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Although pegmatites are volumetrically minor in the upper continental crust, these rocks host abundant rare metal deposits (e.g.,
Li, Be, Rb, Ta, and Nb). Pegmatites can be formed either by extensive fractional crystallization of granitic magmas or by low-
degree partial melting of metasedimentary rocks. The Mao’ershan–Yuechengling composite batholith in the Nanling Range in
the South China Block (SCB) is of early Paleozoic–Triassic age (440–381 and 236–204Ma, respectively). Recently, hundreds of
pegmatites associated with Nb, Ta, Be, Rb, and Li mineralization have been identified in this batholith. These pegmatites are
hosted by granitic wall rocks. However, the relationships between the pegmatites and granitic wall rocks are not well
constrained. To address this, we investigated the Mao’antang (MAT) and Tongzuo (TZ) pegmatites and their biotite granite
wall rocks in the middle part of the Yuechengling pluton. Laser ablation inductively coupled plasma mass spectrometry zircon
U–Pb ages revealed that the MAT pegmatites formed during the Permian (269Ma) and Triassic (231Ma) and that the MAT
biotite granite wall rock records two stages of magmatic activity (271 and 231Ma) that are coeval with the pegmatites. The TZ
pegmatites probably formed during the Triassic (235Ma), and the TZ biotite granite wall rock formed during the Silurian
(435Ma). The MAT biotite granite and pegmatites (εNdðtÞ = −12:0 to −10.6; εHf ðtÞ = −8:0 to −1.0), TZ pegmatites
(εNdðtÞ = −10:4 to −6.1), and TZ biotite granites (εNdðtÞ = −9:1 to −8.7; εHf ðtÞ = −7:7 to −4.1) have enriched whole-rock Nd
and zircon Hf isotopic compositions that are similar to those of early Paleozoic and Triassic S-type granites in the SCB. In
addition, the whole-rock Pb isotopic compositions of the MAT and TZ pegmatites and granites are distributed along the upper
crust evolution line. We suggest that the MAT and TZ biotite granites were mainly derived from Paleoproterozoic
metasedimentary rocks in the middle crust. The MAT pegmatites are fractional crystallization products of the MAT biotite
granites, whereas the TZ pegmatites were formed by fractional crystallization of hidden parental S-type granites. We propose
that the MAT and TZ pegmatites have potential for rare metal (Nb, Ta, Be, and Li) mineralization, as they record high degrees
of fractional crystallization. The MAT and TZ areas in the middle of the Yuechengling pluton are promising targets for rare
metal exploration.

1. Introduction

Strategic resources and critical materials are of significance
to science, technology, and the economy and have the great-
est risk of supply disruptions. These materials include Li, Be,

Ta, Nb, and rare earth elements [1, 2]. Pegmatites are an
important source of rare metal elements (Li, Be, Ta, and
Nb), and they are texturally complex igneous rocks marked
by some combination of coarse and variable crystal sizes,
mineralogical zonation, prominent anisotropy of crystal
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orientations from their margins inward, and crystals with
skeletal, radial, and graphic-intergrowth habits [3]. Pegma-
tites commonly have a granitic composition with high con-
tents of fluxing components such as H2O, F, B, P, and
alkalis, and they are therefore generally considered to repre-
sent the final products of extreme differentiation of an evolv-
ing granite system (e.g., [3]). However, in the field, there are
occasions when no granite plutons occur near pegmatites, as
observed for the Qinghe pegmatites in the Altai Orogen
(NW China; [4]). An alternative model suggests that pegma-
tites may be formed as result of thrusting-enhanced low
degrees of melting of metapelitic rocks at relatively low tem-
peratures (amphibolite-facies conditions in the middle crust)
during compressional deformation in an orogenic belt [4–6].
Studies of the petrogenesis of rare metal pegmatites and gra-
nitic wall rocks have economic significance, as the results serve
as a guide during prospecting for rare metal ore deposits [7].

The Nanling Range covers six provinces (Guizhou,
Guangxi, Hunan, Guangdong, Jiangxi, and Fujian) in the
southern part of South China, and it is endowed with vari-
ous W, Sn, Bi, and Sb deposits [8]. Recent geological surveys
in the western Nanling Range have identified several hun-
dred pegmatites in the Mao’ershan–Yuechengling composite
batholith. These pegmatites are associated with Nb, Ta, Be,
Li, and Rb mineralization [9]. However, the ages of these
pegmatites have not been well constrained, and the genetic
relationships between the pegmatites and their granitic wall
rocks remain unclear. In this paper, we present the results
of a detailed petrographic, geochronological, and geochemi-
cal study (including whole-rock Sr–Nd–Pb and zircon Hf
isotopic data) of the Mao’antang (MAT) and Tongzuo
(TZ) pegmatites and their biotite granite wall rocks in the
middle part of the Yuechengling pluton. Our results enable
us to constrain the petrogenesis of the pegmatites and biotite
granites and to provide important insights into the relation-
ships between magma generation and rare metal mineraliza-
tion in the Nanling Range.

