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The Late Devonian-Early Carboniferous (DC) Antler orogeny in southwestern Laurentia is contemporaneous with influx of clastic
sediments, unconformities, and volcanism across much of western Laurentia (WL), suggesting the demise of the Paleozoic passive
margin. However beyond the type Antler orogeny in southwestern Laurentia, the DC tectonic setting is still unclear. Westerly
sediment provenance has been suggested as evidence of a convergent margin setting in a foreland basin. However, there is a
gap in our understanding in central WL (Alberta and Montana) despite the fact that paleogeographic reconstructions place this
area at the centre of WL. We provide detrital zircon (DZ) U-Pb geochronological data from strata in Alberta, Montana, and
Nevada that are synchronous with the Antler orogeny to constrain sediment dispersal patterns and test the westerly sediment
sourcing hypothesis. We show three DZ facies specific to particular geographic locations: DZ facies 1 in southern Nevada has a
prominent subpopulation of early to mid-Mesoproterozoic (mode at 1430Ma), DZ facies 2 in northeastern Nevada has a late
Paleoproterozoic population (mode at 1823Ma), and DZ facies 3 in Alberta and Montana displays Mesoproterozoic to
Neoproterozoic (mode at 1036Ma), mid-Paleozoic (mode at 411Ma), and depositional (ca. 360-340Ma) ages. North-south
variation in DZ facies indicates that WL basins were locally sourced from various tectonic fragments having different
signatures. Comparing our data with published data, we show that WL is dominated by DZ recycled from uplifted older strata
with input from mid-Paleozoic arc terrane (s) to the west. Westerly sourcing is evidenced by the presence of near-depositional
ages and affinities of this study’s DZ facies with strata located to the west. Our results and geological evidence from other
studies suggest that the Antler orogeny triggered a depositional shift and controlled sediments dispersal in WL, signaling the
demise of the Paleozoic passive margin.

1. Introduction

It is well accepted that the western margin of the North
American continent has an accretionary history whereby
several terranes have collided since the Mesozoic [1]. How-
ever, the onset of terrane accretion could have started as
early as the Silurian to Early Devonian based on scattered
evidence that is largely masked by the Mesozoic Cordilleran
orogenies [2–8]. This transition from a passive to convergent

margin in western Laurentia (WL) is poorly understood.
Eastward convergence, possibly involving western terranes
in southwestern Laurentia (ancestral North America) that
culminated with the Antler orogeny and emplacement of
the Roberts Mountain allochthon over carbonate platform
strata, is only documented in present-day Idaho and Nevada
[2, 8, 9]. However, Upper Devonian ash beds, Late Devonian
plutons and metamorphism, occurrences of unconformities
in Upper Devonian strata, influx of conglomerates and
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siliciclastic, and carbonate factory shutdown in western Can-
ada and western United States are consistent with the transi-
tion from passive to convergent margin along the entire
extent of Western Laurentia around this time [5–7, 10].

Geographically scattered geochronological studies have
attempted to unravel the history of the Devonian to Car-
boniferous (DC) tectonic evolution of western Laurentia
and investigate sedimentary provenance and the origin of ter-
ranes that bounded western Laurentia [10–14]. These studies
used geochronology of detrital zircon grains as an indirect tool
to investigate tectonics, by attempting to understand how sed-
iment moved through sedimentary basins. Geochronological
studies from southwestern Laurentia [11, 14, 15] and
northern-western Laurentia [7, 8, 10, 12, 13, 16, 17] have
focused on the DC tectonic evolution of WL and the origins
of terranes that bounded it. Detrital zircon provenance data
from the Devonian to Carboniferous sedimentary succes-
sion of central western Laurentia, present-day southern
Alberta and Montana (Figure 1), should be fundamental
in understanding late Paleozoic sediment dispersal and
paleogeography of the North American Cordillera. How-
ever, there is still a major gap in our understanding in cen-
tral western Laurentia: present-day southern Alberta and
Montana. In this study, we provide the new detrital zircon
U-Pb geochronological data from samples collected from
strata in the Canadian segment of the cordillera that are coe-
val with the Antler orogeny, along with data from Antler
orogeny syntectonic strata in southern Montana and north-
ern and southern Nevada in the United States. We com-
bined our data with previously published results from
Proterozoic and lower Paleozoic strata to characterize sedi-
ment source areas and better constrain sediment dispersal
patterns along western Laurentia. This allowed us to test
whether sediments were shed from suspect terranes and
associated uplifted Laurentian strata to the west and discuss
the tectonic scenarios proposed for the Antler orogeny.

