sufficient evidence based on features such as voxel
intensity, cluster size (e.g., >4 voxels), directionality, and brain
region. Additionally, segmentation software such as ITKSnap
allow for manual contrast adjustments (Yushkevich et al., 2006).
Contrast adjustment can be very useful, as varying contrast or
brightness levels may be required for different regions of the
image, e.g., due to bias field inhomogeneities. To improve PVS
visibility in one region of the image may require brightening,
whereas other regions may require darkening.

The visibility of PVS is strongly associated with image
quality. The field strength of the MRI scanner has been shown
to significantly affect PVS detection (Barisano et al., 2021a).
However, this does not take into account preprocessing methods
where images are enhanced to increase PVS visibility. For
example, by combining 3T T1 and T2 images in the EPC
pipeline, it is likely that the CNR for PVS are greater than 7T data
without preprocessing (Sepehrband et al., 2019). Ultimately,
CNR is the most direct and comparable metric of PVS visibility
for a given dataset, considering variables including scanner field
strength, and preprocessing methods. Publication of SNR and
CNR values are useful for determining whether appropriate
comparisons between studies with different datasets can be
made, since models developed on data of lower SNR may not be
applicable to higher SNR datasets. This will be further discussed
in section “Recommendations for future research and clinical
applications.”

SNR =
MEANGM

SDAIR
;CNR =

MEANWM −MEANGM

SDAIR

Equations 2. SNR, signal-to-noise ratio; CNR, contrast-
to-noise ratio; MEANGM , mean gray matter intensity; SDAIR,
standard deviation of the intensity or empty voxels outside
the head; MEANWM , mean of the white matter intensity.
These metrics should be calculated with respect to PVS voxels

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.1021311
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021311 December 13, 2022 Time: 7:5 # 14

Pham et al. 10.3389/fnins.2022.1021311

and within the bounds of the 3D brain extracted volume.
These equations apply for T1-weighted images. For T2-weighted
images, the MEANWM and MEANPVS are interchanged.

Alternative methods of assessing segmentation performance
include PVS count correlations or interclass concordance
correlations. These are convenient assessments of reliability
and accuracy of PVS cluster quantification, but not voxel-
wise segmentation performance, and therefore voxel-based
volumetric assessments of PVS. One critique of the Frangi filter
is that its performance deteriorates as the size of a PVS cluster
increases (Bernal et al., 2022). The implication for PVS research
is that PVS counts, rather than volumes, are more likely to
demonstrate statistical differences. Thus, count correlations for
validation of segmentation performance do not convincingly
demonstrate high PVS detection at a voxel-level, and Dice
metrics should be preferred.

Findings from related fields of neuroimaging and
lesion detection can offer useful insights applicable to PVS
segmentation. In MRI lesion segmentation of patients with
multiple sclerosis, inter-rater dice scores (between two human
raters) around 60% are typical (Egger et al., 2017). For these
tasks, there are a small number of large lesions to be detected
in a single brain scan. In comparison, PVS occur repeatedly
and throughout the brain, numbering in the hundreds. Given
that PVS are more numerous and diffuse, one would expect
that inter-rater dice scores for the task of PVS segmentation
to be much lower. Two publications have assessed inter-rater
agreement in PVS segmentation, with median or average
inter-rater Dice scores of 26.7 and 49% (Spijkerman et al., 2022)
implying that segmentation algorithms exceeding this 50% Dice
threshold has superseded human performance (Spijkerman
et al., 2022). Necessarily, visual inspections should be conducted
to verify that the model outperforms the human labels. Broadly,
the algorithm should be critiqued based on its ability to
consistently detect all PVS clusters labeled by the human, and
whether it can reliably label all PVS voxels belonging to each
cluster. In the ideal scenario, where the human segmentation
is free of error and imperfection, a Dice score of 100% would
indicate a perfect prediction. In practice, the segmentation of
medical images often includes noisy labels, i.e., false positives
and false negatives, thus such Dice scores are not realistic.

If a model has genuinely outperformed manual
segmentations, then presumably it has labeled not only all
PVS detected by the rater, but also PVS that evaded human
detection. In this case, a high Dice score should be observed
alongside a very high sensitivity score and a lower PPV, as the
model is presumably detecting more PVS clusters than were
labeled manually. This may indeed be the case for Sepehrband
et al.’s (2021) approach with non-local means filtering and
the Frangi filter (Dice = 74%, Sensitivity = 98%, PPV = 61%)
(Figure 8). Thus, all three metrics serve complementary roles to
assess model predictions. Furthermore, recording Dice scores
for different regions ensures the model performs adequately

throughout the brain white matter, basal ganglia, midbrain,
and hippocampus. Performance in one region might not be
indicative of performance in another region as the appearance
and anatomy of PVS in the white matter differ substantially
from PVS in the BG (Figure 10). Not only are these regions
different structurally, but the morphology of PVS may differ
between regions. For example, PVS inferior to the putamen
tend to be larger in width and volume, then those that are above
the level of the putamen (Pullicino et al., 1995; Wardlaw et al.,
2013; Bouvy et al., 2014).

Moreover, testing the robustness of the algorithm in noisy
data with image artifacts and PVS confounds will be useful.
This is especially important when the algorithm is to be
applied in disease cohorts, where such lesions and PVS mimics
are commonly observed. If algorithms are to be useful in
characterizing PVS in disease, they need to be validated in
similar data. Almost all algorithms published were developed
based on “clean” images without PVS mimics that commonly
occur in patients of neurodegenerative diseases. To our
knowledge, only Sepehrband et al. (2021) has evaluated the effect
of WMH presence on the Frangi filter. Co-registered FLAIR
scans were used to manually correct PVS masks generated by
the Frangi filter, and found a substantial decrement of 21% in
the Dice metric (Sepehrband et al., 2021). Thus, if findings in
pathological cohorts derived from these algorithms are to be
trusted, they need to be validated against noisy and pathological
data.

Key biological findings from
perivascular spaces segmentations

Over the course of the lifespan changes in gray matter,
white matter, and ventricular volumes are numerous and have
been well documented (Bethlehem et al., 2022). The growth
trajectory of perivascular spaces, visible in MRI, has not been
as comprehensively characterized, but insights can be gleaned
from multiple studies (Table 2).

