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Roof fall in phosphate mines seriously endangers the safety of the mining activity. In this paper, the risk of roof fall occurring in
phosphate mines is evaluated using the underground phosphate mine in Shanshuya, China, as an engineering background. The
factors affecting roof fall in phosphate mines are analyzed, and an index system for evaluating the risk of roof fall in phosphate
mine is established. Four evaluation models are employed to evaluate the risk of roof fall occurring: a set pair analysis model
based on combination weights, a comprehensive fuzzy model based on hierarchical analysis, an approximately ideal ranking
model based on entropy weight, and a gray relational analysis model. The evaluation results of the first two models are
moderate risk with a bias toward intense risk. And the evaluation results of the last two models are slight risk with a bias
toward moderate risk and moderate risk with a bias toward slight risk, respectively. The suitability of each of the evaluation
models is analyzed which reveals that the evaluation results obtained using the different models are inconsistent. A combined
evaluation method based on the four original evaluation models is subsequently proposed. Application of the combined
evaluation method to the Shanshuya phosphate mine produces results that the roof fall risk is moderate with a bias toward
slight risk. It is consistent with the actual situation in this phosphate mine. The results of the study can be used to provide
technical support to engineers evaluating the risk of roof fall occurring in similar phosphate mines.

1. Introduction

The demand for phosphorus products is increasing due to
the rapid rate of development of society [1]. As a result,
phosphate mining is gradually moving deeper underground.
The geological environment encountered in deep mines is
complex and the ground stress is high, and this can fre-
quently lead to disasters occurring, e.g., roof fall and rock-
burst [2–5]. Roof fall occurs when a rock body that has
poor stability undergoes deformation and failure. As the
mining face advances during the mining process, the roof

area that is unsupported increases, and the stress in the top
slab becomes redistributed. In this case, the integrity of the
roof of the rock body is likely to fail. In particular, if no
remedial measures are taken, the roof of the mine will
collapse [6].

Roof fall is one of the most common hazards in mines
and will, of course, seriously endanger the safety of the
mining process and personnel in the mine. Many scholars
have analyzed mining hazards from different perspectives.
As a result, different technical methods and engineering
theories have been applied to evaluating and predicting
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hazards in mines. For coal mines, for example, Xiong et al.
[7] selected 17 risk factors affecting the roof disaster in
Yushen coal mining area. They thus constructed a compre-
hensive standard cloud model to comprehensively evaluate
the risk of roof hazards occurring. Zhang et al. [8] selected
9 factors relating to coal and gas protrusion accidents. An
improved assessment method based on integrated weights
and cloud computing theory was then used to assess the risk
of coal and gas protrusion accidents occurring in a coal mine
in Shanxi, China. Zhang et al. [9] selected the main factors
affecting the damage suffered by the floor of a coal seam.
Gray correlation degree analysis theory was then used to
study the relative importance of the main influencing fac-
tors. In terms of metal mines, Małkowski et al. [10] used
artificial neural networks to evaluate the risk of roof fall
occurring in Polish copper mines based on various aspects
(geological, mining, technical, and monitoring). Feng and
Webber [11] selected many risk factors associated with rock-
burst hazards, e.g., excavation depth, excavation width, and
support measures. They also used artificial neural networks
to predict the risk of rockburst occurring (in deep gold
mines located in South Africa). Liu et al. [12] used an estab-
lished normal cloud model to assess the risk of damage
occurring in deep tunnels in copper mines from the point
of view of three aspects: geological conditions, degree of
mining disturbance, and microseismic activity. Gong et al.
[13] selected evaluation indices related to rockburst occur-
rence and used an analytical hierarchy process (AHP) and
technique for order preference by similarity to ideal solution
(TOPSIS) evaluation method to predict the intensity of rock-
bursts in the Gemma copper polymetallic ore mine in Tibet.
Dong et al. [14] analyzed 33 risk factors related to the safety
of lead–zinc mines. They then proposed an evaluation model
based on fuzzy-gray correlation analysis and applied it to
risk evaluation in a lead–zinc mine.

System engineering theory has also been widely used to
evaluate and predict other engineering hazards. For exam-
ple, Peng et al. [15] proposed 9 factors based on engineering
geology, hydrogeology, and construction factors. An AHP-
TOPSIS evaluation model was then used to predict the risk
of water and mud bursts occurring in the Longjinxi tunnel
in China. Wang et al. [16] selected 7 factors as indices to
evaluate water inrush (formation lithology, favorability of
the geological conditions, etc.). They thus established a nor-
mal cloud theory model based on hierarchical analysis and
applied it to two deep tunnels typically found in karst
regions. Qiu et al. [17] analyzed the key factors involved in
the deformation of the rock surrounding high-speed railroad
tunnels. They then predicted the degree of deformation of
the rock surrounding the Zhengwan high-speed railroad
tunnel using rough set theory and cloud model theory.