2. Geological Background

The Paleozoic passive margin of western North America
developed along Panthalassa, the ancestor of the present
Pacific Ocean basin that formed following the breakup of
the Neoproterozoic supercontinent Rodinia in the late
Neoproterozoic to Cambrian [18–20]. In western North
America, passive margin deposits consisting of Cambrian
to Devonian siliciclastic and carbonate strata are orga-
nized into [21] supersequences bounded by continent-
wide unconformities. These sedimentary sequences overlie
thick Precambrian (730-570Ma) continental rift to drift suite
deposits (i.e., Windermere Supergroup) (e.g., [19, 20]). It is
suggested that the demise of the passive Laurentia margin
occurred as early as middle Paleozoic, synchronous with
the Antler orogenic pulses (e.g., [5, 10]). Occurrence of ash
beds in DC strata of western Canada and western USA and
detrital zircon grains with Silurian to Devonian depositional
ages [6, 22] suggest the existence of a volcanic arc to the west.
Nevertheless, the efforts to constrain the timing of the passive
to convergent margin transition are hindered by the over-
print of Mesozoic and Cenozoic magmatic, metamorphic,

and deformational events that led to the emergence of the
North American Cordillera [1, 7].

2.1. Roberts Mountain Allochthon and Antler Orogeny. The
Roberts Mountain allochthon (RMA) consists of an imbri-
cated sequence of Cambrian to Upper Devonian basinal sed-
imentary rocks with minor mafic volcanic rocks emplaced
eastward onto a lower Paleozoic platform carbonate above
the Roberts Mountain thrust fault [9, 23–25]. The RMA
was emplaced from southern Idaho to central Nevada during
the Late Devonian and Early Mississippian phase of the
Antler orogeny [9]. It was initially suggested that the RMA
strata originated in western Laurentia [6, 25] as a part of a
contractional foreland basin. More recent models for the
Antler orogeny are at odds with this idea. Speed and Sleep
and Speed et al. hypothesized that an arc-continent colli-
sion occurred and that the Roberts Mountain allochthon
was transported and emplaced as an accretionary prism
[26, 27]. However, lack of remnants of a collided arc
and occurrence of a subsided broad extensional region
behind the thrust belt (Havallah basin in western Nevada)
led different scientists to propose new ideas. These include
the following: (I) a Mediterranean-style thrust-belt system
[24], whereby thrusting occurred behind a zone of trench
retreat, while a region of extension developed in the hanging
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Figure 1: Paleogeographic reconstruction of western Laurentia and
main depositional areas during the latest Devonian to earliest
Carboniferous, after Blakey and Ranney (2017) [79].
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wall of the subduction systems without any arc collision;
(II) dextral-oblique convergence along the western margin
whereby terranes were transported from the peri-Gondwanan
realm, around the southern margin of Laurentia to the
paleo-Pacific Ocean leading to juxtaposition of arc
fragments and Roberts Mountain allochthon against the
Laurentian margin [28]; or (III) sinistral-oblique plate con-
vergence and microplate accretion (e.g., [5, 7, 11, 29]) that
invoke the north to south juxtaposition of Baltican, Caledo-
nian, or Peace River Arch-affinity terranes along the western
Laurentian margin. Alternative, but more controversial,
models suggest that the overall history of western Laurentia
was marked by westward subduction of the North American
plate and Mesozoic collision with a composite interoceanic
arc terrane [30] or “ribbon continent” [31] and thus refute
the occurrence of the Antler orogeny. However, these
models are precluded by stratigraphic continuity across
the southeastern Canadian Cordillera [32] and contiguous
Proterozoic and Cambrian geology across the theoretical
Mesozoic suture, including remarkable east-west continuity
of Cambrian detrital zircon facies combined with north-
south variation [33, 34].