In adolescence (12–21 years old), PVS appear to be
bilaterally symmetric, and tend to visible more often in the
frontal and parietal lobes compared to the temporal and
occipital lobes (Piantino et al., 2020). Male adolescents (mean
PVS count = 98.4) also had significantly greater WM-PVS
counts than females (mean PVS count = 70.7) (Piantino et al.,
2020). Thus, a spatial distribution of PVS enlargement, and sex
differences arise early on. The biological mechanisms behind
these observations, and whether this spatial distribution is
constant or changes with age is unclear.

In young adults (21–37 years old), the mean diameter of PVS
in the frontal, parietal-occipital, temporal lobes and subcortical
nuclei (basal ganglia and thalamus) were significantly different,
with those in the subcortical nuclei, wider than the three
WM regions (Zong et al., 2016). Of these four regions,
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the parietal-occipital lobe exhibited the highest PVS volume
fraction, and the temporal lobe, exhibited the lowest volume
fractions. Moreover, heatmaps of the spatial distribution of PVS
location, length, and tortuosity have been generated (n = 50,
age range = 27–78 years old) (Spijkerman et al., 2022). Table 3
summarizes the publications that have explored the quantitative
and morphological attributes of PVS.

In a cohort of healthy older adults (n = 160, mean
age = 60.4 years old), both WM and BG-PVS have been
associated with cerebral small vessel disease markers, such as
WMHs (Wang et al., 2021). BG-PVS volumes, counts, and
width, and WM-PVS counts were associated with hypertension
(Wang et al., 2021). Moreover, greater WM-PVS sizes were
associated with presence of diabetes. In this cohort, the median
number of PVS clusters of 490 and 65, consisting of median PVS
volumes of 2,371 and 166 mm3, was detected in the white matter
and basal ganglia, respectively (Wang et al., 2021).

Frangi-detected WM-PVS in the Lothian Birth Cohort
(LBC1936, n = 533, mean age = 72.6 years old), found that mean
PVS size (volume per cluster), length and width, as opposed
to counts, to be associated with WMH (Ballerini et al., 2020a).
PVS size and widths were also associated with hypertension and
risk of stroke (Ballerini et al., 2020a). Notably, no relationship
between PVS measures with diabetes, hypercholesterolemia
or presence of cardiovascular disease was found (Ballerini
et al., 2020a). Moreover, PVS volume, widths, and sizes were
negatively correlated with retinal markers of microvascular
health, such as the fractal dimension (a measure of vascular
branching) and vessel diameter of arterioles and venules in the
left eye (Ballerini et al., 2020b). Consistent with this result,
WM-PVS volumes were found to be negatively correlated with
intracranial artery diameter in a healthy cohort of old adults
(n = 103, mean age = 59.5 years old) (Huang et al., 2021).

In the same cohort of community-dwelling individuals
(LBC1936), the spatial proximity of WMHs with PVS was
evaluated longitudinally (n= 29, mean age = 71.9 years old), with
images collected over three sessions at 3-year intervals (Barnes
et al., 2022). WMHs appeared to be adjacent to or co-localized
with PVS, however, statistical analyses revealed no significant
associations (Barnes et al., 2022).

A cross-sectional examination of the normative PVS traits
across the human lifespan, has been conducted in the Human
Connectome Lifespan Project (Lynch et al., 2022, Preprint).
PVS were detected via EPC and Frangi filtering. PVS volume
fraction, counts, and morphological measures such as diameter
and solidity were found to be highly variable across all ages
(Lynch et al., 2022, Preprint). Greater PVS burden in childhood
was predictive of PVS expansion across the lifespan, especially
in the temporal lobes, but was inversely correlated with growth
in the limbic regions (Lynch et al., 2022, Preprint). WM-PVS
volume fractions appeared to increase linearly across all ages,
whereas PVS counts increased linearly until approximately the

age of 50 years, whereby the number of detected PVS clusters
decreased (Lynch et al., 2022, Preprint).

The findings are major contributions that provide reference
ranges for comparison to pathological PVS changes. However,
given that EPC vastly improves the detection of PVS in MRI,
these ranges need to be adjusted to reflect the lower detection
rate of image qualities typical in research or clinic (Sepehrband
et al., 2019). Thus, the reported ranges are currently only
applicable to similar datasets where the EPC pipeline has been
used.

The study of perivascular spaces can be confounded by a
number of variables. For example, age, hypertension and BMI
are correlated with PVS measures (Francis et al., 2019; Barisano
et al., 2021b). PVS volumes are also strongly related with
intracranial volumes (ICV) (Ramirez et al., 2021). Generally,
this is accounted for by modeling the PVS volume as a fraction
of ICV or white matter volume (WM-PVS VF) (Piantino et al.,
2020; Valdés Hernández et al., 2020; Sepehrband et al., 2021).

To complicate the issue, PVS volume has been shown to
change throughout the day, being smallest in the morning and
increasing throughout the day in a young and healthy cohort
(n = 897, mean age = 28.8 years) from the Human Connectome
Project (Barisano et al., 2021b). This suggests PVS enlargement
is a physiological mechanism that is responsive to the needs
of the neuronal environment throughout the day. This finding
confounds the notion that perivascular spaces are enlarged in
response to pathology (Kwee and Kwee, 2007). This leads to
a complication for the imaging of PVS: to what extent are we
observing physiological PVS enlargement in healthy glymphatic
functioning shown in MRI, as opposed to PVS enlargement as a
result of pathological damage-causing glymphatic dysfunction?

The complex relationship of MRI-visible PVS, with sleep
also remains to be elucidated. Enlarged basal ganglia PVS
has been associated with self-reported measures of total time
spent in bed and time asleep (Ramirez et al., 2021). Poorer
sleep efficiency and reduced duration of N3 sleep phase,
measured by polysomnography, has also been correlated with
enlargement of the BG-PVS (Berezuk et al., 2015). Given that the
glymphatic system is most active during sleep, and PVS volumes
demonstrate a diurnal or circadian rhythm, it is possible that
brain-wide PVS measures are impacted not only by the time of
MRI scan, but also by the duration and quality of sleep from the
previous night (Xie et al., 2013).

In disease, abnormal PVS measures have been observed
in patients with depression, COVID-19, traumatic brain
injury, Multiple Sclerosis (MS), Parkinson’s disease (PD), mild
cognitive impairment (MCI), and Alzheimer’s disease (AD)
(Table 2; Cai et al., 2015; Ramirez et al., 2015, 2016, 2022; Niazi
et al., 2018; Donahue et al., 2021, 2022; George et al., 2021;
Piantino et al., 2021; Sepehrband et al., 2021; Shen et al., 2021;
Kamagata et al., 2022; Langan et al., 2022; Ranti et al.,
2022).
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TABLE 2 Summary of the PVS research that has resulted from 3D segmentations.