The theoretical methods used to evaluate and predict
hazard risks mentioned above have achieved some valuable
results for specific hazards and engineering circumstances.
The related system engineering theories used mainly focus
on disasters such as rockburst, water and mud burst, bottom
slab damage, roof fall, and gas protrusion in metal mines,
coal mines, road tunnels, etc. However, few studies have
focused on evaluating the risks associated with the hazards

encountered in phosphate mines, especially with respect to
roof fall. Different types of projects and environments (e.g.,
mines and water conservancy and hydropower projects)
employ different engineering structures and involve different
ground stress levels and construction factors. Thus, the
factors that cause disasters to occur are also different. At
the same time, the hazard levels predicted using different
methods may also be inconsistent. Therefore, the appropri-
ateness and reliability of the technical methods mentioned
above must be researched much more thoroughly if they
are to be used to evaluate the risk of roof fall occurring in
phosphate mines.

In this work, the phosphate mine in Shanshuya in China
is used as an engineering background. We first established
an index system for evaluating the risk of roof fall occurring
in such mines. Four evaluation models are then used to eval-
uate the risk of roof fall occurring in the phosphate mine.

(i) A set-pair analysis (SPA) model based on the com-
bination weight of hierarchical analysis and entropy
weight method (COW-SPA model)

(ii) A fuzzy comprehensive evaluation (FCE) model
using hierarchical analysis (AHP-FCE model)

(iii) An evaluation technique based on the entropy
weight method (EWM) and similarity to the ideal
solution ranking approach (EWM-TOPSIS model)

(iv) A method employing gray relational analysis (GRA)
to evaluate the risk (GRA model)

The suitability of each of the four evaluation models is
subsequently analyzed. A further evaluation method is then
developed for phosphate mines which is a combination of
the four original evaluation models. The results of the study
can be used to provide technical support for those evaluating
the risk of roof fall occurring in phosphate mines.

2. Engineering Background

The Shanshuya phosphate mine is located in Hubei province
in China. It has a design capacity of 1.5 million tons per year,
and the depth of the ore body can be up to 750m. The thick-
ness of the ore body is less than 10m [18, 19]. The mine
contains massive deposits of sedimentary phosphate rock,
and some of the rock in the area is hard and brittle. The
mine area is dominated by the presence of karst fissure
water and water ingresses directly into the mine through
the top and bottom slabs. The hydrogeological conditions
are deemed to be of medium type.

The roof above the ore layer of the mine consists of a
thin–medium layer of dolomite with a heavy mud content.
This reduces the mechanical strength of the rockmass. Faults
and fissures are extensively developed in the mine area
(there are 26 faults and 623 fissures). The maximum width
of the fault fracture zone is 35m, the fracture distance is
76m, and the fissures are up to 10 cm wide. The integrity
of the rock is thus poor and the fault fractures well devel-
oped. The ultimate compressive strengths of the rock masses
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surrounding the top and bottom of the mine are in the range
84–183MPa, their shear strengths are in the range 4.8–
32.4MPa, their moduli of elasticity are in the range 17-
38GPa, and their softening coefficients are in the range
0.52–0.78.

The commonly-used room and pillar method as well as
the single-pass mixed-transport layered mining method are
used in the mine. The natural tendency of the mined area
to crumble is used to fill the goaf area and thus manage
the roof space. The height of the quarry at the phosphate
mine is above 4m in places which makes it difficult to
inspect the roof pumice. Hazards are therefore difficult to
detect and safely deal with in a timely manner. The above-
mentioned issues make it very likely that roof fall will occur
and lead to accidents. Various disasters occurred during
mining, no doubt exacerbated by excavation disturbance,
among which roof fall was one of the most common haz-
ards. It is therefore very important to evaluate the risk of
roof fall occurring in the phosphate mine. If this can be
achieved, it will be possible to take appropriate remedial
measures in a timely manner in order to ensure the safe
operation of the mine.