2. Geological Setting and Sample Descriptions

The South China Block (SCB) comprises the Yangtze Block
to the northwest and the Cathaysia Block to the southeast
(Figure 1(a)), which were amalgamated during a Neoproter-
ozoic continent–continent collisional orogeny (i.e., the
Jiangnan Orogen; [10] and references therein). The base-
ment of the Cathaysia Block consists of Paleoproterozoic–
Mesoproterozoic–Neoproterozoic metasedimentary rocks
that include two-mica schists, mica–quartz schists, and bio-
tite–plagioclase granulites and metaigneous rocks (amphibo-
lites; [11–13]). The basement of the eastern Yangtze Block is
the Mesoproterozoic Lengjiaxi Group, which consists of
greenschist- to amphibolite-facies meta-tholeiitic basalts
and basaltic andesites with subordinate pelites [14]. The
metamorphic basement of the SCB was overlain by late Neo-
proterozoic to early Paleozoic Nanhua rift sediments [15].
An early Paleozoic intracontinental orogeny closed the Nan-
hua rift, resulting in deformation and metamorphism of the
pre-Devonian rocks [16]. In response to the early Paleozoic
intracontinental orogeny, large amounts of granites and

minor mafic rocks were formed in the Wuyi, Yunkai,
Wugong, and Baiyun domains ([10, 16, 17]; Figure 1(b)).
During the Middle or Late Devonian to Permian, the SCB
evolved into a stable littoral–neritic depositional environ-
ment where Brachiopoda-, coral-, and fusulina-bearing car-
bonates (limestones and dolomites), black cherts, and
minor sandstones and mudstones accumulated ([15] and
references therein). During the Middle–Late Triassic, a series
of thrust and strike-slip faults, ductile shear zones, and wide-
spread granites developed in the SCB ([18] and references
therein). Some previous studies have suggested that the Tri-
assic orogeny resulted from the collision between the Indo-
china Block and SCB [18–21]. Other studies have proposed
that the Triassic orogeny and associated magmatism were
related to flat slab subduction of the Paleo-Pacific Plate
[22]. Moreover, Mao et al. [23] suggested that the Triassic
orogeny and associated magmatism might have been caused
by the collision between the Southeast Asian continental
margin and Paleo-Pacific Plate. The tectonic setting of the
SCB changed gradually from one of compression to one of
extension during the late Mesozoic [21]. In the Jurassic
and Cretaceous, the SCB was characterized by magmatic
flare-ups, and 80% of the SCB igneous rocks (which have a
total exposed area of >200,000 km2) were formed during this
period [21, 24].

The Mao’ershan–Yuechengling granitic batholith lies
near the Anhua–Luocheng Fault (Figure 1(b)). It extends
northeast from north Guangxi Province to southern
Hunan Province and has an outcrop area of ~3400 km2

(Figures 1(b) and 2). Most of the Mao’ershan–Yuechengling
granites were formed during the early Paleozoic at 440–
381Ma [28–30]. These early Paleozoic granitic rocks were
emplaced into the core of the Mao’ershan–Yuechengling
anticlinorium, which is made up of Neoproterozoic–Silurian
slates, pelitic schists, felsic volcaniclastics, metasandstones,
and marbles. In some outcrops, the Mao’ershan–Yuechen-
gling granites are overlain by Middle Devonian sedimentary
rocks ([30] and references therein). The early Paleozoic
Mao’ershan–Yuechengling granites were intruded by youn-
ger Triassic granites with ages of 236–204Ma ([31, 32] and
references therein). The Mao’ershan–Yuechengling batholith
is divided into the Mao’ershan and Yuechengling plutons by
the Xinzi Fault. On the surface, the outcrops of these two plu-
tons are separated by Devonian–Cretaceous sedimentary
rocks, but at depth, they are connected ([29] and references
therein).

The Mao’antang (MAT) and Tongzuo (TZ) pegmatites
and their granitic wall rocks are located in the northeastern
part of Ziyuan County in the middle of the Yuechengling
pluton (Figure 2). The MAT pegmatites are gray in color
and typically have massive structures and inequigranular
textures. They consist of quartz (40–45 vol.%), K-feldspar
(5–10 vol.%), albite (35–40 vol.%), tourmaline (<3 vol.%),
and zinnwaldite (<3 vol.%) with minor garnet, muscovite,
biotite, allanite, and monazite (Figures 3(a)–3(d)). The
MAT pegmatites are mainly muscovite pegmatites, with sub-
ordinate biotite and two-mica pegmatites, which generally
occur in fractures and cavities in the biotite granite wall rocks
(Figure 3(a); Supplementary Figures 1a–1b). In addition, the
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MAT pegmatites are related to Nb, Ta, Be, and Li
mineralization. They contain Nb–Ta–Be–Li oxide minerals,
such as columbite-group minerals, microlite, wodginite,
beryl, and spodumene ([9] and references therein). From the
outer to inner zones of the MAT pegmatites, the microcline
and muscovite contents decrease, whereas the albite contents
increase. As such, the Nb, Ta, and Be contents are gradually
enriched from the northwest (outer zone) to southeast (inner
zone) ([9] and references therein). The wall rocks of the
MAT pegmatites are massive biotite granites that consist of
quartz, K-feldspar, albite, biotite, and minor muscovite
(Figure 3(a); Supplementary Figures 1a–1b).

