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In the present study, a hybrid machine learning model was designed by integrating ant colony optimization (ACO), particle
swarm optimization (PSO), and support vector machine (SVM) algorithms. The model was used to map the landslide
susceptibility of the Anninghe fault zone in Sichuan Province, China. Based on this, 12 conditioning factors associated with
landslides were considered, namely, altitude, slope angle, cutting depth, slope aspect, relief amplitude, stream power index
(SPI), gully density, lithology, rainfall, road density, distance to fault, and peak ground acceleration (PGA). The overall
performance of the two resulting models was tested using the receiver operating characteristic (ROC), area under the ROC
curve (AUC), Cohen’s kappa coefficient, and five statistical evaluation measures. The success rates of the ACO-PSO-SVM
model and the SVM model were 0.898 and 0.814, respectively, while the prediction rates of the two models were 0.887 and
0.804, respectively. The results show that the ACO-PSO-SVM model yields better overall performance and accurate results
than the SVM model. Therefore, in conclusion, the ACO-PSO-SVM model can be applied as a new promising method for
landslide susceptibility mapping in subsequent studies. The results of this study will be useful for land-use planning, hazard
prevention, and risk management.

1. Introduction

Landslides are one of the most frequent and destructive geo-
logical hazards in mountainous regions and have caused huge
losses of life and property ([1, 2] and references therein). The
factors leading to slope instability include geologic structure,
tectonic activity, lithology, topographic relief, earthquake,
rainfall, weathering, climate, and human activity [3–7]. These
factors can be classified into two types (i.e., internal and exter-
nal factors). The evolution of the landslide is dominated by the
interaction of internal factors and external factors. The identi-
fication of landslide risk is a challenging task for local govern-
ments and decision-makers, and it is valuable for evaluating
the landslide susceptibility of a region. Landslide susceptibility,
which refers to the spatial probability of landslide occurrence

in a specific area, is often considered the first stage of landslide
hazard management [8–10].

Hitherto, landslide susceptibility mapping methods and
techniques have used simple expert knowledge first and then
gradually evolved into complicated mathematical proce-
dures. With the increasing emphasis on the application of
Geographic Information System (GIS) and soft computing
techniques, many approaches to landslide susceptibility
mapping (LSM) have been adopted around the world in
the last four decades. These approaches can be mainly clas-
sified into three groups, namely, deterministic, statistical,
and machine learning techniques [11]. Deterministic
methods incorporate mathematical models of the physical
mechanisms controlling slope failure [12], and these
methods usually generate accurate results because of their
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site-specific and data dependency nature. The factor of
safety is generally used as the index of stability by taking into
account stabilizing and destabilizing factors. Deterministic
methods do not require landslide inventories and are most
suitable for a single landslide and a small-scale area.
Although reliable geotechnical and hydrogeological data
are essential for such methods, the lack of detailed informa-
tion throughout large-scale areas and the expensiveness
remain the main obstacles in the deterministic models.

Due to the challenges of deterministic method applica-
tion, e.g., the data requirement, cost and infeasibility for
large areas, statistical methods are widely used in LSM
because they can effectively analyze the functional relation-
ship between past landslides and inferred contributing fac-
tors, such as entropy index [13], frequency ratio [14],
evidential belief function [15], weight of evidence [16], and
logistic regression [17]. However, it should be noted that
these methods have a weak ability to assess the nonlinear
relationship between landslide occurrence and conditioning
factors. To overcome the limitations of statistical methods,
machine learning methods have been introduced for land-
slide susceptibility analysis. Machine learning methods, such
as artificial neural networks (ANN) [18], support vector
machines (SVM) [19], random forests (RF) [20], adaptive
neuro-fuzzy inference system (ANFIS) [21], and Naïve
Bayes (NB) [22], provide promising and effective ways to
solve complex and nonlinear problems with high accuracy.
Nevertheless, some problems still exist with machine learn-
ing methods, mainly including the problem of overfitting,
parameter optimization, and the improvement of generaliza-
tion ability.

Literature review shows that SVM has received increasing
attention in recent years because of its good classification per-
formance and capabilities of fault tolerance [23]. SVM can
obtain good predictions with a limited number of training
samples [24], but its parameters need to be carefully selected
by a cross-validation method or another optimization tech-
nique. A search for optimal parameters in an SVM model
plays a crucial role in building a landslide prediction model.
To develop an efficient SVMmodel, kernel function and pen-
alty parameters must be carefully predetermined. Recently,
various optimization algorithms, such as genetic algorithms
(GA), particle swarm optimization (PSO), ant colony optimi-
zation (ACO), and gray wolf optimizer (GWO), have been
integrated with machine learning methods to rapidly search
for the optimal predetermined parameters [25–27]. Despite
all the advantages of these algorithms, they suffer from some
problems such as slow convergence and being stuck in a local
minimum. To overcome these problems, researchers recently
suggested hybrid models [28, 29]. Hybrid techniques provide
an effective solution when single models are unable to simul-
taneously meet multiple needs. A review of methodologies
suggests that hybrid models offer higher generalization abil-
ity than single models by reducing variance and bias or
improving prediction accuracy [30, 31]. However, to date,
there are no accepted results on whether a single hybrid
model or a group of models is best suited for all case scenar-
ios. Therefore, new hybrid models for LSM should be further
explored.