Study Cohort description MRI sequences, segmentation
method

Findings PVS measures, mean (SD)

Ramirez et al., 2015 AD patients (n = 203, mean
age = 72.7 years), controls
(n = 94, mean age = 69.5 years).

1.5T, T1, T2, Proton density.
Modified lesion explorer.

WM-PVS volumes were
significantly greater in AD
patients than controls. Men had
larger WM-PVS volumes than
women but not BG-PVS
volumes.

WM-PVS volume
AD: 31.7 (48.4) mm3

Controls: 21.7 (31.8) mm3

Berezuk et al., 2015 Healthy subjects (n = 26, mean
age = 20 years).

3T, T1, T2.
Modified lesion explorer.

Sleep efficiency was negatively
correlated with PVS volume
and BG-PVS volume. BG-PVS
was negatively correlated with
duration of N3 sleep phase.

WM-PVS volume: 10.8(16)
mm3

BG-PVS volume: 56.4 (63.7)
mm3

Cai et al., 2015 AD patients (n = 5, mean
age = 78.2 years); controls
(n = 3, mean age = 69.3 years).

7T, T2.
Edge-detection, k-means
clustering and other image
processing techniques.

PVS VF was significantly larger
in AD patients compared to
controls.

WM-PVS VF
AD: 8.0 (2.1) %
Controls: 4.9 (1.3) %

Zong et al., 2016 Healthy subjects (n = 7, age
range = 21–37 years).

7T, T1, T2.
Semi-automated Frangi
filtering.

Mean length of PVS clusters
differed significantly between
regions. PVS diameter was
larger in subcortical nuclei
(including the basal ganglia and
thalamus) than WM regions.
PVS VF also differed between
WM regions.

N/A

Wang et al., 2016 Mild stroke patients (n = 100,
mean age = 69 years,
range = 37–92 years).

1.5T, T1, T2, T2*, FLAIR.
Gamma correction, intensity
thresholding and manual
correction.

BG-PVS volumes and cluster
counts were associated with
WMH volumes and Fazekas
ratings. BG-PVS volumes and
cluster counts were negatively
correlated with brain volume
(expressed as a % of ICV).

BG-PVS, median (range)
Counts: 10 (0–30)
Volumes: 0.093 (0–0.4) mL

Niazi et al., 2018 MCI (n = 14, mean age = 71.9);
controls (n = 15, mean
age = 66.3 years).

3T, T2.
K-means clustering combined
with image processing.

WM-PVS VF was significantly
larger in MCI patients
compared to controls.

WM-PVS VF
Controls: 2.82 (0.4) %
MCI: 4.17 (0.57) %

Piantino et al., 2020 Adolescents (n = 118, age
range = 12–21 years).

3T, T1, T2.
mMAPS.

PVS were bilaterally symmetric
and were more common in the
frontal and parietal lobes. Males
had more PVS than females,
and age was not significantly
associated with PVS counts.

WM-PVS volume
Females: 241.2 (134) mm3

Males: 334.8 (192.4) mm3

Ballerini et al., 2020a Older adults (n = 300, mean
age = 72.7 years).

1.5T, T1, T2, T2*, FLAIR.
Optimized frangi filtering.

PVS cluster size and width were
associated with hypertension,
stroke and WMH volumes. No
associations were found
between PVS measures and
diabetes, hypercholesterolemia,
or cardiovascular disease
history.

CSO-PVS volume: 3410 mm3

PVS-VF of ICV: 0.22%

Ballerini et al., 2020b Older adults (n = 381, mean
age = 72.6 years).

1.5T, T2.
Optimized frangi filtering.

PVS volumes and counts were
associated with retinal
microvascular changes.

WM-PVS volume:
3197 (1404.06) mm3

Valdés Hernández et al., 2020 Older adults (n = 300, mean
age = 72.7 years).

1.5T, T1, T2, T2*, FLAIR.
Optimized frangi filtering.

PVS volumes were indirectly
associated with cognition.

CSO-PVS volume:
3290 (1460) mm3

Barisano et al., 2021b Healthy adults (n = 897, mean
age = 28.8 years).

3T, T1 divided by T2.
NLMF and frangi filtering
(EPC).

Age, body mass index and
systolic blood pressure were
associated with increased PVS
ratios. PVS volumes were
significantly greater when
measured later in the day.

WM-PVS volume: 5,029 (2,153)
mm3

PVS-VF of ICV: 1.14 (0.43) %

(Continued)
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TABLE 2 (Continued)

Study Cohort description MRI sequences, segmentation
method

Findings PVS measures, mean (SD)

Sepehrband et al., 2021 Healthy adults (n = 423, mean
age = 73.0 years); MCI patients
(n = 173, mean age = 75.6
years).

3T, T1, FLAIR.
NLMF and frangi filtering.

PVS-VF in the anterosuperior
medial temporal lobe (asMTL)
was smaller in MCI patients
compared to control.
asMTL-PVS VF shrinkage was
associated with entorhinal
neurofibrillary tau tangle
deposition.

CSO-PVS VF†

Controls:∼1.0%
MCI:∼1.2%

Ramirez et al., 2021 CVD patients (n = 152, mean
age = 69.2 years).

3T, T1, T2, FLAIR. Modified
Lesion explorer.

In CVD patients, PVS volumes
were associated with increased
sleep duration and time in bed.

Mean PVS volumes
Whole brain: 43 mm3

WM: 22.5 mm3

BG: 16 mm3

Shen et al., 2021 PD patients (n = 40, mean
age = 52.5 years); controls
(n = 41, mean age = 49.8 years).

7T, T2.
Manually segmentation.

PVS volumes in the midbrain
and BG were associated with
early Parkinson’s and PD
markers.

Mean PVS volumes
Left BG: 36.9 mm3

Right BG: 41.5 mm3

Left midbrain: 9.1 mm3

Right midbrain:13.5 mm3

George et al., 2021 MS patients (n = 3, age
range = 32–35 years).

7T, T1, T2-TSE, SWI.
Semi-automated frangi
filtering.

MRI-visible PVS were
predominantly periarterial
spaces. Compared to controls,
MS patients had a significantly
greater proportion of
perivenular spaces.

WM-PVS voxels:
MS = 4,976 (282.6)
Controls = 8,487 (2645.1)

Piantino et al., 2021 Veterans with mTBI (n = 56,
median age = 32 years).

3T, T1, FLAIR.
MAPS.

