
Methods for Automated Creation and
Efficient Visualisation of Large-Scale

Terrains based on Real Height-Map Data

Kurt Kühnert

November 2022

A thesis submitted to the University of Technology Chemnitz in partial
fulfillment of the requirements for the degree of Bachelor of Science in

Computer Science.

Kurt Kühnert: Methods for Automated Creation and Efficient Visualisation of Large-Scale Terrains based
on Real Height-Map Data (2022)

cb This work is licensed under a Creative Commons Attribution 4.0 International License. This
license does not apply to the logo of the Chemnitz University of Technology and the Professorship
of Computer Graphics and Visualization as well as the figures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,
2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Contact: kurt@kuehnert.dev

The work in this thesis was carried out in the:

Professorship of Computer Graphics and Visualization
Chemnitz University of Technology

Supervisors: Prof. Dr. Guido Brunnett
M. Sc. Tom Uhlmann

http://creativecommons.org/licenses/by/4.0/

iii

Abstract

Real-time rendering of large-scale terrains is a difficult problem and remains an active field of re-
search. The massive scale of these landscapes, where the ratio between the size of the terrain and
its resolution is spanning multiple orders of magnitude, requires an efficient level of detail strat-
egy. It is crucial that the geometry, as well as the terrain data, are represented seamlessly at vary-
ing distances while maintaining a constant visual quality. This thesis investigates common tech-
niques and previous solutions to problems associated with the rendering of height field terrains
and discusses their benefits and drawbacks. Subsequently, two solutions to the stated problems
are presented, which build and expand upon the state-of-the-art rendering methods. A seam-
less and efficient mesh representation is achieved by the novel Uniform Distance-Dependent
Level of Detail (UDLOD) triangulation method. This fully GPU-based algorithm subdivides a
quadtree covering the terrain into small tiles, which can be culled in parallel, and are morphed
seamlessly in the vertex shader, resulting in a densely and temporally consistent triangulated
mesh. The proposed Chunked Clipmap combines the strengths of both quadtrees and clipmaps
to enable efficient out-of-core paging of terrain data. This data structure allows for constant time
view-dependent access, graceful degradation if data is unavailable, and supports trilinear and
anisotropic filtering. Together these, otherwise independent, techniques enable the rendering of
large-scale real-world terrains, which is demonstrated on a dataset encompassing the entire Free
State of Saxony at a resolution of one meter, in real-time.

Keywords: Terrain Rendering, UDLOD, Chunked Clipmap, Level of Detail, Height Field, GPU

v

Acknowledgments

I would like to express my gratitude to my primary supervisor, Prof. Dr. Guido Brunnett, for ac-
cepting this ambitious topic. Also, I greatly appreciate the helpful and responsive communication
I have had with my secondary supervisor, Tom Uhlmann, who guided me through this project.

I am also grateful to my friend and fellow student Richard Wolf, who wrote his own bachelor
thesis simultaneously, for our countless exchanges of ideas, for your help, and for your feedback
on numerous revisions of this project.

Very special thanks to the Bevy community, for your friendly and open nature, to the countless
people contributing to this project voluntarily, and to the ones who motivated and shared their
knowledge with me. I would not have learned as much over the last year without you. The plugin
developed as part of this thesis is dedicated to you.

Thanks to Nicola Papale and robtfm for reviewing my thesis and giving me valuable feedback.

I would also like to thank my friends and family who supported and motivated me. Special
thanks to my parents for funding me during my studies.

Immense gratitude to Nathalie, my fiancée, for your patience and support.

vi

Contents

Abstract iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Goal of this Thesis . 2

2 Terminology 3
2.1 Triangulation . 3

2.1.1 Regular Grids . 4
2.1.2 Triangulated Irregular Networks . 4
2.1.3 Right-Triangulated Irregular Networks . 4

2.2 Level of Detail . 5
2.2.1 Discrete Level of Detail . 5
2.2.2 Continuous Level of Detail . 6
2.2.3 Multi-resolutional Level of Detail . 6
2.2.4 Level of Detail Morphing . 8

2.3 Visibility Culling . 9
2.3.1 View Frustum Culling . 9
2.3.2 Backface Culling . 9
2.3.3 Z-Buffering . 10
2.3.4 Occlusion Culling . 10

2.4 Hardware Tessellation . 10
2.5 Terrain Data . 11

2.5.1 Quadtree . 12
2.5.2 Clipmap . 12

2.6 Real-World Data . 14
2.6.1 Digital Elevation Model (DEM) . 14
2.6.2 Digital Orthophoto (DOP) . 14

3 Previous Work 15
3.1 Real-time Optimally Adapting Meshes (ROAM) . 16
3.2 Geometrical MipMapping (GeoMipMap) . 16
3.3 Chunked Level of Detail . 17
3.4 Geometry Clipmaps . 18
3.5 Persistent Grid Mapping (PGM) . 19
3.6 Continuous Distance-Dependent Level of Detail (CDLOD) 20
3.7 Far Cry 5 Terrain Renderer . 21
3.8 Concurrent Binary Trees (CBT) . 23

vii

4 A Novel Terrain Rendering Method 25
4.1 The Ideal Terrain Renderer . 25
4.2 Evaluation of existing Literature . 26

4.2.1 Implementation - CPU vs GPU . 26
4.2.2 Triangulation - Regular Grids vs TIN vs RTIN 26
4.2.3 Level of Detail - Continuous vs Multi-resolutional 27
4.2.4 Terrain Data - Quadtree vs Clipmap . 27

4.3 Method Overview . 28
4.4 Uniform Distance-Dependent Level of Detail (UDLOD) 28

4.4.1 Tiling Prepass . 29
4.4.2 Tile Culling . 29
4.4.3 Drawing the Tiles . 30
4.4.4 Tile Morphing . 31

4.5 Chunked Clipmap . 31
4.5.1 Structure of a Chunked Clipmap . 31
4.5.2 Approximatig the Distance to the Viewer . 33
4.5.3 Accessing the Terrain Data . 34
4.5.4 Texture Filtering for Chunked Clipmaps . 35
4.5.5 Layer Blending . 36
4.5.6 Node Preprocessing . 37
4.5.7 Updating the Chunked Clipmap . 38

5 Implementation 39
5.1 Terrain Geometry . 40

5.1.1 Tile Refinement . 40
5.1.2 Tile Frustum Culling . 41
5.1.3 UDLOD Vertex Shader . 42

5.2 Terrain Data . 43
5.2.1 Multiple Terrain Attachments . 43
5.2.2 Blending . 43
5.2.3 Sampling and Filtering . 44
5.2.4 Normal Calculation . 45

6 Results 47
6.1 Saxony Terrain Data . 48
6.2 Configuring the Chunked Clipmap . 49
6.3 Configuring the Uniform Distance-Dependent Level of Detail 51
6.4 Evaluation of the Terrain Rending Method . 53
6.5 Final Benchmark . 54

7 Conclusion and Future Work 55
7.1 Contributions . 55
7.2 Future work . 56

Acronyms 58

Appendix 59

Additional Material 61

References 63

Chapter 1. Introduction 1

Chapter 1
Introduction

Large-scale three-dimensional terrain rendering is becoming an increasingly popular and impor-
tant feature in modern game, visualization, and graphic engines. Many applications, like rac-
ing/flight simulations or open-world games, are heavily reliant on this technique, for an immer-
sive and realistic experience. Not only does the entertainment industry incorporate terrain ren-
dering into their products but also geographical information systems (GIS), as well as city or con-
struction planning tools, are using it. With the ever-increasing performance of consumer devices,
it is becoming more and more common to integrate a real-time 3D representation of real-world
landscapes into applications. This trend is becoming especially interesting with the possibility of
displaying terrains on the web and in virtual reality, which will open up a multitude of new use
cases, in the near future.

Because of these different fields of application, there has been immense interest in improving real-
time terrain rendering since the advent of computer graphics. That is why many different meth-
ods of handling and visualizing those giant datasets have been developed over the last decades.

1.1 Problem Statement

Large-scale terrains are commonly represented as large two-dimensional textures, where each
pixel stores the terrain’s properties at the corresponding position. These properties may include
the terrain’s height and normal, but albedo or texturing information is also required by specific
applications.

The brute force rendering method of assigning a vertex to each of the texels quickly surpasses
the rendering capabilities of even modern hardware. Additionally, depending on the size and
resolution of the terrain those textures usually exceed the capacity of random access memory
(RAM) and video random access memory (VRAM), which is why an efficient out-of-core (OOC)
level of detail (LOD) system is crucial for real-time terrain rendering.

2 1.2. Goal of this Thesis

This introduces two problems, which need to be solved.

Terrain Geometry Firstly, it is important to find a view-dependent mesh approximation of the
loaded data that strikes a good balance between the triangle count, the quality (screen-space er-
ror), and the effort to compute and maintain this tessellation.

