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The sandy braided river depositional system developed in the Lower Shihezi Formation of the Daniudi gas field, Ordos Basin. It
has the characteristics of frequent migration and oscillation of braided channels and large well spacing, making it challenging to
portray the braided river sand body in this area, bringing uncertainty to the 3D geological modeling of the reservoir. This study
takes the primary gas reservoir H1 member as an example. It establishes a quantitative geological knowledge database for the
reservoir by statistically fitting the correlation equations between the braided channel and channel bar in the planes and
profiles to reduce the uncertainty of reservoir modeling. This study combines the multisource and multiscale information from
modern sedimentation, field outcrops, and tank simulation experiments of the braided river. From the data, the distribution
intervals for the thickness and width of the braided channel sand body in the Hl1 member are 1-22m and 7-320m,
respectively, and the thickness, width, and length distribution intervals of the sand body in the channel bar are 3-30m, 80-
1500 m, and 240-4200 m, respectively. A 3D training image is established using the object-based simulation method based on
the H1 member’s well data and combining the quantitative parameters of various microfacies in the geological knowledge
database. The multiple-point geostatistical modeling method is applied to establish a sedimentary microfacies model. The
model’s uncertainty is reduced through multi-information fusion constraint modeling, providing a reliable basis for guiding the
prediction of the remaining gas in the Daniudi gas field.

1. Introduction

Establishing and expanding quantitative geological knowl-
edge databases for several reservoirs have attracted consid-
erable attention in recent decades [1-6]. Several strategies
have been used in studies on establishing geological knowl-
edge databases via quantitative geology, such as the fine
anatomy of reservoirs in dense well network development
areas [7, 8], field outcrop anatomy [9-11], modern sedi-
mentation anatomy [12], tank simulation experiments
[13], 3D digital outcrop model [14-16], 3D seismic data
analysis [3, 17], Google Earth satellite image analysis

[18-21], and remote sensing image analysis [22]. Several
studies have focused on the geological information data-
base of braided river reservoirs in the Ordos Basin, for
example, Zhang et al. [8], Shi et al. [7], and Xu et al.
[19] for the Sulige gas field reservoir and Zhang et al.
[23] for the Hangjingi area, combined modern sedimenta-
tion based on Google Earth measurements, outcrop data,
and dense well network anatomy to establish a quantitative
geological knowledge database of braided river reservoirs.
They established a microfacies model using the multiple-
point geostatistical modeling method based on 3D training
images of quantitative characterization and received rich
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FIGURE 1: Location of the study area. (a) The location of the Ordos Basin (after Xu et al. [33]). (b) The location of the Daniudi Gas field (after
Wu. [31]). (c) The location of the Fugu Tianshengqiao in the field outcrop (after Chen [32]).

results. However, most are limited to using traditional geo-
logical dissection methods in the process, and the geologi-
cal knowledge databases associated with the Daniudi gas
field have received less attention in previous research.

A sandy braided river is a vital terrestrial sedimentary
system. However, due to its reservoir’s substantial heteroge-
neity, the sand body’s spatial stacking pattern and distribu-
tion are complex, making it challenging to establish a
highly reliable 3D geological model of the braided river res-
ervoir [24]. Academics have extensively studied modeling
braided river reservoirs. Li et al. [25] used a plane facies-
controlled method to establish a 3D geological model of
the braided river, analyzed the development pattern of non-
permeable layers inside the reservoir, and predicted the dis-
tribution of interbeds. Ma et al. [26] integrated dynamic and
static information to demonstrate the scale of different sand
body levels through sand connectivity analysis to establish a
3D geological model. Chen et al. [27] restricted the braided
river reservoir geological model by collecting genetic and
evolution information from well and seismic data and iden-
tifying genetic unit types and features. Wu et al. [28] estab-

lished a spatial spreading model of a braided river reservoir
consistent with architectural knowledge by identifying and
predicting the constitutive unit’s scale and using a hierarchi-
cally restricted embedded modeling technique.

In the Lower Shihezi Formation of the Daniudi gas field
in Ordos Basin, it develops a braided river sedimentary sys-
tem, making it challenging to portray this area’s braided
river sand body and bringing uncertainty to the reservoir’s
3D geological modeling because of its frequent migration
and oscillation of braided channels and its large well spacing.
Therefore, we integrate multisource and multiscale informa-
tion from similar modern deposits, digital outcrop profiles in
the field, and tank simulation experiments to establish a
quantitative geological knowledge database for the braided
river reservoir in the Lower Shihezi Formation H1 member
of the Daniudi gas field. We rely on multiscale data to syn-
thesize the empirical formulas for the scale of various micro-
facies units and on subsurface well data from the research
area to compare the present with the past. The object-
based method is employed to establish a 3D training image
that conforms to the study area’s geological characteristics
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FIGURE 2: Stratigraphic column of the Shihezi Formation in the study area (modified from Xu and He [35]).
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F1gure 3: Distribution characteristics of modern sandy braided river channel bars and active braided channels. (a) Yellow River, (b) Yukon
River, (c) Jamuna River, (d) Rakaia River, (e) Ganges River, (f) Lena River, (g) Lhasa River, (h) Waitaki River, and (i) Brahmaputra River.
Whbb: width of braided bar; Lbb: length of braided bar; Wbc: width of braided channel; Wbr: width of braided river.