2.2. Antler Orogeny Spatial Extent and Control on
Sedimentation. A potential continuation of the Antler belt
to the north of Idaho and south of central Nevada has been
obscured by younger tectonic and magmatic events that
reworked the continental crust [35]. Nevertheless, it has
been suggested that the northwestern and central western
margin of Laurentia (Alberta and Montana) recorded an

Antler-related compression and uplift [3]. A discontinuous
orogenic belt, known as the Cariboo orogen and a possible
extension of Antler orogen, existed to the west of Canada
[36, 37]. Westerly derived sandstone and conglomerate
interpreted as remnants of an easterly prograding clastic
wedge, and contemporaneous granitic plutonism and volca-
nism in today’s British Columbia and Yukon are inferred as
a record of this orogenic activity [10, 38, 39]. Several authors
have proposed that the Antler orogeny affected the mor-
phology of western Laurentian basins throughout the
Famennian time (e.g., [5, 13]). Deposition of Late Devonian
to Early Carboniferous sediments (e.g., the Exshaw and
Banff formations in western Alberta and Sappington Forma-
tion in southwestern Montana) along the western margin of
Laurentia may have recorded a shift in the depositional style
and sediment provenance (e.g., [4, 6]). Shallowing, uncon-
formities, and influx of clastic sediments in the latest Devo-
nian followed by rapid subsidence and deposition of thick
carbonate succession in the early Mississippian are consis-
tent with deposition of DC strata in an Antler foreland basin
that likely extended from western Alberta to southern
Nevada (e.g., [5, 25, 40]) (Figure 1).

3. Methods

3.1. Samples. Samples were collected executed along a north-
south transect representing the Late Devonian to Early Mis-
sissippian western margin of Laurentia (Figures 2 and 3).
Samples were collected from four distinct sample locations:
(1) two siltstones from the lower Tournaisian upper member
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Figure 2: Map showing the approximate geographic location of collected DZ samples in this study (only western provinces and states are
shown in the grey outline).
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of the Exshaw Formation (EX-3 and Ex-9) in southern
Alberta that were combined into a composite sample EX
and three silty-limestones from the lower to middle Tour-
naisian Banff Formation (BF-1, BF-3, and BF-4) that were
combined into one composite sample BF; (2) two sandstones
from the lower Tournaisian Middle Member of the Sapping-
ton Formation (SP-1 and SP-2) in the Bridger Mountains of
southern Montana; (3) one sandstone from the upper
Famennian Webb Formation (WB) and one chert conglom-
erate from the lower to middle Tournaisian Melandco For-
mation (MO) in Carlin Canyon near Elko in northeastern
Nevada; and (4) one sandstone sample from upper Famen-
nian Pilot Shale (PL) in the Pahranagat Range, near Alamo
in southern Nevada (Table 1). Multiple thin sections were
cut and used to conduct petrographic study on the sampled
intervals (see supplementary file stratigraphy and petrogra-
phy, Figure S1).

3.2. U-Pb Geochronology. Samples were processed and mea-
sured using the method outlined in Mathews and Guest [41].
We measured up to 300 grains per sample. Isotopic ratios
were calibrated using FC-1 [42], and four reference materials
with ages ranging from Neoarchean to Paleogene were used
to validate the results. Data reduction was performed in
iolite (V2.5; [43]) using the VisualAge data reduction
scheme [44]. Data were filtered using a probability of con-
cordance algorithm [41, 45, 46]. Grains yielding a probabil-
ity of concordance < 1% were removed from the dataset. The
206Pb/238U ratio was used for grains yielding dates < 1500
Ma, and the 207Pb/206Pb isotopic ratio was used for grains
yielding dates > 1500Ma because numerous authors have
noted that 206Pb/238U dates yield lower uncertainties for
younger dates on average, whereas 207Pb/206Pb dates yield
lower uncertainties for older dates (e.g., [41, 46, 47]). More-
over, for a large number of measurements, Spencer and

Kirkland (2016) noted that the optimum cutoff between
the 206Pb/238U and 207Pb/206Pb isotopic systems was
1500Ma (see supplementary file method setup).

4. Results

To provide a framework for the interpretation and discus-
sion of the DC provenance patterns in western Laurentia,
samples were grouped into detrital zircon facies (DZ facies)
based on similarities in the relative proportions of their
major zircon subpopulations. A DZ facies is defined as large
bodies of genetically related rocks that exhibit reproducible
detrital zircon age distributions due to similarities in the
rock’s source regions, mixing, and homogenization of sedi-
ments in the depositional system [48]. Detrital zircon facies
are not restricted to single formations, and each facies can be
found in samples from several formations [34]. Visual
inspection of normalized probability density plots was used
to divide the detrital zircon populations into three DZ facies.
This was done based on grouping of samples and integration
of their known geographic distribution and studied forma-
tions (Figure 4). A summary of results is found in Table 2.