A significant issue in improving SVM predictive accu-
racy is the need to identify a novel algorithm to optimize
the parameter combination. PSO is a population-based sto-
chastic optimization algorithm and has stable convergence
characteristics with good computational efficiency. However,
PSO suffers from a condition that causes it to converge to a
local solution prematurely which happens due to the inabil-
ity of particles to escape from a local minimum and thus
stagnate in those regions. ACO, a new biological evolution
simulating method, has the advantages of parallel comput-
ing, positive feedback search, and high convergence speed
and can be used to overcome the limitations of PSO. In this
study, a new hybrid method was built on the support of the
ACO and PSO algorithms to optimize the penalty parameter
and the kernel function. The new method can improve the
predictive performance of the SVM model and produce
highly reliable susceptibility maps. Additionally, the
Anninghe fault zone was selected as the study area due to
the frequent landslide hazard in this area. The results and
conclusions obtained in this paper have implications for
landslide prevention in the study area and other relevant
research.

2. Study Area

The study area is located on the eastern margin of the
Tibetan Plateau, geographically between longitudes 101°59′
E and 102°23′E and latitudes 27°50′N and 29°28′N
(Figure 1). The study area mostly consists of mountainous
landforms (land slope ranging from 0 to 85°), with the high-
est and lowest altitudes of 5,531m and 811m, respectively.
The study area has a subtropical monsoon climate with an
average annual temperature of 15°C. According to local
meteorological organizations, the average annual rainfall is
over 1,000mm, and the rainy season is from May to October
[32]. The study area belongs to the eastern segment of the
Sichuan-Yunnan rhombic block, where active faults are well
developed. Historical documents show that earthquakes of
surface wavemagnitude ðMsÞ ≥ 5:0 (such as the 1489 Ms
6.75 Zimakua earthquake, the 1977 Ms 5.3 Lugu earthquake,
and the 1985 Ms 6.0 Mianning earthquake) often occur
along the Anninghe fault [32]. The Anninghe fault zone is
generally considered one of the regions in southwestern
China with the most developed, active, and extensive distri-
bution of landslides. According to the Emergency Manage-
ment Office of Sichuan Province, many people are living
under the potential threat of landslides in the study area.
Therefore, it is highly necessary to conduct a landslide pre-
diction analysis in the Anninghe fault zone, which could
help local government and decision-makers take necessary
actions to bring harmony between economic development
and the environment. The occurrence of landslides is con-
trolled by various factors such as topographical features,
lithology and tectonics, climate, human interference, and
natural environment [33–35]. The relationships between
landslide conditioning factors and landslide occurrence gen-
erally vary by location, making it difficult to confirm which
environmental factors are the most important and necessary
among them.
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3. Materials

3.1. Landslide Conditioning Factors. A number of condition-
ing factors previously employed in the literature were exam-
ined to produce the LSM. Nevertheless, the selection of
suitable factors is a key step for LSM, as factor selection affects
the predictive capabilities of numerous models. Currently,
there are no standard guidelines or clear protocols regarding
the selection of conditioning factors [19, 36]. According to
the geo-environmental conditions, availability of data sources,
and analysis of landslide genesis mechanisms, twelve condi-
tioning factors including altitude, slope angle, slope aspect,
relief amplitude, cutting depth, gully density, stream power
index (SPI), lithology (Table 1), rainfall, road density, distance
to faults, and peak ground acceleration (PGA) (Figure 2) were
selected. All thematic layers were prepared in a raster format
with a 30m spatial resolution.

Altitude, controlled by several geological and geomor-
phological processes, is frequently used in most LSM
research [37]. Altitude was grouped into five classes:
<1,868m, 1,868–2,407m, 2,407–2,978m, 2,978–3,670m,
and>3,670m (Figure 2(a)).

Slope angle is an indispensable influencing factor in
LSM, and it is directly related to the shear stresses acting
on the displacement of hill slopes [38]. Slope angle in the

study area was reclassified into nine categories: <10°, 10–
15°, 15–20°, 20–25°, 25–30°, 30–35°, 35–40°, 40–45°,
and>45° (Figure 2(b)).

Slope aspect determines the degree of solar radiation on
the slope surface, which can influence the soil moisture and
slope stability [26]. As shown in Figure 2(c), the slope aspect
was categorized into nine directional classes, including eight
directions and flat.

Relief amplitude refers to the difference between the alti-
tude of the highest point and the altitude of the lowest point
in a particular area and can effectively reflect the gravita-
tional potential energy of terrain that is closely related to
landslide occurrence [39]. In this study, the relief amplitude
was reclassified into five classes: <103m, 103–191m, 191–
268m, 268–358m, and>358m (Figure 2(d)).