based on the knowledge database of quantitative parameters.
Furthermore, the multiple-point geostatistical modeling
method is applied to establish a sedimentary facies model
that conforms to geological understanding laws and deposi-
tion patterns, reducing model uncertainty and laying a solid
foundation for forecasting the remaining gas in the Daniudi
gas field.

2. Geological Setting

The Ordos Basin is in North-Central China (Figure 1(a)).
The Ordos Basin is a large multirotational craton-margin
stacked basin with depressional migration, subsidence, and
tectonic simplicity [29]. It is divided into six primary
tectonic units: the Yimeng Uplift to the north, the Weibei
Uplift to the south, the Western Thrust Belt and the
Tianhuan Depression to the west, the Jinxi Flexural Belt to
the east, and the Yishaan Slope in the center [30]. The
Daniudi gas field’s regional tectonics is in the north-
eastern part of the Yishaan Slope, a secondary tectonic unit
of the basin [31] (Figure 1(b)). The surrounding sedimen-
tary outcrop is approximately 130km east of the Daniudi
gas field and tectonically to the north of the Jinxi Flexural
Belt in the basin [32] (Figure 1(c)). Regarding the target
reservoir, depositional environment, and reservoir features,
the Fugu Tianshenggiao profile is comparable to the

Daniudi gas field. The section’s primary body is northeast-
southwest trending, with good overall outcrop conditions
that are easy to observe, describe, and sample for analysis.

The Permian Lower Shihezi Formation is divided into
three members from the bottom to the top: H1 (P,x"), H2
(P,x%), and H3 (P,x°). H1 is the primary gas-bearing section
with undeveloped fractures in the target layer and gentle tec-
tonics—a gentle high northeast and low southwest mono-
cline [31, 34]. The local development of a nose uplift with
a near east-west trend does not constitute a larger tectonic
enclosure. The Shihezi Formation of the Daniudi gas field
has braided river deposits with a floodplain and braided
river subfacies. In the braided river system, the braided
channel subfacies are the primary facies of sandstone depo-
sition, with two microfacies evolved, namely, the channel
bar and the braided channel between the channel bars
(Figure 2). Sand conglomerate, pebbly sandstone, fine sand-
stone, siltstone, and mudstone dominate the lithology, and
the burial thickness is 2540-2840 m.

3. Databases and Methods

This study focuses on the HI member of the Shihezi Forma-
tion in the Daniudi gas field, one of the most gas-rich areas.
Currently, approximately 296 wells have been drilled, cover-
ing approximately 188km”. The density is 0.635km?*/well,
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FIGURE 4: Probability distribution of different parameters based on a modern similar deposition. (a) Channel bar width, (b) channel bar

length, and (c) braided channel width.

and the distance between the wells is approximately 600 m.
We obtained the data related to exploration and production,
such as core, logging curve, mud logging, seismic, sand inter-
pretation, and other data types, from the Research Institute
of Exploration and Development of North China Petroleum
Bureau of Sinopec.

First, 9 typical sandy braided rivers were measured in
planimetry using Google Earth software, and 10 sets of pla-
nimetric data were measured separately for each braided
river, including the channel bars’ lengths and widths, the
braided channels’ widths, and the braided rivers’ widths.
Second, 13 sets of profile data were measured for the target
layer H1 using the digital outcrop dissection of Fugu
Tianshenggiao, including the channel bars’ and braided chan-
nels’ widths and thicknesses. Finally, the results of 28 tank
simulation experiments conducted at the Key Laboratory of
Tank Simulation at Yangtze University enabled the counting
of 84 groups of stable channel bar length and width data and
82 groups of detectable braided channel width data on a
plane. From the 28 tank simulation experiments, 86 sets of
channel bar width and thickness data and 91 sets of braided
channel width and thickness data were statistically recorded
in 12 tangential source profiles at various positions from
the source.