DZ facies 1 occurs in southern Nevada. It comprises
samples from the Upper Devonian Pilot Formation (PL-1,
n = 144; mode 1430Ma). This DZ facies displays a dominant
DZ subpopulation of 1460-1320Ma with subordinate sub-
populations of 1900-1600Ma and 1000-1020Ma and minor
440 to 348Ma. The youngest grain in this population is
348 ± 12:1Ma and is close to the depositional age of the
sample.

DZ facies 2 is found in northeastern Nevada. It com-
prises samples of the Upper Devonian Webb Formation
(WB: n = 166; mode 1030Ma) and Lower Carboniferous
Melandco Formation (MO: n = 218; mode 1822Ma)
(Figure 4). This DZ facies is marked by one main population
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Figure 3: Ages, biostratigraphic zones, lithostratigraphic units, and stratigraphic locations of detrital zircon samples in this study.
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of 2000-1740Ma with minor 1250-1000Ma, 490 to 392Ma,
and 3000-2500Ma populations. The youngest grain, at
392 ± 11:6Ma, is older than the depositional age.

DZ facies 3 is found in southwestern Alberta and south-
western Montana. It contains samples from the Exshaw,
Sappington, and Banff formations: EX (n = 105; modes
407Ma and 1025Ma), SP-1 (n = 193; modes 421Ma and
1006Ma), SP-2 (n = 134; modes 432Ma and 1046Ma), and
BF (n = 47; mode 411Ma and 1230Ma) (Figure 4). This
DZ facies is marked by three main populations of 480-
370Ma, 1250-940Ma, and 1500-1400Ma with scattered
3000-2500Ma grains. See supplementary material Table
DR1 for the full dataset.

5. Interpretation

5.1. Detrital Zircon Facies Distribution. Comparison of the
DZ facies from the DC strata of western Laurentia reveals
five major detrital zircon subpopulations that vary in prom-
inence based on their geographic location along a north-
south transect (Figure 5): (1) the Archean subpopulation

(3000-2500Ma) is found in all the DZ facies in all samples
in variable but low (<10%) proportions; (2) Paleoproterozoic
(ca. 2000-1.600Ma; mode at 1823Ma) is found in northern
Nevada and as a secondary peak in southern Nevada;
(3) Early Mesoproterozoic (ca. 1500-1300Ma; mode at
1430Ma) is found in southern Nevada; and then (4) Meso-
proterozoic to Early Neoproterozoic (ca. 1250-950Ma; mode
at 1036Ma) and (5) Ordovician-Silurian to Devonian (ca.
440-351Ma, mode at 392Ma) are both found mainly in
central western Laurentia (Alberta and Montana). Those
two subpopulations also can be found in south and northern
Nevada. Relative proportions of these major populations are
discussed below and are used to interpret Devonian to
Carboniferous provenance patterns (Table 2).

5.2. Geological Provinces of Laurentia. Proterozoic and
Archean aged geological provinces of Laurentia provide dis-
tinguishable crustal fragments with distinctive DZ ages (e.g.,
[49]). Most DZ in the mid-Devonian to mid-Mississippian
Kaskaskia sequence ultimately derive from these two crystal-
line sources (Figure 6). Grains older than 2500Ma in all the
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DZ facies are consistent with ultimate sources in the Hearne,
Wyoming, and Superior provinces and Mojavia that form
the oldest rocks of the Laurentian craton [49, 50]. Zircon
grains yielding dates between 2400Ma and 1800Ma derive
from Proterozoic orogenic belts and the associated accreted
terranes that stitch together the Archean cratonic provinces.
Late Paleoproterozoic grains between 2000 and 1600Ma
(mode 1800Ma) derive from a collage of Proterozoic oro-
genic provinces and their associated accreted terranes. In
DZ facies 1 and DZ facies 2, grains yielding dates between
1800Ma and 1600Ma associated with grains yielding
1480–1340Ma with a prominent Mesoproterozoic mode at
1430Ma mode indicate provenance from the Yavapai and