The TZ pegmatites are gray in color and typically have
massive structures and inequigranular–porphyritic tex-
tures. They consist of quartz (30–35 vol.%), K-feldspar
(25–30 vol.%), albite (15–20 vol.%), garnet (5–10 vol.%),
and muscovite (5 vol.%) with minor monazite and chlorite

(Figures 3(f)–3(h)). From the outer to inner zones, the TZ
pegmatites change gradually from coarse-grained albite
pegmatite to medium-grained graphic albite pegmatite,
medium–fine-grained albite pegmatite, and quartz peg-
matite (Figure 3(f); Supplementary Figures 1c–1d). The
TZ pegmatites are also related to Nb, Ta, and Be
mineralization and contain columbite-group minerals,
microlite, wodginite, and beryl ([9] and references therein).
The wall rocks of the Tongzuo pegmatites are gneissic
biotite granites composed of quartz, plagioclase, biotite, and
minor muscovite (Figure 3(e); Supplementary Figures 1e–1f).

3. Analytical Methods

Zircon U–Pb dating and Lu–Hf isotope analyses, whole-rock
major and trace element geochemical analyses, and Sr–Nd–
Pb isotope analyses were carried out at the Guangxi Key
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Laboratory of Hidden Metallic Ore Deposits Exploration,
Guilin University of Technology, China.

3.1. Zircon U–Pb Geochronology. Zircon grains were sepa-
rated from ~2 kg rock samples using conventional heavy liq-
uid and magnetic separation techniques. Zircon grains were
handpicked and mounted on an epoxy resin disc and
polished prior to analysis with a laser ablation inductively
coupled plasma mass spectrometer (LA–ICP–MS). Catho-
doluminescence (CL) imaging of the zircon grains was per-
formed at the Chongqing Yujin Technology Co., Ltd.,
China. The U–Pb isotopic compositions of zircon grains
from the MAT and TZ pegmatites and granite wall rocks
were analyzed using an Agilent 7500 LA–ICP–MS. Laser
ablation was undertaken at a constant energy of 80mJ, a rep-
etition rate of 6Hz, and a spot size of 32μm. Helium was
used to carry ablated material to the ICP–MS. Element cor-
rections were determined relative to the standard glass NIST
610 [33]. During our analytical work, the zircon standard
Plešovice yielded a weighted-mean 206Pb/238U age of 337:1

± 0:6Ma (2σ; MSWD= 0:10; n = 52), which is within error
of the recommended value of 337:1 ± 0:4Ma [34]. The age
calculations were undertaken using ICPMSDataCal (version
8.4; [35]), and the concordia plots were made using Isoplot
3.75 [36].

3.2. Major and Trace Element Analyses. Rock samples were
first examined under an optical microscope. Selected
whole-rock samples were broken into small chips and
cleaned ultrasonically in 4N hydrochloric acid for 30min
to remove any altered material and then washed twice with
distilled water. The small rock chips were dried and hand-
picked to remove visible contamination. The powder was
used for analyses of major and trace elements as well as
Sr–Nd–Pb isotopes. Major elements were analyzed on fused
glass beads using a ZSX Primus II X-ray fluorescence (XRF)
spectrometer with analytical uncertainties < 5% ([37] and
references therein). Trace elements were analyzed with Agi-
lent 7500cx ICP–MS equipment, following the procedures
described by Liu et al. [37]. Analytical precisions for most
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elements were better than ±2–5% (relative standard devia-
tion, RSD). Standardization was achieved using the United
States Geological Survey (USGS) standards BHVO, AGV,
W-2, and G-2 and national rock standards GSR-1, GSR-2,
and GSR-3 [38].

3.3. Sr–Nd–Pb Isotope Analyses. Whole-rock Sr, Nd, and Pb
isotope analyses were conducted using a Neptune plus mul-
ticollector- (MC-) ICP–MS. The details of the analytical pro-
cedures used have been described by Liu et al. [37]. The
measured average 87Sr/86Sr ratio of the NBS987 standard
was 0:710281 ± 16 (2σ; n = 11), and the measured average
143Nd/144Nd ratio of the Shin Etsu JNdi-1 standard was
0:512092 ± 8 (2σ; n = 2), which are in good agreement with
the recommended values of 0:710248 ± 12 and 0:512107 ±
12, respectively [39]. All measured 87Sr/86Sr and 143Nd/144Nd
ratios were fractionation-corrected to 86Sr/88Sr = 0:1194 and
146Nd/144Nd = 0:7219, respectively. Four repeat analyses of
the SRM981 Pb standard yielded mean values of 206Pb/204Pb
= 16:933 ± 0:0008, 207Pb/204Pb = 15:485 ± 0:0008, and 208Pb
/204Pb = 36:676 ± 0:0019, which agree with the values reported
by Todt et al. [40].

3.4. In Situ Zircon Lu–Hf Isotope Analyses. In situ zircon Lu–
Hf isotope measurements were undertaken using a Neptune
MC-ICP–MS with a beam size of 44μm and a laser fre-
quency of 10Hz. Details of the instrumental conditions
and data acquisition procedures have been described by
Wu et al. [41]. The isobaric interference of 176Lu on 176Hf
was negligible, due to the extremely low value of 176Lu/177Hf
in the zircon (normally <0.002). During our analyses, the
GJ-1 reference zircon was analyzed as an unknown sample,
and it yielded a weighted-mean value of 176Hf/177Hf =
0:281989 ± 0:000034 (2σ; n = 22), which is in good agree-
ment with the recommended value of 0:282000 ± 0:000005
[42].