PVS counts and WM-PVS VF
were significantly correlated
with the number of mild
traumatic brain injuries
sustained.

WM-PVS volume:
351 (272.8) mm3

WM-PVS volume fraction:
1.3 (1) mm3/cm3

Donahue et al., 2021 PD patients (n = 285) and
controls (n = 185, mean
age = 59.8 years).

3T, T1.
NLMF and frangi filtering

Global PVS VF was
significantly larger in PD
patients compared to controls
and asymptomatic individuals.
PVS VF in the banks of the
superior temporal and the
medial orbitofrontal regions
were also significantly larger in
PD subjects.

Global PVS VF
PD: 0.74 (0.04) %
Non-PD: 0.61 (0.04) %

Langan et al., 2022 COVID-19 patients (n = 10,
mean age = 53.6 years); controls
(n = 9, mean age = 51.2 years).

7T, T1, T2-TSE.
PVSSAS.

PVS counts, but not volumes,
were significantly higher in
COVID-19 patients compared
to controls. PVSSAS
segmentation resulted in an
inter-rater Dice score = 99.14%.

WM-PVS counts
Controls: 3,232 (351)
COVID19: 3,928 (866)

Ranti et al., 2022 MDD patients (n = 21, mean
age = 35.0 years); healthy
controls (n = 27, mean
age = 39.7 years).

7T, T1, T2-TSE.
PVSSAS.

In MDD patients, the number
of traumatic events correlated
with total PVS volumes.
PVSSAS segmentation resulted
in an inter-rater Dice
score = 99.14%.

WM-PVS volume
MDD: 7,517.99 mm3

Controls: 7,627.83 mm3

Lynch et al., 2022, Preprint Healthy subjects (n = 1394, age
range = 8–89.8 years)

3T, T1 divided by T2.
NLMF and frangi filtering
(EPC).

PVS measures were
characterized across the
lifespan. Measurements
included VF, counts, solidity,
and tortuosity.

WM-PVS VF range† : 0.5–2%

Barisano et al., 2022b NASA astronauts (n = 24, mean
age = 48.6 years); ROS
cosmonauts (n = 13, mean
age = 47.4 years).

3T, T1.
NLMF and frangi Filtering.

WM-PVS volumes were
significantly greater in
astronauts who developed
SANS, compared to those that
didn’t.

WM-PVS volume postflight
SANS: 1866.4 (769.7) mm3

Non-SANS: 1219.3 (567.5)
mm3

(Continued)

Frontiers in Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2022.1021311
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1021311 December 13, 2022 Time: 7:5 # 18

Pham et al. 10.3389/fnins.2022.1021311

TABLE 2 (Continued)

Study Cohort description MRI sequences, segmentation
method

Findings PVS measures, mean (SD)

Hupfeld et al., 2022 Astronauts (n = 15, mean
age = 47.5 years); controls
(n = 11, mean age = 42.3 years).

3T, T1.
MAPS.

PVS counts were not associated
with SANS. Novice astronauts
exhibited significant changes in
total PVS volumes after
spaceflight, whereas
experienced astronauts did not.

WM-PVS VF: 0.053 (0.044) %

Ramirez et al., 2022 PD patients (n = 133, mean
age = 67.7 years)

3T, T1, T2-FLAIR, PD.
Modified Lesion explorer.

Patients with smaller BG-PVS
volumes were associated with
MDS-UPDRS Parts I and II.
Patients with larger BG-PVS
volumes were associated with
MDS-UPDRS Parts III and IV.

Median BG-PVS
Volumes: 28.0–55.5 mm3

Counts: 6–9

Donahue et al., 2022 PD patients (n = 17, mean
age = 64.5 years)

3T, T1.
NLMF and frangi filtering

Larger PVS VF in the frontal
lobe were associated with
higher levels of
choline-containing
compounds. PVS VF in the
anterior middle cingulate
cortex was negatively correlated
with concentrations of
N-acetyl-compounds.

N/A

Kamagata et al., 2022 AD (n = 36), MCI (n = 44) and
controls (n = 31). Mean
age = 73 years.

3T, T1.
NLMF and frangi filtering.

PVS-VF in both the WM and
BG were significantly larger in
AD patients compared to
controls. MCI patients had
significantly larger WM-PVS
VF than controls.

WM-PVS VF
Controls: 0.30 (0.02) %
MCI: 0.29 (0.02) %
AD: 0.28 (0.02) %

Barnes et al., 2022 Subjects with WMHs (n = 29,
mean age = 71.9 years)

1.5T, T2, T1, FLAIR.
Optimized frangi filtering and
manual correction.

Topological relationships
between WMH progression
and PVS proximity were not
statistically significant.

CSO-PVS volume
Median: 7574 mm3

Range: 2,030–14,575 mm3

Jokinen et al., 2020 Subjects with WMHs (n = 639,
age range = 65–84 years)

1.5T, T1.
uResNet.

PVS measures were predictive
of changes in processing speed,
executive functions, memory,
and VADAS score in the 3-year
follow-up.

# PVS observed (% of cohort):
0: 5.0%
1–5: 46.1%
6–10: 22.5%
≥ 11: 26.4%

Zong et al., 2020 Healthy subjects (n = 45, age
range = 21–55 years)

7T, T2, TSE.
M2EDN.

BG-PVS counts, and VF were
associated with age. Carbogen
(a vasodilator gas) induced
increased PVS-VF in the BG
and WM.

PVS diameter: 0.69–0.71 mm
VF: 0.05–0.33%
Counts: 5.9–417

Wang et al., 2021 Middle-later aged subjects
(n = 161, mean age = 60.4
years).

3T, T1, T2, SWI, T2-FLAIR.
M2EDN.

Both quantitative and
morphological measures of
BG-PVS were associated with
WMH volume and lacunes.
Both WM and BG-PVS counts
were associated with
hypertension. Reported DSC
for segmentation performance
was 70%.

PVS volume, median (IQR)
WM: 2370.6 (1520.6–3279.6)
mm3

BG: 166.4 (80.1–412.4) mm3

PVS counts, median (IQR)
WM: 490 (375–602)
BG: 65 (39.5–155)

Huang et al., 2021 Healthy elderly subjects
(n = 103, mean age = 59.5
years).

3T, T1, T2, T2-FLAIR,
TOF-MRA.
M2EDN.

Hypertension was associated
with WM-PVS volume.
Intracranial artery diameter
was negatively correlated with
WM-PVS volumes. Reported
DSC for segmentation
performance was 70%.

