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Failure of residual coal pillars under dynamic load disturbances can induce goaf collapse, ground subsidence, or coalbursts.
Encasing the residual coal pillar in mortar is an effective method for reinforcing the residual coal pillar. However, the
mechanical behaviors of mortar-encased coal bodies under impact loads remain poorly investigated. In this study, impact tests
were conducted on coal, mortar, and mortar-encased coal specimens using a split Hopkinson pressure bar (SHPB) system. The
mechanical properties and failure behavior of the mortar-encased coal specimens under impact loading were systematically
investigated in terms of several metrics including dynamic stress-strain curves, failure patterns, strength change characteristics,
and energy consumption laws. Results show that, owing to the different mechanical properties of the coal and mortar elements
in the composite specimens, the mortar-encased specimen has a nonlinear deformation characteristic. The mortar has a higher
energy absorption rate compared to the coal. Additionally, increasing the thickness of the external mortar body is helpful for
absorbing more stress wave energy and increasing the dynamic strength of the mortar-encased coal specimens. Furthermore,
under low strain rate loading, the external mortar body of the composite specimen initially experienced axial splitting failure.
With increasing strain rate, axial splitting failure occurred in both the external mortar body and inner coal body. This study
provides useful guidelines for reinforcing residual coal pillars in underground engineering.

1. Introduction

In underground coal mining, coal pillars of different sizes
are extensively designed as the support structure of the
mining space [1, 2]. Once coal resources in the working face
are fully mined out, coal pillars are permanently abandoned
in the mine [3, 4]. The Datong mining areas in China
encompass a large number of residual coal pillars [5, 6].
These residual coal pillars are not only subjected to an over-
burdened load for a long time but are also affected by mining
disturbances and water erosion [7, 8]. Under the coupling
effect of these factors, residual coal pillars are prone to dam-
age and instability. The instantaneous instability of residual

coal pillars can lead to a chain of adjacent pillar instabilities
in the goaf [9, 10]. In severe cases, it may cause goaf collapse,
surface subsidence, and coalbursts [11–13].

Strengthening residual coal pillars is essential for ensur-
ing green mining of coal mines [14, 15]. The most common
reinforcement methods are shotcreting or infilling with solid
materials in addition to coal pillars [16, 17]. After the coal
pillar is wrapped with mortar, a composite bearing structure
is formed to jointly bear the overburden load and resist the
external disturbance load [18]. Therefore, an accurate assess-
ment of the mechanical properties and failure mechanism of
a composite bearing structure is critical for maintaining the
stability of the overlying strata. The original residual coal
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pillar and encased coal pillars in an actual construction pro-
cess are shown in Figure 1 [17].

Extensive research has been conducted on the stability of
coal (mine) pillars including in situ tests [19–21], laboratory
tests [22–25], numerical simulations [26–28], and theoretical
calculations [29–31]. Laboratory experiments are the most
common form of research performed in this direction. Yao
et al. [32] investigated the mechanical behavior of coal sam-
ples under uniaxial compression and revealed their crack
propagation characteristics. Gao and Kang [33] found that
increasing the confining pressure could increase the residual
strength of coal pillars. Peng et al. [34] proposed a damage
evolution model for coal under triaxial confining pressure.
Zhou et al. [35] used a coal pillar-roof physical model to
investigate the stress evolution path of the mining space
when the coal pillar group failed. Zhang et al. [17] found that
encased coal pillars exhibit double-peaked stress-strain
behavior under uniaxial compression. The above works
provide useful guidance for the reinforcement protection of
coal pillars under static loads.

However, with high-intensity mining activities in China,
dynamic disasters frequently occur [36–39]. Reinforced
residual coal pillars are not only subjected to static loads
but are also inevitably affected by disturbance-induced
dynamic loads, such as the dynamic loads triggered by hard
roof breaking, fault activation, or rock blasting [40, 41].
Thus, it is necessary to evaluate the influence of the impact
load on the reinforcement of residual coal pillars. Mean-
while, more information about the dynamic behavior of
composite bearing structures under dynamic disturbances
should be obtained.