4. Results

4.1. Zircon U–Pb Ages. The results of the zircon U–Pb iso-
tope analyses are given in Supplementary Table 1. Five
rock samples, including one MAT biotite granite wall rock,
two MAT pegmatites, one TZ biotite granite wall rock, and
one TZ pegmatite, were selected for the zircon U–Pb
dating. Zircon crystals in these samples have lengths of 150–
350μm and length/width ratios of 1 : 1–3 : 1 (Figures 4(a)–
4(e)). Zircon grains in the MAT biotite granite wall rock and
pegmatites and in the TZ biotite granite wall rock all exhibit
well-developed oscillatory zoning (Figures 4(a)–4(d)) and
high Th/U ratios (0.15–1.88; Supplementary Table 1), which
indicate a magmatic origin [43]. However, zircon grains in
the TZ pegmatite TZ-09 show dark and unclear CL images
(Figure 4(e)), which suggest that sample TZ-09 underwent
late-stage alteration by hydrothermal fluids.

Zircons from MAT wall rock sample MAT-01 yielded
two weighted-mean 206Pb/238U ages of 230:9 ± 1:5Ma (2σ;
MSWD = 0:79; n = 13; Figure 5(a)) and 271:0 ± 2:0Ma (2σ;
MSWD = 0:37; n = 12; Figure 5(a)), which indicate that this
wall rock records two magmatic events. The zircons from

MAT pegmatite samples MAT-03 and MAT-04 yielded
weighted-mean 206Pb/238U ages of 269:1 ± 1:2Ma (2σ;
MSWD= 1:12; n = 19; Figure 5(b)) and 230:5 ± 1:5Ma (2σ;
MSWD= 0:23; n = 12; Figure 5(c)), respectively. Zircons
from the TZ biotite granite wall rock yielded a weighted-
mean 206Pb/238U age of 434:7 ± 1:4Ma (2σ; MSWD = 0:57;
n = 45; Figure 5(d)). Five zircon grains from TZ pegmatite
sample TZ-09 yielded a weighted-mean 206Pb/238U age of
234:7 ± 4:8Ma (2σ; MSWD= 1:4; n = 5; Figure 5(e)), which
probably represents the crystallization age of the TZ pegma-
tite, while another six zircon grains from the same sample
(TZ-09) yielded a weighted-mean 206Pb/238U age of 261:0
± 2:9Ma (2σ; MSWD = 0:05; n = 6; Figure 5(e)), which we
interpret to be an inherited age. To summarize, the MAT
pegmatites formed during the Permian (269Ma) and Trias-
sic (231Ma), the MAT biotite granite wall rocks record two
stages of magmatic activity (271 and 231Ma) that were
coeval with the Permian and Triassic pegmatites, the TZ
pegmatite probably formed during the Triassic (235Ma),
and the TZ biotite granite wall rock formed during the
Silurian (435Ma).

4.2. Major and Trace Element Geochemistry

4.2.1. MAT and TZ Pegmatites. Whole-rock major and trace
element data for the MAT pegmatites and TZ pegmatites
and their granite wall rocks are given in Supplementary
Table 2. The MAT pegmatites have high contents of SiO2
(70.2–73.5wt.%), K2O (4.2–5.5wt.%), and Na2O (0.5–
3.9wt.%), with K2O > Na2O, and they plot in the high-K
calc-alkalic to shoshonitic fields on the K2O versus SiO2
diagram (Figures 6(a), 6(b), and 6(d)). Their A/CNK
(molar Al2O3/½CaO + Na2O + K2O�) values range from 1.14
to 2.68 and plot in the peraluminous field (Figure 6(c)).
The TZ pegmatites have a wide range of SiO2 (45.0–
98.7wt.%), K2O (0.01–11.3wt.%), and Na2O (0.04–
5.65wt.%) contents (Figures 6(a), 6(b), and 6(d)), and their
A/CNK values range from 0.47 to 4.68, plotting in the
metaluminous to peraluminous fields (Figure 6(c)). Three
TZ pegmatite samples (TZ-07, TZ-08, and TZ-09) have
low SiO2 contents (<61wt.%; normalized on an anhydrous
basis). We do not plot these three pegmatites in Figure 6,
because they are cumulates of K-feldspar (SiO2~65wt.%),
albite (SiO2~60wt.%), and muscovite (SiO2~46wt.%)
(Figured 3(f)–3(g); [26]).

The MAT pegmatites have a wide range of total rare earth
element (ΣREE) contents (1.28–203ppm), and they are char-
acterized by moderately light REE-enriched (ðLa/YbÞCN =
2:8 – 36:0) chondrite-normalized patterns with significant
negative Eu anomalies (Eu/Eu ∗ = EuCN/ðSmCN × GdCNÞ1/2
= 0:11 – 0:30) (Figure 7(a)). In addition, the REE patterns
of the MAT pegmatites have a gull-wing shape and show tet-
rad effects (Figure 7(a)). The TZ pegmatites also have a wide
range of ΣREE contents (1.00–382 ppm). Their (La/Yb)CN
values range from 0.02 to 10.8 (Figure 7(c)), and they are
characterized by moderate to significant negative Eu anoma-
lies (Eu/Eu ∗ = 0:01 – 0:44; Figure 7(c)).

