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Our research group previously proposed a simple two-dimensional (2D) constitutive model for rocks to simulate not only the
axial stress–axial strain relationship, but also the axial stress–lateral strain relationship, with few complicated equations.
However, the failure envelope that it predicted was linear, and it did not consider the effect of the intermediate principal stress
(σ2). In the present study, the authors modify this simple 2D model to have a convex failure criterion. Then, the model is
extended to a simple three-dimensional (3D) model that well approximates true triaxial stress–strain curves for real rocks
under specific values of σ2 and σ3 and uses only four parameters. However, the predicted peak stress–σ2 relationship is linear.
Finally, a modified 3D model was developed, which exhibited the true triaxial convex failure criterion. The equations in this
model are simpler than the conventional true triaxial failure criteria. The proposed models can be implemented with a finite
element method to improve the design of rock structures.

1. Introduction

A 3D constitutive model is required for the analysis of rock
structures. However, as shown below, complex equations are
used just to represent the true triaxial strength. This paper
aims to develop a 3D constitutive model which is simple
and can fairly represent the deformation and failure of rocks
under the effects of the intermediate principal stress. The
model would contribute to better rock structure design if
combined with 3D numerical stress software.

The simplest three-dimensional (3D) constitutive model
for rocks is

σ1 = λ + 2μð Þε1 + λε2 + λε3, ð1Þ

σ2 = λε1 + λ + 2μð Þε2 + λε3, ð2Þ

σ3 = λε1 + λε2 + λ + 2μð Þε3, ð3Þ
where ε1, ε2, and ε3 are the maximum (axial), intermediate,
and minimum (lateral) principal strains, respectively; σ1,

σ2, and σ3 are the maximum (axial), intermediate, and min-
imum (lateral) principal stresses, respectively, and λ and μ
are Lame’s constants (Figures 1(a) and 1(b)).

Elasto-brittle models can be derived by introducing peak
and residual strengths (Figures 1(c) and 1(d)). However, the
resulting stress–strain curves, which should be curvilinear
for real rocks, are unrealistic polylines. More realistic
stress–strain curves, which are needed for precise analyses
of rock structures, can be obtained using various two-
dimensional (2D) constitutive models [1–14].

A variable-compliance-type constitutive model [7] is
(Figure 2)

σ1 =
ω

b

� �1/ n−3ð Þ
ε1

−m/ n−mð Þ, ð4Þ

where ω = dψ/dt, ψ = ε1/σ1, and n, m, and b are constants.
This equation simulates the axial stress–axial strain relation-
ships for classes I and II. However, no reasonable methods to
evaluate the lateral strain have yet been provided. Actual
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rocks under compression show lateral dilatancy around peak
stress in most cases, due to the growth of axial microcracks
[15–18]; this growth is essential to the deformation and fail-
ure of rocks [19]. Therefore, the axial stress–lateral strain
relationship is more important than the axial stress–axial
strain relationship [20, 21].

By contrast, a simple 2D constitutive model for rocks
was proposed by our research group [22] based on the
finding that the trace of the axial strain, lateral strain,
and axial stress is located on a plane in a 3D coordinate
system for rocks such as Paleogene Kamisunagawa sandstone
(Figure 3, [22]), Cretaceous Pombetsu sandstone, Paleogene
Bibai sandstone, and Paleogene Inada granite [23]. The equa-
tions in the model are very simple, and class I and II strain-
softening behaviors can be obtained with appropriate lateral
strain behavior by introducing the strain-dependent elastic
modulus.

For the 3D case, the strength of rocks is affected by σ2
([24–27], and [28–32], Figure 4; [33]), and various criteria
have been proposed to describe these effects ([25–27], and
[30, 34–43]). These criteria use complicated equations and
many parameters. For example, a modified Lade criterion
proposed by Ewy [44] (Figure 5(a)) is represented as

I1 ′
� �3

I3 ′
= 27 + η, ð5Þ

I1 ′ = σ1 + s1 − p0ð Þ + σ2 + s1 − p0ð Þ + σ3 + s1 − p0ð Þ, ð6Þ

I3 ′ = σ1 + s1 − p0ð Þ + σ2 + s1 − p0ð Þ + σ3 + s1 − p0ð Þ,
ð7Þ

where p0 is pore pressure, η is related to the internal friction,
and s1 represents the cohesion of the rock. The peak strength
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Figure 1: The simplest 3D constitutive model under (a) uniaxial compression and (b) σ2 > σ3. A 3D elasto-brittle model under (c) uniaxial
compression and (d) σ2 > σ3.
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Figure 2: A variable-compliance-type constitutive model [7].
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first increases and then decreases with σ2 according to the
modified Lade criterion.