Existing research shows that the strain rate of a dynamic
load caused by blasting, rock bursts, or hard roof breaking
ranges from 101 s-1 to 103 s-1 [42–45]. According to previous
research [46, 47], the SHPB system can be used to study the
dynamic mechanical behavior of rock materials in this
range. Therefore, impact tests were conducted on mortar,
coal, and mortar-encased coal specimens with different
radius ratios. The dynamic stress-strain curves, failure pat-
terns, strength change characteristics, and energy conversion

Original coal pillar Reinforced coal pillar Mortar-encased coal pillar

Dynamic load

CoalMortar

(a) (b) (c)
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Figure 1: Photos of actual mortar-encased coal pillars: (a) original coal pillar [17], (b) reinforced coal pillar [17], and (c) stress diagram of
reinforced coal pillar.
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Figure 2: Preparation process of the study specimens: (a) mold physical map, (b) specimen after demolding, and (c) specimen pouring
process.
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laws of the three specimen types were comprehensively
analyzed.

2. Materials and Methods

2.1. Specimen Preparation. The test specimens included a
single coal (SC), single mortar (SM), and mortar-encased
coal (MC). All specimens were made into cylinders

(ϕ50 × 30mm) to meet the standards of rock dynamics tests
[43, 44]. The two loading surfaces of each specimen were
carefully ground to eliminate the effect of interfacial friction.

Coal specimens were prepared from fresh coal blocks by
means of drilling, cutting, and grinding. Mortar specimens
were made of water, P. O 42.5 cement, and river sand, with
a corresponding ratio of 0.7 : 1 : 1.3 [17]. The preparation
process was as follows. First, a small amount of lubricating
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Super-dynamic strain gauge

Data process system

Figure 3: SHPB test system.
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Figure 4: Processing results of test data: (a) the stress and strain rate and (b) the incident, reflection, transmission, and absorption energy.

Table 1: Test results of the coal and mortar under quasistatic conditions (loading velocity is 0.002mm/s).

Specimen
Uniaxial compression strength

(MPa)
Elastic modulus

(GPa)
Compressional wave velocity

(m/s)
Poisson’s ratio

Density
(kg/m3)

Coal 19.67 2.33 1985 0.40 1358

Mortar 20.39 4.65 1350 0.15 1286
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oil was applied to the mold (Figure 2(a)) to facilitate speci-
men demolding. Second, the cement, sand, and water were
thoroughly mixed according to the specified mass ratio. After
24 h, the mixture was demolded and placed into a mainte-
nance box for 28 days. The mechanical parameters of the coal
and mortar under static loads are listed in Table 1.

Each mortar-encased coal specimen was a combination
of the coal and mortar elements. The mortar-encased coal
specimens had five different mortars. Coal-radius ratios

and the corresponding thicknesses of the encasing mortar
were 2.5, 5, 7.5, 10, and 12.5mm, as shown in Figure 2(b).
Taking MC-25 as an example, the preparation process was
as follows: first, a cylindrical coal specimen (ϕ25 × 30mm)
was prepared from the coal blocks. The coal specimen was
then placed at the center of the mold. Second, the fully
mixed mortar was poured into a mold, as shown in
Figure 2(c). Finally, after 24 h, the mixture was demolded
and cured for 28 days.
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Figure 5: Dynamic stress equilibrium verification of typical specimens.

4 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/9211516/5681123/9211516.pdf
by guest
on 16 December 2022



2.2. Testing Apparatus and Methodology. In this study, the
impact test system mainly included an air compressor, two
pressure bars (ϕ50 × 2500mm), striker bar, superdynamic

strain instrument, strain acquisition card, and data process-
ing system, as shown in Figure 3. The incident, transmitted,
and striker bars were made of 7075 aluminum alloy. The
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Figure 6: Dynamic stress-strain curves.
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striker bar used in this study was cone-shaped, which is
beneficial for realizing constant strain rate loading of the
specimen [48, 49].