On primitive-mantle-normalized plots, the MAT and TZ
pegmatites are enriched in Rb, Th, U, and Pb; are slightly to
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significantly depleted in Ba, Sr, Zr, and Ti; and show small
negative Nb anomalies and slight Ta positive anomalies
(Figure 7(b)). The MAT and TZ pegmatites have Nb/Ta ratios
of 3.72 to 6.92 and 1.12 to 8.99 and Zr/Hf ratios of 5.34 to 33.8
and 0.80 to 34.5, respectively (Supplementary Table 2).

4.2.2. MAT and TZ Biotite Granite Wall Rocks. The MAT
wall rock sample (MAT-01) has a relatively low SiO2 content
of 62.8wt.% (normalized on an anhydrous basis), which is
similar to the diorite (Figure 6(a)). However, sample MAT-
01 has obviously lower MgO (0.97wt.%) and higher Rb
(1026 ppm) contents than typical diorites in Guangzhou
region of South China (MgO = 2:86 – 2:90wt.%; Rb = 212

– 217ppm; [26]). When granitic rocks experience supergene
weathering and hydrothermal alteration, their SiO2 contents
decrease as biotite (SiO2~40wt.%) is replaced by chlorite
(SiO2~28wt.%) [51]. This is consistent with the negative
Ce anomaly of the MAT biotite granite (Figure 7(a)). Neg-
ative Ce anomalies in granites have been interpreted to be
related to chemical weathering processes [52]. Therefore,
we regard sample MAT-01 to be a biotite granite rather
than a diorite. In addition, the MAT biotite granite wall
rock has a K2O content of 5.83wt.% and plots in the
shoshonitic field on the K2O versus SiO2 diagram
(Figure 6(b)). Moreover, it has A/CNK values of 2.95
and plots in the peraluminous field (Figure 6(c)). The
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Figure 4: Cathodoluminescence (CL) images of zircons from the MAT and TZ biotite granites and pegmatites: (a) MAT-01 (biotite granite);
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TZ biotite granite wall rocks have SiO2 contents of 66.1–
71.8wt.%, K2O contents of 4.47–7.07wt.%, andNa2O contents
of 4.47–7.07wt.% (Figures 6(a), 6(b), and 6(d)). They plot in

the high-K calc-alkalic to shoshonitic fields on the K2O versus
SiO2 diagram (Figure 6(b)). Their A/CNK values range from
1.08 to 1.12, plotting in the peraluminous field (Figure 6(c)).
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The MAT biotite granite wall rock has a higher ΣREE
content (411 ppm) than the MAT pegmatites (Figure 7(a)).
The MAT biotite granite wall rock is characterized by
slightly light REE-enriched (ðLa/YbÞCN = 5:64) chondrite-
normalized patterns with moderate negative Eu anomalies
(Eu/Eu ∗ = 0:21; Figure 7(a)). The chondrite-normalized
REE pattern of the MAT biotite granite wall rock is generally
parallel to the REE patterns of the MAT pegmatites
(Figure 7(a)). The TZ biotite granite wall rocks have variable
ΣREE contents (164.4–498 ppm), and they are characterized
by obviously light REE-enriched (ðLa/YbÞCN = 14:4 – 29:4)
chondrite-normalized patterns (Figure 7(c)) and moderate
to significant negative Eu anomalies (Eu/Eu ∗ = 0:15 – 0:51
) (Figure 7(c)).

On primitive-mantle-normalized plots, the MAT and TZ
biotite granite wall rock is enriched in Rb, Th, U, and Pb and
slightly depleted in Ba, Sr, Zr, Hf, and Ti, with small negative

Nb anomalies and slight Ta positive anomalies (Figure 7(b)).
The trace element pattern of the MAT biotite granite wall
rock is generally parallel to the trace element pattern of the
MAT pegmatites (Figure 7(b)), and it has Nb/Ta and Zr/
Hf ratios of 3.44 and 33.0, respectively (Supplementary
Table 2). The TZ biotite granite wall rocks have Nb/Ta
ratios that range from 9.54 to 11.6 and Zr/Hf ratios that
range from 36.7 to 39.6 (Supplementary Table 2).

4.3. Sr–Nd–Hf–Pb Isotopic Compositions

4.3.1. MAT and TZ Pegmatites. Initial Nd–Pb isotopic ratios
were calculated based on the U–Pb ages of zircons in the
MAT pegmatites (231 and 269Ma) and in the TZ pegmatite
(235Ma). Initial Hf isotopic ratios were calculated using the
corresponding zircon single-crystal ages. As the MAT and
TZ pegmatites have exceptionally high 87Rb/86Sr ratios
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(57.4 to 260; Supplementary Table 3), we did not calculate
their initial 87Sr/86Sr ratios. The MAT pegmatites have
whole-rock εNdðtÞ values of −12.0 to −10.7 with two-stage
Nd model ages ranging from 2.0 to 1.9Ga (Supplementary
Table 2; Figure 8(a)). The TZ pegmatites have whole-rock
εNdðtÞ values of −10.4 to −6.1, with two-stage Nd model
ages ranging from 1.9 to 1.5Ga (Supplementary Table 2;
Figure 8(a)). The ca. 230Ma MAT pegmatite (MAT-04)
yields εHf ðtÞ values of −8.0 to −4.0, with two-stage Hf
model ages ranging from 1.8 to 1.5Ga, whereas the ca.
270Ma MAT pegmatite (MAT-03) has a wider range of
εHf ðtÞ values from −7.8 to −1.0 and two-stage Hf model
ages ranging from 1.8 to 1.4Ga (Supplementary Table 3;
Figure 8(b)). The MAT pegmatites have (206Pb/204Pb)i ratios
of 18.555–18.796, (207Pb/204Pb)i ratios of 15.728–15.736,
and (208Pb/204Pb)i ratios of 38.562–38.789 (Supplementary