As another example, a 3D failure criterion for rocks pro-
posed by Li et al. [38] based on the Hoek–Brown criterion
[45, 46] is expressed as

σ1 =
bσ2 + σ3
b + 1 + σc

mb

σc

bσ2 + σ3
b + 1 + s

� �α

lowσ2ð Þ, ð8Þ

bσ2 + σ1
b + 1 = σ3 + σc

mb

σc
σ3 + s

� �α

highσ2ð Þ, ð9Þ

where σc and b are the unconfined compressive strength and
a constant, respectively, and

mb = exp GSI − 100
28 − 14D

� �
mi, ð10Þ
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Figure 3: 3D plots of strains and axial stress under uniaxial compression; after rotating the coordinate system, the originally curvilinear
trace (a) appears as a straight line (b).
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Figure 5: (a) Modified Lade criterion by s0 = 500 Psi, φ = 30°, and σ3 = 0 [44]. (b) 3D HB criterion for Yuubari shale [38].
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s = exp GSI − 100
9 − 3D

� �
, ð11Þ

α = 1
2 + 1

6 e−GSI/15 − e−20/3
� �

, ð12Þ

where mi, GSI, and D are the material constant for intact
rock, geological strength index, and disturbance factor,
respectively. The effects of σ2 on rock strength are repre-
sented well in this model (Figure 5(b)); however, the param-
eter selection is complex, and the resulting peak stress curves
are unrealistic polylines.

No constitutive equations can fully represent true triaxial
stress–strain curves considering the effects of σ2. Therefore,
this paper proposes a 3D constitutive model with fewer
parameters and consideration of these true triaxial stress-
strain curves and convex failure envelopes. Herein, we
briefly explain the simple 2D constitutive model of Fujii
and Ishijima [22]. Then, this simple model is modified to
include the convex failure envelope by introducing stress
dependency for an elastic modulus. We give an example of
its application to a pressurized thick-walled cylinder under
the plane strain condition. Then, the simple 2D model is
extended to a simple 3D one. Finally, this 3D model is
modified to represent true triaxial stress–strain curves and
convex failure envelopes.

2. The Simple 2D Constitutive Model

The simple 2D model developed by our research group
should be briefly explained before the 3D models because
they were developed based on the 2D model, and it has
not been published as a full paper in English in a peer-
reviewed journal.

A plane in the axial stress–axial strain–lateral strain
space (Figure 3) can be represented as

σ1 = A ε1 − ε0ð Þ + kAε3, ð13Þ

where σ1, ε1, and ε3 are the maximum (axial) principal
stress, the maximum (axial) principal strain, and the mini-
mum (lateral) principal strain. A is an elastic modulus, and
ε0 and k are constants; these are equal to λ + 2 μ, 0, and
ν/ð1 − νÞ, respectively, where ν is Poisson’s ratio for a linear
elastic medium. Using a function of normal strain, A’ ðεÞ, to
replace the constant A, and ignoring the constant ε0 in
Equation (13) for simplicity, we get

σ1 = A′ ε1ð Þε1 + kAε3: ð14Þ

By analogy, the following equation can be written for σ3:

σ3 = A′ ε3ð Þε3 + kAε1, ð15Þ

where σ3 is the minimum (lateral) principal stress. A’ðεÞ
should increase and converge to a specific value as ε tends
to +∞ (compression). The increase represents the increase
in axial elastic modulus (AA) due to microcrack closure
(Figure 6), as illustrated in Figure 7(a). A’ðεÞ should also
decrease with expansion and should converge to a specific
value as ε tends to −∞ (expansion). The decrease represents
a decrease in the lateral elastic modulus (AL) under extension
due to the initiation and growth of axial microcracks
(Figure 6), as illustrated in Figure 7(b). These assumptions
have already been confirmed numerically by a boundary
element method combining displacement discontinuity
[47] with the body force [49] elements in Fujii and Ishijima
[23] and explained by various mechanisms (e.g., Figure 8,
[17, 48]).