Cutting depth is the difference between the average ele-
vation and lowest elevation in a determined area and is an
important parameter in LSM [1]. Cutting depth was divided
into five categories: <50m, 50–97m, 97–142m, 142–192m,
and >192m (Figure 2(e)).

Gully density, defined as the channel length per unit
area, represents an effective factor in LSM [1]. Gully density
of the study area was classified into six classes: <0.47 km/
km2, 0.47–0.82 km/km2, 0.82–1.14 km/km2, 1.14–1.50 km/
km2, 1.50–1.95 km/km2, and >1.95 km/km2 (Figure 2(f)).
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Figure 1: Location of the study area.
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The SPI reflects the intensity of stream erosion on the
surface and therefore influences the occurrence of landslides
[39]. The SPI values were divided into six classes: <6, 6–12,
12–18, 18–24, 24–30, and >30 (Figure 2(g)).

Lithology is a key factor for LSM, and some geological
formations are more favorable to landslides [28]. There are
eight main lithological groups in the study area
(Figure 2(h) and Table 1).

Rainfall is an important factor for landslides, especially
in mountainous areas [19]. The occurrence of a landslide is
influenced by the intensity and durability of rainfall. In this
study, the maximum 24h rainfall was used to map landslide
susceptibility (Figure 2(i)).

Road density presents the relationship between human
activities and landslide occurrence, and it affects the slope
stability [40]. Road density was divided into nine classes:
<0.19 km/km2, 0.19–0.65 km/km2, 0.65–1.19 km/km2, 1.19–
1.81 km/km2, 1.81–2.65 km/km2, 2.65–3.81 km/km2, 3.81–
5.31 km/km2, 5.31–7.31 km/km2, and >7.31 km/km2

(Figure 2(j)).
The shearing strength of the slope rock mass is reduced

due to the presence of faults [14]. Distance to faults repre-
sents the degree of rock fracture. Distance to faults was
divided into eight classes: <300m, 300–600m, 600–900m,
900–1200m, 1200–1500m, 1500–1800m, 1800–2100m,
and >2100m (Figure 2(k)).

PGA is considered an important dynamic factor that
measures the impact of earthquakes on landslides [41]. In
the study area, it was observed that most landslides took
place in areas with PGA greater than 0.2, indicating the sig-
nificant influence of earthquakes on landslide disasters.

3.2. Landslide Inventory. The preparation of a landslide
inventory map is essential for studying the spatial relation-
ships between historical landslide distributions and their
conditioning factors. In the present study, a series of base
maps were collected, including a 30m resolution digital ele-
vation model (DEM), multisource high-resolution satellite

images, geological maps, river maps, rainfall maps, and road
maps. The primary data source information is shown in
Table 2. The landslide inventory map of the Anninghe fault
zone was produced through extensive field surveys, histori-
cal landslide records, and visual interpretation of satellite
imagery. In this study, the landslide information was
obtained from a preexisting multitemporal landslide inven-
tory prepared at 1 : 50,000 scale through the systematic visual
interpretation of ten stereoscopic, panchromatic, and multi-
spectral satellite image pairs acquired in August 2004, March
2006, May 2010, April 2011, June 2013, May 2014, August
2015, April 2016, January 2017, and February 2019. Further-
more, the landslide information was supplemented by field
checks and surveys executed in various periods from 2014
to 2016, in July 2017, and in August 2018. A total of 547
landslides were detected and mapped in the study area
(Figures 1 and 3). The geometry of a landslide is best repre-
sented by a polygon in vector format. In this study, the entire
scarp polygon was used for the landslide sampling strategy.
A total of 383 landslides (70%) were randomly chosen for
model construction, and the remaining 164 landslides
(30%) were used for model validation. In addition, the same
number of nonlandslide locations was randomly generated
from areas less susceptible to landslides.

4. Methods

4.1. Landslide Conditioning Factor Selection based on the
Information Gain Ratio (IGR). The quality of LSM depends
on both the selected models and the predictive capability
of the conditioning factors. Since not all landslide condition-
ing factors have the same predictive capability in LSM, sev-
eral factors may sometimes generate severe interference,
which reduces the overall predictive capability of the
employed models. Therefore, conditioning factors with low
or null predictive capability should be removed to obtain
more accurate results. There are several methods for select-
ing features in the literature review, such as genetic

Table 1: Description of the geological units.

Group Code Lithology Geological age

Group 1 Qad1–3, Qal, Qh, Qp, Qgl Gravel, sand, loam, sandy silt, clay Quaternary

Group 2 N2x Conglomerate, sandy conglomerate, shale Neogene

Group 3 K1x
1, K1x

2 Calcareous siltstone, feldspathic quartz-sandstone,
conglomerate, mudstone, marl

Cretaceous

Group 4
J3f, J2g, J2x, J2y, J2n, Jxk, Jxg, xε1 5, εo1 5, xr1 5,
εx1 5, ro1 5, T1-2, δo1 5, r2 5, rk1 5, δ1 5, rσ2 4,

T3x

Mudstone, calcareous fine sandstone, conglomerate,
marl, feldspathic quartz-sandstone, siltstone, shale, syenite,
granite, porphyry, phyllite, slate, diorite, schist, dolomite