Four different impact pressures (0.1, 0.15, 0.2, and
0.25MPa) were used to load the specimens. After complet-
ing the impact testing, we selected sieves with apertures of
40, 30, 25, 20, 10, 5, 2, 1, 0.5, 0.25, and 0.075mm to sieve
the broken specimens and analyze the fragmentation
characteristics.

2.3. Data Processing. During the test, two stress pulse signals
were produced in the pressure bars: incident and reflected
waves [50]. All stress pulses were captured by a superdy-
namic strain gauge. Following the SHPB theory [51, 52],
the strain rate (ε·ðtÞ), strain (εðtÞ), and stress (σðtÞ) of a
specimen can be further processed using

ε
·
tð Þ = Cb

L
εi tð Þ − εr tð Þ − εt tð Þ½ �,

ε tð Þ = Cb

L

ðt
0
εi tð Þ − εr tð Þ − εt tð Þ½ �dt,

σ tð Þ = Ab

2AEb εi tð Þ + εr tð Þ + εt tð Þ½ �,

ð1Þ

where εiðtÞ, εrðtÞ, and εtðtÞ correspond to the incident,
reflected, and transmitted strains of the pressure bar, respec-
tively, and Ab, Eb, and Cb are the cross-sectional area, elastic
modulus, and P wave velocity of the pressure bars, respec-
tively. t is the time for the stress pulse to propagate in the
specimen, L and A are the length and cross section of the
specimen, respectively. Typical dynamic stress and strain
rate calculation curves for the specimen (No. MC-25-1) are
shown in Figure 4(a).

In addition, the incident, reflected, and transmitted
energies of the sample during the impact are represented
by WI , WR, and WT . These three energies can be obtained
using [53–55]

WI = AbCbEb

ðt
0
ε2i tð Þdt,

WR = AbCbEb

ðt
0
ε2r tð Þdt,

WT = AbCbEb

ðt
0
ε2t tð Þdt:

ð2Þ

Following the energy conservation law [46], the absorbed
energy of the specimen (WA) during the loading process
can be deduced from Equation (3). Figure 4(b) presents
four energy evolution curves for a typical specimen
(MC-25-1).

WA =WI −WR −WT : ð3Þ

To evaluate the energy evolution of the specimens,
the ratio of WA to WI is usually defined as the energy
utilization rate Kw [56, 57]:

Kw = WA

WI
× 100%: ð4Þ

Previous studies [51, 54] have proven that the impact
energy absorbed by the specimen during the failure pro-
cess is mainly consumed in three forms: thermal, fracture,
and kinetic energy. The kinetic and thermal energies were
negligible. Hence, the dissipated energy (WD) in the coal
specimens was approximately equal to the absorbed
energy (WA). Moreover, the ratio of absorbed energy
(WA) to the volume of the test specimen (V) is usually
defined as the energy dissipation density (ηw) of a speci-
men, which can be calculated using [58–60]

ηw = WA

V
× 100%: ð5Þ

After the impact test, all the failed specimens were
screened with different sieve sizes. To quantify the degree
of fragmentation of the specimen under different impact
loads, formula (6) [56, 61] was used to calculate the
average fragmentation (rm) of the specimen.

rm = ∑wi�ri
∑wi

, ð6Þ

where �ri is the average size of the broken pieces of two
adjacent sieves and wi is the mass percentage of the
broken pieces obtained from the two adjacent sieves.

50 100 150 200 250 300 350

10

20

30

40

50

SM
MC–25
MC–30
MC–35

MC–40
MC–45
SC

Pe
ak

 st
re

ss
 (M

Pa
)

Strain rate (s–1)

Figure 7: Variation of dynamic compressive strength with different
strain rates.