Tank simulation experiments were completed in the
Key Laboratory of Tank Simulation at Yangtze University.
The research object is the sandy braided river deposits
developed in the Daniudi gas field, Ordos Basin. The
experimental site is 10m long, 2.2m wide, and 2m deep.
It primarily comprises a testbed, sediment screening
equipment, constant speed water supply, sand supply
equipment, a 3D laser scanner, and video recording equip-
ment. Considering the depositional law of a braided river
reservoir, experimental purposes, and measured data from
the mainstream of the Yellow River’s Huayuankou section
with comparable depositional dynamics, it is demonstrated
that the depositional slope of the braided river is
0.0267m/10m, the median grain size of the sediment is
0.2mm, and the average velocity is 0.4-0.8m/s. The pri-
mary tank simulation parameters were determined using
the hydrological data from the Yellow River’s Huayuankou

section. The slope was 0.1 m/10m, and the median grain
size of the sediment was 0.3mm (the sand composition
comprised green and yellow sand in a 3:1 ratio). The
average velocity was 0.25m/s.

The geological knowledge database-based braided river
modeling proposed in this paper is based on a combina-
tion of similar modern sedimentation, field outcrop
profiles, and tank simulation experiments to analyze the
quantitative relationship between the microfacies of
braided channels and channel bars in planes and profiles.
Furthermore, the different microfacies thicknesses were
divided in the wells in the study area. Establishing a
quantitative geological knowledge database of the braided
river reservoir’s microfacies was guided and applied to a
3D geological model of the HI member to identify simu-
lation parameters. The 3D training images were simulated
using the object-based method, and a sedimentary facies
model was built using the multiple-point geostatistical
modeling method. The study area is divided into 25 x
25m grids in the plane and 0.5m grids vertically, totaling
89,478,400 grids.

4. Results

4.1. Similar Modern Depositional Statistics. Google Earth
software was used to screen nine typical modern sandy
braided rivers with similar depositional backgrounds to
the study area, including the Ningxia part of the Yellow,
Lena, and Jamuna Rivers (Figure 3), and 10 sets of chan-
nel bar length and width and braided channel width data
were measured for each river (Table 1). According to the
statistics, the widths of sandy braided river channel bars
are below 1500m, with 16.67% exceeding 1500m, and
the average width is approximately 675m (Figure 4(a)).
The channel bar lengths are primarily less than 4000 m,
with 18.89% over 4000m, and the average length is
approximately 1965m (Figure 4(b)). The active braided
channel widths are typically less than 300m, with 20%
surpassing 300m, and the average width is approximately
195m (Figure 4(c)).
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FIGURE 6: Identification of braided river architecture based on the digital outcrop model. (a) Tianshenggiao outcrop, Fugu county, Ordos
Basin; (b) typical lithofacies types of braided river deposits in the H1 member; (c—f) braided river scale measurement; (g)-(j) channel bar
scale measurement.

Linear regression analysis was conducted for 90 parame-  of the channel bar (w,,) was established for modern sandy
ter sets, including channel bar length and width and channel ~ braided rivers.
bars and braided channel widths, to analyze the scale of the
sand body parameters quantitatively, and the results were

positively and well correlated (Figure 5). The relationship L, = 3.3861wg'19745,
between the length of the channel bar (I,;) and its width 0701 (1)
(wy, ), the width of the braided channel (w), and the width Wy = 1.0516wp; ™,
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TaBLE 2: Statistics of digital field outcrop channel bar and braided channel scale parameters.

Microfacies  Real measurement Estimate real ~ Thickness Microfacies tvpes Real measurement Estimate real ~ Thickness
types width (m) width (m) (m) typ width (m) width (m) (m)
Channel 55.29 138.225 9.38 Small braided bar 56.82 113.64 5.47
Channel 133.9 200.85 8.85 Small braided bar 115.02 287.55 6.63
Channel 39.7 39.7 4.56 Small braided bar 33.78 33.78 8.75
Channel 61.71 123.42 6.49 Small braided bar 32.7 32.7 4.31
Channel 45.42 45.42 5.48 Small braided bar 161.01 161.01 11.37
Channel 42.73 128.19 11.11  Large braided bar 127.66 319.15 5.63
Channel 85.01 85.01 12.04  Large braided bar 256.41 897.435 14.11
Channel 55.3 55.3 4.92 Large braided bar 194.61 681.135 11.89
Channel 85.6 85.6 4.56 Large braided bar 325.53 976.59 17.95
Channel 44.69 44.69 6.65 Large braided bar 304.24 608.48 8.18
Channel 63.5 63.5 12.17  Large braided bar 181.21 724.84 16.65
Channel 55.04 55.04 6.05 Large braided bar 418.69 837.38 10.98
Channel 31 31 3.8 Large braided bar 137.06 548.24 20.66
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FIGURE 7: Probability distribution of different parameters based on the digital field outcrop. (a) Thickness of the channel bar; (b) thickness of
the braided channel.
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F1GURE 8: Correlation between different parameters of digital field outcrops. (a) The length of the channel bar and its width; (b) the width of
the braided channel and channel bar.