Terrain Data Secondly, the terrain data has to be streamed and managed, adaptive to the view-
point. It is especially important that this data represents the terrain at any distance equally well
and that it can be used for seamless high-quality texturing.

In recent years many solutions to these two problems have been developed, some of which tackle
both issues in tandem while others are focusing on only one of those concerns.

1.2 Goal of this Thesis

In this bachelor thesis, the author will explore and give a brief overview of the terminology and
general ideas of the problem space of large-scale real-time terrain rendering. The reader is ex-
pected to be familiar with the basics of computer graphics and the modern graphics pipeline.
This is followed by a survey of a selection of different existing methods used to render height
field terrain in real-time. Afterward, the author describes and presents two novel solutions to
the aforementioned problems, as well as details about their implementation and their perfor-
mance. A seamless and efficient mesh representation is achieved by the novel Uniform Distance-
Dependent Level of Detail (UDLOD) triangulation algorithm. Additionally, the data structure
named Chunked Clipmap is responsible for adaptively streaming and providing the terrain data
inside the application.

This thesis is limited to terrain rendering using rasterized height fields only, although other tech-
niques exist, such as ray casting, cube marching, or voxel rendering.

Chapter 2. Terminology 3

Chapter 2
Terminology

Before the existing terrain rendering algorithms can be examined, some common terminology has
to be established. Both the triangulation and the level of detail (LOD) are crucial for approxi-
mating the mesh geometry, although they can not be strictly separated from each other, they can
be classified into different categories. In addition, visibility culling plays an important role in
optimizing the rendering of said geometry and will be examined in Section 2.3. Furthermore,
hardware tesselation, and terrain data management are important prerequisites for surveying
specific terrain rendering methods. Finally, a brief overview of the origin of real-world terrain
data is presented in this chapter.

2.1 Triangulation

The terrain’s surface must be represented by triangles, because they are the fundamental primitive
of meshes in graphics application programming interfaces (APIs). The three most common meth-
ods for dividing a plane into triangles are regular grids, triangulated irregular networks (TINs)
and right-triangulated irregular networks (RTINs) [1], as seen in Figure 2.1.

Figure 2.1: A comparison between a TIN on the left, a RTIN in the middle, and a regular grid on
the right. (taken from [1])

4 2.1. Triangulation

2.1.1 Regular Grids

Regular grid subdivision [2] is arguably the simplest method of terrain triangulation. It subdi-
vides the plane into a grid consisting of multiple uniform squares, which are then in turn split
into two triangles. Subsequently, each vertex is then displaced by the terrain’s height value. This
step can either be accomplished in a preprocessing step, or it can be performed at runtime in the
vertex shader, by fetching the value from the height map of the terrain.

2.1.2 Triangulated Irregular Networks

Contrary to regular grids - triangulated irregular networks (TINs) [2] distribute their vertices
inside the plane in such a way, that the surface of the terrain is approximated optimally when
the vertices are displaced by the height value. This can drastically improve the vertex count,
compared to the uniform distribution, while keeping the visual fidelity nearly the same. The
major drawback of TINs is the computationally expensive preprocessing required to generate
them.

2.1.3 Right-Triangulated Irregular Networks

Other hybrid triangulation schemes mixing those two methods exist as well. These often reduce
the preprocessing cost, while giving up only a marginal amount of accuracy.

One such triangulation scheme, often used for terrain rendering, is the right-triangulated irreg-
ular network (RTIN) [3] also known as triangle bintree [4]. The basic idea of this triangulation
is the recursive subdivision of triangles alongside their longest edge, provided that they do not
meet the lower bound of an error metric. A comparison between a uniform and an adaptive sub-
division can be seen in Figure 2.2. This subdivision is referred to as longest edge bisection (LEB)
and can be considered a constraint on the TIN triangulation. Due to their regular nature, the LEB
subdivision can be computed in parallel, as will be discussed in Section 3.8.

Figure 2.2: A comparison between a uniform and an adaptive recursive subdivision of a triangle
alongside its longest edge. (taken from [3])

Chapter 2. Terminology 5

2.2 Level of Detail

Level of detail (LOD) algorithms [5] are performance optimizations. They select the complexity
of an object depending on its contribution to the final image. The applications of these algorithms
are vast and they can be utilized for textures and meshes alike.

To decide which LOD to use for rendering, multiple different error metrics can be chosen [5].
The simplest way is to select the level based on the distance to the camera on a logarithmic scale.
Another more involved method is to measure the perceived error of the simplification in screen
space, called the screen-space error.

2.2.1 Discrete Level of Detail

The traditional approach to LOD is called discrete level of detail (DLOD) [5]. As the name
implies, the DLOD method renders the objects as one of multiple separate simplification steps.
This is most commonly used for meshes, that have their simplifications precomputed, which are
then dynamically chosen at runtime, as seen in Figure 2.3.

Figure 2.3: Four discrete levels of detail of the bunny mesh.
(taken from http://robbinmarcus.blogspot.com/p/thesis.html)

If the screen-space error between two adjacent LODs is not small enough to be imperceptible,
the substitution of one object for the other will result in a visible popping artifact [5]. These
undesirable discontinuities in video quality may be mitigated by alpha blending between the
two levels, as depicted in Figure 2.4. Therefore the object is rendered at both LODs for a couple
of frames, while the alpha value of the previous level fades to zero and that of the other fades to
one. This smoothens the LOD switch but results in a higher render cost because the object has to
be rendered twice during the duration of the transition.

Figure 2.4: Two discrete levels of detail are interpolated using alpha blending.
(taken from https://en.wikipedia.org/wiki/Popping_(computer_graphics))

http://robbinmarcus.blogspot.com/p/thesis.html
https://en.wikipedia.org/wiki/Popping_(computer_graphics)

6 2.2. Level of Detail

2.2.2 Continuous Level of Detail

Terrains are commonly the largest object in a scene. They can span thousands of square kilome-
ters but are covered with centimeter-sized details. Fortunately, the perspective projection of the
camera compensates for the size differences, between different features, by making objects appear
smaller, the further they are away from the viewer. The required screen-space detail of an object is
inversely proportional to the distance between itself and the camera. Utilizing this characteristic
for terrain rendering LOD solutions is crucial for meeting performance and memory constraints
[6]. This implies that the terrain should not be represented by a single static mesh. Rather it
should be updated continuously or stitched together from multiple smaller tiles of various reso-
lutions and sizes. This thesis will refer to the former as continuous level of detail (CLOD) and to
the latter as multi-resolutional level of detail (MLOD) from now on.

The notion of CLOD has multiple meanings in computer graphics literature. For one it simply
describes level of detail (LOD) algorithms, that do not create individual discrete versions in a
preprocess, but instead derive their representation from an algorithm-specific data structure at
runtime [7]. Other literature [5] defines CLOD as an algorithm, which achieves a smoother tran-
sition between different detail levels than DLOD, by progressively simplifying a base mesh using
vertex removals and half-edge collapses. This LOD scheme allows for fine-grained mesh simpli-
fication which can even be applied depending on the current view. In the following, this thesis
will only refer to the former when mentioning CLOD. An illustration of such an LOD method
can be seen in Figure 2.5.

Figure 2.5: Continuous LODs filled in between their discrete counterparts (LOD 1, LOD 2).
(taken from https://en.wikipedia.org/wiki/Popping_(computer_graphics))

The most common CLOD method for terrain rendering is based on the LEB triangulation scheme
mentioned previously [3, 4]. These algorithms recursively subdivide triangles covering the entire
terrain alongside their longest edge, based on the screen-space error they would cause.

2.2.3 Multi-resolutional Level of Detail

As stated previously, MLOD refers to terrain surfaces, that are stitched together from multiple
smaller tiles of various resolutions and sizes. This offers many advantages, especially with re-
gards to out-of-core (OOC) rendering [8]. Some terrain data sets can not fit into memory all at
once. They are required to be streamed in and out of VRAM. Therefore, they need to utilize OOC
algorithms, which are specifically designed to operate with only a view-dependent subset of all
terrain data.

The simplest MLOD approach is to split the terrain into fixed-size tiles, for each of which an
individual LOD is selected [1]. This allows for a better view-dependent adaptation of the terrain
than the DLOD equivalent. Compared to CLOD algorithms, the LODs of fixed-size tiles can not be
determined based on the per-vertex screen-space error. Instead, they have to be computed based

https://en.wikipedia.org/wiki/Popping_(computer_graphics)

Chapter 2. Terminology 7

on a less precise per-tile error metric. This decreases the accuracy, but in return requires far less
LOD computations speeding up the algorithm. To improve the precision, one can precompute a
local roughness map of the terrain [9]. With this, the available vertices can be distributed across
the terrain, where they are needed the most. Using this method increases the terrain’s size limit,
but due to the fixed-size nature of the tiles, they all have to be loaded at once if the entire terrain
should be visible at the same time [1]. It is also impossible to render triangles spanning multiple
tiles at once, thus the algorithm may draw too many triangles, especially in the distance, where
they may not be required.