PVS volume, median (IQR)
2.6 (1.7–3.9) mL

(Continued)
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TABLE 2 (Continued)

Study Cohort description MRI sequences, segmentation
method

Findings PVS measures, mean (SD)

Spijkerman et al., 2022 Cognitively impaired patients
(n = 50, mean age = 62.9 years).

7T, T2-TSE.
Sato filter and K-nearest
neighbor algorithm.

PVS measures were extracted
and mapped onto MNI152
space, generating heatmaps for
PVS density, length, and
tortuosity.

N/A

Almost all publications listed here have applied computational methods to facilitate the voxel-wise delineation of PVS in MRI. PVS measures reported by each publication are listed in the
last column. It is clear that PVS measurements are highly heterogenous between studies that have applied different algorithms. The reported values are the mean (SD), unless otherwise
specified. Listed first are the methods that utlize classical image filtering technique. In the second section are methods that have applied machine learning techniques. †Derived visually from
published graphs. AD, Alzheimer’s disease; MCI, mild cognitive impairment; VADAS, vascular dementia assessment scale; CVD, cardiovascular disease; PD, Parkinson’s disease; MDS-
UPDRS, movement disorder society-unified Parkinson’s disease rating scale; MS, multiple sclerosis; mTBI, mild traumatic brain injury; MDD, major depressive disorder; NASA, national
aeronautics and space administration; VF, volume fraction; CSO, centrum semiovale; asMTL, anterior superior medial temporal lobe; WMH, white matter hyperintensities; FLAIR, fluid
attenuated inversion recovery sequence; TSE, turbo-spin-echo; TOF-MRA, time-of-flight magnetic resonance angiography; DSC, Sørensen-Dice similarity coefficient; NLMF, non-local
means filtering; EPC, enhanced perivascular contrast; PVSSAS, perivascular Space semi-automatic segmentation tool.

Significant higher PVS counts, but not volumes, have been
found in COVID-19 patients, compared to controls (Langan
et al., 2022). In patients with major depressive disorder,
the severity of PVS volume enlargement has been associated
with the number of traumatic events experienced in patients
diagnosed with major depressive disorder (MDD) (Ranti et al.,
2022). Notably, there were no significant differences in PVS
measures (counts, density, and volumes) between MDD patients
and controls (Ranti et al., 2022). Similarly, in U.S. military
veterans, the number of mild traumatic brain injuries (mTBI)
sustained was positively correlated with both PVS volumes
and counts (Piantino et al., 2021). In this cohort of veterans,
an interaction between mTBI events and sleep quality was
significantly associated with PVS volumes (Piantino et al., 2021).

With the use of susceptibility weighted imaging (SWI)
sequences, periarteriolar spaces can be distinguished from
perivenular spaces (Bouvy et al., 2014). The majority of MRI-
visible perivascular spaces tend to be associated with perforating
arteries, as opposed to veins (Bouvy et al., 2014; George et al.,
2021). In healthy controls (n = 3), only 10.3% of MRI-visible PVS
clusters were found to be perivenular, with multiple sclerosis
patients (n = 3) demonstrating a significantly greater proportion
of visible perivenular space (15.19%) (George et al., 2021).
Although the sample sizes were quite small, the results are
consistent with the notion that enlargement of perivenular
spaces may be associated with inflammation and inflammatory
markers.

In PD patients, magnetic resonance spectroscopy has been
used to investigate the regional concentrations of inflammatory
neurometabolites with respect to PVS enlargement in different
regions (Donahue et al., 2022). In the frontal white matter,
higher PVS volume fractions were associated with higher levels
of choline-containing compounds, an inflammatory marker
(Donahue et al., 2022). Whereas, PVS-VF in the anterior middle
cingulate cortex was negatively correlated with levels of N-acetyl
containing compounds (Donahue et al., 2022). Additionally,
PVS enlargement in both the midbrain and BG has been

associated with motor symptom severity (Shen et al., 2021;
Ramirez et al., 2022).

Furthermore, patients diagnosed with mild cognitive
impairment (MCI) appear to have a higher WM-PVS volume
fraction compared to controls (Niazi et al., 2018; Kamagata et al.,
2022). However, no associations between PVS-VF, in either the
WM or BG, were observed with hippocampal volumes, CSF
levels of Aβ42, or neuropsychological scores (Kamagata et al.,
2022). In contrast, reduced WM-PVS volume fraction in the
antero-superior medial temporal lobe has been observed in
MCI patients compared to controls (Sepehrband et al., 2021).
Additionally, this shrinkage was associated with entorhinal
neurofibrillary tau tangle deposition measured by positron
emission tomography (Sepehrband et al., 2021).

In AD, both greater WM-PVS volume fractions and greater
BG-PVS volumes have been observed in patients compared to
age-matched controls (Cai et al., 2015; Ramirez et al., 2015;
Kamagata et al., 2022). The enlargement of PVS has been
widely implicated in a number of neurodegenerative diseases,
exclusively in cross-sectional studies. Future longitudinal
studies should examine the changes that occur in PVS with
disease progression, especially in the later stages of disease.
Such a study would be useful to examine the effect that
disease has on the growth trajectory of PVS. For example, it is
unknown whether PVS enlargement continues to occur in the
later stages of brain and white matter atrophy, especially when
neurodegeneration is accelerated by disease.

Recommendations for future research
and clinical applications

(1) Examine specific patterns of PVS enlargement, e.g.,
combinations of regionality, quantity (counts and
volumes or volume fractions) and morphology (length,
width, solidity).

(2) Focus on longitudinal studies especially given high
inter- and intra-individual variability.
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TABLE 3 Summary of the PVS metrics that have been investigated by previous publications.

Study Quantitative metrics Morphological metrics

Volume VF Counts Length Width Linearity Tortuosity

Ramirez et al., 2015 X

Berezuk et al., 2015 X

Cai et al., 2015 X

Zong et al., 2016 X X X X X

Wang et al., 2016 X X

Niazi et al., 2018 X X

Piantino et al., 2020 X X X X X

Ballerini et al., 2020a X X X X

Ballerini et al., 2020b X X X X

Valdés Hernández et al., 2020 X X X

Zong et al., 2020 X X X

Barisano et al., 2021b X X

Sepehrband et al., 2021 X X

Ramirez et al., 2021 X

Shen et al., 2021 X X

George et al., 2021 X X

Piantino et al., 2021 X X X X X

Donahue et al., 2021 X

Langan et al., 2022 X X X X X

Ranti et al., 2022 X X X X X

Lynch et al., 2022, Preprint X X X X

Barisano et al., 2022b X

Hupfeld et al., 2022 X X

Barnes et al., 2022 X

Kamagata et al., 2022 X

Donahue et al., 2022 X

Ramirez et al., 2022 X X

Jokinen et al., 2020 X

Zong et al., 2020 X X X

Wang et al., 2021 X X X X X

Huang et al., 2021 X X

Spijkerman et al., 2022 X X X

PVS measures can be broadly categorized as quantitative metrics (volume, count, and volume fractions), and morphological metrics (length, width, solidity, and tortuosity). Listed first
are the methods that utlize classical image filtering technique. In the second section are methods that have applied machine learning techniques.