Table 4; Figure 8(c)). The TZ pegmatite has (206Pb/204Pb)i
ratios of 16.665, (207Pb/204Pb)i ratios of 15.628, and
(208Pb/204Pb)i ratios of 35.157 (Supplementary Table 4;
Figure 8(c)).

4.3.2. MAT and TZ Biotite Granite Wall Rocks. Initial Nd–
Pb isotope ratios were calculated based on the zircon U–Pb
ages of the MAT biotite granite (271Ma) and TZ biotite
granite (435Ma). The MAT and TZ biotite granite wall
rocks have high 87Rb/86Sr ratios (5.6–154; Supplementary
Table 2), which preclude the determination of precise
whole-rock initial 87Sr/86Sr ratios. The MAT biotite granite
wall rock has an εNdðtÞ value of −10.6, with a two-stage Nd
model age of 1.9Ga (Supplementary Table 2; Figure 8(a)).
The TZ biotite granite wall rocks have whole-rock εNdðtÞ
values of −9.1 to −8.7, with a consistent two-stage Nd
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model age of 1.9Ga (Supplementary Table 2; Figure 8(a)).
The ca. 230Ma zircons of the MAT biotite granite wall rock
(MAT-01) yield εHf ðtÞ values of −8.0 to −2.1 with two-stage
Hf model ages ranging from 1.8 to 1.4Ga, whereas the ca.

270Ma zircons of MAT-01 show relatively higher εHf ðtÞ
values of −3.9 to −1.0 and two-stage Hf model ages ranging
from 1.5 to 1.4Ga (Supplementary Table 3; Figure 8(b)).
The TZ biotite granite wall rock (TZ-03) has zircon εHf ðtÞ
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values of −7.7 to −4.1, with two-stage Hf model ages ranging
from 1.9 to 1.7Ga (Supplementary Table 3; Figure 8(b)). The
MAT biotite granite wall rock (MAT-01) has (206Pb/204Pb)i
ratios of 18.338, (207Pb/204Pb)i ratios of 15.718, and
(208Pb/204Pb)i ratios of 38.728 (Supplementary Table 4;
Figure 8(c)). The TZ biotite granite wall rocks have
(206Pb/204Pb)i ratios of 17.410–17.941, (

207Pb/204Pb)i ratios
of 15.659–15.691, and (208Pb/204Pb)i ratios of 37.450–
38.487 (Supplementary Table 4; Figure 8(c)).

5. Discussion

5.1. Magma Source and Evolution

5.1.1. MAT and TZ Biotite Granites. The whole-rock trace
element and Nd–Pb isotopic compositions and zircon Hf
isotopic compositions of the MAT and TZ biotite granites
suggest that their source was dominated by Paleoproterozoic
metasedimentary rocks in the middle crust. The MAT and
TZ biotite granites have REE and trace element patterns that
are similar to those of metasedimentary rock-derived, early
Paleozoic, and Triassic granites in the SCB (Figures 7(a)
and 7(b)). In particular, the Th contents (27.4–81.5 ppm)
and Th/La ratios (0.60–1.00) of the MAT and TZ biotite
granites are similar to those of the early Paleozoic and Trias-
sic granites (Th = 7:56 – 84:2ppm; Th/La = 0:31 – 1:47; [16,
20, 48]). In addition, the MAT and TZ biotite granites also
have enriched whole-rock Nd and zircon Hf isotopic com-
positions that are similar to those of early Paleozoic and Tri-
assic S-type granites with Nd model ages of T2DM = 1:9Ga
and Hf model ages of T2DM = 2:4 – 1:7Ga in the SCB
(Figures 8(a) and 8(b)). Moreover, the whole-rock Pb isoto-
pic compositions of the MAT and TZ biotite granites plot
along the upper crustal evolution line (Figure 8(c)).

We conclude from the above observations that the MAT
and TZ biotite granites were mainly derived by partial melt-
ing of metasedimentary rocks in the middle crust. In general,
metasedimentary rock-derived granitic magmas can be gen-
erated by either fluid-absent mica breakdown reactions or
water-saturated melting of plagioclase [57]. In such a situa-
tion, a fluid-absent mica breakdown reaction would generate
granitic melts with K2O >Na2O, whereas water-saturated
melting of plagioclase would produce granitic melts with
K2O <Na2O ([58] and references therein). Therefore, the
fact that the K2O contents (4.5–7.0wt.%) of the MAT and
TZ biotite granites are higher than their Na2O contents
(0.6–3.0wt.%; Supplementary Table 2) indicates that they
were formed by melting as a result of fluid-absent mica
breakdown in the middle crust.