Figure 2.6: A comparison between three MLOD methods: fixed-size blocks on the left, quadtree
subdivision in the middle, and binary tree subdivision on the right. The gray lines
illustrate the subdivisions of different LODs. (taken from [1])

Natural extensions of the tile-based idea are methods that rely on hierarchical nesting, using a
view-dependent quadtree or a binary tree, as can be seen in Figure 2.6. They are the most promi-
nent algorithms in terrain rendering literature [6, 10, 11, 12]. The tiles of the former are divided
into one or four rectangular tiles and that of the latter into one or two triangular tiles. Thus they
decrease the size of their children by four and two respectively, while quadrupling/doubling the
resolution. By utilizing this hierarchical structure, they address the major shortcoming of the
fixed-size solution: the linear correspondence between the terrain size and the total amount of
tiles.

Additionally, they are also inherently well suited for OOC rendering, due to their hierarchical
structure and the independence of their tiles. But MLOD techniques also come with one inherent
challenge - the meshes of the tiles, constituting the terrain, have to be seamlessly stitched together,
to form one continuous surface [8]. Due to varying resolution, size, or triangulation of adjacent
meshes, gaps in the geometry may arise. They are particularly distracting because they break the
surface of the terrain and instead show the background (skybox, etc.) of the scene.

Figure 2.7: Showcases the t-junction problem between two adjacent LODs on the left and a possi-
ble stitching solution on the right. (taken from [12])

8 2.2. Level of Detail

These gaps may be of two origins:

Cracks do occur when the vertices, at the edge between two tiles, do not fully align [6, 8]. This
may happen, due to differences in the resolution of adjacent regular grids or differences in the
triangulation of TINs and RTINs. For the latter, one solution constitutes the generation of the
tiles in such a way, that the edge vertices share the same positions, with their potential neighbors.
Alternatively, cracks can be masked using additional geometry, such as ribbons or skirts.

T-Junctions are a special form of gaps, commonly found in MLOD algorithms relying on reg-
ular grids [12]. As illustrated in Figure 2.7, if two adjacent tiles do not share the same LOD,
some vertices of the one with greater vertex frequency will not align with that of its neighbor.
T-junctions provide easier fixes than the general case, due to their regular nature. For example,
the stitching used in the ”Far Cry 5” terrain renderer simply shifts the position, of those vacant
vertices, to their closest neighbors.

2.2.4 Level of Detail Morphing

No matter which LOD algorithm is used, for managing the terrain geometry, at some point ver-
tices will have to be added or removed [6]. Since it is most often impossible to render a mesh
detailed enough, such that these changes are not noticeable, the previously described undesirable
pop-in artifacts will appear. To hide these usually small discrepancies, between the different ver-
sions of the mesh, there exist techniques that can animate changed vertices to move smoothly into
their new positions. This process is called vertex morphing and can be applied to many CLOD
and MLOD algorithms.

For regular grids, this technique is called geomorphing [6, 13] and works by interpolating be-
tween two regular grids, one of which possesses four times the resolution of the other. Every
vertex of the higher resolution grid that does not align with a vertex of the lower resolution one,
has to be interpolated between them, either vertically or horizontally, as seen in Figure 2.8.

(a) A grid as seen from above interpolated between two LODs. The odd vertices are morphed horizontally.
(taken from [11])

(b) An edge as seen from the side interpolated between two LODs. Every other vertex is morphed
vertically. (taken from [13])

Figure 2.8: A comparison of horizontal and vertical geomorphing.

Chapter 2. Terminology 9

2.3 Visibility Culling

Additional to LOD algorithms there exist another group of performance optimizations commonly
used in computer graphics. Visibility culling [14, 15] is the process of removing objects or aggre-
gates of primitives, which are not visible in the final image, before rendering them, as can be seen
in Figure 2.9. Culling is traditionally performed on entire meshes by the CPU and on individual
triangles after passing the vertex shader. But in recent years, with the advent of compute shaders
and indirect draw calls, the culling in major graphics engines is more and more shifted to the
GPU, due to its immense parallel processing power. In the following, the four most common
visibility culling methods will be presented.

Figure 2.9: Showcases different forms of culling. All dotted surfaces do not contribute to the
rendered image and can be culled using either view frustum, backface, or occlusion
culling. (taken from [14])

2.3.1 View Frustum Culling

View frustum culling [14] describes the process of skipping the rendering of objects or primitives,
which lie outside the view frustum of the camera and thus are not visible in the final image.
For complex geometry, a conservative approximate bounding volume is typically used to speed
up the culling. Additionally, a hierarchal structure organizing the bounding volumes called the
bounding volume hierarchy can be utilized to cull multiple objects at once. Furthermore, the
graphics pipeline incorporates clipping, a method that automatically discards triangles that lie
entirely outside the view frustum, before the rasterization stage.

2.3.2 Backface Culling

Backface culling [14] denotes methods, that omit the rendering of surfaces or triangles, which
face entirely away from the camera. This process is also automatically performed by the graphics
pipeline on a per-triangle basis after they have passed the vertex shader. Additionally, there exist
clustered backface culling algorithms, used to cull entire aggregates of triangles efficiently, by
collecting a minimal cone from their vertex normals and testing whether it faces away from the
viewer.

10 2.4. Hardware Tessellation

2.3.3 Z-Bu↵ering

In a broader sense, the visibility technique called Z-buffering [14], used to ensure that fragments
closer to the viewer properly occlude those further away, can be considered a culling method
as well. It is performed on a per-fragment basis after rasterization and compares the distance
to the camera with the current value of the z-buffer texture, which stores the depth information
of previously rendered fragments. If the fragment is further away than the previous one, it is
invisible and thus it will be discarded.

2.3.4 Occlusion Culling

Occlusion culling [14] algorithms utilize the fact that objects, entirely concealed behind other
opaque geometry, do not contribute to the rendered image as well and may be culled. Commonly,
occlusion culling algorithms are based on the following three steps. At first, a hierarchical z-
pyramid, an extension of the classic z-buffer, which is mipmapped using a maximum filter, is
generated based on some of the best occluders of the scene. For each object, which is tested for
occlusion, the bounding volume is projected into screen space and the appropriate mip level of
the pyramid is determined. Finally, the depth values of said object and the mip level are compared
and thus occlusion can be detected.

2.4 Hardware Tessellation

Since the early 2010s, a new extension to the traditional graphics rendering pipeline called hard-
ware tessellation exists [14]. As can be seen in Figure 2.10, it is a technique that can introduce
additional vertices into triangles or quads of a base mesh, depending on a customizable tessella-
tion factor, which is calculated based on supplementary surface information such as heightmaps
or curvature data.

Figure 2.10: The base mesh on the left is tessellated to different degrees on the right. (taken from
https://rastergrid.com/blog/2010/09/history-of-hardware-tessellation)

Hardware tessellation extends the pipeline with two new shader stages [14], the control shader,
and the evaluation shader as well as the fixed function tessellator sitting in between. The entire
traditional graphics rendering pipeline can be seen in Figure 2.11. The control shader operates
on so-called patches (quads, triangles, lines) and is executed after the vertex shader. Its role is to
determine the tessellation factor, which has to be calculated based on an LOD criteria, as well as
additional attributes required by the tessellator. After that, the tessellator subdivides the patches
according to the information supplied by the control shader. Finally, the programmable evalua-
tion shader is responsible for transforming the newly obtained points into vertices by applying
displacement, which is based on the surface information of the object.

https://rastergrid.com/blog/2010/09/history-of-hardware-tessellation

Chapter 2. Terminology 11

Figure 2.11: An overview of the traditional graphics pipeline. It is executed per draw call from
left to right. (taken from https://khronos.org/blog/mesh-shading-for-vulkan)

Hardware tessellation combines triangulation and LOD into one parallel hardware accelerated
approach [9]. Due to its supplementary nature and reliance on a base mesh, it is commonly
used as an optimization on an existing terrain rendering algorithm and works especially great in
combination with MLOD algorithms.

Although most modern desktop devices do support hardware tessellation, this technique is still
not available on most mobile devices and older machines. Currently, tessellation is also not part
of the specification of the WebGpu API [16], which will be used to implement the rendering tech-
niques of this thesis.