(3) Publish PVS counts, volumes, volume fractions, and
time of MRI scans, field strength, and voxel size as
descriptive variables, where possible.

(4) Publish SNR and CNR values, after applying
preprocessing steps and immediately
before PVS detection.

The individual labeling of PVS voxels enables more
sophisticated research to be conducted in comparison to rating
scales. Not only are we able to evaluate the severity of
enlargement, but also analyze specific regions and morphology.
This is important as the general finding of widespread PVS
enlargement in response to various diseases does not offer a

useful and highly specific biomarker of disease. Therefore, future
research should examine specific patterns of PVS enlargement
and shrinkage in response to disease severity. For example,
shrinkage of PVS fraction in anterior-superior medial-temporal
lobe (asMTL) of MCI patients (Sepehrband et al., 2021). It
would be interesting to see whether the shrinkage of PVS volume
fraction in the asMTL of MCI patients, alongside widespread
PVS-VF enlargement in the WM is specific to MCI pathology
and no other diseases including AD (Sepehrband et al., 2021).
Although it is a paradoxical finding, it does provide support for
more sophisticated analyses of PVS involving combinations of
regionality and morphology. As indiscriminate and widespread
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enlargement of PVS in response to any type of pathology would
unlikely be clinically useful.

Moreover, longitudinal studies will be most useful in
assessing PVS changes specific to diseased states, given the
very high inter-individual variability of PVS enlargement. There
also appears to exist intra-individual variability, wherein PVS
enlargement occurs in a diurnal manner, being smallest after
sleep and gradually expanding throughout the day (Barisano
et al., 2021b). The expansion between morning and afternoon
is around 0.7 cm3 or 700 mm3. Given that the average
adult brain contains around 5,000 mm3 of detectable PVS
volume, diurnal variations may indeed play a significant
factor to account for (±10% variation in PVS volume).
Assuming an average of 8 h of sleep, this would imply
that PVS volumes regularly expand on average 43.75 mm3

per waking hour (Barisano et al., 2021b). Therefore, studies
should mention whether MRI scans were conducted during
the morning or afternoon. This finding is especially important
for PVS detection techniques of lower sensitivity, as fewer
PVS are detected, findings of statistical significance may
be a result of intraday variability (Ramirez et al., 2021).
009 To improve comparability, we recommend publishing
average volumes and counts alongside volume fractions and
MRI parameters and the resulting SNR and CNR. For a
discussion of the MRI parameters that affect PVS visibility,
please refer to Zong et al. (2016) and Barisano et al.
(2022a).

Here we present one definition of SNR and CNR
(Equation 2). Whilst there are many methods to derive
them, the exact definition is unimportant. What is important
is that the same definition is consistent across studies,
and therefore useful as reference values. An SNR or CNR
value calculated differently to the industry standard, should
be explicit in its definition, as it does not serve as a
useful reference, but instead potentially misleads readers
by appearing to have a better or worse image quality
than is present.

Currently there is no standard for PVS segmentation. This
means different groups will likely end up with different CNRPVS

values due to the heterogenous PVS detection protocol. In
addition to inter-group differences, there are large inter-rater
differences. This will lead to substantial variation in reported
CNR scores if PVS signal is used. Thus, the intensity of gray
matter is used instead of PVS (Equation 2). The gray matter can
be reliably segmented via established methods e.g., Freesurfer,
FSL, and ANTs (Dale et al., 1999; Zhang et al., 2001; Avants et al.,
2014). Another reason is that the PVS intensity appears to most
closely resemble GM, as opposed to CSF intensity (Zong et al.,
2020; Bernal et al., 2022). Thus, CNR measures based on GM
intensity should be simple to compute and highly comparable
between studies.

The application of high field (7T) MRI to elucidate the
anatomic and pathological extent of PVS enlargement exhibits

significantly better image quality than lower field strength
scanners (1.5T and 3T) (Barisano et al., 2021a). In a study
examining the differences in image quality between MRI
scanners different field strengths, as expected, higher Tesla
scanners outperformed 1.5T images in both SNR and CNR
measurements (Magnotta and Friedman, 2006). However, the
quality of the 1.5T images were the most stable between
scanners, exhibiting a tighter range of SNR values, compared
to the 3T and 4T images (Magnotta and Friedman, 2006).
In some cases, the 3T images appeared to be no different
to the 1.5T in terms of SNR. To employ a useful analogy,
when measuring one’s weight on bathroom scales assembled by
different companies, they may report different measurements.
This is analogous to the problem of variability between MRI
scanners or inter-scanner variability. Here, SNR can be used to
measure the comparability between scanners.

Furthermore, when the typical bathroom scale is substituted
with a highly sensitive industrial grade weighing scale, slight
changes in weight and even involuntary movements are
detectable. Consequently, when observing one’s weight on this
sensitive instrument, the measurement might not settle on a
single value, and instead display a constantly varying number.
Similarly, PVS measurements derived from 7T scanners, may
suffer from the same intra-scanner variability, although this
remains hypothetical. In this case, CNR is useful as a metric for
scanner performance.

To address the problem of variability between scanners,
harmonization methods such as ComBat and NeuroHarmonize
have been developed (Fortin et al., 2018; Garcia-Dias et al., 2020;
Pomponio et al., 2020). A word of caution with these methods:
by calculating the pooled average of image quality metrics and
biasing all dependent variables in a consistent manner, the PVS
metrics are effectively “harmonized.” However, this can lead to
erosion of PVS measurements derived from images that have
greater quality than the pooled average. Magnotta and Friedman
(2006) suggest three potential solutions:

(1) Adjustment of scan parameters to provide
similar SNR and CNR.

(2) Development of image processing methods that are
unaffected by SNR and CNR differences.

(3) Statistical approaches to control for image quality, such
as the use of SNR as a covariate in data analyses.