Mazatzal provinces to the south and the extensive A-type
plutons that intrude them [51]. In DZ facies 1, zircon grains
yielding dates between 1250Ma and 1000Ma are indicative
of Grenville terranes that bounded Laurentia to the east
and south as a record of the assembly of the supercontinent
Rodinia. The Grenville orogen and associated foreland
deposits and arcs of southern and eastern North America
(Figure 6) were only a significant easterly sediment source
for WL throughout the Neoproterozoic [14, 51, 52] prior
to the uplift of the Transcontinental Arch (TCA) [53]. Neo-
proterozoic to early Paleozoic detrital zircons (600-500Ma)
are found and derive from rifting and magmatism. The latter
grains are associated with crustal thinning during deposition
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Figure 5: Normalized probability density plots of detrital zircon facies from DC strata of western Laurentia.
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of the Windermere Supergroup and the development of the
western Laurentian passive margin in the latest Neoprotero-
zoic to Cambrian. Mid-Paleozoic grains (380-340Ma) are
close to depositional ages and indicate derivation from
volcanic arcs in or near Laurentia.

5.3. Role of Recycling. Owing to the refractory nature of
sand-sized detrital zircon grains and their ability to survive
multiple cycles within sedimentary systems while retaining
U-Pb crystallization ages as a record of their ultimate
sources, recycling of detrital zircon through sedimentary
systems should be considered the primary sourcing mecha-
nism for Paleozoic strata (e.g., [54–56]). In western Lauren-
tia, Proterozoic and lower Paleozoic siliciclastic successions
are major detrital zircon reservoirs and are marked by detri-
tal zircon facies that are found in unique geographical
regions reflecting proximity to the major tectonic provinces
of Laurentia [57]. Overall, the western margin of Laurentia is
marked by detrital zircons derived from older successions
with a north-south variation in detrital zircon facies—yet
east-west continuity [34]. Below we examine the south to
north detrital zircon distribution and their sources.

5.4. Southern Nevada: DZ Facies 1. The overall DZ age signa-
ture (dominant age peak of 1430Ma with subordinate ca.
1050Ma and 1800Ma) of the Pilot Formation suggests
mixed but local sourcing into the Pilot Basin during the Late

Devonian and Early Carboniferous. Proximal sourcing is
further indicated by the textural and mineralogical immatu-
rity (poorly sorted lithic arenite) of the Pilot Formation
sandstones (Figure 7) (see supplementary file stratigraphy
and petrography, Figures S1A and S1B). Recycling of lower
Paleozoic strata of southwestern Laurentia and possible
sourcing from Pikes Peak batholith [58] and/or other as-
yet unidentified similar age plutons in the region seem to
be the dominant processes of sediment delivery into the
Pilot Basin. Except for the mid-Paleozoic grains, the Pilot
sandstone has similar detrital zircon spectra to Cambrian
strata to the east and northeast: the Flathead Sandstone of
southernmost Wyoming, the Tapeats Formation of Nevada
[34], the Pikes Peak batholith in Colorado, and the
Prospect Mountain Formation in western Utah [19]
(Figure 7). Recycling of Cambrian strata also explains the
occurrence of grains with Grenvillian ages (1250-1000Ma)
in the Upper Devonian and Lower Carboniferous strata.
Throughout the early to mid-Paleozoic, Cambrian strata
were a considerable reservoir for these ages along with
the Yavapai-Mazatzal (1600-1800Ma) provinces and
midcontinent granite (1400Ma) ages after the uplift of the
TCA that blocked the direct transport of Grenvillian grains
to WL [52, 59]. The 440 to 348Ma grains are consistent
with ages found to the west in eastern Klamath rocks in
Northern California and are suggested to be derived from a
mid-Paleozoic to Late Devonian volcanic arc to the west [22].

Eastern rift basins 

> 
0.

78
 G

a
W

in
de

rm
er

e s
up

er
gr

ou
p

1000 Km

 Juvenile orogens and arcs
 2.0 –1.8 Ga 

Juvenile crust and arcs
1.72 –1.65 Ga 

 Mojavia
> 2.5 Ga & 1.72–1.68 Ga 

1.3–0.95 Ga Granitoides

Figure 6: Simplified map locations of the main Archean through Neoproterozoic basement features of Precambrian North America
(Laurentia). Figure modified after Whitmeyer and Karlstrom [49] and references therein. The pink dashed line is showing the location of
the Transcontinental Arch (TCA). Yellow circles show the approximate location of collected samples in this study.

9Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/9585729/5633758/9585729.pdf
by guest
on 16 December 2022



5.5. Northern Nevada: DZ Facies 2. The youngest ages in DZ
facies 2 are Silurian (419:8 ± 18:4Ma) and Early Devonian
(392 ± 11:6Ma) (Figure 5). These ages predate the deposi-
tional ages of the Webb and Melandco formations by ~40
to 60Myr. DZ facies 2 is strikingly similar to results from
lower Ordovician Valmy and Eureka formations in North-
ern Nevada [60, 61], Carboniferous deposits from northern
Nevada (Battle and Tonka formations [60]), and southern
Idaho (Copper Basin Group and Salmon River Formation
in the Pioneer Mountains of Idaho [11]) (Figure 8). This
suggests that DZ signatures of the Webb and Melanco
formations (DZ facies 2) likely reflect recycling of lower
Paleozoic strata since the latest Devonian and lasted
throughout the Carboniferous. Recycling of Paleozoic strata
from the south and to the east is less likely because of lack of
ca. 1430Ma ages characteristic of the Cambrian strata in the
area (e.g., [19, 34, 61]) (Figure 8). Uplifted pre-Cambrian
and Cambrian strata on the western flank of the Transconti-
nental Arch are expected to supply the basins to the
west with ca. 1400Ma grains, a characteristic signature of
the midcontinent magmatic province (1340-1480Ma) [51].

Sourcing from the north would imply that northern Nevada
and southern Idaho strata should have similar DZ signatures
to DZ facies 3 in Alberta and Montana which is not the case
(Figure 5). In the vicinity of our study area, Upper Devonian
sediments of the Pioneer Mountains in Idaho are character-
ized by DZ spectra similar to DZ facies 2 and are marked
by evolved Hf isotopes [11]. It has been suggested that
sediments in the area were derived from the erosion of a
Paleozoic arc built on Proterozoic crust [10]. Paleoprotero-
zoic (2000-1800Ma) and Ordovician to Devonian ages
(380-480Ma) are found to have Yreka and Trinity subter-
ranes of the eastern Klamath terrane’s assemblage (Gazelle,
Duzel, and Sissel Gultch formations) to the west of our study
area [22] suggesting that these could be source terranes for
Silurian to Devonian grains in DZ facies 2. Conglomerate
and arenite samples in this study consist of poorly sorted
sandstone indicating proximal sourcing. A plausible source
of DZ facies 2 grains is uplifted Paleozoic strata to the west
of the basin, implying westerly sourcing. Yet the lack of syn-
depositional zircons in DZ facies 2 is enigmatic. This suggests
that the basin was far from the arc or on the opposite side of
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the basin from the arc (e.g., [11]). However, ash transport of
zircon from the arc could have supplied the basin with near-
depositional age grains. This processes have been suggested
to bring abundant near-depositional age grains to the Upper

Cretaceous in the Alberta basin from the Coast Mountains
Batholith 500 km to the west [62]. It is possible that ash was
not preserved or in the Late Devonian, wind patterns
diverted ash clouds away from the Pilot basin.
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5.6. Alberta and Montana: DZ Facies 3. Occurrences of
bentonite (altered volcanic ash) beds in the Exshaw, Banff,
Sappington, and Lodgepole formations [63] and reported
ultramafic intrusions from northeastern British Columbia
dated to 365:9 ± 2:1Ma, 359:4 ± 3:4Ma, and 353:3 ± 3:6Ma
[64] suggest a convergent margin setting in northwest
Laurentia (e.g., [5, 6, 64]) during this time. DZ facies 3
found in the Exshaw, lower Banff, and Sappington forma-
tions displays dominant ages between ca. 440 and 360Ma
with a subordinate population of ca. 1250-1000Ma and
some grains that overlap with depositional ages at ca. 360-
340Ma. Occurrence of Grenville orogen ages (ca. 1250–
1000Ma) in DZ facies 3 spectra suggests that these deposits
were not recycled from local Laurentia passive margin
sequences such as upper Neoproterozoic and Cambrian
strata to the east which prominently exhibit 1800Ma age
peak [20, 34] (Figure 9). Limited amount of 1800–1600Ma
(Yavapai-Mazatzal) and 1480–1340Ma (midcontinent
granite-rhyolite) grains suggests the unlikelihood of sourc-
ing from the south, where Grenvillian ages are found in
Cambrian and Precambrian strata (e.g., [14, 61, 65]).
Sourcing from the north is a possibility but unlikely.
Workers have suggested that during the latest Devonian
and throughout the Carboniferous, sediments were shed
from the Arctic southward and westward by marine and
pan-continental terrestrial transport systems [17, 66] based
on occurrence of Grenvillian ages in the Carboniferous
strata such as the Mattson delta complex of Yukon,
northwestern Canada. Ellesmerian foreland strata in the
Canadian Arctic Islands recorded the erosion of terranes
and accreted arcs along northern Laurentia with northern
Caledonian crustal affinities [16] (Figure 9) and therefore
contain Silurian to Devonian ages (ca. 440 to 386 ± 13Ma)
and Genvilian ages [67]. We argue against the provenance
from the Arctic because of the paucity of the 700-500Ma
population in DZ facies 3. With modes at ca. 1036Ma and
418Ma, DZ facies 3 contrasts with ages obtained from
Upper Devonian Ellesmerian strata, which exhibit a strong
ca. 536Ma mode and a dominant 500-700Ma population
in the western part of the Canadian Arctic Islands and
Northwest Territories of Canada [12] (Figure 9). Addition-
ally, northerly sourcing calls for detrital zircon transport
from the Canadian Arctic down to southern Alberta and
Montana over 2000-3000 km. Such transport distance
would have thoroughly reworked the sediments of the
Exshaw, Sappington, and Banff formations. Yet the detrital
material of these formations is moderately immature
mineralogically and texturally (see supplementary file
stratigraphy and petrography, Figures S1C and S1D) with
considerable amount of feldspar and lithic fragments
suggesting more proximal sourcing.