2.5 Terrain Data

Many terrain rendering papers only cover the triangulation as well as the LOD algorithm of the
geometry, but most real-world implementations must solve an additional problem: How should
the terrain data be represented? As can be seen in Figure 2.12, it is common to store additional
data [12] covering the terrain in two dimensions, such as albedo, normal, shading, and use-case-
specific information. Because this information is often not only required for rendering the terrain
itself but also in other shaders or systems, it is important to store this information in a data struc-
ture that can be easily looked up at any location. With these requirements in mind, it is not feasible
to store the entire terrain data as vertex attributes on the terrain mesh/meshes itself, but it rather
requires separate consideration.

Figure 2.12: An example of six terrain textures used in the game ”Far Cry 5”. (taken from [12])

https://khronos.org/blog/mesh-shading-for-vulkan

12 2.5. Terrain Data

The GPU native structure for two-dimensional random access is called a texture. Utilizing one
texture per different terrain data type is a valid and commonly practiced approach for small or
low-detail terrains. This technique, however, quickly runs into scalability problems for very large
or detailed landscapes. Similar to the geometry, an LOD strategy has to be utilized to achieve
terrain data coverage across multiple orders of magnitude of difference in scale. Additionally,
this strategy should support OOC rendering not to be limited by the amount of available system
memory.

Because textures can not vary their accuracy the same way meshes can, CLOD techniques can not
be applied, but the textures have to be represented at multiple resolutions instead. This is most
commonly done by storing the data as tiles of the same texture size, which cover the terrain at
different detail scales.

2.5.1 Quadtree

One suitable hierarchical structure for containing these tiles is the quadtree, shown in Figure 2.13.
As seen in Section 2.2.3, they are great at partitioning mesh data as well. Some implementations
[11, 12] even use the same quadtree for handling the LOD of both the meshes and the terrain
textures simultaneously. This is why the quadtree is a favored data structure used to represent
terrains.

Figure 2.13: A quadtree with a depth of three. The red tiles are the tiles with the highest and the
green ones with the lowest resolution. (taken from [12])

2.5.2 Clipmap

The other major candidate for efficient large-scale terrain data storage is the clipmap [17]. It is a
data structure that can efficiently store a view-dependent subset of an arbitrarily sized texture in
memory. The clipmap is a natural extension of the mipmap in which not all data resides in VRAM
at once. This is achieved by clipping each mip layer to a maximum size called the clipsize. Con-
sequently, the texture pyramid, compared to a conventional mipmap, is divided into a clipmap
stack, consisting of layers with clipsize2 texels and a clipmap pyramid storing the portion of the
mipmap smaller than the clipsize, as seen in Figure 2.14. Clipmaps limit the exponential increase
in texture size of conventional mipmaps per mip layer to a merely linear one. This allows for
caching the currently relevant portion, of petabytes of source data, using only a few megabytes of
memory.

Chapter 2. Terminology 13

(a) A mipmap pyramid on the left and its schematic
side-view diagram.

(b) A side-view diagram of a clipmap consisting
of a stack and a pyramid.

Figure 2.14: A comparison between a conventional mipmap on the left and a clipmap on the right.
(taken from [17])

Because of their view-dependent nature, clipmaps must always be up-to-date, according to the
current viewer position, during rendering [17]. This is accomplished by updating the clipmap
stack from frame to frame. Due to the temporal consistency of the view position, also called the
clipmap center, most of the data cached at each layer of the clipmap will stay the same. Utilizing
this fact, only a small border has to be updated, which is achieved by addressing the texture layer
toroidally (e.g. wrapping the texture coordinates modulo the clipsize). Figure 2.15 shows this
process: as the clip center starts roaming across the source image, the clipmap stack is updated in
place.

Figure 2.15: Visualizes the process of toroidal updating the clipmap according to the clipcenter.
(taken from [17])

Additionally, C. Tanner et al. [17] the authors of the original clipmap paper describe the virtu-
alization of clipmaps for numerical ranges exceeding floating-point address ranges and dynamic
clipmap management with the main memory as a second-level cache.

The authors [17] presented the clipmap as a data structure that is implemented in the graphics
API and built into the low-level hardware. Unfortunately, that has not happened, which is why
not all details of their technique apply to modern terrain rendering. Especially their texture data
addressing scheme can only be emulated in software in the fragment shader and is not hardware
accelerated by a clipmap-specific texture sampler.

14 2.6. Real-World Data

2.6 Real-World Data

The terrain data can have one of two origins, either it is synthesized using specialized software
and sculpted by an artist, or it is measured from the real world, using specialized hardware like
lidar sensors, or high-resolution cameras.

2.6.1 Digital Elevation Model (DEM)

The heightmap is the fundamental information required by every terrain. When measuring
real-world landscapes, either the digital terrain model (DTM) [18] or the digital surface model
(DSM) data can be obtained. The former, also known as digital elevation model (DEM), repre-
sents the bare-earth surface of the terrain, excluding any objects, buildings, or vegetation. While
the latter refers to the surface including all of the said objects. The difference is illustrated in
Figure 2.16.

2.6.2 Digital Orthophoto (DOP)

Another important data type used to visualize terrains is the albedo information, which deter-
mines the surface color of the terrain at any position. Digital orthophotos (DOPs) [18] are satel-
lite or aerial images, which have been corrected for the distortion introduced by the surface of the
terrain, such that the rooftop and the base of every building align vertically and no sidewalls are
visible. An example of such an DOP can be seen in Figure 2.16.

(a) Shows the difference between DTM (surface
without objects) and DSM (surface including

objects above). (taken from [18])

(b) An orthophoto of a portion of the town of
Hartenstein. (taken [19])

Figure 2.16: Showcases a digital elevation model (DEM) schematic on the left, and a digital or-
thophoto (DOP) on the right.

Chapter 3. Previous Work 15

Chapter 3
Previous Work

Over the last few decades, a multitude of different terrain rendering algorithms, that adapted to
the hardware features and capabilities of their time, have been developed. In the following, the
author will survey a prominent subset of them in chronological order. Therefore the author will
heavily rely on the previously introduced terminology of Chapter 2. Figure 3.1 shows a compar-
ison between the covered techniques, regarding a few central characteristics, which should serve
as a quick overview and orientation.

Figure 3.1: A central comparison between a selection of influential terrain rendering algorithms.
The UDLOD method presented in this thesis is located at the bottom of the table.

16 3.1. Real-time Optimally Adapting Meshes (ROAM)

3.1 Real-time Optimally Adapting Meshes (ROAM)

In 1997 M. Duchaineau et al. [4] introduced the Real-time Optimally Adapting Mesh (ROAM)
terrain rendering method [4], which generates a mesh triangulation by splitting and merging tri-
angles according to a screen-space error metric. The algorithm produces optimal triangle bintrees
(RTIN), which are updated frame to frame to maintain a continuous surface, as can be seen in Fig-
ure 3.2. Additionally, vertex splits and merges are animated (see Section 2.2.4) to ensure temporal
consistency. Furthermore, multiple performance enhancements like triangle-based view frustum
culling and progressive mesh optimizations are described.

Figure 3.2: Depicts the triangulation of the ROAM algorithm without height displacement from a
top-down view. (taken from [4])

Although continuous level of detail (CLOD) methods [4, 7] similar to ROAM deliver an opti-
mal view-dependent triangulation of the terrain they have fallen out of favor, since the advent
of powerful consumer GPUs in the early 2000s, because of their sequential nature and their high
CPU overhead. These methods occupy too much of the processing power of the CPU, especially
for large frame resolutions while maintaining a low screen-space error threshold. Additionally,
frequent updates to the terrain mesh while the viewer is moving, cause a lot of vertex data up-
loads to the GPU [10, 6]. These frequent uploads are often more expensive than rendering more
triangles with a less optimal distribution that already reside in VRAM. Regardless, there have
been attempts in recent years to parallelize the LEB triangulation on the GPU [3] (see Concurrent
Binary Trees in Section 3.8).

3.2 Geometrical MipMapping (GeoMipMap)

In comparison to ROAM the Geometrical MipMapping approach outlined by Willem H. de Boer
[10] better utilizes the graphics hardware by ”pushing as much triangles through the pipeline
as [it] can handle, with the least amount of CPU overhead” [10]. Therefore Boer proposes an
MLOD method, which divides the terrain into a quadtree of small regular grid tiles, which can be
rendered at different resolutions similar to texture mipmaps, as seen in Figure 3.3. The appropri-
ate GeoMipMap level for each tile is chosen based on the screen-space error the level introduces
compared to its original (highest resolution).

Additionally, Boer [10] introduces a method for loading only the currently required GeoMipMap
levels of the tiles into memory, thus enabling OOC rendering of large datasets. This algorithm is
executed on the CPU and can be sped up by using look-up tables for the errors.