6 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/9211516/5681123/9211516.pdf
by guest
on 16 December 2022



3. Experimental Results

3.1. Dynamic Force Equilibrium. To ensure the validity of the
test results, it was necessary to verify the dynamic force equi-
librium of each specimen [62, 63]. In this study, the dynamic
force equilibrium of all the specimens was checked. Figure 5
shows the original stress wave signals of the coal (No. SC-1),
mortar (No. SM-1), and mortar-encased specimens (No.
MC-25-1) during the impact process and dynamic force bal-
ance verification curves. It can be concluded that a similar
half-sine stress wave was produced in the pressure bar, and
the time taken by the stress wave to propagate in the speci-
men was approximately 200μs. In addition, the superposi-
tion curve of the incident and reflected stresses coincides
with the transmission stress curve, which indicates that the
test results are credible.

3.2. Dynamic Stress-Strain Characteristics. The representa-
tive dynamic stress-strain curves of the coal, mortar, and
mortar-encased specimens are shown in Figure 6. Com-

parison of Figures 6(a) and 6(b) reveals that single coal
specimens and single mortar specimens mainly include
three deformation stages: (1) elastic deformation stage OA
(O ′ A ′): the strain of the specimen increased linearly with
stress; (2) rapid crack growth stage AB (A ′ B ′): the internal
cracks in the specimen continued to initiate and expand
rapidly during the propagation of the stress wave; and
(3) postpeak fracture stage BC (B ′ C ′): at this stage, a macro-
fracture surface is formed in the specimen. However, there
are some differences between coal and mortar. The unstable
crack propagation stage (AB) of coal is longer than that of
mortar (A ′ B ′), while a postpeak fracture stage (BC) of coal
is significantly shorter than that of mortar (B ′ C ′). This
indicates that coal has more brittle failure characteristics
than mortar.

The dynamic stress-strain curves of the mortar-encased
specimens are shown in Figures 6(c)–6(g). It can be con-
cluded that the mortar-encased specimens under different
impact loads also included three deformation stages (elastic
deformation stage, rapid crack growth stage, and postpeak

Table 2: Summary of SHPB test results of specimens.

Numbers
Strain rate

(s-1)
Incident
energy (J)

Reflected
energy (J)

Transmitted
energy (J)

Absorbed
energy (J)

Absorbed energy per
unit volume (J/cm3)

Energy utilization
efficiency (%)