The following function (Figure 9) was chosen as A’ðεÞ to
satisfy the above requirements:

A′ εð Þ =D tan−1 C
ε

εs
+ 1

� �� 	
+ π

2


 �
+ F, ð16Þ

Horizontal microcracks

Axial microcracks

(a) (b) (c)

Figure 6: (a) Cracks generated in the uniaxial compression test (vertical loading direction) in granite. The arrows are drawn perpendicular
to the cracks. Note that most cracks are parallel to the loading direction [18]. (b) Axial cracks generated in uniaxial compression test in
granite [17]. (c) Illustration of axial microcrack initiation and growth and horizontal microcrack closure.
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D = 1 − k2
� �

A

π
, ð17Þ

F = k2A, ð18Þ
where εs is a constant whose value is approximately half the
absolute value of the critical extensile strain (lateral strain
value at the peak load point; [20]), C is a positive constant,
and D and F are determined so that the residual strength
becomes constant as ε1 and ε3 tend to ∞ and −∞,
respectively.

From Equations (14) to (18), an ultimate residual
strength, σur, for infinite strains can be calculated as

σur = σ1 ε1 =∞,ε3 = −∞ð Þ = σ3
k
: ð19Þ

However, the residual strength σr at −4.5% lateral strain
(Figure 10(f)), which is higher than the ultimate residual
strength, will be used hereafter for convenience.

The simple 2D model requires only four parameters (A,
k, C, and εs) to simulate classes I and II nonlinear stress–
strain behaviors (Figures 10(a)–10(e)), and tensile behavior
can also be simulated seamlessly (Figure 10(a)). Curves
representing such behavior can be obtained as follows, for
example:

(a1) Negative ε3 increment (extensile) is assigned
(a2) ε1 is calculated by Equation (15)
(a3) A’ðε1Þ and A’ðε3Þ are calculated by Equation (16)
(a4) σ1 can be calculated by Equation (14)
(a5) Iterate steps (a2–a4) until the solution converges
(a6) Iterate steps (a1–a5) for loading until ε3 reaches

-0.045
It is rather surprising that only a decrease in the lateral

elastic modulus can induce strain-softening behavior. The
mechanism of the strain softening is as follows. The elastic
modulus A’ðε3Þ decreases with lateral extensile strain, and
this strain increases by Equation (15). According to Equation
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Figure 9: Strain-dependent elastic modulus A’ for A = 20 (GPa)
and k = 0:25 [22].
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Figure 7: (a) Increase in the axial elastic modulus due to compression. (b) Decrease in the lateral elastic modulus due to extension.
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Figure 8: Illustration of dilatation by axial microcrack initiation and growth in a laboratory test [17].
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(14), the lateral extensile strain increment causes a decrease
in axial stress. The peak load point appears when the stress
increase due to the axial strain increment becomes the same
as the stress decrease due to the lateral extensile strain incre-
ment. In step (a1), the axial strain increment can be assigned
instead of the lateral extensile strain one to simulate class I
behavior.

Considering the model’s parameters, A mainly affects
strength and tangent modulus (Figure 10(b)). k mainly
affects strength, the shape of the σ1 – ε1 curve around the
peak load, Poisson’s ratio, and the critical compressive strain
(ε1 value at the peak load point; [20]; Figure 10(c)). Cmainly
affects the shape of the stress–strain curves around the peak
load, strength, and the critical strains (Figure 10(d)). εS
mainly affects the critical strains and strength (Figure 10(e)).

One of the limitations of this model is that it predicts a
linear failure envelope (Figure 10(f)). Therefore, we modify
it in the next chapter. However, other results are similar to
real rocks:

(i) Compressive strength increases with σ3 (Figure 10(a))

(ii) Compressive strength is larger than tensile strength
(Figure 10(a))

(iii) Critical compressive strain increases with σ3
(Figure 10(a), [20])

(iv) Critical extensile strain is unaffected by σ3
(Figure 10(a), [20])
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Figure 10: Simulated stress-strain curves by Equations (14)–(18). Default values are A = 20 (GPa), k = 0:25, C = 1, εs = 0:002, and σ3 = 0.
(a) Effects of σ3. (b) Effects of A. (c) Effects of k. (d) Effects of C. (e) Effects of εs. (f) Failure envelopes for Figure 10(a).
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3. Modified 2D Model

3.1. Introduction of k Dependent on Confining Pressure. We
introduce k dependent on confining pressure (Figure 11(a))
to give a convex failure envelope based on the increase in the
secant Poisson’s ratio with confining pressure under triaxial
compression (Figure 11(b)):

k = Δk
π

tan−1 1
α

σ3 − σ0ð Þ
� 	

+ π

2


 �
+ k0, ð20Þ

where k0 is the minimum value, Δk is the amplitude, and
σ0 and α are constants. The ultimate residual strength is
unchanged from Equation (19).