Chapter 3. Previous Work 17

Figure 3.3: Shows the different levels of mesh simplification of the GeoMipMap algorithm.
(taken from [10])

The geometry gap problem caused by the MLOD is solved by using specific index lists for the
edges of the grids, which omit every other vertex to match with the lower LOD neighbors [10].
Furthermore, it is possible to decrease the visual discrepancy between adjacent grids of differing
resolutions by interpolating between two LODs, similar to trilinear texture filtering.

3.3 Chunked Level of Detail

Figure 3.4: Depicts the first three tree levels of a chunked LOD terrain. (taken from [6])

Thatcher Ulrich [6] introduced Chunked Level of Detail, another similar MLOD algorithm based
on a quadtree. This algorithm relies on a tree of independent preprocessed meshes (RTIN) called
chunks which are assigned a maximum object-space geometric error, from the original base mesh,
per tree level. The correct LOD of the chunks is chosen at run-time purely based on the geometric
error and the distance to the point of the bounding volume closest to the viewer, by traversing
the quadtree from the root. An example of such a tree can be observed in Figure 3.4. To avoid the
popping issue introduced by MLOD algorithms he proposes a vertical morphing of the chunks
with their parents. Ulrich solves the crack problem by extending each edge with a vertical skirt
pointing downwards, as shown in Figure 3.5. This hides the holes between neighboring chunks
and is unnoticeable for low screen-space errors.

Figure 3.5: The vertical skirt (black rectangle) is used to fill the cracks between two neighboring
chunks. (taken from [6])

18 3.4. Geometry Clipmaps

3.4 Geometry Clipmaps

One of the most popular terrain rendering methods is called Geometry Clipmaps and was in-
troduced by Hugues Hoppe and Frank Losasso [20]. They represent the terrain mesh as a stack
of nested regular grids centered under the viewer, which increase in size as they span outward.
Unlike the previous algorithms, geometry clipmaps do not adapt to the screen-space error, but
instead, assume the worst-case terrain with uniform detail and thus only consider the distance to
the viewer for the LOD calculation. This results in a nearly uniform and pixel-sized triangulation
in screen space, which they claim can be rendered efficiently at 60 frames per second (FPS).

The vertex data is stored in vertex buffers that are accessed toroidally, which means that reads and
writes are carried out modulo the size of the grid [20]. This enables efficient incremental updates
to the mesh as the viewer moves about the terrain. Additional terrain data is cached in texture
clipmaps, a pyramid of equally sized textures, which cover the data at multiple scales similar to
mipmaps, as can be seen in Figure 3.6. By that, their approach unifies the LOD of the terrain’s
geometry with that of its additional terrain data.

(a) Shows how the different clipmap level project into
world space.

(b) A terrain rendered using Geometry
Clipmaps.

Figure 3.6: Showcases the Geometry Clipmaps algorithm, in which the mipmap pyramid on the
left corresponds to the rendered terrain on the right. (taken from [21])

To mitigate cracks at the boundaries of the nested grids, they insert vertical zero-area triangles
to hide the existing T-junctions [20]. Also, mesh morphing and custom texture blending can
be implemented, for a smooth spatial and temporal continuous LOD transition. Furthermore,
geometry clipmaps allow for incremental terrain data decompression as well as detail synthesis
from fractal noise.

In a later iteration of their algorithm called GPU-Based Geometry Clipmaps, Hoppe [21] de-
scribes an implementation, which utilizes the, at that time recently introduced, unified shader
cores of modern GPUs, which provide the ability to sample textures in the vertex shader. This
allows for applying the height displacement in the vertex shader instead of having to update the
grid meshes on the CPU. Therefore the height information is cached as a clipmap as well, merging
the geometry and texture data representation. Consequentially the same meshes can be used to
render each layer of the geometry clipmap, resulting in index and vertex buffers that do not need
to be updated after initialization.

Chapter 3. Previous Work 19

3.5 Persistent Grid Mapping (PGM)

In 2007 Yotam Livny et al. [22] presented the Persistent Grid Mapping (PGM) framework for
rendering large-scale terrains. There they tessellate the terrain using a uniform screen-space per-
sistent regular grid, which resides in GPU memory. This grid is then projected onto the terrain
base plane and displaced by the height value in the vertex shader, resulting in a view-dependent
approximation of the terrain’s surface, while ensuring the absence of cracks or other unwanted
artifacts. The projection and the resulting tessellation can be seen in Figure 3.7.

(a) Shows the mapping of the persistent grid onto the
terrain base plane on the left and the subsequent height

displacement on the right.

(b) A terrain rendered using PGM, with a
low-resolution wireframe view layered

on top.

Figure 3.7: Showcases the Persistent Grid Mapping algorithm, as a schematic on the left and as a
rendered image on the right. (taken from [22])

As can be seen on the left of Figure 3.8, for flat camera angles mountain peaks close to the camera
may be missed by the projection, due to the offset of the sampled region. To resolve this problem
an auxiliary camera is employed that is only used for sampling the terrain height and generating
the surface geometry. This camera utilizes a similar view frustum as the primary camera with the
deciding difference that the angle between its center and the horizontal plane is shifted down-
wards. This is done in such a way that the entire sampled region of the base plane, starting under
the viewer and ending at the horizon, lies inside the frustum. This guarantees that the entire
visible region is contained in the sampled one.

Figure 3.8: Visulaizes the camera restriction. On the left, a peak (in red) is missed near the camera
due to the mismatch of visible and sampled regions. On the right, this problem can be
rectified by utilizing an auxiliary camera.

This algorithm automatically guarantees a seamless LOD of the terrain geometry, that transitions
smoothly, without requiring any preprocessing [22]. PGM does not rely on any explicit culling
methods, because the grid already covers the entire view frustum. Although this means that
vertices that are occluded still have to be processed. Additionally, they present an OOC terrain
data streaming solution, which is based upon clipmaps, as introduced in Section 2.5.2.

20 3.6. Continuous Distance-Dependent Level of Detail (CDLOD)

3.6 Continuous Distance-Dependent Level of Detail (CDLOD)

The paper ”Continuous Distance-Dependent Level of Detail (CDLOD) for Rendering Height-
maps” by Filip Strugar [11] claims to be a refinement of both the Chunked LOD (Section 3.3) and
the Geometry Clipmaps (Section 3.4) algorithm. It combines the efficient and scalable quadtree
data structure of the former with the vertex-shader height map displacement of the latter. The
goal of CDLOD is to distribute as many triangles as possible evenly across the screen, without
relying on screen-space error metrics. Therefore the mesh is organized as a quadtree of heightmap
tiles, which are triangulated using regular grids. The LOD of these tiles is determined discretely
and solely based on their logarithmic three-dimensional distance to the viewer. It is calculated
for each frame during a top-down traversal of the tree, while frustum-culling them, which speeds
up the rendering as well as the traversal itself. Tiles can only be partially selected at the border
between adjacent LODs, which allows for earlier and more flexible transitions between them
while increasing performance.

(a) Shows the LOD selection of quadtree nodes for
rendering. The nodes in the dark area are frustum

culled.

(b) Depicts the morphing of the meshes
across the LODs.

Figure 3.9: Showcases the improvements of the CDLOD algorithm over previous MLOD tech-
niques. (taken from [11])

The popping and cracking issues caused by the multi-resolutional geometry are solved jointly by
horizontally morphing tiles adjacent to the LOD border [11], as discussed in Section 2.2.4. This is
achieved by pushing every other vertex toward its neighbor depending on a morph factor, which
is calculated based on its distance to the viewer, resulting in a completely continuous mesh. One
drawback of this algorithm is its inability to morph between adjacent tiles, with LODs varying by
more than one. This limits the minimum possible quadtree depth or the viewing distance.

Chapter 3. Previous Work 21

3.7 Far Cry 5 Terrain Renderer

Another more recent entry in the elaborate list of terrain rendering algorithms is the system used
in the game called ”Far Cry 5” developed by Ubisoft Montréal [12]. It is an interesting and im-
portant addition to this survey, because of its great interplay with other shaders and systems of
the game. This is an important insight that many of the aforementioned methods do not consider.
The game’s terrain is based on a quadtree, that both manages terrain data and the LOD of its
geometry, which consists of regular grid tiles. In their described implementation they focus on
shifting as much work as possible away from the CPU, resulting in the quadtree traversal, culling,
and rendering being entirely executed on the GPU. Because of that, the team could even reduce
the GPU cost of the terrain renderer, by maximizing the vertex culling performed in a compute
shader, while also making the terrain data available for other systems such as vegetation place-
ment.

The described algorithm requires seven key GPU data structures:

• The node atlas storing the data of the currently loaded nodes of the quadtree in a texture
atlas.

• The node description buffer storing information (min/max height, LOD bias, node atlas
index) of the currently loaded nodes.

• The quadtree texture holding the index into the node description buffer for every node of
the entire terrain.