SC-1 82 14.64 3.63 4.86 6.15 0.08 42.01

SC-2 146 37.95 13.32 8.68 15.95 0.27 42.04

SC-3 206 60.84 13.56 20.14 27.14 0.46 44.61

SC-4 300 112.76 49.38 11.96 51.42 0.88 45.60

SM-1 79 12.89 2.86 4.02 6.01 0.10 46.63

SM-2 142 31.80 11.86 4.88 15.06 0.26 47.36

SM-3 166 58.92 19.49 10.90 28.53 0.48 48.43

SM-4 248 95.09 37.31 11.84 45.94 0.78 48.33

MC-25-1 98 13.16 4.88 2.54 5.74 0.10 43.62

MC-25-2 160 35.88 14.29 5.70 15.89 0.27 44.30

MC-25-3 185 56.04 23.04 7.30 25.70 0.44 45.86

MC-25-4 261 104.96 43.84 12.11 49.01 0.74 46.69

MC-30-1 83 12.15 3.23 3.58 5.34 0.10 43.92

MC-30-2 125 33.02 8.59 9.85 14.58 0.27 44.15

MC-30-3 185 52.58 18.64 10.44 23.50 0.42 44.69

MC-30-4 222 84.88 34.26 11.69 38.93 0.66 45.86

MC-35-1 86 10.62 4.65 1.44 4.53 0.08 42.66

MC-35-2 155 30.85 14.31 2.99 13.55 0.22 43.92

MC-35-3 176 51.55 19.77 8.44 23.34 0.40 45.28

MC-35-4 262 94.59 39.71 11.29 43.59 0.74 46.08

MC-40-1 113 15.66 6.93 2.00 6.73 0.11 42.97

MC-40-2 154 35.68 15.36 5.54 14.78 0.27 41.43

MC-40-3 207 68.48 26.21 12.44 29.83 0.53 43.56

MC-40-4 293 108.02 42.08 18.59 47.35 0.67 43.83

MC-45-1 95 15.45 6.83 2.00 6.62 0.11 42.88

MC-45-2 171 42.60 19.48 4.82 18.30 0.31 42.96

MC-45-3 214 63.37 26.07 9.68 27.62 0.50 43.59

MC-45-4 286 110.61 48.94 10.90 50.77 0.86 45.90
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fracture stage), but the deformation characteristics of each
stage were slightly different from those of the single coal
or mortar specimen. The proportion of the postpeak frac-
ture stage (B ″ C ″) in the whole deformation process
(O ″ C ″) of the composite specimens was larger than that
of the single coal specimens, whereas it was smaller than that
of the single mortar specimens. This phenomenon reveals
that the failure process of the composite specimen gradually
changed from brittle fracture to ductile deformation owing
to the existence of the external mortar, which reduced the
instantaneous fracture degree of the composite specimen.
In addition, at medium and high strain rates, the nonlinear
change characteristics of the mortar-encased specimen dur-
ing the stress rise stage are more obvious, and a “stress drop”
phenomenon is observed, as shown in Figures 6(d)–6(g).
This difference is because mortar and coal are two types of
solid materials with different wave impedances, and the
stress-wave propagation efficiencies in the two media are dif-
ferent, which eventually leads to different degrees of damage
to the external mortar body and internal coal body.

3.3. Dynamic Strength Characteristics. The relationship
between the dynamic compressive strength and strain rate
of the coal, mortar, and mortar-encased specimens is shown
in Figure 7. The results show that the dynamic compressive
strength of these three types of specimens increased linearly
with increasing strain rate. Furthermore, the dynamic
strength of the mortar specimens is significantly higher than
that of the coal specimens. The dynamic strength of a
mortar-encased specimen is larger than that of a coal
specimen but smaller than that of a mortar specimen. More-
over, as the thickness of the external mortar increased,
the strength of the mortar-encased specimens gradually

increased. This indicates that increasing the thickness of the
external mortar body can improve the deformation ability
of the composite bearing structure under impact loads.

3.4. Energy Dissipation Characteristics. Rock materials
undergo irreversible energy conversion before failure [64].
Obtaining the energy dissipation characteristics is helpful
for macroscopically explaining the failure mechanism of
the specimen. The energy consumption density and energy
utilization efficiency of the coal, mortar, and mortar-
encased specimens under different incident energy loading
conditions were obtained based on Equations (4) and (5),
and a summary of the SHPB test results is presented in
Table 2. The variation in the energy dissipation characteris-
tics of the specimens with the incident energy is shown in
Figure 8. The energy consumption density of the coal, mor-
tar, and mortar-encased specimens increased linearly with
increasing incident energy, as shown in Figure 8(a). This
reveals that with higher input energy of the disturbance load,
more energy is absorbed per unit volume by the specimen
and the coal pillar is more prone to instability. Furthermore,
Figure 8(b) shows that the energy utilization efficiency of the
coal, mortar, and mortar-encased specimens with different
thicknesses increased linearly with increasing incident
energy. For a given incident energy, the energy absorption
efficiency of the mortar specimens was the highest, followed
by that of the mortar-encased specimens, and the energy
absorption efficiency of the coal specimens was the lowest.
For mortar-encased specimens, such as MC-25, MC-35,
and MC-45, under the same incident energy conditions,
the energy absorption rate increased with increasing thick-
ness of the external mortar body. These results indicate that
the mortar body has a better energy absorption effect than
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Figure 8: Energy dissipation characteristics of different specimens: (a) energy dissipation density and (b) energy utilization efficiency.
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the coal body, and the larger the proportion of mortar in the
mortar-encased specimen, the more stress wave energy the
specimen can absorb.