The MAT biotite granite sample (MAT-01) and one TZ
biotite granite sample (TZ-03) have SiO2 contents (62.8–
65.9wt.%; Figure 6(a)) that are lower than those of experi-
mental pure crustal melts (SiO2 ≥ 70wt.%; [59]) produced
by incongruent dehydration melting. This indicates, there-
fore, that metaigneous rocks or mantle-derived mafic
magmas with SiO2 < 70wt.% were also present in the meta-
sedimentary source area of the MAT and TZ biotite granites.
The MAT and TZ biotite granites have relatively low Mg#
values (27.4–34.5; Mg# =molarMgO/½molarMgO +molar

FeOT� × 100; assuming FeOT = 0:8998 × Fe2O3
T) and do

not contain mafic microgranular enclaves (Figures 3(a) and
3(e); Supplementary Figures 1a–1b). We suggest, therefore,
that other subordinate metaigneous rocks were also present
in the metasedimentary source area of the MAT and TZ
biotite granites.

5.1.2. MAT and TZ Pegmatites. The whole-rock Nd–Pb iso-
topic, zircon Hf isotopic, and mineral compositions of the
MAT and TZ pegmatites indicate that their primary
magmas were derived mainly by partial melting of Paleopro-
terozoic–Mesoproterozoic metasedimentary rocks in the
middle crust. On an εNdðtÞ versus age diagram, the MAT
and TZ pegmatites plot within the field of the Longquan–
Mayuan groups (i.e., part of the basement of the Cathaysia
Block) that have Nd model ages of T2DM = 2:0 – 1:5Ga
(Figure 8(a); Supplementary Table 2). In addition, on an
εHf ðtÞ versus age diagram, the MAT pegmatites all plot
below the chondritic evolution line, with Hf model ages of
T2DM = 2:4 – 1:8Ga (Figure 8(b); Supplementary Table 3).
The whole-rock Pb isotopic compositions of the MAT and
TZ pegmatites are distributed along the upper crustal
evolution line (Figure 8(c)). Furthermore, the MAT and
TZ pegmatites contain euhedral tourmaline, muscovite,
and garnet (Figures 3(c), 3(d), 3(g), and 3(h)), which
generally crystallize from Al-saturated granitic magmas [60].

The whole-rock trace element characteristics of the
MAT and TZ pegmatites suggest they experienced high
degrees of fractional crystallization. The MAT and TZ
pegmatites have relatively high contents of Nb (1.69–
1649 ppm), Ta (0.23–183 ppm), Rb (7.38–5699 ppm), and
Li (4.55–485 ppm; Supplementary Table 2), which were
gradually enriched during fractional crystallization.
Rubidium is a strongly incompatible element, whereas Sr
and Ba are compatible in plagioclase and K-feldspar,
respectively. Therefore, with fractional crystallization of a
granitic magma, Rb is gradually concentrated in the
residual magmas, whereas Sr and Ba are reduced in the
residual magmas because of the removal of plagioclase and
K-feldspar ([61] and references therein). Consequently, the
Rb contents, Rb/Sr ratios, and K/Rb ratios can be used to
evaluate the degree of fractional crystallization. In addition,
in granitic melts, Ta5+ with an ionic radius of 0.73Å forms
a stronger covalent bond with oxygen than Nb5+ with its
smaller ionic radius of 0.70Å, which results in the
relatively higher Ta concentration compared with Nb [62].
Therefore, the Nb/Ta ratios of granites gradually decrease
with the degree of fractional crystallization [63, 64]. Given
that Nb is more compatible in biotite than Ta, fractional
crystallization of biotite could also decrease the Nb/Ta ratios
in the residual melts [65]. Moreover, during fractional
crystallization, Zr4+ with an ionic radius of 0.80Å in zircon
is gradually replaced by Th4+, which has a similar ionic
radius of 0.95Å [66]. Therefore, the Nb/Ta and Zr/Hf ratios
would decrease during fractional crystallization [25]. On the
Rb–Ba–Sr triangular diagram, the MAT and TZ pegmatites
all plot in the highly fractionated granite field (Figure 9(a)).
In addition, the plots of the MAT and TZ pegmatites on the
K/Rb versus SiO2, Nb/Ta versus Rb/Sr, and Zr/Hf versus Rb/
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Sr diagrams indicate that these rocks represent high degrees of
fractional crystallization (Figures 9(b)–9(d)).

The MAT pegmatites are hosted by the MAT biotite
granite (Figure 3(a); Supplementary Figures 1a–1b),
which indicates these rocks have a cogenetic relationship
[3]. In addition, the MAT pegmatites and biotite granite
have broadly parallel REE and trace element patterns
(Figures 7(a) and 7(b)). Therefore, the MAT pegmatites
are possibly the fractional crystallization products of the
MAT biotite granite [69]. The results of trace element
fractional-crystallization modeling, using the MAT biotite
granite (MAT-01) as the initial magma, suggest that
MAT pegmatite MAT-04 could have been formed by the
removal of small amounts of biotite (<10%; Figures 10(a)
and 10(b)). Likewise, using MAT biotite granite MAT-01
as the initial magma, four other MAT pegmatites (MAT-
02, 03, 05, and 06) could have been formed by the
removal of 30–50% K-feldspar (Figures 10(a) and 10(b)).
In addition to major rock-forming minerals, the MAT
pegmatites could have been formed by fractionation of
apatite, titanite, monazite, and allanite, as revealed by

plots of whole-rock (La/Yb)CN versus La and zircon La/Yb
versus La (Figures 10(c) and 10(d)), assuming the MAT
biotite granite was the parental magma. Moreover, the plots
of zircon Ta versus Nb for the MAT pegmatites also
suggest that fractional crystallization of columbite-group
minerals occurred (Figure 10(e)).