The stress–strain curves obtained by setting default values
of A = 20GPa, C = 1, εs = 0:002, k0 = 0:20, σ0 = 35MPa, α =
20MPa, and Δk = 0:30 show strain-softening behaviors
(Figure 12(a)) with a convex failure envelope (Figure 12(b)).
The stress drop decreases, and the strain-softening behavior
becomes mild as confining pressure increases; these are com-
mon features of rock deformation. Figure 12(b) also shows
the failure envelope predicted by the Hoek–Brown strength
criterion with σc = 71:6MPa, mb = 119:0, s = 1, and α =
0:104, which is similar. Therefore, the equations are expected

to approximate the stress–strain curves and convex failure
envelope of various rocks. Considering the model parameters,
k0 mainly affects the maximum stress (Figure 13(a)). Δk
(Figure 13(b)) and σ0 (Figure 13(c)) mainly affect the internal
friction angle. α mainly affects the convexity of the failure
envelope (Figure 13(d)).

3.2. Approximating Convex Failure Envelope for Test Results.
The procedure for approximating ordinary triaxial experi-
mental data using the modified 2D model is as follows:

(b1) Adjust A to approximate the gradient of the stress–
strain curve

(b2) Adjust C to approximate the overall shape of each
stress–strain curve

(b3) Adjust εs to approximate the peak load point and
slope of the failure envelope

(b4) Adjust k to approximate the gradient of the axial
stress–lateral strain curve and peak strength

(b5) Iterate steps (b1–b4) until the stress–strain curves
for the rocks are approximated well

(b6) Adjust k to approximate the peak strength for the
triaxial compression test

(b7) Use a nonlinear least squares method for the k vs.
σ3 curve to obtain values of k0, Δk, α, and σ0 (e.g.,
Figures 14 and 15(b))
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Figure 11: (a) Confining pressure-dependent k in the case where k0 = 0:20, σ0 = 35MPa, α = 20MPa, and Δk = 0:30. (b) Secant Poisson’s
ratio increases with confining pressure for Kamisunagawa sandstone [22, 23].
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The stress–strain curves and convex failure envelopes for
two types rocks, limestone and red sandstone [12, 13], are
approximated by the modified 2D model. For limestone,
the parameters A = 27GPa, C = 3:5, and εs = 0:0013 were
given, and the parameters k0 = 0:143, Δk = 0:0239, α =
2:04MPa, and σ0 = 20:9MPa were obtained by a nonlinear
least-squares method (Figure 14(b)). For red sandstone, the
parameters A = 9GPa, C = 2:5, and εs = 0:002 were given,
and the parameters k0 = 0:18, Δk = 0:0928, α = 20:6MPa,

and σ0 = 29:0MPa were obtained by a nonlinear least-
squares method (Figure 15(b)). The stress–strain curves
(Figures 14(a) and 15(a)) and convex failure envelopes
(Figures 14(c) and 15(c)) for rocks are simulated well.

3.3. Comparison with Other 2D Models. For comparison, we
discuss the examples of two conventional 2D elasto-plastic
constitutive models (Figure 16(a), [12]; Figure 16(b), [13]).
These models are complicated and need 11 and 10
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parameters, respectively, to approximate the experimental
stress–strain curves.

The results according to Zhang [12], including elastic
(E0 = 45:51GPa and ν0 = 0:320), strength (α1 = 2:07, κ =
34:5MPa, and α2 = 2:07), plastic hardening (h0 = 0:58,
h1 = 1:40, and b = 900), damage (ωc = 0:70, β1 = 0:50MPa−1,
and r = 0:2), and damage softening (a = 3:45 exp ½−0:047σ3�)
parameters, are represented by the blue lines in Figure 14(a).