3. Evaluating the Risk of Roof Fall

3.1. Outline of the Four Evaluation Models. The models used
for mine disaster risk evaluation are numerous. Four evalu-
ation models are used to evaluate the risk of roof fall occur-
ring in the phosphate mine in this paper: the COW-SPA
model [20–22], AHP-FCE model [23, 24], EWM-TOPSIS
model [25, 26], and GRA model [14, 27]. In the risk assess-
ment of a certain disaster, the influence that the different
indicators have on the risk of disaster occurring varies.
Therefore, the weights allocated to the indicators therefore
need to be reasonable. Combining weights, subjective
weights, objective weights, and no weights are used in the
above four evaluation models, which are typical and with a
wider coverage. The essential features of these models are
outlined in Table 1 and Figure 1.

The likelihood that roof fall will occur can generally be
divided into 4 or 5 levels [28, 29]. In this paper, we use 5 risk
levels, referred to as low, slight, moderate, intense, and
extremely intense (Table 2).

3.2. Construction of a Risk Evaluation Index System for Roof
Fall. Phosphate mines are complex environments, and there
are many factors that can contribute to the occurrence of a
disaster. In addition, these factors interact with each other
and must be treated as a set of impact factors that can,
together, lead to roof fall.

Some roof fall disasters in phosphate mines are caused
by factors relating to the personnel involved. System safety
theory holds that information about the machinery and
environment is constantly fed back to the brain via our
senses. Accidents may therefore occur if people fail to per-
ceive and recognize the dangers involved and fail to make
the correct response in time. Therefore, the effect of person-
nel cannot be ignored. Human error is mainly manifested in
the form of lack of skilled operating technique, weak safety
awareness, lack of necessary safety knowledge and skills, fail-
ure to inspect and pry the pumice, or not thoroughly inspect
and pry the pumice, etc. The behavior of the personnel may
also be unsafe (undertaking risky or illegal operations, not
investigating and dealing with hidden dangers, etc.). Other
personnel-related factors that may be important are mainly
related to their degree of personal education, the quality of
their safety education, the training they received, etc.

From the point of view of the mechanical equipment and
technical factors, it has been shown that the choice of min-
ing method directly determines the safety of the project.
That is, roof fall and wall caving disasters are more likely
to occur if unreasonable mining methods are used during
the exploitation of the phosphate mines. Employing safety
measures is an effective way of preventing roof fall disasters.
Roof fall and wall caving accidents are more likely to occur if
there is an absence of support, an unreasonable choice of
support, support is applied in an untimely manner, the qual-
ity of the support fails to meet proper requirements, or there
are reduced levels of support in the mining site or roadway.
As the roof of the phosphate mines has a complex geological
structure, the general method involving knocking on the
roof is not a useful way of recognizing the potential for
disaster. We also note that if advanced detection technology
is not used, the personal safety of the inspector will be threat-
ened during the detection process. Therefore, the adaptability
of the equipment is of great significance to safe production
from phosphate mines. For example, it is difficult for small-

Table 1: Summary of the four evaluation models employed in this work.

Model Description

COW-SPA
The relationship between determinism and uncertainty of a system is examined from the same, different, and opposite

aspects. It is used to deal with multifactor uncertainty problems.

AHP-FCE
An effective multifactor decision-making method used to make a comprehensive evaluation of things influenced by

multiple factors. Based on the membership grade theory in fuzzy mathematics.

EWM-TOPSIS
Evaluation objects are ranked according to their distance from positive and negative ideal solutions to the multiobjective
decision problem. The judging object deemed closest to the positive ideal solution is taken to be the optimal value. The

judging object deemed farthest to the positive ideal solution is the worst value.

GRA

A multifactor analysis method based on gray system theory. The differences and correlations between the elements of the
system are examined by quantitatively analyzing the dynamic development of the system. When the comparative and

reference series curves are similar, they are considered to have a high degree of correlation; otherwise, they are considered
to have a low degree of correlation.
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scale equipment to control the roof plate when rock drilling.
On the other hand, it is difficult for large-scale equipment to
enter the working area due to space limitations.

The deposit formed in the Shanshuya phosphate mines
passes through a geological fracture zone which features
faults and folds, leading to the development of joint fissures
within the rock body. The integrity of the rock body is very
low which destabilizes the quarry and leads to the occur-
rence of roof fall and wall caving. The stress balance will also
be affected by the presence of nearby quarries. Overdigging
and overmining (or mechanical disturbance and blasting
vibration during mining) will further reduce the stability of
the quarry. Furthermore, if roof fall does occur in one
quarry, then, the surrounding quarries will also be affected,
and this will clearly increase the probability of roof fall
occurring in them as well. The pressure distribution in the
mining site is affected by the mining depth and the fault dis-
tribution. In phosphate mines, the ground pressure is mainly
determined by geological and engineering factors and min-

ing depth. As the mining depth increases, the ground pres-
sure increases. This makes roof fall more likely to occur
and increases the severity of the event when it does.