Westerly sourcing is a plausible hypothesis because the
Mesoproterozoic detrital zircon grains hosted by older strata
occur in the west and do not require transport from a long
distance source. There are abundant potential recycled
sources of detrital zircon with Grenvillian ages (1250-
1000Ma) in the cordillera that extend from Washington
through southern to northern British Columbia (BC) such
as Neoproterozoic rift deposits of the Toby Conglomerate

in eastern BC [20] and the lower Neoproterozoic Buffalo
Hump sandstone of Washington [68] (Figure 9). 1300–
1000Ma ages were reported from Yukon, located to the
northwest of our study, as record of late Mesoproterozoic
metamorphism and magmatism in the crust beneath north-
ern Yukon [69]. Moreover, Grenvillian ages also occur in the
older Devonian strata such as the Sassenach Formation of
the Jasper Basin in the Alberta Rocky Mountain fold-and-
thrust belt [8]. Detrital zircon close to depositional ages
between ca. 359 ± 10Ma and 340 ± 6:6Ma in DZ facies 3
(this study) is interpreted to reflect a provenance from a
Devonian to Carboniferous active nearby volcanic arc to
the west. A suspect source terrane with a Mesoproterozoic
basement and a Paleozoic arc might have been present along
the outboard edge of the Canadian Cordilleran margin (e.g.,
[11, 62, 70]). The younger ages of DZ facies 3 match ages
found in the mid-Paleozoic Chilliwack arc terrane in
northwestern Washington or the Devonian plutons of the
Yukon-Tanana terrane. Both the Chilliwack and Yukon-
Tanana terranes display Paleozoic arc ages with a strong
signature of Paleoproterozoic basement (ca. 1800Ma mode)
[71, 72]. However, the Chilliwack composite terrane displays
1250-1000Ma ages found in DZ facies 3 (absent in Yukon-
Tanana terrane) and 500-400Ma, with a pre-Devonian
high-grade metamorphism and plutonism [71]. This sug-
gests that the Chilliwack terrane or a terrane of similar geol-
ogy might have been the suspect source of these westerly
derived sediments.