The results according to Zhang, et al. [13], including
elastic (bulk modulus, K0 = 8GPa; shear modulus initial
value, G0 = 6GPa; shear modulus residual value, Gr =G0 ×
0:8) and plastic (friction angle plastic internal variable
threshold, Pϕ = 0:4; friction angle initial value, ϕ0 = 18°; fric-
tion angle residual value, ϕr = 34:5°; shear dilatancy angle
initial value, ψ0 = 25°; shear dilatancy angle residual value,
ψr = 10°; cohesion initial value c0 = 15MPa; cohesion resid-
ual value cr = 9:0MPa) parameters, and a plastic internal
variable (2:5σ3/σc + 0:27) are represented by the black lines
in Figure 15(a).

The two models simulate the experimental stress–strain
curves well. However, the models can neither simulate ten-
sile failure nor consider the critical strains, and they both
approximate failure envelopes as linear.

Among these three models, the modified 2D model
is the best because it can approximate the stress–strain
curves as precisely as the others, but can approximate

convex failure envelope and uses fewer equations and
parameters.

3.4. Example Application. As an example of its application,
we calculated the stress distribution of a pressurized thick-
walled cylinder with inner and outer radii r1 = 1m and
r2 = 100m, respectively, under internal and external pres-
sures P1 = 1MPa and P2 = 80MPa, respectively, using the
simple 2D model and assuming the plane strain condi-
tion. The calculation was carried out by an axisymmetric
finite element method (FEM), dividing the radial axis
from 1 to 19m into 470 elements, and from 19 to
100m into 320 elements. The results were compared to
Bray’s analytical elasto-plastic solution [50] for a circular
hole in an infinite elasto-brittle material (Figure 1(c)).
The modified 2D model was not used because Bray’s
solution was only for a linear failure envelope and thus
cannot be compared.

Parameters that were the same as for Figures 10(a) and
10(f) (A = 20GPa, k = 0:25, C = 1, and εs = 0:002) and were
used for the simple 2D model. The uniaxial compressive
strength qu = 71:4MPa, internal friction angle ϕ = 36:5°, fric-
tion angle for the residual strength ϕ’ = 36:9°, E = 14:5GPa,
ν = 0:270, and residual cohesion Sj = 9:89MPa were used
for Bray’s solution. The parameters are obtained from
Figures 10(a)–10(f).
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Plastic zones can be seen for both models (Figure 17(a)).
The decrease in strain-dependent elastic modulus (Figure 17(b))
around the opening induced a tangential stress decrease for
the simple 2D model. The results from Bray’s solution
appear somewhat angular when plotted, while the results
of the simple 2D model are more rounded, reflecting the
difference in the stress–strain relationship. The inward dis-
placement by the simple 2D model (Figure 17(c)) rapidly
increases near the inner wall. This rapid increase may repre-
sent the dilatancy of rock failure better than Bray’s solution,
which is based on the rupture plane slip in the plastic zone.

4. Simple 3D Model

We propose the following simple 3D constitutive model:

σ1 = A ε1ð Þε1 + kAε2 + kAε3, ð21Þ

σ3 = kAε1 + kAε2 + A ε3ð Þε3, ð22Þ

ε2 =
σ1 − σ2
σ1 − σ3

ε3 +
σ2 − σ3
σ1 − σ3

ε1: ð23Þ

Equations (21) and (22) are based on Equations (14) and
(15) for the 2D model. Equation (23) is just an elastic equa-
tion. The same strain-dependent elastic modulus A’ðεÞ is
used as in Equation (16):

A′ εð Þ =D tan−1 C
ε

εs
+ 1

� �� 	
+ π

2


 �
+ F, ð24Þ

and the terms D and F are chosen so that the residual
strength becomes constant for infinite axial compression
and lateral expansion (similar to the 2D model) as follows.

Let us assume

A′ ε1 =∞ð Þ = A: ð25Þ

As ε3 tends to −∞,

A′ ε3 = −∞ð Þ = F: ð26Þ

Substituting Equations (25) and (26) into Equations (21)
and (22),

σ3 ε1 =∞,ε3 = −∞ð Þ = Fε3 + kA σ1 − σ2
σ1 − σ3

ε3 +
σ2 − σ3
σ1 − σ3

ε1

� �

+ kAε1,
ð27Þ

σ1 ε1 =∞,ε3 = −∞ð Þ = Aε1 + kA σ1 − σ2
σ1 − σ3

ε3 +
σ2 − σ3
σ1 − σ3

ε1

� �

+ kAε3:
ð28Þ

0.08

0.09

0.1

0.11

0.12

0.13

–20 –10 0 10 20 30 40 50

k

𝜎3 – 𝛽𝜎2 (MPa)

Experiment

k0 = 0.095

k0 = 0.075

k0 = 0.090
k0 = 0.085
k0 = 0.080

Figure 19: Example of k vs. σ3 − βσ2 for Westerly granite [51] for
A = 58:5 (GPa), C = 2, εs = 0:0007, and β = 0:7. The fitting lines
were obtained by a nonlinear least-squares method. k0 = 0:085
gave the best results in the case.