Safety post responsibility systems are an important way
of improving production safety and help ensure that workers
remain safe. A mine safety management system is another
important measure aimed at regulating the behavior of the
workers involved in the production process. As such systems
reduce the use of dangerous practices, they can clearly help
achieve safe production from the phosphate mine. Mine
operators should therefore implement a strict phosphate
mine safety management system to prevent and control the
occurrence of roof fall. In addition, if the site is not properly
supervised and inspected, or the roof clearance operation is
not analyzed and interpreted accurately, any hidden dangers
will not be found and addressed in time. This could result in
the occurrence of disasters such as roof fall. Thus, it is essen-
tial that timely and regular supervision and inspection of the
mining work be carried out by the phosphate mining

Establish a disaster evaluation index system
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Figure 1: Diagram highlighting the basic principles of the four evaluation models.

Table 2: Classification criteria used to quantify the risk of roof fall occurring.

Risk level Definition

Low (I)
Extremely low probability that roof fall will occur; if it does, the damage caused will be minimal and have almost

no impact.

Slight (II) Low probability of roof fall occurring; the impact on construction and safety of the personnel is small.

Moderate (III) High probability of roof fall occurring; the impact on construction and safety of the personnel cannot be ignored.

Intense (IV) Even higher probability of roof fall occurring; the impact on construction and safety of the personnel is greater.

Extremely
intense (V)

Extremely high probability of a roof fall disaster occurring. The situation is of great concern as damage is likely to be
caused to machinery and equipment and there are likely to be casualties.
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enterprise. Such activity is highly conducive to safe construc-
tion and improves the emergency handling system of the
mine. Besides, the time the quarry is exposed is another
important factor controlling the occurrence of roof fall. If
the construction process is not properly organized, the roof
may be exposed for an excessive amount of time and so the
factors inducing roof fall will have a greater opportunity to
have an effect. The safety emergency mechanism is an impor-
tant reference factor for safe conditions in phosphate mines
and can effectively prevent and control possible accidents.

In order to comprehensively reflect the influence of the
various factors mentioned above (and ensure the evaluation
results are scientific and reliable), a risk evaluation index is
established for roof fall in phosphate mines in this work.
The index is to be based on the above analysis and field
investigations carried out in the Shanshuya phosphate mine.
As shown in Figure 2, the index system is divided into two
layers: the first layer divides the factors into four categories
relating to personnel, mechanical equipment and technical
aspects, the environment, and management practices. The
second layer shows how the 20 factors are distributed (6
are personnel factors, 4 are mechanical equipment and tech-
nical factors, 4 are environmental factors, and 6 are manage-
ment factors). These index factors can, of course, be
dynamically optimized as new information comes to light
in the phosphate mine.

3.3. Indicator Weights. The influence that the different indi-
cators have on the risk of roof fall occurring varies. The

weights allocated to them therefore need to be reasonable
and scientifically determined if the prediction results are to
be accurate. To this end, subjective weights, objective
weights, and combined weights of the indicators are calcu-
lated using the AHP, EWM, and multiplicative synthetic
normalization methods, respectively.

The evaluation index system established in Tables 3–7 is
assessed using the AHP method based on judgment criteria
specified on scales of 1–9. A judgment matrix is thus con-
structed by pairwise comparison of the influencing factors
at each level of the index layer (Tables 3–7). To do this, care-
ful consideration is given to the information in the literature
related to the classification of risk factors associated with
roof fall hazards in phosphate mines, as well as the actual sit-
uation on the ground in the Shanshuya phosphate mine.
Based on the existing experience, we discussed with the

The risk evaluation index
system for roof fall

X11 - Number of years of education of the personnel

X1 - Personnel factors

X12 - Safety education and training of the personnel

X13 - Safety knowledge, safety skills, operation technology,
and experience with roof falls

X14 - Awareness of personnel security, violation of
regulations, and risky operations

X21 - Mining method

X2 - Mechanical equipment
and technical factors

X22 - Support measures
X23 - Turquoise detection technology
X24 - Adaptation of equipment

X31 - Geological formations
X3 - Environmental factors X32 - Groundwater

X33 - Mining of adjacent work faces
X34 - Ground pressure activity

X15 - Inspection and pry operation of the roof pumice

X16 - Identification and governance of hidden dangers

X41 - Implementation of safety post responsibilities

X4 - Management factors
X42 - Implementation of a mine safety management system
X43 - On-site supervision and inspection
X44 - Analysis and assessment of the roof site to reduce risk
X45 - Construction management planning
X46 - Security emergency mechanism

Layer IILayer I

Figure 2: Indicators used to create a risk evaluation index for roof fall in phosphate mines.