bDownloaded from http://pubs.geoscienceworld.org/gsallithosphere/article-pdf/doi/10.2113/2022/6913641/5718428/6913641.pdf
v quest



10

Elevation (m)

Elevation (m)

Lithosphere

Runtime: 18 Runtime: 18 Runtime: 28 0 440 mm

Processing Processing —

6 98.32
4 98.3
1, - 98.28
2 S g
E X E %
° s} S
g 1o § "g - 98.26 =
S g 8 5
N
> 2 - =
+ -2 - 98.24
-4 98.22
-6 98.2
-25 -2 -15 -1 -05
X-coordinate X-coordinate
(b) ()
Cross section 7 0 1000 mm
L 1
98.26 Braided bar aggradation e
98.25 /
98.24
98.23
98.22
98.21
98.2
0 0.5 1 1.5 2
Width of sink (m)
(d)
Cross section 1
98.26 Channel migration
98.25 - L et
98.24 \
98.23
98.22
98.21
0 0.5 1 1.5 2
Width of sink (m)

(e)

FiGure 9: Identification of braided river architecture based on tank simulation experiments. (a) Tank simulation experiments in phase 18;
(b) the 18™ detrending to emphasize the shape and spreading features of the braided river, (c) the 28" detrending to emphasize the shape
and spreading features of the braided river and profile locations, (d) experimental profile C7 of phase 28, (e) experimental profile C1 of
phase 28. Wbb: width of braided bar; Lbb: length of braided bar; Wbc: width of braided channel; C12: cross section 12; C11: cross
section 11; C10: cross section 10; C9: cross section 9; C8: cross section 8; C7: cross section 7; C6: cross section 6; C5: cross section 5; C4:
cross section 4; C3: cross section 3; C2: cross section 2; C1: cross section 1.
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TABLE 4: Statistics of tank simulation experiment channel bar and braided channel profile scale parameters (the location of the profile can be
seen in Figure 9(c)).

(a)

Width of Thickness Width of Thickness Width of Thickness Width of Thickness
Section  braided of braided Section braided of braided Section braided of braided Section braided of braided
position channel =~ channel position channel  channel position channel  channel position channel  channel

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)
C1 32.68 10.42 C3 43.82 10.64 Cé6 26.32 4.02 C9 17.63 6.91
C1 8.55 4.64 C3 36.54 10.16 Cé6 28.65 7.81 C9 23.68 7.73
Cl 22.72 10.8 C4 18.03 17.78 Cé6 24.67 3.92 C9 13.89 8.16
Cl 26.94 11.29 C4 18.17 5.25 Cé6 44.57 20.01 (] 20 10.85
Cl 1291 8.94 C4 13.08 3.94 Cé6 32.64 8.74 C9 25.06 8.78
Cl 23.04 10.75 C4 22.6 10.69 C6 25.62 8.15 C9 12.12 7.66
C1 23.07 13.13 C4 25.67 13.34 Cé6 17.73 11.06 C9 25.84 10.64
Cl1 8.75 7.2 C4 52.3 11.54 C7 29.32 8.26 C9 38.55 18.13
Cl 14.04 10.01 C4 22.21 6.04 Cc7 13.65 5.96 C10 40.56 7.81
Cl 15.75 8.31 C4 27.8 10.11 Cc7 38.52 8.31 C10 9.13 3.29
C2 30.85 13.44 C5 8.11 3.47 Cc7 19.16 5.63 C10 24.66 5.87
C2 19.62 15.46 C5 7.82 3.02 C7 28.47 7.15 C10 25.6 6.69
C2 27.63 13.42 C5 9.82 3.97 C7 17.63 7.67 C10 17.28 6.99
C2 12.72 6.4 C5 19.91 8.48 C7 29.32 11.54 C10 10.14 4.56
C2 20.7 5.72 C5 22.82 7.47 C7 11.29 5.98 Cl11 12.81 6.49
C2 17.42 10.26 C5 31.72 17.38 C7 25.75 4.77 Cl1 13.31 5.51
C2 43.01 14.91 C5 19.26 7.67 C8 19.88 10.69 Cl1 13.45 3.81
C2 26.59 13.61 C5 23.19 10.49 C8 18.81 7.36 Cl1 49.43 10.54
C2 12.14 8.9 C5 19.27 4.52 C8 26.2 9.16 Cl1 17.45 5
C3 22.56 13.87 C5 22.76 8.08 C8 3141 7.14 C12 9.63 7.14
C3 22 5.79 Cé6 17.36 3.56 C8 39.03 16.3 C12 17.61 11.59
C3 24.55 5.95 Cé6 35.03 7.76 C8 22.86 16.35 C12 14.6 3.86
C3 13.82 10.64 Cé6 20.01 6.51 C9 28.58 10.9
(b)