𝜀3 𝜀2 𝜀1 𝜀3 𝜀2 𝜀1

(a) (b)

0

200

400

600

800

1000

–1 –0.5 0 0.5 1 1.5

𝜎
1–

 𝜎
3 (

M
Pa

)

𝜎
1–

 𝜎
3 (

M
Pa

)

𝜀 (%)

0
50

100
150
200
250
300
350
400

–1 –0.5 0 0.5 1 1.5

𝜀 (%)

Figure 18: Stress strain curves under (a) σ2 = 300 (MPa) and σ3 = 100 (MPa) for KTB amphibolite [28] and (b) σ2 = 125 (MPa) and
σ3 = 50 (MPa) for Coconino sandstone [29]. The dashed/solid lines are the simulated/experimental results.

11Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/1409110/5686341/1409110.pdf
by guest
on 16 December 2022



Substituting Equation (27) into Equation (28),

σ1 ε1 =∞, ε3 = −∞ð Þ =Hε1 +
kA 1 + σ1 − σ2ð Þ/ σ1 − σ3ð Þð Þ
kA σ1 − σ2ð Þ/ σ1 − σ3ð Þ + F

σ3,

ð29Þ

where

H = A + kA σ2 − σ3
σ1 − σ3

−
k2A2 1 + σ1 − σ2ð Þ/ σ1 − σ3ð Þð Þ
kA σ1 − σ2ð Þ/ σ1 − σ3ð Þ + F

� 1 + σ2 − σ3
σ1 − σ3

� �
:

ð30Þ

Assuming σ1ðε1 =∞,ε3 = −∞Þ = const:, H should be 0,

For example, the simulation procedure for stress–strain
curves becomes

(c1) Assign negative ε3 increment
(c2) Calculate A’ðεÞ by Equation (24)
(c3) Calculate ε1 by Equation (22)
(c4) Calculate σ1 by Equation (21)
(c5) Iterate steps (c2–c4) until convergence
(c6) Calculate ε2 by Equation (23)

(c7) Iterate steps (c1–c6) until ε3 reaches -0.045
We approximated the true triaxial compression data

under σ2 = 300 (MPa) and σ3 = 100 (MPa) for Cretaceous–
Tertiary boundary (KTB) amphibolite [28] and under σ2 =
125MPa and σ3 = 50MPa for Coconino sandstone [29].
The approximation procedure is the same as steps (b1–
b5). The results (Figure 18) is approximated well by
the simple 3D model. This model requires only four
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F = k 1 + σ1 − σ2ð Þ/ σ1 − σ3ð Þð Þ 1 + σ2 − σ3ð Þ/ σ1 − σ3ð Þð Þ − σ1 − σ2ð Þ/ σ1 − σ3ð Þ 1 + k σ2 − σ3ð Þ/ σ1 − σ3ð Þð Þ
1 + k σ1 − σ2ð Þ/ σ1 − σ3ð Þ kA, ð31Þ

D = A − F
π

: ð32Þ
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parameters (A = 90GPa, C = 2, εs = 0:0035, and k = 0:22 for
Figure 18(a); A = 37:5GPa, C = 1:5, εs = 0:0025, and k =
0:217 for Figure 18(b)). However, the peak stress–σ2 rela-
tionship is not considered in this model; this is one of its lim-
itations. We introduce stress-dependent k in the next chapter
to approximate the convex peak stress–σ2 relationship.

5. Modified 3D Model

5.1. Introduction of Stress-Dependent k. We now introduce
stress-dependent k (Figure 19), with an additional term –β
σ2 compared to Equation (20):

k = Δk
π

tan−1 1
α

σ3 − βσ2 − σ0ð Þ
� 	

+ π

2


 �
+ k0, ð33Þ

where β is a constant to adjust the effect of σ2, taking a value
between 0 (no effect) and 1 (the same effect as σ3).