3.5. Progressive Failure Behavior and Fragmentation
Analysis. The crack evolution observed from the impact test-
ing contained potential information related to the composite

body failure. Figure 9 shows the failure modes and crack
propagation of the coal, mortar, and mortar-encased speci-
mens under different strain rates. As shown in Figures 9(a)
and 9(b), as the strain rate increased, the damage degree of
the coal and mortar specimens continued to increase,
gradually changing from an unbroken state to blocks, parti-
cles, or even powders. Meanwhile, comparing the failure

Unbroken82 s–1 Blocks142 s–1 Particles206 s–1 Powder300 s–1

Unbroken79 s–1 Axial fractures146 s–1 Blocks166 s–1 Powder248 s–1

Tensile crack98 s–1
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Figure 9: Failure modes of specimens under different impact loads.
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characteristics of the different mortar-encased specimens
in Figures 9(c)–9(g), it can be concluded that the increase
in strain rate causes the damage to the five composite samples

to be more severe, and the specimens show an obvious
progressive failure behavior. The specific performance is as
follows: under the condition of low strain rate loading
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Figure 10: Particle size distribution of mortar-encased specimens.
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(~98 s-1), only an axial tensile crack was generated in the
external mortar (see Figure 9(c)), but the mortar body
was not completely destroyed. When the strain rate was
slightly increased (~160 s-1), the mortar body underwent
evident axial fracturing, but the inner coal body remained
intact and had a bearing capacity. However, as the strain
rate continued to increase (~293 s-1), both the external
mortar and inner coal pillar exhibited obvious axial frac-
tures, and the shape of the specimen fragments changed
from blocks to powder. Therefore, it can be concluded that
the external mortar body in the mortar-encased coal pillar
system failed first, followed by the coal pillar under impact
loads. The presence of an external mortar can change the
energy absorption properties of a pillar and prevent impact-
induced failure, thereby further protecting the coal pillar.
This also reveals that the composite bearing structure
exhibits an obvious progressive failure behavior under the
action of impact loading.

After impact testing, fragments of the specimens were
collected and classified using standard sieves. The mass per-
centages for the different particle diameters were obtained
according to Equations (4) and (5), as shown in Figure 10.
It can be noted that mortar-encased coal specimens with dif-
ferent radius ratios have the same fragmentation characteris-
tics. That is, at a given fragment size, the cumulative mass
percentage of the fragments gradually increases with increas-
ing strain rate. This result further shows that the impact load
is a serious threat to the stability of the mortar-encased coal
pillar system when it is sufficiently large.

4. Discussion

In this study, the mortar-encased coal specimen was com-
posed of two parts: coal and mortar elements. The dynamic
strength and failure behavior of the composite specimen
under impact loads are closely related to the mechanical
properties of these two elements. However, the impact load
usually acts on the composite specimen in the form of a
stress wave, and the absorption rate of the coal and mortar
elements to the stress wave energy directly affects the
dynamic strength of the composite specimen. Figure 11
shows the energy absorption ratios of the coal and mortar
under different impact loads. It can be concluded that the
absorption rate of the mortar with respect to the stress wave
energy is significantly greater than that of coal for a given
incident energy. As reported in previous impact tests
[53, 57, 64], the energy absorbed by a specimen is converted
into fracture energy consumed by the growth of new cracks.
This means that mortar absorbs more energy than coal and
produces more deformation under the same impact condi-
tions. Hence, the larger the proportion of mortar in the
mortar-encased specimen, the more stress wave energy the
specimen can absorb and the higher the dynamic strength
of the mortar-encased coal specimen. This conclusion can
be confirmed from Figure 7.