Taking the last idea one step further, Shannon’s entropy
focus criterion (EFC), an image quality metric that measures the
degree to which an image has been affected by motion artifacts
such as ringing or ghosting, can be adjusted for in statistical
analyses (Atkinson et al., 1997). EFC is easily derived with the
MRI Quality Control (MRIQC) tool, and may be especially
useful for PVS studies in disease cohorts with patients who
struggle to remain motionless during MRI scans (Esteban et al.,
2017).
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A case study of perivascular spaces
in spaceflight associated
neuro-ocular syndrome: How
different algorithms can lead to
vastly different results

Recently, two studies have been published examining the
changes in perivascular spaces associated with being in a
microgravity environment for 6 months. Both studies used 3T
T1-weighted MRI to assess PVS changes in the brain after
6 months in space. Barisano et al. (2022b) examined participants
within 2 weeks before and after 6 months of spaceflight. Hupfeld
et al. (2022) conducted six scans, two before and four after.
Both studies had age matched controls (Hupfeld et al., 2022).
Barisano et al. (2022b) also had a group of astronauts with 2-
week missions (n = 7). To detect and subsequently assess PVS
quantities and morphology, Hupfeld et al. (2022) (n = 14) used
MAPS in the white matter, whereas Barisano et al. (2022b)
(n = 37+) applied non-local means filtering followed by Frangi
filtering, in both the white matter and basal ganglia.

In each study, various non-overlapping hypotheses were
tested. We will focus on the common hypotheses that were
tested and as they relate to PVS:

(1) Whether previous experience in spaceflight was
associated with different WM-PVS volumes or volumes
fractions in pre-flight scans.

(2) Whether changes in WM-PVS volume or volume
fraction, from pre- to post-flight were associated with
previous days spent in space.

(3) Whether WM-PVS changes correlated with
mission duration.

(4) Whether WM-PVS differences at baseline or pre-
flight were associated with occurrence of spaceflight-
associated neuro-ocular syndrome (SANS).

(5) Whether WM-PVS changes from pre- to post-flight
were associated with occurrence of SANS.

In line with Hupfeld et al.’s (2022) suggestion of holdover
effects due to previous spaceflight experience, Barisano et al.
(2022b) reported high WM-PVS volumes in ROS cosmonauts
who spent more time in space compared to NASA ISS astronauts
(mean previous number of days in space = 266.3 vs. 88.8,
mean preflight volume = 1976.4 vs. 1152.3 mm3, respectively),
although this hypothesis was not directly tested. Hupfeld et al.
(2022) found strong effect sizes for previous days spent in space
with pre-flight PVS metrics including volumes, however, none
of these reached significance (r = 0.60–0.71, p > 0.05) (Hupfeld
et al., 2022).

Regarding the second hypothesis, Hupfeld et al. (2022)
found that novice astronauts exhibited greater change in total
PVS volume compared to experienced astronauts who exhibited
a decrease in total PVS volume (p = 0.02). This association

was not significant for other PVS metrics, but total PVS counts
did show a trend toward significance (p = 0.068) (Hupfeld
et al., 2022). In comparison, Barisano et al. (2022b) found that
previous spaceflight experience was inversely correlated with
changes in BG-PVS but not the WM-PVS. In other words, more
time previously spent in space was associated with less change
in PVS volumes of the BG due to further spaceflight exposure.
Additionally, greater PVS volumes in both the BG and WM were
found after 6 months of spaceflight (n > 37), which did not
occur for astronauts who participated in 2-week missions (n = 7)
(Barisano et al., 2022b). Conversely, Hupfeld et al. (2022) found
no association of PVS volume fraction change with mission
duration (n = 15, p > 0.05).

White matter-perivascular spaces volumes were larger pre-
and -post flight for NASA astronauts who developed SANS, as
opposed to those who didn’t, suggesting a link between PVS and
SANS by Barisano et al. (2022b). Unlike Barisano et al. (2022b).
and Hupfeld et al. (2022) found no difference in initial WM PVS
volume fraction between SANS and non-SANS group (p = 0.41).
However, neither study found the change in PVS volume before
and after flight to be statistically significant different between
the SANS and non-SANS group (Barisano et al., 2022b; Hupfeld
et al., 2022).

In summary, of the five hypotheses that both studies
examined, Barisano et al. (2022b) reached significance for three
of the five, whereas Hupfeld et al. (2022) only one, with two
tests trending towards significance. A number of factors could
have impacted the failure to reach statistical significance such as
random chance, high individual variability, small sample sizes,
and methodological differences such as differing definitions for
ventricular volumes. We suspect that a lower PVS detection
sensitivity to be a major contributing factor to the failure to
reach statistical significance.

The sensitivity of a PVS detection technique directly impacts
the statistical power of the study. Lower detection rates will
likely deprecate the ability of the study to rule out false negative
hypotheses, i.e., have an increased Type 1 error, as fewer PVS
are detected leading to lower PVS volumes. This seems to be the
case in Hupfeld et al. (2022) wherein multiple tests did not reach
statistical significance, but rather a trend was observed wherein
p-values were close to the critical threshold.

In Figure 11, it is visually evident that the Frangi approach is
much more sensitive than the approach taken by Barisano et al.
(2022b) and Hupfeld et al. (2022). Furthermore, the differing
PVS detection ability between the approaches can be elucidated
by looking to the published PVS volumes. Whilst Barisano et al.
(2022b) reported average PVS volumes (mm3), Hupfeld et al.
(2022) reported PVS volumes as a fraction of white matter
volume (mm3/cm3). The highest mean volume fraction reported
by Hupfeld et al. (2022), was 0.53 mm3/cm3, occurring post-
flight at scan six (return +180 days) in all astronauts. If a liberal
white matter volume of 600 cm3 is assumed, this would imply
that a mean of 318 mm3 of PVS volume was detected (Farokhian
et al., 2017). In comparison, the lowest mean WM-PVS volume
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FIGURE 11

3D renders of PVS segmentations in astronauts from Hupfeld et al. (2022) (left) and Barisano et al. (2022b) (right). On the left, PVS are displayed
in red, whilst on the right PVS are blue. Reproduced under the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

reported by Barisano et al. (2022b) is 768.8 mm3. This is more
than double the volume reported by Hupfeld et al. (2022),
despite the higher resolution and MRI coils utilized which
presumably leads to better detection of PVS voxels. However,
without SNR or CNR values published, it is unclear whether
one study had better image quality than the other despite both
conducting 3T, T1-weighted MRI scans.