• The node list buffer build during the quadtree traversal of each frame, storing the quadtree
tiles that should be rendered.

• The lod map recording the LOD of each sector (smallest tile) of the terrain in an easy-to-
lookup texture.

• The sector map recording the node atlas ID of each sector (smallest tile) of the terrain in an
easy-to-lookup buffer.

• The patch list buffer, which is a partitioned, refined, and culled version of the node list.

The terrain data streaming is the only part of the renderer that is not implemented on the GPU
[12]. It is responsible for updating the quadtree based on the viewer’s position. Therefore the CPU
uploads newly loaded node data into the node atlas and sends updates to the quadtree texture
and node description buffer accordingly, notifying them of the current quadtree state.

(a) The four child nodes are loaded. Thus split the
node into four children and process them again

on the next layer.

(b) Not all four children are loaded, thus this node
currently is the best representation of the area

and should be used for rendering.

Figure 3.10: An explanation of the node list building algorithm. The left node can be split, while
the one on the right is already the best currently loaded version.
(taken from [12])

22 3.7. Far Cry 5 Terrain Renderer

Using that information, every frame, by traversing the quadtree layer by layer in a compute
shader, the node list, storing the node IDs (indices into the node description buffer) selected for
rendering is built [12]. This process starts at the root of the tree by filling one of two temporal
node buffers with the root-level nodes. Then all of these nodes are either appended to the second
temporal buffer if all four child nodes are loaded as well or to the final node list otherwise. This
process can be seen in Figure 3.10. After all nodes have been processed, the two temporal buffers
are swapped and the procedure is repeated for the next layer.

Subsequently, the lod and the atlas map, illustrated in Figure 3.11, are generated based on the
final node list by means of another compute shader [12]. The atlas map is a convenient lookup
data structure for accessing the terrain data of the node atlas, at any position inside the terrain.

(a) The lod map, which stores
LOD of each sector.

(b) The atlas map, which stores a description of all atlas
IDs covering the sectors.

Figure 3.11: Illustrates the lod and atlas map generated each frame based on the node list.

Before finally rendering the terrain mesh a final data structure - the patch list - has to be populated
for each view [12]. This buffer contains the information of all terrain patches that will be rendered
using one instanced draw call and a single regular grid mesh. Therefore each node of the node
list is split into 8 by 8 patches, which are frustum, occlusion, and backface culled in parallel as
part of a single wavefront. This can be seen in Figure 3.12. Additionally, the LOD information
of adjacent nodes is looked up in the lod map, during this compute shader execution, which will
later be used for stitching. This highly parallel and efficient algorithm produces a view-optimized
terrain mesh which can be rendered at low cost due to the aggressive culling.

(a) The nodes are split up into patches and
rendered using an indirect argument

buffer.

(b) Shows the node-to-patch refinement which is executed
as part of a single wavefront per patch.

Figure 3.12: Shows the process of turning the node list into the patch list. (taken from [12])

Chapter 3. Previous Work 23

3.8 Concurrent Binary Trees (CBT)

One of the most recently published terrain rendering techniques is called ”Concurrent Binary
Trees (CBTs) (with application to longest edge bisection)” [3]. The author Jonathan Dupuy in-
troduces the CBT data structure, which as he claims can accelerate any tree-based subdivision
algorithm such as LEB by computing it in parallel. The CBT is represented as a binary heap (a
1D array) with a size of 2D+1, where D indicates the depth of the tree. The first 2D elements of
the heap store the sum of their two respective children, while the second half implicitly describes
the configuration of the tree, where elements set to one denote the presence of a leaf node. An
overview of the CBT algorithm is illustrated in Figure 3.13.

(a) An overview of the CBT algorithm. The second half of the 2D+1

bitfield can fully encode any subdivision of depth D on the left.
(b) Showcases the subdivision
achievable by the CBT algorithm.

Figure 3.13: Shows the data structure on the left and the achievable subdivision on the right of
the CBT algorithm. (taken from [3])

This data structure is then used to evaluate the longest edge bisection (LEB) subdivision scheme
in parallel on the GPU, greatly increasing performance compared to the similar ROAM algorithm,
described in Section 3.1, which performs the subdivision on the CPU [3]. This is also the main
benefit of CBTs, namely the linearly increasing processing speeds with respect to the number of
processors running in parallel.

The retained nature of the data structure implies that the entire tree has to be stored in memory,
which can get exceedingly large for growing terrain sizes. Besides, the binary tree can only merge
or split one adjacent triangle at a time, which limits its adaptability for fast-paced camera move-
ment. On top of that, a major drawback lies within the binary nature of the edge information.
Animating the vertex splits and removals is an unsolved problem for the CBT algorithm, which
necessitates a screen-space error of less than one pixel for each of them, to mitigate the issue of
vertex popping.

Chapter 4. A Novel Terrain Rendering Method 25

Chapter 4
A Novel Terrain Rendering Method

Having summarized and outlined the important innovations of previous terrain rendering algo-
rithms, the author will now evaluate their successes and shortcomings. Therefore the author will
at first present what he considers an ”ideal terrain renderer” and then discuss the tradeoffs of the
presented methods. Together with the knowledge of the previous two chapters as a foundation,
finally, the author proposes a new terrain rendering method that attempts to satisfy all of the eight
requirements of the ”ideal terrain renderer” simultaneously.

4.1 The Ideal Terrain Renderer

The ”ideal terrain renderer” described in this section features eight general requirements, which
the author deems a general-purpose terrain renderer should satisfy. Of course, not all real-world
applications incorporating terrain rendering do necessitate all of these properties.

1 Hardware Adaptive Quality First of all, it is important to state that any terrain renderer is
limited by the processing power, memory, and capabilities of the executing hardware. While
these can vary drastically from device to device it is crucial that the quality of the algorithms can
be adjusted to achieve a consistent frame rate on most modern consumer hardware.

2 Unlimited Terrain Size The terrain size should not be constrained by the limitations of the data
structures and algorithms used, but only by the disk space required to store the data. It should be
possible for the algorithm to render landscapes as large as planet earth, with a resolution of up to
one meter in real-time. This implies that the rendering method should efficiently scale across up
to seven orders of magnitude (or 25 powers of two).

3 Seamless Viewing Distances The terrain should be viewable from any reasonable distance
while maintaining its visual fidelity relative to it. The transition between viewing the landscape
from afar and on the ground should be seamless regarding visual quality and frame rate.

4 Uniform Screen-Space Error Although most devices will not allow for approximating the
terrain geometry without any screen space error, it is important to keep the error consistent across
the final image and in between frames.

26 4.2. Evaluation of existing Literature

5 Smooth Vertex Morphing Accepting that an imperceptible screen space error is not feasible,
the impact of such imperfections (popping) should be minimized by distributing the discrepancy
over multiple frames. This can be achieved by morphing (see Section 2.2.4) between vertex posi-
tions.

6 Random-Access Terrain Data The terrain data should be accessible from other systems than
the terrain rendering algorithm itself, while allowing for the retrieval of the information at any
position of the terrain with view-dependent accuracy. This is especially important for collision
detection, path finding or adjusting the geometry of other objects (eg. vegetation, rocks) to blend
with the surface of the terrain.

7 Seamless High-Quality Texturing The terrain should be textured seamlessly without any
shimmering. This requires high-resolution texture data, as well as, trilinear and anisotropic filter-
ing.

8 Multiple Views It should be possible to render the terrain multiple times using multiple views,
enabling use cases like split-screen, shadow rendering, or a depth-prepass.

4.2 Evaluation of existing Literature

With these requirements established the aforementioned terrain rendering data structures and
algorithms are now examined and the trade-offs fit best with these properties are discussed.

4.2.1 Implementation - CPU vs GPU

As can be observed in Figure 3.1 the most recent terrain rendering strategies have shifted more
and more of their implementation to the GPU due to their highly parallel nature and drastic
performance improvements compared to CPU-based methods. Especially since the introduction
of compute shaders in modern graphics APIs, the LOD algorithms are mostly executed by the
GPU.

4.2.2 Triangulation - Regular Grids vs TIN vs RTIN

As seen in Chapter 3 the most common terrain triangulation is the regular grid approach (see
Figure 3.1). It works well with modern GPU features, such as height displacement in the vertex
shader and instanced rendering. Thus the meshes for all the different parts of the terrain can
be reused and batched together to save draw calls. Additionally, the actual height data can be
stored alongside the remaining terrain data, unifying the implementation. Their regular struc-
ture utilizes the highly parallel nature of GPUs well. It is best used in combination with MLOD
algorithms, and is especially great for further mesh refinement via tessellation shaders.

TINs are expensive to pre-compute, too rigid for highly view-dependent terrains, and hard to
stitch and morph, thus they are not well suited for large-scale terrain rendering. Nevertheless,
they can be ideal for less view-dependent and more static applications.