Jurassic-Triassic

Group 5
P1, P1q+m, P1 1, P2 1, P3 1, P2, P2β, P3 2, P4

2, P2 3, V3 4, N3 4, βμ3 4
Limestone, basalt, gabbro, diabase, marble, slate, phyllite,

metamorphic sandstone, quartzite
Permian

Group 6 D1 2, D2h, D2b, D2z, D2 3, AnD2λ
Slate, phyllite, limestone, marble, metamorphic sandstone,

dolomite
Devonian

Group 7 Zaλ, Zak, Zbd, Zas, r2, V2 2, ε2 2, Zbg, δ2, Za
a

Rhyolite, porphyry, tuff, dolomite, limestone, calcareous
shale, marl, sandstone, sandy conglomerate, basalt, granite,

gabbro, diorite
Sinian System

Group 8 Pt1l
3, Pt1l

2, Pt1l
1, Pt1tn, Pt1f, Pt1

Phyllite, marble, sandstone, quartzite, slate, dolomite,
limestone

Pre-Sinian System
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Figure 2: Landslide conditioning factor maps: (a) elevation; (b) slope angle; (c) slope aspect; (d) relief amplitude; (e) cutting depth; (f) gully
density; (g) SPI; (h) lithology; (i) 24 h rainfall; (j) road density; (k) distance to faults; (l) PGA.
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algorithms [42], chi-square statistic [43], information gain
ratio [44], and linear support vector machine [45]. In this
study, the information gain ratio (IGR) was chosen to eval-

uate the predictive capability of the twelve landslide condi-
tioning factors. Assuming that a training data T consists of
n input samples and belongs to the class label Yi (presence

Table 2: Data used in spatial modeling for LSM.

Dataset Factors Scale/resolution Primary format Data source

Landslide inventory Altitude Vector China Geological Survey

DEM Slope angle 30m Grid ASTER satellite

Geological map Slope aspect 1 : 200,000 Vector China Geological Survey

Road Relief amplitude 1 : 10,000 Vector China Geological Survey

Rainfall Cutting depth 30m Grid China Geological Survey

Rivers SPI 1 : 10,000 Vector China Geological Survey

Gaofen-1 image Lithology 2m Grid Chinese satellite Gaofen-1

Gaofen-2 image Rainfall 1m Grid Chinese satellite Gaofen-2

WorldView-2 image Road density 0.5m Grid DigitalGlobe

WorldView-3 image Distance to faults 0.31m Grid DigitalGlobe

SPOT-6 image PGA 1.5m Grid Astrium

Google Earth image Gully density 0.61m Grid Google Earth

(a) (b)

(c) (d)

Figure 3: Field photographs of some typical landslides.
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and absence of landslide), then the IGR of the landslide
causal factors C and T can be calculated as

Info Tð Þ = −〠
2

i=1

n Yi, Tð Þ
Tj j log2

n Yi, Tð Þ
Tj j , ð1Þ

Info T , Cð Þ = 〠
m

j=1

T j

Tj j Info Tð Þ, ð2Þ

IGR T , Cð Þ = Info Tð Þ − Info T , Cð Þ
SplitInfo T , Cð Þ , ð3Þ

SplitInfo T , Cð Þ = −〠
m

j=1

T j

�� ��
Tj j log2

T j

�� ��
Tj j : ð4Þ

4.2. Wavelet Packet Transform (WPT). The wavelet trans-
form, as a robust signal processing approach, is similar to
the Fourier transform with a completely different merit
function and can produce both time and frequency informa-
tion [46]. The wavelet transform provides a useful decompo-
sition of the original signal and enhances the predictive
capability of the employed models by capturing useful infor-
mation at various levels. Wavelet transforms can be summa-
rized into two types: continuous wavelet transforms (CWTs)
and discrete wavelet transforms (DWTs). The CWT requires
a substantial amount of redundant information to be proc-
essed and entails a high computational cost. In contrast,
DWT requires less computation time and data, making it
suitable for online applications. However, DWT presents
substantial limitations in offering an in-depth analysis of
high-frequency signal components. To improve the analy-
sis of high-frequency components, the wavelet packet
transform (WPT) was used to generate more frequency
bands, which enhanced the ability to extract relevant infor-
mation from the original signal. The WPT is a generaliza-
tion of the wavelet transform and provides a richer
analysis of the signal. Figure 4 shows the three-level wavelet
packet decomposition tree of the original signal. The origi-
nal signal (S) was decomposed into approximation (A) and
detail (D). This procedure was iteratively performed at dif-
ferent levels.

4.3. Ant Colony Optimization (ACO). Ant colony optimiza-
tion (ACO), as a kind of simulative evolutionary algorithm,
is inspired by the foraging behavior of ants in nature [47].
Ants can find the shortest route between the food source
and their nest. Indirect communication skills between ants
are the cooperative behavior of ants based on pheromone

trails. Routes with a large amount of pheromones are most
often chosen by ants. Therefore, the shortest route is consid-
ered the optimal solution to an optimization problem. The
three main phases of ACO are solution construction, phero-
mone update, and daemon action. The process of solution
construction and pheromone update is repeated for several
iterations until the termination criteria are reached. The dae-
mon action is an optional step in ACO, which involves
applying other updates from a global perspective.