These values can be further contextualized with published
normative ranges of PVS volume fractions averaging 1.14%,
or mean PVS volume of 5029.39 mm3 for healthy adults
(n = 897, mean age = 28.8 years) from the Human Connectome
Project, found using Frangi filtering, similar to Sepehrband
et al. (2019; Barisano et al., 2021b; Lynch et al., 2022,
Preprint). Despite being significantly younger than the cohort
of studied astronauts, the average PVS volume was significantly
greater (5029.39 mm3) in the former group compared to the
PVS volumes of 318 mm3 and 786.8 mm3, published by
Barisano et al. (2022b) and Hupfeld et al. (2022), respectively.
Importantly, the normative PVS values were determined via
the combination of co-registered T1 and T2 images (EPC)
to substantially improve the CNR of PVS making these
comparisons unfair (Sepehrband et al., 2019; Barisano et al.,
2021b). It does, however, highlight that normative ranges for
PVS distributions are yet to be established for commonly studied
MRI sequences, in this case, for single-modality 3T, T1-weighted
images, and that preprocessing techniques will have great impact
on the subsequent result. Specifically, the EPC preprocessing
pipeline of combining T1 and T2 images may have improved
PVS visibility by a factor of six compared to unimodal detection
(Sepehrband et al., 2019), again highlighting the importance of
publishing image quality metrics after preprocessing steps and
before PVS detection.

In comparison, Hupfeld et al. (2022) employed MAPS
to segment perivascular spaces, an algorithm that has been
involved in several publications. Hupfeld et al. (2022) states
that the “group mean PVS values [of the astronauts] fall within
the range of . . . a cohort of male veterans with a history of
traumatic brain injury.” For this cohort of veterans (n = 56,
mean age = 32 years), the mean PVS volume fraction of WM was
1.3 (SD = 1.0) mm3/cm3 (Piantino et al., 2021). Moreover, PVS

characterization via mMAPS (multi-modal MAPS) in the white
matter of healthy male adolescents (n = 56, mean age = 16 years),
uncovered a mean total PVS volume of 334.8 (192.4) mm3

or mean PVS volume fraction of WM = 0.7 (0.4) mm3/cm3

(Piantino et al., 2020). Using mMAPS, Boespflug et al., found
a mean PVS volume of 303.0 (267.7) mm3 in healthy old
adults (n = 14, mean age = 85.3 years) (Boespflug et al., 2018).
These findings are greater than the largest value reported for
Hupfeld et al.’s (2022) cohort of astronauts (mean PVS volume
fraction = 0.53 mm3/cm3, mean age = 47.46 years).

Whilst these values are roughly in line with each other, it is
not consistent to find less PVS volumes in older cohorts, given
that age is one of the most established predictors of PVS volume
(Lynch et al., 2022, Preprint). It can be argued, however, that
the results differ due to the multiple MRI modalities available in
each case. Piantino et al. (2020) applied MAPS with T2, T1, and
FLAIR modalities to detect PVS in adolescents. Whereas only
T1-weighted images were available to Hupfeld et al. (2022). This
could explain the larger PVS volumes detected in adolescents
compared to significantly older but healthy astronauts.

Conclusion

Taken together, quantitative measures of perivascular spaces
that have been published are highly inconsistent, not only
between studies using different detection methods (e.g., MAPS
and Frangi filtering) but also within studies applying the same
PVS segmentation technique. This can be due to a variety
of reasons, such as preprocessing methods and heterogenous
image qualities. Whilst we are critical of the results published,
this in no way invalidates previously published results. They
merely reflect the fact that different approaches to the same
problem will likely lead to different outcomes, e.g., less sensitive
algorithms will likely yield less significant outcomes. Nor
does this review call for a complete overhaul of established
methods. Huge amounts of time and effort are dedicated in
order to develop a functional pipeline for automated PVS
segmentation. The present review also highlights the poor
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comparability of results between studies due to differing PVS
detection techniques. We therefore, make recommendations to
help solidify the foundations for future PVS research as they
relate to developments of new detection methods in MRI and
subsequent applications. Development of novel segmentation
methods should focus on the Sørensen Dice similarity coefficient
as the main measure of model performance. In the application
of these models, publication of image quality metrics alongside
MRI scanner properties, and descriptive statistics of PVS
measures should facilitate comparability between studies.

Author contributions

WP wrote the manuscript. All authors contributed to edits,
revisions, and approval for submission.

Conflict of interest

Outside of the present work, the authors report additional
funding from: TO’B reports funding from the National Health
and Medical Research Council (NHMRC), Medical Research
Future Fund (MRFF), Department of Industry, Science and
Resources, and the National Institute of Neurological Disorders
and Stroke (NINDS). TO’B institution has also received
consultancy and research funding from UCB Pharma, Eisai, ES
Therapeutics, Zynerba, Praxis Pharmaceuticals, and Biogen. LV
reports research funding from Biogen, Eisai, and Life Molecular

Imaging, and research grants from the National Health and
Medical Research Council (NHMRC), Medical Research Future
Fund (MRFF), National Institute of Health (NIH), Department
of Industry, Science and Resources, Victorian Accelerator Fund,
Medical Research Future Fund (MRFF), and Multiple Sclerosis
Research Australia (MSRA). MLa reports funding from the
National Health and Medical Research Council (NHMRC),
Medical Research Future Fund (MRFF), National Institute
of Health (NIH), Australian Research Council (ARC), the
Australian National Imaging Facility (NIF), American Society
of Neuroradiology, and the Aftershock Foundation. MLa has
also received consultancy and research funding from Siemens
Healthineers and GE Healthcare. BS reports funding from the
Department of Industry, Science, Energy, and Resources.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Adams, H. H. H., Cavalieri, M., Verhaaren, B. F. J., Bos, D., Lugt, A., van
der Enzinger, C., et al. (2013). Rating Method for Dilated Virchow–Robin
Spaces on Magnetic Resonance Imaging. Stroke 44, 1732–1735. doi: 10.1161/strok
eaha

Adams, H. H. H., Hilal, S., Schwingenschuh, P., Wittfeld, K., van der Lee,
S. J., DeCarli, C., et al. (2015). A priori collaboration in population imaging:
The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium.
Alzheimers Dement. 1, 513–520. doi: 10.1016/j.dadm.2015.10.004

Albayram, M. S., Smith, G., Tufan, F., Tuna, I. S., Bostancıklıoğlu, M., Zile, M.,
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