The RTIN triangulation fits especially well with the adaptive CLOD algorithms, as can be seen
with the ROAM algorithm in Section 3.1 and the recently developed CBT algorithm of Section 3.8.

Chapter 4. A Novel Terrain Rendering Method 27

4.2.3 Level of Detail - Continuous vs Multi-resolutional

As previously noted terrain rendering is largely subdivided into CLOD 2.2.2 and MLOD 2.2.3
algorithms. The former offer an excellent upper bound on screen-space error while minimizing
the number of triangles to render. The latter trade looser error bounds and a slightly larger geom-
etry overhead for greatly reduced LOD calculations and better parallelization, by operating on
aggregates of vertices (tiles) instead of individual triangles.

Currently, it appears no CLOD algorithm solving the second criteria exists. Particularly scaling
across seven orders of magnitude is not possible with current hardware. ROAM and previous
CPU-based CLOD versions do not translate well to the architectures and characteristics of mod-
ern GPU-driven renderers. Thus they are outperformed by even the simplest MLOD algorithm
[10]. Although the CBT [3] algorithm produces an impressive subdivision for smaller terrains,
it already consumes 128MB of VRAM, for a single view, at a binary tree depth of 28, covering a
landscape with a modest size of 8km⇥ 8km at a resolution of 1m. This is only a difference of four
orders of magnitude or equivalently 13 powers of two, which does not reach the required seven
or 25 respectively, necessary for rendering the entire earth at equal resolution. Considering that
the space complexity of the algorithm scales exponentially with the tree size and linearly with the
size of the terrain, it is infeasible to use it for large-scale terrain rendering.

Furthermore, culling has become an increasingly important aspect of modern GPU-driven ren-
derers [12]. Especially, culling objects which are occluded by the terrain, or culling parts of the
terrain occluded by large objects is an important performance optimization. The latter is better
suited for MLOD algorithms due to their tile-based nature. With that in mind an MLOD algo-
rithm with regular grid subdivision does fit the requirements best. Because of the rectangular
nature of grids, the author chose to use a quadtree-based subdivision over a binary tree.

4.2.4 Terrain Data - Quadtree vs Clipmap

There are two prominent ways of storing terrain data: the quadtree 2.5.1 and the clipmap 2.5.2.
Both offer a great hierarchical representation of the terrain data, which fits the required O(n ·
log(n)) complexity. Clipmaps are easy to implement and can scale effortlessly from small regions
to entire planets. [17] Their major drawback lies within requirement eight, because multiple views
require the duplication of the clipmaps per view, resulting in redundant storage of large parts of
the terrain in VRAM. As mentioned in 2.5.2, the texture filtering of clipmaps is not implemented
in hardware, but rather has to be computed in software, which is more expensive and techniques
like anisotropic filtering are unavailable entirely. Although these drawbacks are not impossible
to accept, it would be better to reduce these inefficiencies.

The quadtree on the contrary is considerably better at utilizing the spherical LOD, but unfortu-
nately, it has another problem. Trees can either be stored sparsely or densely, which means that
all nodes, or only the currently required subset, have to be present. For representing the view-
dependent terrain data, only the former is of any use. This poses a problem with requirement
six. Contrary to a clipmap where all data of all layers has to be present and the distance to the
viewer identifies the layer to access the data at, there is no simple way to look up arbitrary terrain
data in a sparse quadtree in constant time. Instead, it has to be traversed top down. In Section 3.7
the ”Far Cry 5” terrain renderer [12] deals with this problem by building a lookup data structure,
the sector map, storing the IDs of the quadtree nodes, which can identify the best-loaded node
for each position of the terrain. However, this method only works for relatively small terrains,
because this lookup texture itself scales quadratically in size with regards to the terrain size and
thus renders the traditional quadtree insufficient for large-scale terrain rendering.

28 4.3. Method Overview

4.3 Method Overview

As seen in the previous section, none of the aforementioned rendering methods meet all of the
eight postulated requirements. For this reason, the author developed two techniques, solving
separately the terrain geometry and terrain data problems. Following, the author presents a new
MLOD algorithm and a novel data structure: The Uniform Distance-Dependent Level of De-
tail (UDLOD) uniformly subdivides large-scale terrains into distant-dependent regular grid tiles
and the Chunked Clipmap efficiently shares terrain data between multiple views and can be fil-
tered trilinearly and anisotropically. Figure 4.1 depicts a high-level overview of this novel terrain
rendering method.

Figure 4.1: An overview of the terrain rendering method presented in this chapter. Shown on the
left are the key algorithms of the UDLOD method, on the right is the access of the
terrain data, and on the bottom, is the entire method, as implemented in Chapter 5.

4.4 Uniform Distance-Dependent Level of Detail (UDLOD)

For every terrain renderer, it is important to choose an appropriate and efficient geometry trian-
gulation and LOD scheme. As discussed in Section 4.2.3, CLOD algorithms are not suitable for
large-scale terrain rendering, although they offer superior geometry quality, with smaller screen-
space errors compared to MLOD alternatives. Thus the author presents a modified version of the
CDLOD method, called the Uniform Distance-Dependent Level of Detail (UDLOD) algorithm,
which combines its continuous distant-dependent LOD with the efficient GPU quadtree subdivi-
sion of the ”Far Cry 5” terrain renderer.

Its general idea is to subdivide a giant implicit quadtree covering the entire terrain during each
frame on the GPU. This is achieved by traversing the tree top-down, layer by layer in a compute
shader in parallel, culling tiles, and determining whether they should be subdivided or not de-
pending on their distance to the viewer. The final tiles are then gathered in a buffer and drawn by

Chapter 4. A Novel Terrain Rendering Method 29

means of a single indirect draw call using the same vertex resolution for each of them. Addition-
ally, they are morphed at the rim between two adjacent LOD rings, utilizing the scheme presented
by the CDLOD method [11].

A major benefit of separating the geometry from the terrain data is the ability to continuously
adjust the size of said tiles using the tile scale parameter. This allows for a fine-grained adjust-
ment of the quality or rather the performance characteristic of the tesselation. The next sections
introduce numerous different parameters and formulas required by the UDLOD algorithm. All
of them can be found in Table 1 for quick reference.

In the following some equations require the floating point modulo operation available in most
programming languages, thus it is defined in Equation 4.1.

f mod(x, y) = x� y ·
⇠

x
y

⇡
(4.1)

4.4.1 Tiling Prepass

Before the terrain can be drawn, it is subdivided into tiles, with approximately equal size in screen
space, based on their distance to the viewer, during a compute shader prepass. Therefore as a first
step, the terrain is covered by a single large root tile placed as the first element of a temporary
tile list. This list is now refined over multiple passes, each of which corresponds to two compute
shader invocations. The first one is a shader that resets the tile list indices and prepares the indi-
rect argument buffer of the second shader, which in turn executes the tile refinement algorithm,
as seen in Algorithm 1, for each tile of the current LOD layer. This algorithm decides whether or
not to split a tile based on its relative distance to the viewer and either appends it to the final tile
list that is drawn to the screen or splits it into its four children, which will be processed during
the next pass. To write to the tile lists, indices are used, which are incremented atomically to
guarantee the absence of data races.

Algorithm 1 The tile refinement algorithm, which is executed for each tile in the temporary tile
list of the current layer.

tile temporary tiles[parent index()]
if tile is not culled then

if tile should be subdivided then
for child children of the tile do

temporary tiles[child index()] child
end for

else
f inal tiles[f inal index()] tile

end if
end if

4.4.2 Tile Culling

To optimize the vertex count of the final terrain mesh the tiles can be culled in the refinement
compute shader. This can be achieved by simply executing a culling algorithm on each of them
before subdivision, as can be seen in Algorithm 1. The culling can use different strategies, as
presented in Section 2.3. For this particular use case, discarding tiles outside the terrain and 2D
horizontal frustum culling are the two easiest algorithms to implement.

30 4.4. Uniform Distance-Dependent Level of Detail (UDLOD)

4.4.3 Drawing the Tiles

With the final tile list assembled it is now time to draw them to the frame buffer using a single
indirect draw call. The following triangulation algorithm is based on the article ”Android Lesson
Eight: An Introduction to Index Buffer Objects (IBOs)” by Kevin Brothaler [23]. All vertices of the
terrain mesh are determined implicitly, without the need for a vertex or index buffer.