Table 3: Criterion level judgment matrix.

X1 X2 X3 X4 Weight

X1 1 2 3/2 1/2 0.2600

X2 1/2 1 2 2/3 0.2133

X3 2/3 1/2 1 1/3 0.1317

X4 2 3/2 3 1 0.0395

λmax = 4:1229 CR = 0:0460
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experts related to the roof fall disaster of the Shanshuya
phosphate mine and combine the characteristics of roof fall
disaster of the phosphate mine to determine which index has
a greater impact on the upper level factors. Finally, as illus-

trated by a relatively important numerical value, the judg-
ment matrices for the criterion layer and corresponding
risk indicators are shown in Tables 3–7.

The data in Tables 3–7 is used to calculate the maximum
eigenvalues and weights of each evaluation index. The tables,
therefore, also present the calculated values of the maximum
characteristic root (λmax) and consistency ratio (CR), as well
as the weights of the factors. The consistency indicators are
calculated to check the consistency of the judgment matrix
evaluation results. The consistency checks show that CR <
0:1 for each matrix, indicating that the judgment matrices
and weights are acceptable and consistent.

The resulting set of weights for the 20 indicators in layer
II in the risk index system is therefore:

ωai = 0:0169,0:0257,0:0463,0:0463,0:0801,0:0463,0:0617,ð
0:0876,0:039,0:0226,0:0102,0:0238,0:0292,0:0686,
0:0268,0:0268,0:0183,0:1366,0:1366,0:0505Þ:

ð1Þ

Similarly, the set of weights for the indicators in layer I is

ωai ′ = 0:2617, 0:2108, 0:1319, 0:3956ð Þ: ð2Þ

The objective weighting calculations are performed using
the EWM method. Clearly, the number of experienced
scholars involved in this process should be appropriate. Gen-
erally, 5 to 10 experienced scholars are thought to be appro-
priate (in terms of the convenience with which information is
collected and ease with which the modeling calculations are
performed). Three scholars and two mine staff are invited
to take part in this study. The three scholars had each been
engaged in roof fall research in phosphate mines for many
years, and the two mine staff had a rich variety of practical
experience in such mines. Each indicator in the evaluation
index system in Table 3 is objectively evaluated and judged
according to the fuzzy risk factor classification information
in Table 4 and actual situation in the Shanshuya phosphate
mine in Hubei Province. Five risk levels: low (I), slight (II),
moderate (III), intense (IV), and extremely intense (V) are
set for each evaluation index. The results for each indicator,
as determined by the evaluation committee, are shown in
Table 8.

Using the EWM method and data in Table 8, the set of
weights for the indicators in layer II is found to be:

ωbi = 0:0279, 0:0140, 0:0477, 0:0477, 0:0839, 0:0477, 0:0839,ð
0:0477, 0:0477, 0:0574, 0:0279, 0:0839, 0:0140, 0:0338,
0:0839, 0:0839, 0:0574, 0:0477, 0:0477, 0:0140Þ:

ð3Þ

Similarly, the set of weights for the indicators in layer I is
found to be:

ωbi ′ = 0:2689, 0:2367, 0:1596, 0:3346ð Þ: ð4Þ

Table 4: Judgment matrix for X1 (personnel factors).

X11 X12 X13 X14 X15 X16 Weight

X11 1 1/2 1/3 1/3 1/3 1/3 0.0169

X12 2 1 1/2 1/2 1/3 1/2 0.0256

X13 3 2 1 1 1/2 1 0.0460

X14 3 2 1 1 1/2 1 0.0460

X15 3 3 2 2 1 2 0.0793

X16 3 2 1 1 1/2 1 0.0460

λmax = 6:0686 CR = 0:0109

Table 5: Judgment matrix for X2 (mechanical equipment and
technical factors).

X21 X22 X23 X24 Weight

X21 1 1/2 2 3 0.0625

X22 2 1 2 3 0.0879

X23 1/2 1/2 1 2 0.0399

X24 1/3 1/3 1/2 1 0.0230

λmax = 4:0709 CR = 0:0266

Table 6: Judgment matrix for X3 (environmental factors).