4.4. Particle Swarm Optimization (PSO). Particle swarm
optimization (PSO) is a powerful population-based optimi-
zation approach that is grounded in the social behavior of
birds flocking in the real world. PSO is widely used in solv-
ing the global optimal solution of large-scale nonlinear prob-
lems [48]. Each member in PSO is identified as a particle and
points to a solution in the search space. The PSO can search
for the optimal solution from several initial solutions using
iterative computation. Through the PSO performance, the
global best of particles and the personal best of particles
are recorded as gbest and pbest, respectively. Each particle
constantly updates itself through pbest and gbest to create a
new population.

4.5. Support Vector Machine (SVM). Support vector machine
(SVM) is a supervised machine learning method, which can
be used for both classification and regression [49]. In recent
years, SVMs have received a lot of attention due to their
good classification performance and fault tolerance capabil-
ities. Owing to its complex structure, even nonlinearly sepa-
rable cases can be handled using this method. The main goal
of SVMs is to find the optimal hyperplane between two clas-
ses of the training dataset (Figure 5). The optimal hyper-
plane can be determined by minimizing the following
objective function [50]:

Min〠
n

i=1
αi −

1
2
〠
n

i=1
〠
n

j=1
αiαjyiyj xi, xj

� �
, ð5Þ

subject to the following constraint:

Min〠
n

i=1
αiyj = 0, 0 ≤ αi ≤ C, ð6Þ

where αi are the Lagrange multipliers and C is the penalty.
The decision function can be given as follows:

S

A1 D1

AA2

AAA3 DAA3 DDA3 AAD3 DAD3 ADD3 DDD3ADA3

DA2 AD2 DD2

Figure 4: The structure diagram of the three-level wavelet packet decomposition tree.
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g xð Þ = sgn 〠
n

i=1
yiaiK xi, xj

� �
+ b

 !
, ð7Þ

where Kðxi, xjÞ is the kernel function.

4.6. Combination of ACO-PSO-SVM. In this study, a hybrid
model based on ACO, PSO, and SVM algorithms is pro-
posed to improve the solution performance of single models.
The SVM was chosen as the base classifier to construct the
hybrid ACO-PSO-SVM model for evaluating landslide sus-
ceptibility. Figure 6 shows the training and learning process
in the hybrid ACO-PSO-SVM model. The ACO-PSO-SVM
model consists of the following steps:

(1) Decompose the base maps (i.e., landslide condition-
ing factor maps) into approximation and detail com-
ponents, and use them with minimum entropy
values as inputs

(2) Initialize the parameters of ACO and update the
pheromones. The selection of the jth point, where
an ant at the ith point in iteration t will go, is based
on

Pk
ij =

τij tð Þ
� �α

ηij

h iβ
∑ τij tð Þ
� �α ηij

h iβ , if j is allowed point,

0, otherwise,

8>>>><
>>>>:

ð8Þ

where Pij is the transition probability, τij is the amount of
pheromones between points i and j, ηij is the reciprocal of
dij, dij is the distance between the ants, and α and β are
two weight factors.

The pheromone routes are updated using the following
equations:

τij t + 1ð Þ = 1 − ρð Þτij tð Þ + Δτkij t, t + 1ð Þ, ð9Þ

Input space
Kernel function

𝜑 (x)

Feature space

Conditioning
factors

Support vecors

Class 2
non-landslide

Class 1
landslide

Conditioning factors

Separating hyperplane

Figure 5: Illustration of the SVM principle.
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PSO training

ACO optimization
result

Optimize SVM kernel parameters
and penalty parameter

Termination criterion
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Update pbest and gbest 
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Figure 6: The flowchart of the proposed ACO-PSO-SVM model.
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Δτkij t, t + 1ð Þ = 〠
n

k=1
Δτkij t, t + 1ð Þ, ð10Þ

where ρ is the evaporation coefficient and receives a value at
the interval [0–1].

(3) Initialize the parameters of the PSO and update the
velocity and position of each particle. Equations
(11) and (12) demonstrate the position and velocity
of the particles, respectively

V2 = ωV1 + C1r1 pbest − X1ð Þ + C2r2 gbest − X1ð Þ, ð11Þ

X2 = X1 + V2, ð12Þ
where V1, V2, X1, and X2 represent the current and new
velocities and positions of each particle, respectively; ω is
the inertia weight; C1 and C2 are the positive acceleration
constants; r1 and r2 are random numbers in the range [0, 1].