Section Width of Thickness Section Width of Thickness Section Width of Thickness Section Width of Thickness

.\ channel  of channel . channel  of channel . channel  of channel .. channel  of channel
position bar (mm) bar (mm) position bar (mm) bar (mm) position bar (mm) bar (mm) position bar (mm) bar (mm)
Cl 17.03 3.68 C3 47.18 4.95 Cé6 23.68 6.46 C9 22.39 4.98
Cl 37.47 11.11 C4 61.55 10.22 Cé6 25.24 5.09 C10 48.51 3.97
C1 51.35 6.09 C4 46.75 9.26 Cé6 31.67 4.6 C10 3491 8.79
C1 26.35 6.89 C4 17.81 2.21 Cé6 125.8 11.85 C10 58.83 7.31
C1 21.88 8.41 C4 44.27 5.93 Cé6 38.96 1.85 C10 29.62 4.02
Cl 38.82 6.67 C4 70.91 5.14 C7 116.33 9.21 C10 15.93 6.36
Cl 40.2 6.41 C4 32.57 7.44 Cc7 25.3 5.93 C10 19.78 3.3
C1 23.78 8.1 C4 41.17 6.54 Cc7 29.51 6.78 Cl1 21.57 4.66
C1 27.89 6.25 C4 65.83 2.12 C7 121.32 13.23 Cl1 34.39 5.9
C2 22.17 5.82 C5 14.31 4.52 C8 81.51 7.83 Cl1 61.48 7.52
C2 29.9 9.44 C5 82.77 4.5 C8 41.28 32 Cl1 56.14 4.55
C2 49.8 10.64 C5 50.59 6.83 C8 25.43 3.25 Cl11 38.27 6.46
C2 60.61 11.28 C5 45.03 2.37 C8 22.66 3.94 Cl1 32.58 3.83
C2 37.29 8.89 C5 25 4.02 C8 37.73 7.14 Cl1 26.22 2.7
C2 359 7.92 C5 14.71 2.98 C8 23.83 4.74 Cl1 32.13 5.35
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TaBLE 4: Continued.

Width of Thickness Width of Thickness

Width of Thickness Width of Thickness

Sf)cstilt(i):n channel  of channel Sszittli(;r; channel  of channel Sc(:;ittli(;i channel  of channel Sszittli(())rrll channel  of channel
P bar (mm) bar (mm) P bar (mm) bar (mm) P bar (mm) bar (mm) p bar (mm) bar (mm)
C2 33.68 5.82 C5 29.32 3.65 C8 26.32 4.34 Cl1 17.81 3.81
C2 30.27 5.19 C5 20.97 4.1 C8 33.23 6.51 C12 68.16 6.78
C3 56.26 6.06 C5 70.59 7.31 C9 65.55 6.09 Cl12 81.44 8.26
C3 45.79 12.22 C5 20.15 2.33 C9 70.07 8.26 Cl12 36.14 6.02
C3 65.23 11.86 C6 9.67 2.37 C9 29.58 8.44 Cl12 53.9 8.47
C3 71.15 12.81 C6 14.21 2.78 C9 20.67 4.4 C12 44 4.66
C3 31.2 5.08 Cé6 74.63 9.31
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FIGURE 10: Probability distribution of different parameters based on the tank simulation experiments. (a) Width of the channel bar, (b)
length of the braided channel, (c) width of the braided channel, (d) thickness of the channel bar, and (e) thickness of the braided channel.

where [ is the length of modern sedimentary channel bars
(m), wy, is the width of modern sedimentary channel bars
(m), and w,, is the width of modern sedimentary braided
channels (m).

4.2. Digital Outcrop Statistics. Field outcrop profiling is the
primary technical method for obtaining geometric shapes
and scale data of braided channels and channel bars
[36]. Even though outcrops are restricted and cannot pro-
vide a complete characterization of sedimentary structures
(e.g., braided river width), they include a wealth of infor-
mation on the architectural elements of braided river res-
ervoirs [37]. The Fugu Tianshengqiao outcrop has the
same target formation, depositional environment, and res-
ervoir characteristics as the Daniudi gas field in this sub-

surface research region. The outcrop sections evolve from
the bottom up in the Ordovician Majiagou, Carboniferous
Benxi, Taiyuan, Permian Shanxi, and Lower Shihezi For-
mations [33]. The average elevation of the surface is
813 m, the height of the outcrop is 30-100m, the primary
body of the outcrop is trending northeast-southwest, the
stratigraphic tendency is 280°, the dip angle is 4°-10°,
and the sand body is visible in different directions, conve-
nient for sand body lateral tracing and comparison and
fine internal dissection.