X31 X32 X33 X34 Weight

X31 1 3 2/3 1/3 0.0241

X32 1/3 1 1/3 1/5 0.0103

X33 3/2 3 1 1/3 0. 0292

X34 3 5 3 1 0. 0680

λmax = 4:0644 CR=0.0241

Table 7: Judgment matrix for X4 (management factors).

X41 X42 X43 X44 X45 X46 Weight

X41 1 1 3/2 1/5 1/5 1/2 0.0268

X42 1 1 3/2 1/5 1/5 1/2 0.0268

X43 2/3 2/3 1 1/7 1/7 1/3 0.0183

X44 5 5 7 1 1 3 0.1363

X45 5 5 7 1 1 3 0.1363

X46 2 1/2 3 1/3 1/3 1 0.0505

λmax = 6:0077 CR = 0:0012
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The multiplier synthesis normalization method is subse-
quently applied to the calculated weights to find the com-
bined weights for the evaluation indices. The combined
weights for the indicators in layer II are found to be

ωi = 0:0093,0:0071,0:0433,0:0433,0:1318,0:0433,ð
0:1015,0:0820,0:0365,0:0254,0:0056,0:0392,0:0080,
0:0455,0:0441,0:0441,0:0206,0:1278,0:1278,0:0139Þ:

ð5Þ

The combined weights of the indicators in layer I are
similarly found to be:

ωi ′ = 0:2571, 0:1823, 0:0769, 0:4837ð Þ: ð6Þ

Based on these results of the calculated combination of
weights, the indicators in layer I can be ranked in order of
importance according to their weights: management factors,
personnel factors, mechanical equipment and technology
factors, and environmental factors. In layer II, six secondary
indices have significant weights: X15 (inspection and pry
operation of the top), X21 (mining method), X22 (support
measures), X34 (ground pressure activity), X44 (analysis
and assessment of the roof site to reduce risk), and X45 (con-
struction management planning). The influence of these

indices on the likelihood of roof fall occurring in Shanshuya
phosphate mines is correspondingly larger than the others.

3.4. Results Obtained Using the Four Models. The results of
the risk evaluations made using the four models are shown
in Figure 3 and summarized in Table 9. The different evalu-
ation models evaluate the situation from their own perspec-
tives, and each evaluation model will have its limitations.
Therefore, the results obtained using the different evaluation
models are different. The ranking of the scores is based on
the ranking of the maximum membership grade principle.

The moderate risk level (level III) has the largest score
according to the COW-SPA, AHP-FCE, and GRA models
(therefore, they predict that the risk of roof fall occurring
is moderate). The COW-SPA and AHP-FCE models suggest
that the intense risk level (level IV) is ranked second, so
these evaluation models are tending toward intense risk
(level IV). On the other hand, the GRA method ranks level
II second, so this evaluation model is tending toward slight
risk (level II). Finally, in the EWM-TOPSIS model, the score
obtained for the moderate risk level (level III) ranks second
and that obtained for the slight risk level (level II) is the larg-
est. Hence, this model predicts that the risk level is slight
tending toward moderate.

As can be seen from Figure 1, each evaluation model
actually invokes different analytic processes from different
perspectives. As a result, even though the same objects are
being evaluated, the results produced by the different evalu-
ation models are inconsistent (Table 9). Therefore, in order
to take full advantage of the strengths of the various models
and hopefully achieve more accurate evaluation results, it is
necessary to combine the evaluation results produced by the
different evaluation models. The final results should thereby
be more reliable and credible.

4. Combined Evaluation Based on the
Four Methods

4.1. Combined Evaluation Method. In order to make the
evaluation results consistent, a combined evaluation method
is proposed based on the original set of methods. Due to the
different properties of the various methods (as different
mechanisms are employed), the individual evaluation
methods may lead to different evaluation results. However,
for any one given object, the evaluation results obtained
using these different evaluation methods should not be too
much different. When we use an evaluation method to eval-
uate the value of each evaluation level, we are actually estab-
lishing a superiority order for the evaluation levels. If we
only form a combination evaluation based on the ordering
relationships (or, alternatively, just the evaluation values),
the final combined evaluation result may be not good. Thus,
it is difficult to obtain a reasonable and scientific evaluation
result.

In this study, a new method is proposed for making a
combined evaluation based on a set of methods. In our
method, the different level scores obtained for the factors
and the ranking factors obtained using the multiple evalua-
tion methods are combined to reflect the properties of the

Table 8: Results of the normalization procedure for each
evaluation index.