(4) For each particle, if pbest > gbest, then gbest will be
replaced by pbest. Stop the iterative process if the ter-
mination criteria are met; otherwise, return to step 2
to continue the process

(5) Optimize the SVM kernel parameters and penalty
parameters to obtain the final classification results

4.7. Performance Measures. To evaluate and compare the
performance of the models, statistical index-based methods
including positive predictive value (PPV), negative predic-
tive value (NPV), sensitivity (SST), specificity (SPF), accu-
racy (ACC), and Cohen’s kappa coefficient (κ) were used.
These statistical indices are calculated based on the confu-
sion matrixes resulting from the SVM and ACO-PSO-SVM

models. Another way to measure the classification perfor-
mance of the models is to use the ROC curve. It is created
by plotting sensitivity against 100-specificity based on a
series of different dichotomies. The AUC represents the sta-
tistical reliability of the models. The AUC value ranges from
0 to 1, where an AUC value closer to 1 corresponds to better
model performance.

5. Results

5.1. Relative Importance Analysis of Landslide Conditioning
Factors. The predictive capability of the twelve landslide
conditioning factors was evaluated using a training set based
on the IGR approach. The conditioning factors with higher
IGR values represent higher predictive power in the LSM
and vice versa. The predictive capability of all conditioning
factors using the IGR approach is shown in Figure 7. The
results indicate that distance to faults is the most important
factor for landslide prediction, followed by altitude, slope
angle, gully density, rainfall, lithology, PGA, relief ampli-
tude, slope aspect, cutting depth, road density, and SPI. In
the current study, the IGR values of all factors were greater
than zero, indicating that these factors contribute to the pre-
dictive capability of landslide susceptibility modeling. There-
fore, they are suitable for further analysis.

5.2. Generation of Landslide Susceptibility Maps. Landslide
susceptibility maps for both models were generated using
ArcGIS software and are shown in Figures 8 and 9. To iden-
tify distinctions in LSM across the study area, both landslide
susceptibility maps were reclassified into five classes: very
low (<0.116), low (0.116-0.296), moderate (0.296-0.535),
high (0.535-0.784), and very high (>0.784). The two models
produced similar landslide susceptibility results. The very
high and high susceptibility areas are distributed mainly in
the middle and southern parts of the study area, which

Distance to faults

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Elevation

Slope angle

Gully density

24-h rainfall

Lithology

PGA

Relief amplitude

Slope aspect

Cutting depth

Road density

SPI

Information gain ratio

Figure 7: Predictive power of the twelve landslide conditioning factors.
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correspond to areas of distance to faults (<1.2 km) and alti-
tude (<2407m). The joints and fractures of the slope rock
mass near the fault zone are well developed and have poor
mechanical properties, which reduce the stability of the
slope. Compared with high-altitude areas, landslides are
more likely to occur in low altitude areas. Engineering con-
struction and cultivation are mainly concentrated in these
areas and contribute to the occurrence of landslides. The
very low and low susceptibility areas are mainly located in
the northwestern part of the study area, with high altitudes
and high slopes, and these variables are unsuitable for the
development of landslides.

5.3. Model Performance and Validation. The performances
of the modeling process using PPV, NPV, SST, SPF, ACC,
and κ during the training and validation phases are shown
in Tables 3 and 4. Regarding the training dataset, the statis-
tical index metrics for the ACO-PSO-SVM model have the
best performance. The kappa indices for the SVM and
ACO-PSO-SVM models are 0.559 and 0.756, respectively,
indicating a substantial agreement between the observed
and predicted landslides. The results of the validation data-
set have the same pattern compared to the training dataset.
Using ROC curve analysis, the general performance of the
two models on both training and validation datasets is
shown in Tables 5 and 6 and Figure 10. For the training
dataset, the ACO-PSO-SVM model has an AUC value of

0.898, which is higher than that of the SVM (0.814) model.
Regarding the validation dataset, the ACO-PSO-SVM model
has an AUC value greater than 0.887. The results indicate
that the ACO-PSO-SVM model has better predictive power
than the SVM model.
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Figure 8: Landslide susceptibility map produced by the SVM
model.
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Figure 9: Landslide susceptibility map produced by the ACO-PSO-
SVM model.

Table 3: Model performance on the training dataset.

Models PPV NPV SST SPF ACC κ

SVM 0.790 0.766 0.771 0.785 0.778 0.559

ACO-PSO-SVM 0.880 0.829 0.835 0.876 0.854 0.756

Table 4: Model performance on the validation dataset.

Models PPV NPV SST SPF ACC κ

SVM 0.783 0.747 0.755 0.775 0.765 0.541

ACO-PSO-SVM 0.862 0.826 0.831 0.858 0.844 0.743

Table 5: AUC analysis for the two landslide models with the
training dataset.

Models AUC SE 95% CI

SVM 0.814 0.0261 0.761-0.859

ACO-PSO-SVM 0.898 0.0187 0.855-0.932
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By comparing SE and 95% CI, the ACO-PSO-SVM
model has the smallest SE (0.0187) and the narrowest 95%
CI (0.855–0.932), followed by the SVM model (SE = 0:0261
; 95%CI = 0:761–0.859). The training datasets of the two
models all produce reasonable goodness of fit, and the model
with the best performance between the two models is the
ACO-PSO-SVM model. The results of the established land-
slide model were verified with the validation dataset, and the
results are shown in Table 6. The ACO-PSO-SVM model
still exhibits the smallest SE (0.0200) and the narrowest
95% CI (0.842–0.923). Because the two evaluation indices
of the ACO-PSO-SVM model are better than those of the
SVM model, the ACO-PSO-SVM model performs the best
with the validation dataset. The difference is that the areas
with very high and high susceptibility in the maps obtained
by the ACO-PSO-SVM model are larger than those pro-
duced by the SVM model, and the SVM model shows lower
prediction accuracy in these areas.