The Fugu Tianshengqiao architecture’s anatomy is
based on the digital outcrop model (Figure 6(a)), microfa-
cies division (Figure 6(b)), and precise measurement of
the channel bar and braided channel sands on the profile
(Figures 6(c)-6(j)). For the target layer H1, 13 sets of
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F1GURE 11: Correlation between different parameters of tank simulation experiments. (a) The length of the channel bar and its width, (b) the
width of the braided channel and channel bar, (c) the thickness of the channel bar and its width, and (d) the thickness of the braided channel

and its width.

channel bar width and thickness and braided channel width
and thickness data (Table 2) were measured individually
(the scale of the incomplete sand body was estimated for
the outcrop). According to the outcrop data statistics, single
minor channel bars are 30-300m wide, whereas major
composite channel bars are 300-1000 m wide and 6-21m
thick, with an average thickness of approximately 11m,
and only 7.69% of channel bars are more than 18 m thick
(Figure 7(a)). The braided channels were 30-200m wide
and 4-14m thick, with an average thickness of approxi-
mately 7.5m, and only 15.38% of the braided channels were
deeper than 12m (Figure 7(b)).

Linear regression analysis was performed on 13 parame-
ters, including channel bar widths and thicknesses and
braided channel widths and thicknesses. The results were
positively correlated, although the correlation was poor
(Figure 8) because some strata are incompletely exposed
or extensively denuded (Figures 6(a) and 6(e)). The scale
and quantitative relationship between channel bars and
braided channel profiles have been established using digi-
tized outcrop modeling. The following shows the correla-
tion between the channel bar thickness (t;,,) and its
width (w,,) (Figure 8(a)) and the thickness of the braided

channel (t,) and its width (w,,) (Figure 8(b)) in the field
outcrop.

t, = 2.0128wp;”,
(2)

t, = 1.0847w%PY,

where f,, is the thickness of the field outcrop channel bar
(m), wy, is the width of the field outcrop channel bar (m),
t,is the thickness of the field outcrop braided channel (m),
and w,, is the width of the field outcrop braided channel (m).

4.3. Sink Simulation Experiments Statistics. Tank simulation
experiments provide various reservoir sand models of vary-
ing depositional types [38-40]. These models resemble out-
crops, modern sediments, and subsurface sediment bodies.
The primary benefits include simple measurements (you
can slice and sample at will), detailed records of depositional
processes, and clear genesis mechanisms [41]. It is signifi-
cant for sedimentology research and determining the reser-
voir’s macroscopic distribution pattern parameters. We
simulate the deposition of a braided river in the Lower
Shihezi Formation of the Daniudi gas field with the same
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FIGURE 12: Lithology and facies interpretation based on core and logging curve data of well D.

parameters of sediment grain size, hydrodynamic condi-
tions, and slope drop as the reservoir in the research
area and a comparable depositional environment based
on the principle of the present being a key to the past.
The results of the tank simulation experiments in phase
18 (Figure 9(a)) were detrended to emphasize the shape
and spreading features of the braided channel and the
channel bar (Figure 9(b)) by integrating the 28-phase tank
simulation process. As the experiments increased, the chan-
nel bar gradually changed from a long elliptical shape with
a single style to a wide-short elliptical composite channel
bar with a complex internal structure (Figures 9(b) and
9(c)). The parameters of a stable channel bar and braided
channel in the experiments simulated after phase 11 were

measured (Figure 9(b)), and 84 channel bar length and
width data and 82 channel bar to braided channel width
ratio data were statistically recorded on the plane
(Table 3). Figure 9(d) shows the vertical accretion process
of the composite channel bar, and Figure 9(e) shows the
migration process of the braided channel. In total, 86 sets
of channel bar width—-thickness ratio data and 91 sets of
braided channel width-thickness ratio data were statisti-
cally recorded (Table 4). In the profile, data on the compos-
ite channel bar and braided channel width-thickness were
collected in phase 28 at 12 cut source locations.
According to the statistics of the tank simulation exper-
imental planes and profiles, the stable channel bar’s width is
between 20 and 60 mm, with an average width of 32 mm,
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FiGure 13: Quantitative relationships between modern sedimentation, field outcrops, and tank simulation experimental parameters. (a) The
channel bar’s length and width with modern sedimentation and tank simulation experiments on planes, (b) the width of the braided channel
and channel bar with modern sedimentation and tank simulation experiments on planes, (c) the channel bar’s thickness and width with field
outcrops and tank simulation experiments on profiles, and (d) the braided channel’s thickness and width with field outcrops and tank

simulation experiments on profiles.

and only 17.86% is wider than 40 mm (Figure 10(a)). The
channel bar’s length was between 60 and 220 mm, with an
average length of 107 mm, and only 15.48% were greater
than 140 mm (Figure 10(b)). The active braided channel’s
width was 2-9 mm, with an average braided channel width
of 46mm, and only 9.76% were wider than 7mm
(Figure 10(c)). The channel bar thickness was 2-14 mm,
with an average of 6.3mm, and only 10.47% exceeded
7mm (Figure 10(d)). The active braided channel thickness
was 4-20 mm, with an average braided channel thickness
of 88mm, and only 15.38% were more than 12mm
(Figure 10(e)).