Indicator
Evaluation level

Low Slight Moderate Intense Extremely intense

X11 0.2 0.4 0.4 0 0

X12 0 0.2 0.2 0.4 0.2

X13 0 0 0.4 0.6 0

X14 0 0 0.4 0.6 0

X15 0 0 0 1 0

X16 0 0 0.4 0.6 0

X21 0 0 1 0 0

X22 0 0 0.4 0.6 0

X23 0 0.4 0.6 0 0

X24 0 0.8 0.2 0 0

X31 0 0.4 0.4 0.2 0

X32 0 1 0 0 0

X33 0.2 0 0.2 0.4 0.2

X34 0 0 0.6 0.2 0.2

X41 0 1 0 0 0

X42 0 1 0 0 0

X43 0.2 0.8 0 0 0

X44 0 0 0.6 0.4 0

X45 0 0 0.6 0.4 0

X46 0.2 0.4 0.2 0.2 0
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objects more comprehensively. By combining the different
methods, we can complement each of their strengths. At
the same time, information about the different methods
can be used to eliminate the problem of inconsistent evalua-
tion results. In this way, an evaluation result that is reason-
able and scientific can be obtained.

More specific details of the steps involved are given
below. A flowchart outlining the calculations involved in

the combined evaluation method is given in Figure 4. The
set of methods used in this work is {COW-SPA, AHP-
FCE, EWM-TOPSIS, and GRA}, and the calculations pro-
ceed as follows:

(1) Calculate the membership grade, μij. The original
data can be normalized to a same dimension to elim-
inate the occurrence of weighting imbalance:

μij =
Xij −min Xij

� �

max Xij

� �
−min Xij

� �

× 0:9 + 0:1, i = 1, 2,⋯,m ; j = 1, 2,⋯, n,
ð7Þ

where Xij represents the evaluation value obtained
for the i -th risk level using the j -th evaluation
method. In effect, μij gives the grade of membership
which quantifies the “excellence” of the i -th risk
level assessment according to the j -th evaluation
method.
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Figure 3: Evaluation results obtained using the four models.

Table 9: Comparison of the evaluation results.

Evaluation model Evaluation result

COW-SPA
Moderate risk (III) with a bias toward

intense risk (IV)

AHP-FCE
Moderate risk (III) with a bias toward

intense risk (IV)

EWM-TOPSIS
Slight risk (II) with a bias toward moderate

risk (III)

GRA
Moderate risk (III) with a bias toward slight

risk (II)
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(2) Calculate the Fuzzy Rate. Fuzzy logic is used to
reflect the variability of the evaluation values of the
various evaluation methods with respect to the dif-
ferent risk levels. To determine the evaluation value
of each risk level, we let Pih denote the fuzzy fre-
quency with which the i -th risk level is ranked in
the h -th position (1 ≤ h ≤ 5)

Pih = δiμ
jð Þ
i E = f i1 f i2 ⋯ f inð ÞT1×m: ð8Þ

In Eq. (8), δi = ½δðjÞih �m×n, μ
ðjÞ
i = diag ðμð1Þi μð2Þi ⋯ μðnÞi Þ,

and E = ð1 1⋯ 1ÞT1×m. If the i-th risk level is ranked h

under the j-th evaluation method, the value of δðjÞih

will be 1; otherwise, it is 0. The expression for the
fuzzy rate is

Wih =
Pih

∑m
h=1Pih

: ð9Þ

(3) The rank of the evaluated object Xi is converted into
a ranking score using the expression

Qh =
m − h + 0:01ð Þ × m − h + 1ð Þ

2 , ð10Þ

where Qh denotes the score of Xi in the h -th position
in order of superiority. In fact, Qh is a deterministic
sequence.

Calculate affiliation
superiority

Define the set of evaluation methods

Calculate the fuzzy frequency

Calculate the fuzzy
rate

Convert the rank of the evaluated
object into a ranking score

Calculate and rank the combined scores

Determine the value of the i-th risk
level when ranked in the h-th position

using the j-th evaluation method

Figure 4: Flow chart outlining the combined evaluation method.

Table 10: The calculated membership grade.

Model
Level

Low Slight Moderate Intense Extremely intense

COW-SPA 0.12047 0.5693 1 0.9513 0.1

AHP-FCE 0.1247 0.4500 1 0.9056 0.1

EWM-TOPSIS 0.1431 1 0.7162 0.6946 0.1

GRA 0.1256 0.9378 1 0.8793 0.1

Table 11: The calculated fuzzy rates.