6. Discussion

6.1. Paleogeography and Existing Models for the Antler
Orogeny. The history of Western Laurentia seems to be
marked by alternation of tectonic pulses and quiescence
since the middle Paleozoic [5]. Beyond the limit of the
Robert Mountain allochthon, the geological setting of the
Devonian to Carboniferous interval of western Laurentia is
still unclear. However, geological evidence suggests that the
margin had evolved into a convergent setting by the Devo-
nian (e.g., [73]). Overall, occurrence of syn-depositional
age peaks around ca. 360-340Ma, ash beds in the Exshaw,
Banff, and Lodgepole formations, plutons in northeastern
BC (e.g., [6]), recognized mid-Paleozoic deformation and
metamorphism, sediment-hosted sulfide deposits (e.g.,
[2, 74, 75]), and regional unconformities support the evi-
dence of syn-depositional volcanism connected to a subduc-
tion complex and tectonism to the west. Our sediment
provenance study results are consistent with a convergent
plate setting along western Laurentia, whereby a sediment
source shifted from easterly during the Neoproterozoic to
mid-Paleozoic [20, 34], to westerly during the Late Devonian
to Early Carboniferous. These source areas might have been
part of the so-called Antler hinterland. Combined with
uplifted Laurentian strata, these westerly positioned source
areas supplied an Antler foreland basin with sediments derived
from erosion of older strata (e.g., [8, 57, 60, 61, 71, 76]). Evi-
dence for westerly derived sedimentation is less prominent
in southwestern Laurentia (southern Nevada) with domi-
nant source areas located to the east relatively to central
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WL (Alberta and Montana and northern Nevada) where
most source areas are located to the west (Figure 6).
However, Silurian to Devonian detrital zircon ages (ca.
400-390Ma) are present in southern Nevada. This might
indicate that the Pilot basin of southern Nevada was located

near the eastern edge of the foreland basin or beyond the
extent of the Antler orogen.

6.2. Origin of the Antler Terranes. While the mid Paleozoic
tectonic setting and dislocation history of terranes and
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associated orogenies including the Antler orogeny fits within
the context of this work, the origin of terranes involved in
the Antler orogeny is beyond the scope of this study. Based
on our demonstration of westerly sourcing of sediments to
western Laurentian basins during the DC, we support a late
Paleozoic convergent setting for western Laurentia. We only
examined existing models in a conservative manner (e.g.,
[13, 22, 28]) (Figure 10). In the south, the RMA might be a
mix of cratonic western Laurentian and exotic arc prove-
nance [9, 22]. In central Laurentia, early generally accepted
models hypothesized that the terranes consisted of pericra-
tonic extensive magmatic arcs and associated fringing basins
(e.g., [77]). However, recent studies suggest that early
Paleozoic arc terranes that are found in today’s California,
Washington, British Columbia, and Alaska might have
originated in the Arctic region of Laurentia, Baltica, or the
Caledonides (e.g., [7, 11, 13, 29, 78]). Some of these terranes
(e.g., YTT and Chilliwack) have detrital zircon populations
with mid-Paleozoic ages partially similar to our DZ facies,
and ostensibly they might be contributing source areas.
Thus, we agree with workers favoring the Baltican origin
for terranes bounding North America such as the Northwest
Passage of Colpron and Nelson (2009) (e.g., [11, 61, 78])
(Figure 10).

7. Conclusion

(i) We show that the distribution of detrital zircon
facies in the Devonian to Carboniferous strata of
western Laurentia indicates north-south differ-
ences in detrital zircon facies, yet these facies have
consistent character along east-west transects. This

indicates that during the Late Devonian to Car-
boniferous, western Laurentia basins were locally
sourced from various tectonic fragments with dif-
ferent signatures

(ii) In southern Nevada (southwestern Laurentia), strik-
ing similarities between the results of this study and
detrital zircon data from Neoproterozoic and Cam-
brian strata in Nevada suggest that lower Paleozoic
strata were recycled from the east with an input
from an Ordovician-Devonian arc to the west

(iii) In northern Nevada (southcentral western Lauren-
tia), comparison of our data with detrital zircon data
from lower Paleozoic strata in Idaho and northern
Nevada suggests that Devonian-Carboniferous (DC)
strata were recycled from uplifted lower Paleozoic
strata to the west with an input from an Silurian-
Devonian arc to the west

(iv) In Alberta and Montana (central western Lauren-
tia), Devonian to Carboniferous strata display
dominant 440-360Ma zircon age populations with
Grenvillian ages between 1250 and 1000Ma and
some near depositional ages around ca. 360-
340Ma. These ages support the model of westerly
sourcing of recycled uplifted Neoproterozoic strata
yielding Mesoproterozoic and older detrital zircon
with contribution of an active Antler volcanic arc
to the west

(v) Coupled with other geological evidence such as
occurrences of ash beds and lithological character
of DC strata, DC plutonic and volcanic activity,
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Devonian high-grade metamorphism and deforma-
tion, and paleomagnetic data from various studies
in the Cordillera, the findings of this study suggest
that the Antler orogeny triggered a depositional
shift to clastic sedimentation and controlled the
sediment dispersal in western Laurentia during the
Late Devonian and Early Carboniferous
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