The TZ pegmatites are significantly younger (235Ma)
than the TZ biotite granites (435Ma; Figures 5(d) and
5(e)). Therefore, the TZ pegmatites may not have a genetic
relationship with their biotite granite wall rocks, and the
parental granites that are related to the TZ pegmatites may
not be exposed at the surface. Nonetheless, the zircon Ta
versus Nb diagram for the TZ pegmatites suggests they
underwent fractional crystallization of columbite-group
minerals (Figure 10(f)). Because the MAT and TZ pegma-
tites represent high degrees of fractional crystallization, we
suggest that these pegmatites have the potential for rare
metal (Nb, Ta, Be, and Li) mineralization. During fractional
crystallization, the Nb, Ta, Be, and Rb contents of the MAT
and TZ granitic magmas would have increased, along with a
gradual increase in Li and F contents [63]. Therefore, we
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conclude that the MAT and TZ areas in the middle of the
Yuechengling pluton are promising targets for rare metal
exploration.

5.2. Heat Source. Based on a recent review of regional geo-
logical data ([72] and references therein), it has been sug-
gested that the early Paleozoic intracontinental orogeny of
the SCB can be divided into three stages involving double
thickening of the crust (460–435Ma), orogenic collapse
(441–415Ma), and postorogenic (<415Ma). Therefore, the
early Paleozoic TZ biotite granites probably formed during
the double-thickening or orogenic collapse stages. After the
Middle or Late Devonian, the entire South China region
evolved into a stable littoral–neritic depositional environ-
ment, characterized by a carbonate depositional platform
with limestones, dolomites, black cherts, and minor sand-

stones and mudstones ([15] and references therein). There-
fore, the late Paleozoic MAT biotite granite possibly
formed in a postorogenic setting. The SCB was in a com-
pressional tectonic setting during the Middle–Late Triassic
[18–20, 22, 23]. As a consequence, the Late Triassic MAT
and TZ pegmatites probably formed during the double
thickening of the crust. Heat is generated via the decay of
radioactive elements in the sedimentary rocks (e.g., [20,
73]), possibly enhanced by heating frommantle-derived mafic
magmas in adjacent regions [74], induced dehydration partial
melting of the metasedimentary, and associated subordinate
metaigneous rocks. This generated the primary magmas of
the MAT and TZ biotite granites, as well as the hidden
parental granites of the TZ pegmatites (Figures 11(a)–11(c)).
The MAT pegmatites were fractional crystallization products
of the MAT biotite granite (Figures 11(b)–11(d)). The TZ

(a) (b)
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435 Ma 271-269 Ma

235-231 Ma < 231 Ma

Fault

Ductile shear zone

Maoantang pegmatite (269 Ma)
Tongzuo pegmatite

Tongzuo biotite granite

Maoantang biotite granite
Sedimentary rocks
Maoantang pegmatite (231 Ma)

Hidden parent granite of
Tongzuo pegmatite

Figure 11: Petrogenetic model for the MAT and TZ biotite granites and pegmatites. (a) Formation of early Paleozoic TZ biotite granites in
response to double-thickening or orogenic collapse of an intracontinental orogen. (b) Formation of the late Paleozoic MAT biotite granite
and pegmatites during the post-orogenic stage. (c) Formation of the Triassic MAT and TZ pegmatites during the intracontinental orogeny.
Granites cogenetic with the TZ pegmatites may be hidden deeper in the crust. (d) Denudation of the MAT and TZ biotite granites and
pegmatites after 231Ma. The pictures are not to scale.
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pegmatites were formed by fractional crystallization of hidden
parental granites (Figures 11(c) and 11(d)).

6. Conclusions

(1) LA–ICP–MS zircon U–Pb dating demonstrates that
the MAT pegmatites formed during the Permian
(269Ma) and Triassic (231Ma). The MAT biotite
granite wall rock records two stages of magmatic
activity (271 and 231Ma) that were coeval with the
Permian and Triassic pegmatites. The TZ pegmatites
probably formed during the Triassic (235Ma),
whereas the TZ biotite granite wall rock formed dur-
ing the Silurian (435Ma)

(2) The MAT and TZ biotite granites were derived
mainly from Paleoproterozoic metasedimentary
rocks in the middle crust. The MAT pegmatites are
the fractional crystallization products of the MAT
biotite granite, whereas the TZ pegmatites were
formed by fractional crystallization of hidden paren-
tal S-type granites

(3) Because the MAT and TZ pegmatites record high
degrees of fractional crystallization, they have the
potential for rare metal (Nb, Ta, Be, and Li)
mineralization
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