Value of h
Level

Low Slight Moderate Intense Extremely intense

1 0 0.25 0.75 0 0

2 0 0.2671 0.2040 0.5289 0

3 0 0.3931 0 0.6069 0

4 1 0 0 0 0

5 0 0 0 0 1
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Figure 5: Comparison of the results obtained using the separate models and combined evaluation method.

Table 12: Combined evaluation results calculated using the chosen method set.

Level
Low Slight Moderate Intense Extremely intense

Original score 1.01 5.2994 8.7468 5.0138 0.005

Normalized score 0.1156 0.6059 1 0.5732 0.0006

Ranking 4 2 1 3 5

(a) (b)

(c) (d)

Case 1 Case 2

Case 3 Case 4

The damage
depth is

20–25 cm

No  rock fall

The damage area
is ~8 m2

The damage area
is ~5 m2

Figure 6: Rock fall damage observed in the Shanshuya phosphate mine.
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(4) The combined score FBi for the i -th risk level can
now be calculated using the expression:

FBi = 〠
m

h=1
WihQh, ð11Þ

yielding values that lie in the range ½0, +∞Þ.
(5) Finally, the FBi values are ranked according to

the principle of maximum membership grade. The
higher the score, the higher the corresponding risk
level

4.2. Evaluation Result Obtained Using the Proposed Method.
The proposed method combines the evaluation results
obtained using multiple evaluation models. The membership
grade is first calculated for each evaluation model according
to Eq. (7) giving the results shown in Table 10. The fuzzy fre-
quencies of the i -th ranks in position h are then calculated
according to Eqs. (8) and (9), giving the results shown in
Table 11. The combination scores are then calculated for
the different ranks according to Eqs. (10) and (11) and the
final ranking result derived. The combination scores and
ranks of each risk level are presented in Table 12. The results
of the combined evaluation method are also shown in
Figure 5 along with those obtained using the individual eval-
uation models.

The proposed method indicates that moderate risk (level
III) has the highest ranking followed by slight risk (level II).
In other words, it predicts that the risk of roof fall occurring
is moderate tending toward slight. Evidence of the occur-
rence of roof fall in the Shanshuya phosphate mine in Hubei
Province is collected, and the damage typically encountered
in the mine is highlighted in Figure 6.

According to the damage information collected, roof fall
is likely to occur in the Shanshuya phosphate mine. When
roof fall does occur, it mainly involves an area of 1 to
10m2, and the depth and thickness of the damage lies
mainly in the range 5 to 25 cm. For one roof fall, the damage
area and depth of the rock mass are small. It is worth noting
that the accumulation of multiple small-scale roof fall can
make a large-scale roof fall phenomenon. The local damage
caused by roof fall had a certain impact on personnel safety
and construction, and this impact can be control if we take
measures timely. The comprehensive assessment of the risk
of roof fall occurring in this phosphate mine suggests that
the risk is moderate risk (level III) with a bias toward slight
risk and requires some risk mitigation measures to be taken
to improve the safety level. The combined evaluation result
is thus consistent with the actual situation in the mine.

5. Conclusions

This paper establishes a system of indicators that are suitable
for predicting the likelihood that roof fall will occur in phos-
phate mines. The phosphate mine in Shanshuya, Hubei, is
used as our engineering background to determine 20 evalu-
ation indicators for roof fall belonging to four categories:
personnel factors, mechanical equipment and technical fac-

tors, environmental factors, and management factors. In
terms of importance, these categories are found to be ranked
in the order: management factors, personnel factors,
mechanical equipment and technology factors, and environ-
mental factors.

Four typical evaluation models (COW-SPA, AHP-FCE,
EWM-TOPSIS, and GRA models) are used to evaluate the
risk of roof fall occurring in the phosphate mine. It was
found that the results obtained using the different models
are inconsistent. Two models (COW-SPA and AHP-FCE)
predicted that the risk is moderate and biased toward
intense. The EWM-TOPSIS model suggested the risk is
slight but biased toward moderate. The GRA model pre-
dicted that the risk is moderate and biased toward slight risk.

A combined evaluation method is subsequently pro-
posed based on the results of the four evaluation models.
The new model combines the factors of differences in level
scores and ranking of the evaluation results of multiple
evaluation methods to give a combined evaluation. Using
this approach allows the properties of the objects to be
comprehensively reflected and helps eliminate the problem
of inconsistency in the evaluation results. The proposed
method suggests that the roof fall risk is moderate in the
Shanshuya mine with some bias toward slight risk. This is
consistent with the actual situation in this phosphate mine.
The research results presented in this work can be used to
provide technical support for engineers evaluating the
risk of roof fall occurring in similar phosphate mines.
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