In addition, the results show that the ensemble model
has greater classification accuracy than the SVM model.
The ACO-PSO-SVM model showed superior performance
in accurately classifying low- and very low-susceptibility
regions, and high- and very high-susceptibility areas.
Although the proximity of AUC values of the SVM model
and the ACO-PSO-SVM model could imply marginal differ-
ences in model performance, the resulting maps show that
the SVM model is prone to misclassification. For example,
parts of the southwestern area were classified as low land-
slide susceptibility area despite the occurrence of multiple
past landslides. Nonetheless, the SVM model showed good
predictive performance, which was enhanced by the ACO
and PSO algorithms.

In reality, predictive capability should not be regarded as
the sole criterion for model selection. For LSM, the stability
of the model is very critical. For example, the ACO-PSO-
SVM model needs a relatively longer training time com-
pared to the SVM model. Therefore, model selection is rela-
tively subjective depending on the perspective of the user,
planner, decision-maker, or even reader in specific circum-
stances. Besides, there is no doubt that the ACO-PSO-
SVM model is an excellent tool for predicting landslide
occurrence, and the results produced by the SVM model in
this study are relatively acceptable. However, it is noticed
that there remains the possibility of improving the SVM
model’s comprehensive performance. Therefore, novel opti-
mization algorithms should be combined with the SVM to
create more hybrid models for future work.

6. Discussion

The reliability and quality of LSM are influenced by condi-
tioning factors, and certain factors may generate potential

noise. Therefore, analyzing the relative contributions of
factors to LSM can provide valuable guidance for landslide
disaster management. However, due to the complexity of
landslides, there is no global protocol or standard guideline
for the selection of conditioning factors. The choice of condi-
tioning factors is based on the availability of data relevant to
the study area, the mechanism of landslide occurrences, and
other similar landslide prediction studies. In the present
study, IGRwas used to assess the importance of the condition-
ing factors. Here, distance to faults, altitude, and slope angle
were found to be the most important factors influencing the
occurrence of landslides. The results of the IGR method
showed that all the conditioning factors in themodel had pos-
itive predictive capabilities. As such, all twelve conditioning
factors were selected for the current landslide modeling.

The southeastern zone of the study area classified as hav-
ing very high susceptibility is close to the fault. Due to the
difference in physical and mechanical properties between
the fault zone and bedrock, weathering and unloading are
often formed in the fault zone, and the fault zone deforms
slowly; as a result, the joints and fissures of the slope rock
masses around the fault zone are densely developed. The
mechanical properties of the damaged slope rock mass are
reduced, and the stability of the slope becomes worse, so it
is prone to landslide disasters, such as the Dagou landslide
and the Zhongdaping landslide (Figure 11). Most of the
landslides in the study area are located near the fault zone,
and even many landslides are directly cut by faults
(Figure 12). These phenomena confirm the correlation of
fault proximity with landslide occurrence in the study area.
In addition, in the southeastern region, lower altitudes have
greater susceptibility than higher altitudes. The higher alti-
tudes in the study area are mainly composed of resistant
rock, but there might be a better explanation.

In recent years, various machine learning methods have
been applied to domain-specific LSMs [51]. Although these
methods have proven to be efficient in terms of prediction
accuracy, until now, there is still no consensus on which
method is best in LSM. The study of new methods is impor-
tant to improve the performance of landslide susceptibility
models. Ensemble-based hybrid machine learning methods
are becoming increasingly popular in the assessment of
landslide susceptibility due to their great advantages in terms
of modeling and accuracy of output results. Generally,
hybrid methods can result in more accurate and reliable sus-
ceptibility maps than those obtained using single simple
models. For example, Hong et al. [52] proposed a hybrid
fuzzy weight of the evidence model and obtained an AUC
improvement of 0.025 over a single classifier. Pham et al.
[29] demonstrated that the reduced error pruning tree
model performed better when combined with hybrid
machine learning approaches for LSM. Wang et al. [53]
combined the stacking ensemble technique with three tradi-
tional machine learning methods (support vector machines,
artificial neural networks, and gradient-boosting decision
trees) to achieve an improved prediction of landslides. In
this study, we designed and verified a novel hybrid model
called ACO-PSO-SVM for the spatial prediction of landslide
occurrence. Although the SVM model is one of the state-of-

Table 6: AUC analysis for the two landslide models with the
validation dataset.

Models AUC SE 95% CI

SVM 0.804 0.0267 0.750-0.850

ACO-PSO-SVM 0.887 0.0200 0.842-0.923
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the-art landslide modeling models with promising results,
we tested the hypothesis that ACO and PSO ensemble learn-
ing techniques can significantly improve the predictive accu-
racy of SVM. The results show satisfactory agreement
between the predicted susceptibility levels and the known
landslide locations.