For example, the calculation procedure for stress–strain
curves becomes

(d1) Assign negative ε3 increment
(d2) Calculate A’ðεÞ by Equation (24)
(d3) Calculate ε1 by Equation (22)
(d4) Calculate σ1 by Equation (21)
(d5) Calculate ε2 by Equation (23)
(d6) Calculate k by Equation (33)
(d7) Iterate steps (d2–d6) until k converges

(d8) Iterate steps (d1–d7) for loading until ε3 reaches
-0.045

5.2. Prediction of σ2 Effects. In chapter 4, the true stress–
strain curves of KTB amphibolite [28] and Coconino sand-
stone [29] were simulated well by the 3D constitutive model
for specific values of σ2 and σ3. We then approximated the
stress–strain curves and peak stress–σ2 relationship for
Westerly granite [51] and the two rocks above using the
modified 3D model. The following steps are added to the
approximation steps above (b1–b5):

(e6) Assume β at 0.3, 0.5, 0.7, and 0.9
(e7) Obtain k vs. σ3 − βσ2 curve for σ2 = σ3
(e8) Assume k0 (e.g., 0.075, 0.080, 0.085, 0.090, and 0.095

for Westerly granite)
(e9) Obtain values of Δk, α, and σs by a nonlinear least-

squares method (e.g., Figure 19)
(e10) Calculate stress–strain curves and failure envelopes
(e11) Iterate steps (e8–e10)
(e12) Iterate steps (e6–e11)
(e13) Select a set of parameters that can best simulate the

peak stress–σ2 curve under σ2 > σ3
An example plot of k vs. σ3 − βσ2 for Westerly granite

with β = 0:7 is shown in Figure 19. The parameter values
were obtained for each k0 by a nonlinear least-squares
method. The failure envelopes of all rock types for σ2 =
σ3 (Figures 20(a), 21(a), and 22(a)) were approximated
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reasonably well. The true stress–strain curves of rock
(Figures 20(c), 21(c), and 22(c)) under the modified 3D
model were somewhat different from those under the sim-
ple 3D model (Figure 18), because the former prioritized
approximating the failure envelope. For Westerly granite

and KTB amphibolite, the failure envelope for σ2 > σ3 at
high σ3 was simulated well, while the modified 3D model
underestimates the peak stress at low σ3 (Figures 20(b)
and 21(b)). For sandstone, this model simulated the failure
envelope well for σ2 > σ3 at low σ3, while it overestimates
the peak stress at high σ3 (Figure 22(b)).

5.3. Comparison with Other 3D Criteria. In Figure 23, we
show a comparison of 3D failure criteria ([36, 40, 41, 43, 52],
and [38]) from Li et al. [38]. In this figure, we have also plotted
the peak stress–σ2 relationship according to the modified 3D
model in chapter 5.2. Some of these criteria give better results
than the proposed model; however, they do not give a reason-
able nonlinear stress–strain relationship. Therefore, it is better
to use one of these criteria when the stress–strain relationship
is almost linear, and it is important that the failure envelope be
followed strictly. However, it is better to use our proposed
model to represent nonlinear stress–strain relationships well
while following the true triaxial failure envelope.

6. Concluding Remarks

To propose a 3D constitutive model for rocks, with fewer
parameters and consideration of true triaxial stress–strain
curves and convex failure envelopes, we first modified the
simple 2D model previously proposed by our research group
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to have a convex failure criterion. The effects of the param-
eters on the failure envelope were observed, and a procedure
to approximate the stress–strain curves and failure envelopes
was proposed. This model approximated these well (much
better than conventional 2D models). The new 2D model
was applied to a pressurized thick-walled cylinder under
the plane strain condition.

The simple 2D constitutive model was then extended
to a simple 3D model. True triaxial stress–strain curves
under specific values of σ2 and σ3 were approximated rea-
sonably. However, the predicted peak stress–σ2 relation-
ship was linear.

Finally, the 3D model was developed by introducing
stress-dependent k. Under this, the peak stress–σ2 relation-
ship for true triaxial compression first increased and then
decreased with σ2, as occurs in actual rocks. True triaxial
stress–strain curves and failure envelopes were simulated
reasonably.

This modified 3D model is the only one that can fairly
represent the true triaxial nonlinear stress–strain curves
and convex failure envelopes. Combining it with a 3D finite
element method could improve the design of rock structures.
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