Linear regression analyses of stable channel bar lengths
and widths, channel bar widths and thicknesses, channel
bar widths and braided channel widths, and braided channel
widths and thicknesses were performed. However, the corre-
lation results were poor. Based on the tank simulation exper-
iments, the scale and quantification of the relationship
between the channel bar and the braided channel in planes
and profiles were established. Furthermore, the relationships
between the length of the channel bars [,; and its width w);

(Figure 11(a)), the width of the braided channel w, the
width of the channel bar w,; (Figure 11(b)), the thickness
of the channel bar f,; and its width w,; (Figure 11(c)), and
the thickness of the braided channel t4 and its width w
(Figure 11(d)) were obtained.

0.7736

5 = 0.8441w);7*°,

0.4182

wg =1.035%w;; ™,
0.4653

tbS = 10666wb3 >

t = 1.4247wW% %8,

Here, [,; is the length of the tank simulation experi-
ment’s channel bar (m), w,; is the width of the tank simula-
tion experiment’s channel bar (m), w is the width of the
tank simulation experiment’s braided channel (m), t,; is
the thickness of the tank simulation experiment’s channel
bar (m), and ¢, is the thickness of the tank simulation
experiment’s braided channel (m).
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TaBLE 5: Quantitative knowledge database of the braided river in the Lower Shihezi Formation of the Daniudi gas field.
Braided channel Channel bar
Member Single minor channel bar Major composite channel bar
Thickness (m)  Width (m)  Thickness (m) Width (m) Length (m) Thickness (m) Width (m) Length (m)
H1 1-22 7-320 3-9 80-330 240-1000 9-30 330-1500 1000-4200
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FIGURE 14: 3D training images of braided river reservoirs in the Daniudi gas field based on a quantitative geological knowledge database.

4.4. Microfacies Classified Based on Well Data. The primary
development member of the Daniudi gas field, H1, is a sandy
braided river system with box-shaped and bell-shaped
gamma-ray (GR) logging curves produced in the primary
part of the braided river (Figure 12). The bell-shaped GR
log curve, with the bottom in abrupt contact with the under-
lying strata, relates to bottom scouring, and the top is in
gradual contact with mudstone, reflecting progressively
weakening hydrodynamic characteristics, and its corre-
sponding sedimentary microfacies is a braided channel.
The top and bottom of the smooth box-shaped GR log curve
abruptly contact the mudstone, reflecting strong and stable
hydrodynamic characteristics of sufficient material sources.
The jagged box-shaped GR log curve reflects strong but
unstable hydrodynamic conditions, with frequent alterna-
tions of strength and weakness, and its corresponding sedi-
mentary microfacies is a channel bar. The channel bar’s
thickness is 3-30 m, and the thickness of the braided channel

is 1-22m, according to the measurement statistics of the
underground core well data of the Daniudi gas field.

4.5. Quantitative Knowledge Database of a Sandy Braided
River Reservoir in Daniudi. Popular methods in reservoir
geological knowledge database investigations include mod-
ern sedimentation, outcrop anatomy, and dense well net-
work dissection. A comparison of empirical formulas for
modern sedimentation, outcrop anatomy, and tank simula-
tion data reveals that planimetric data based on modern sed-
imentation has the best correlation; however, measurement
statistics have poor correlations due to the outcrops on the
exposed surface affected by denudation, tank simulation
experimental sites, and other factors. Therefore, the results
of modern sedimentation, outcrop surveys, and tank simula-
tion experiments are corroborated to establish a geological
knowledge database for reservoir parameter prediction. All
measurements were combined, and correlations between
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FIGURE 15: Multiple-point geostatistical model based on subsurface well data in Daniudi and training images using the database.

modern sedimentation and tank simulation experiments on
planes (Figures 13(a) and 13(b)) and field outcrops and tank
simulation experiments on profiles (Figures 13(c) and 13(d))
were fitted, respectively.