For the performance of the training dataset, the values of
several statistical evaluation measures confirmed the superi-
ority of the ACO-PSO-SVM model over the SVM model.
For the PPV, the ACO-PSO-SVM model showed 88.0%,
indicating that the probability of correctly classifying pixels
in the training dataset as landslides is 88.0%. The highest
NPV is for the ACO-PSO-SVM model (82.9%), which indi-
cates that the probability of the model correctly classifying

the pixels in the training dataset as nonlandslides is 82.9%.
The ACO-PSO-SVM model had the best performance for
the landslide location group (SST = 83:5%), indicating that
83.5% of the landslide pixels are correctly classified as land-
slides. The ACO-PSO-SVMmodel had the highest SPF value
(87.6%), illustrating that 87.6% of the nonlandslide pixels are
correctly classified as nonlandslides. In addition, the ACO-
PSO-SVM model had the highest accuracy (85.4%) and
kappa coefficient (0.756), indicating its excellent reliability
and consistency. However, this does not determine which
model is more predictive. Predictive power should be mea-
sured by the performance as determined by the validation
dataset. Using the validation dataset, the results of all statis-
tical evaluation measures confirmed that the ACO-PSO-
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Figure 10: Comparison of the two models using the ROC curve technique: (a) success rate curve and (b) prediction rate curve.
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Figure 11: Photographs of two landslides in the study area: (a) Dagou landslide; (b) Zhongdaping landslide.
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SVM model (PPV = 0:862, NPV = 0:826, SST = 0:831, SPF
= 0:858, ACC = 0:844, and κ = 0:743) performed best. When
using the hybrid framework, the SVM method improved by
7.90%, 7.90%, 7.60%, 8.3%, 7.90%, and 0.202 with respect to
PPV, NPV, SST, SPF, ACC, and κ, respectively, and the
hybrid method was more accurate than SVM with respect
to the different evaluation measures. Overall, the two suscep-
tibility models performed well in the classification of both
landslide and nonlandslide pixels.

The AUC values between 0.7 and 0.9 imply a reasonable
predictive capability [54]. The results confirm the highest
performance and predictive capability of the ACO-PSO-
SVM model for both the training (AUC = 0:898) and valida-
tion (AUC = 0:887) datasets. The corresponding values for
SVM were lower (AUC training = 0:814; AUC validation =
0:804). By using the training and validation datasets, the
ACO and PSO ensemble learning techniques improved the
success and prediction rates of the SVM by 8.40% and
8.30%, respectively. The performance differences between
the ACO-PSO-SVM model and the SVM model are related
to ensemble learning leveraging the single methods and pro-
ducing more reliable results. Overall, all two models showed
reasonable prediction accuracy, with the highest one being
for the ACO-PSO-SVM model. Therefore, the ACO-PSO-
SVM model is considered the best model for LSM in this
study. However, it is challenging to obtain the optimal model
for LSM in a specific geo-environment among the countless
models, and other hybrid models should be further explored.

7. Conclusions

The aim of this study was to analyze LSM through standa-
lone and ensemble machine learning methods. For this pur-
pose, twelve conditioning factors were extracted as key
attributes for landslide occurrence, namely, altitude, slope

angle, slope aspect, relief amplitude, cutting depth, gully
density, SPI, lithology, rainfall, road density, distance to
faults, and PGA. The IGR was used to evaluate the relative
contribution of the conditioning factors. The performance
of the hybrid model was then evaluated and compared to
the single machine learning method using the ROC curve
and several statistical measures. All twelve factors proposed
in this study are more or less responsible for spatial landslide
modeling, with distance to faults being the most important
among them. The hybrid model based on ACO and PSO
algorithms is a promising technique that can significantly
enhance the performance of the solely applied model. In
terms of overall performance, the ACO-PSO-SVM model
is the best performing model for this study. The hybrid
model produced the highest quality landslide susceptibility
map, which is valuable for land-use planning and decision-
making in landslide-prone areas.

Although this study has some contributions to LSM,
there are some inherent limitations. The use of historical
landslide inventories as input data is the main limitation of
this paper. Due to limitations in the available images,
resources, time, and cloud cover, we did not consider
whether the data used were static landslides or earthquake-
induced landslides. If the landslides triggered by an earth-
quake are not eliminated from the historical inventory, these
landslides will introduce mapping errors in LSM. In the case
of nonearthquake-induced landslides, the PGA as a condi-
tioning factor was considered to provide an estimation of
landslide susceptibility. In addition, the impact of different
DEM spatial resolutions and the spatial heterogeneity of the
landslide data on the evaluation results are ignored. In the
future, we will separately study the LSM for the static land-
slides and earthquake-triggered landslides. Furthermore,
how to couple the hybrid machine learning techniques for
LSM still needs to be tested in different cases.

(a)

Landslide
Landslide

Fault
Fault

(b)

Figure 12: Remote sensing images showing the fault observed at the rear edge of the landslide.
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