The ultimate failure of the composite specimen under
dynamic loads is closely related to the failure strain of the
coal and mortar elements. Figure 12 presents the stress-
strain curves of a single coal specimen (No. SC-2) and a sin-

gle mortar specimen (No. SM-2) under approximate strain-
rate conditions. It can be observed that the single mortar
specimen has an obvious postpeak ductile failure stage under
impact loads, whereas the single coal specimen shows obvi-
ous brittle fracture characteristics. Moreover, the failure
strain of the mortar was significantly greater than that of
coal. The different mechanical properties ultimately lead to
unbalanced deformation of the mortar-encased coal speci-
men during the postpeak fracture stage. This unbalanced
deformation characteristic can also be used to explain why
the internal coal body is intact but the external mortar body
is damaged under impact loads.

The stress-strain curve, progressive failure pattern, and
energy dissipation law of the mortar-encased coal specimen
under impact loads reflect the instability response of the
mortar-encased pillar system. Therefore, the experimental
results can also provide useful implications for reinforcing
residual coal pillars during underground engineering.

(i) After the coal pillar was wrapped with mortar, a
composite bearing structure was formed. External
reinforcement is suitable for selecting materials with
a higher energy absorption rate of the stress wave,
so that the external reinforcement can absorb a
large number of stress waves, which increases the
energy absorption and shock resistance

(ii) The results show that the greater the thickness of
the external mortar, the higher is the dynamic
strength of the composite body, which means that
the ability of the composite bearing structure to
resist impact loads is stronger. Therefore, the encas-
ing thickness should be high if the situation allows

(iii) The failure mode of the mortar-encased specimen
induced by impact loads was mainly axial splitting
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failure. A damaged block can easily fall or be thrown
into a roadway, causing equipment damage and
casualties. Therefore, a layer of anchor nets outside
the mortar can be used to reduce the ejection of
damaged blocks and ensure the safety of personnel
and equipment

5. Conclusions

In this paper, a series of impact tests were conducted on coal,
mortar, and mortar-encased coal specimens using a split
Hopkinson pressure bar (SHPB) system. The mechanical
properties and failure behavior of mortar-encased coal bod-
ies under impact loads were studied. The main results of this
work are summarized as follows.

(1) Mortar, coal, and mortar-encased specimens exhib-
ited three stages of elastic deformation, inelastic
deformation, and postpeak fracture under impact
loading. However, the mortar specimens exhibited
obvious ductile failure behavior after the peak point,
whereas the coal specimens showed obvious brittle
fracture characteristics. Owing to the difference
between mortar and coal in terms of mechanical
properties, the mortar-encased coal specimen under-
went an obvious unbalanced deformation under
impact loads

(2) The dynamic strengths of the coal, mortar, and
mortar-encased specimens increased with increasing
strain rate. Meanwhile, the dynamic strength of the
mortar-encased coal specimen increased with the
increasing radius of the outer mortar body. Under
low-impact loading conditions, the mortar body
outside the composite body first experiences axial

splitting failure, and the internal coal body remains
intact. With increasing strain rate, both the external
mortar body and internal coal pillar were damaged,
and the failure mode gradually changed from block
to powder formation

(3) The energy density and energy absorption rate of the
coal, mortar, and mortar-encased specimens all
increased linearly with increasing incident energy.
For a given incident energy, the energy absorption
rate of the mortar is the highest, followed by that
of the mortar-encased specimen, and that of the coal
is the lowest, which shows that mortar has a better
energy absorption effect than coal. In addition, the
energy absorption rate of the mortar-encased speci-
mens showed an increasing trend with the increasing
thickness of the external mortar

(4) When reinforcing residual coal pillars, the mechani-
cal properties of the external reinforcement should
be fully considered. The external reinforcement is a
suitable material with a higher stress wave energy
absorption rate, so that it can absorb a large number
of stress waves, which increases energy absorption
and shock resistance. Moreover, the external solid
should be as thick as possible, which can improve
the anti-interference ability of the composite sup-
porting structure and reduce internal coal pillar
damage

Data Availability

The experimental data used to support the findings of this
study are included within the article.
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