The measured data from the tank simulation experi-
ments on planes and profiles are compared to planimetric
data from modern sedimentation measurements and profile
data from field outcrop observations. When relating the tank
simulation experiments to modern deposition data on a
plane, the quantitative relationship between the channel bar
length and width is , = 3.2083w,*?** (9), with correlation
R? =0.9432—the results are highly correlated (Figure 13(a)).
The quantitative relationship between the braided channel
and channel bar width is w, = 0.1931w} " (10), with a corre-
lation of R*=0.8458, which correlated well (Figure 13(b)).
When relating the tank simulation experiments to field
outcrop anatomical data on the profile, the quantitative rela-
tionship between channel bar thickness and width is t, =
0.0839w)-¥%%* (11), showing a good correlation of R*=
0.8407 (Figure 13(c)). The quantitative relationship between
river thickness and width is . = 0.1938w?3%! (12), a decent
correlation of R? = 0.8279 (Figure 13(d)). The correlations of
all four data sets increased, indicating that the quantitative
relationships obtained after integrating the data from modern
sedimentation, field outcrop, and tank simulation experiments

are real and reliable and can guide establishing a quantitative
knowledge database of sandy braided river reservoirs in the
Daniudi gas field.

Based on the anatomical understanding of the reservoir
sand thickness in the Daniudi gas field, Ordos Basin
(Figure 12), combined with a similar modern deposition of
the braided river, field outcrop, and tank simulation experi-
ments, a quantitative equation of parameters was fitted
(Figure 13). Each sedimentary microfacies unit’s scale of
parameters in the study area, such as thickness, width, and
length, was determined, and the quantitative geological
knowledge database of the sandy braided river in the Lower
Shihezi Formation of the Daniudi gas field was established
(Table 5). The braided channel has a thickness of 1-22m
and a width of 7-320 m. The single minor channel bar has
a thickness of 3-9m, a width of 80-330m, and a length of
240-1000m, and the major composite channel bar has a
thickness of 9-30m, a width of 330-1500m, and a length
of 1000-4200 m.

5. MPS Simulation Using Training Images from
Geological Knowledge Database

5.1. Training Image Generation. The multiple-point algo-
rithm can realistically depict the morphology of complex
geological bodies while remaining faithful to the original
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data [42]. The training image is used instead of the tradi-
tional variation function to express the correlation between
multiple points in space when using the multiple-point geos-
tatistical modeling method for simulation. The training
images can show the real reservoir structure, geometry, con-
tact relationships, distribution patterns, and geological
knowledge database information in 3D space and reproduce
geologists’ geological understanding of the research area.
Creating training images includes hand-drawn, object-
based simulation; 3D seismic information extraction or
transformation; prototype-based models; process-based
simulations; and 2D image methods [43]. However, the
reliability of the training images limits the accuracy of
the simulation results, with the primary issue being a scar-
city of 3D training images appropriate for the research
area.

A realistic and credible 3D training image is constructed
using a quantitative approach that integrates modern sedi-
mentation, outcrop profile, and tank simulation experimen-
tal database simulations with drilling data and using the
object-based method (Figure 14). According to the statistics
of subsurface well data from the Daniudi gas field, the train-
ing images include the floodplain (19.02%), the braided
channel (36.15%), and the channel bar (44.83%). The gener-
ated training images can realistically reproduce a 3D mor-
phology of the reservoir by describing the morphology of
the sand body, such as its length, width, thickness, and quan-
titative correlations. 3D training images show the migrating
superposition variants of braided channels and channel bars
in the plane and longitudinal directions.

5.2. MPS Realization. The established geological model can
only be close enough to the real characteristics of subsurface
sedimentary bodies by applying the quantitative geological
knowledge database of braided rivers established in the
previous stage to a 3D geological modeling of the Lower
Shihezi Formation in the Daniudi gas field. Through the cre-
ation of 3D training images, the multiple-point geostatistical
modeling method defines the model’s reservoir distribution
and sand body structure and achieves results that character-
ize the actual geometry and quantitative relationships of the
subsurface sediment bodies (Figure 15). The results of the
model simulated using multiple-point geostatistical method
are compared with the hard data in the well, and the well
conditioning can reach 100%.

6. Conclusions

(1) The frequency and distribution intervals of various
sedimentary microfacies parameters of a braided
river reservoir were analyzed using modern statisti-
cal sedimentation, field outcrop, and tank simulation
experiments. By fitting the relationship between the
parameters, the length and width of the channel
bar, the width of the braided channel and channel
bar, the thickness and width of the channel bar, and
the thickness and width of the braided channel posi-
tively correlated to exponential power relationships

19

(2) A quantitative knowledge database of braided river
sedimentary microfacies applicable to the Lower
Shihezi Formation of the Daniudi gas field was
established, with single-phase braided channel thick-
nesses of 1-22m, widths of 7-320m, and channel
bar thicknesses of 3-30m, widths of 80-1500m,
and lengths of 240-4200 m

(3) For the Daniudi gas field, a 3D geological modeling
method is proposed that is compatible with the advan-
tages of object-based and multiple-point methods.
The established 3D training images characterize the
depositional features of the braided river reservoir
and the results of geological knowledge database
research, allowing the final geological model results
to characterize the real geometry and quantitative rela-
tionships of subsurface sedimentary bodies
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