Therefore each tile is rendered as a grid, all of which consist of the same amount of vertices. This,
vertex amount can be calculated using the Equation 4.2. Thus the entire amount of vertices to
draw equals the product of vertices per tile and the tile count.

vertices per row = 2 · (grid size + 2)
vertices per tile = vertices per row · grid size

(4.2)

To require as few vertex shader invocations as possible the triangle strip topology is used when
drawing the grids. Each column can be easily represented by such a strip, but special care has to
be taken when connecting them together to prevent drawing malformed geometry. By inserting
the first and last index of each column twice, four degenerate triangles will form, which reset the
vertex list back to a valid state and bridge the gap between both columns, without drawing any
geometry. This also works for connecting successive tiles with arbitrary positions together, which
means that the order of the tiles in the tile list can be arbitrary as well. As can be seen in Figure 4.2
this triangulation results in a vertex-to-triangle ratio converging towards one.

Figure 4.2: Shows a grid of size two on the left, with the degenerate triangles colored in red, as
well as an evaluation of the triangle-to-vertex efficiency of this triangulation method
for different grid sizes.

To span this grid, first the tile index and grid index of the vertices are calculated according to
Equation 4.3. The former is responsible for retrieving the tile coords and tile size from the final tile
list. While the latter is used to build the grid, as seen in Figure 4.2, using the three equations found
in Equation 4.4. Subsequently, it has to be scaled and translated according to the tile information,
using the Equation 4.5, to fit seamlessly into the terrain’s surface.

tile index = vertex index ÷ vertices per tile
grid index = f mod(vertex index, vertices per tile)

(4.3)

Chapter 4. A Novel Terrain Rendering Method 31

row index = clamp(f mod(grid index, vertices per row), 1, vertices per row� 2)� 1
column index = grid index ÷ vertices per row

grid position =


column index + f mod(row index, 2)

row index ÷ 2

� (4.4)

local position = (tile coords +
grid position

grid size
) · tile size · tile scale (4.5)

4.4.4 Tile Morphing

Now that all grids are positioned at their appropriate locations, it is important to morph adjacent
tiles of different LOD and size seamlessly together, to avoid T-Junctions. This can be achieved
similarly to the method proposed by Filip Strugar on a per-vertex basis. [11] For each vertex, the
morph factor is determined using the approximate distance between it and the viewer, described
in Section 4.5.2. This value is then used to shift every other vertex towards its neighbor using
Equation 4.6.

even grid position = 2 ·
�

grid position
2

⌫

morphed local position = local position�

morph · even grid position
grid size

· tile size · tile scale

(4.6)

Finally, the height value has to be sampled from the chunked clipmap or any other terrain data
representation used. Then the vertex can be vertically displaced by this amount and transformed
into the world space.

4.5 Chunked Clipmap

With the terrain geometry taken care of, it is important to choose an efficient terrain data repre-
sentation. As seen in Section 4.2.4 both quadtrees and clipmaps do pose some major drawbacks.
That is why the author proposes a novel data structure, combining both of their strengths: the
chunked clipmap. The basic idea of this approach is to represent all terrain data as a quadtree
where each layer is clipped to a maximum size similar to a clipmap. A comprehensive list of all
parameters and variables alongside a short description can be found in Table 2.

4.5.1 Structure of a Chunked Clipmap

The chunked clipmap consists of two separate parts, which can be combined to access the best
available terrain data, for a specific view, at any position. They are called the Node Atlas and the
Clipped Quadtree. Both are illustrated in Figure 4.3.

The Node Atlas is a container that stores all currently loaded terrain data nodes and assigns a
unique handle, also called the atlas index, to each of them. It can store multiple different types of
terrain data per node, provided that they are loaded simultaneously.

32 4.5. Chunked Clipmap

Figure 4.3: Depicts the clipped quadtree (left) next to the node atlas (middle) and the resulting
LOD distribution (right). The quadtree entries store an atlas index and the atlas lod.

The Clipped Quadtree is a small lookup data structure responsible for mapping world positions
to coordinates inside the corresponding node atlas. It is represented by a three-dimensional ma-
trix of size node count⇥ node count⇥ lod count, where each entry stores the atlas index and the
atlas lod of the best available node spanning across the corresponding area, which can be seen in
Figure 4.4. Each layer covers increasingly large portions of the terrain, which are centered under
the viewer, similar to clipmaps, and uses toroidal addressing, to stay consistent while roaming
over the terrain, as well.

Figure 4.4: Showcases two different states of the quadtree. On the left, the quadtree is fully
loaded whereas on the right, some nodes are not, thus the quadtree falls back to lower-
resolution nodes of the layers above.

Both can be implemented using three-dimensional arrays on the CPU and array textures on the
GPU. Each view possesses a unique clipped quadtree, but all of them share the same node atlas,
so no terrain data has to be duplicated.

Chapter 4. A Novel Terrain Rendering Method 33

4.5.2 Approximatig the Distance to the Viewer

To access and update the chunked clipmap the distance-dependent LOD has to be provided. It is
calculated from the three-dimensional distance between the point on the terrain and the position
of the viewer. The horizontal coordinate can be determined trivially, but the vertical displacement
of the terrain poses a major problem. To obtain the height value at any point on the terrain’s
surface, it has to be sampled from the chunked clipmap. This cyclic dependency can only be
resolved by sampling multiple times with increasing accuracy, or by simply approximating the
height value used for the LOD selection.

Figure 4.5: Illustrates the cross-section of the terrain. The horizontal orange line represents the
approximated height. The green and blue lines depict the true and approximated dis-
tances for two points of the terrain. The red lines indicate the vertical error introduced
by these approximations.

One such approximation can be achieved by using the height of the terrain under the viewer as
the height value of all distance calculations. The author found that this approximation, which
is illustrated by Figure 4.5, resulted in no visible artifacts. The approximate distance can then be
calculated using Equation 4.7, where x and y denote the horizontal position of the point of interest
in world space.

distance(x, y) =

������

2

4
x

approximate height
y

3

5� view position

������
(4.7)

34 4.5. Chunked Clipmap

4.5.3 Accessing the Terrain Data

The side length of each node is determined by the node size value, which is calculated using
Equation 4.8. This formula scales the lea f node size parameter, which denotes the size of the
smallest nodes in local space, by the exponential increase in size caused by the nature of the
quadtree.

node size(lod) = lea f node size · 2lod (4.8)

Additionally, there is a customizable view distance parameter, that defines the radius of a sphere
around the viewer. It is specified in multiples of the lea f node size and constrains the area covered
by each LOD, to allow for fast and easy three-dimensional distance-dependent data access. This
parameter must be smaller than (node count � 1). Otherwise the quadtree may be looked up
outside its bounds, resulting in the retrival of invalid data.

Figure 4.6: Depicts the LOD distribution (colored band) depending on the distance to the viewer
(bottom axis), which is measured in multiples of the view distance.

To retrieve the appropriate atlas index and the atlas coords identifying the location of the data
inside the accessed node, some simple arithmetic has to be performed. At first, the LOD layer in
the quadtree should be determined. Therefore the LOD distribution depicted in Figure 4.6 is used.
It makes sure that the resolution is indirectly proportional to the approximate distance between
the position and the viewer in world space. This can be achieved by using Equation 4.9, which
additionally clamps the LOD between zero and the maximum level.

quadtree lod(distance) = clamp(log2(2 ·
distance · lea f node size

view distance
), 0, lod count� 1) (4.9)

With the LOD evaluated, the next step is computing the quadtree coordinates, identifying the
node at the requested position. This is done by Equation 4.10, using toroidal addressing. Then
the atlas index and atlas lod can be looked up in the clipped quadtree data structure.

quadtree coords(position, quadtree lod) =
�

f mod(
position

node size(quadtree lod)
, node count)

⌫
(4.10)

Finally, the correct coordinates, inside the node, have to be computed, as can be seen in Equa-
tion 4.11. To compute them the just determind atlas lod is used. This makes sure that even if
the node of the proper quadtree lod is not loaded yet, the quadtree can fall back to a large node
of lower resolution. An example of this can be seen on the right of Figure 4.4. With both the
atlas index and the atlas coords available it is now possible to access any terrain data inside the
node atlas at the requested position.

atlas coords(position, atlas lod) = f mod(
position

node size(atlas lod)
, 1) (4.11)

Chapter 4. A Novel Terrain Rendering Method 35

4.5.4 Texture Filtering for Chunked Clipmaps

Texture filtering of compound textures is a difficult problem to solve. The hardware-accelerated
texture filtering units of modern GPUs, accessible by means of a texture sampler, are limited to
operating on a single texture (layer) at a time. This creates a problem when sampling near the
edges of a node because information about adjacent texels resides in a different texture or texture
layer. The same problem exists for the mipmaps, even though the chunked clipmap (or even
the standard clipmap) stores the down-sampled texture data in a node on another layer, it is not
accessible for filtering.

Figure 4.7: Illustrates the four nodes required to store the texture on the left, using a center size of
4 and a border size of 2, together with their first mipmap.

A solution to this problem is storing data redundantly. The problem of the missing neighboring
pixel information can be solved by surrounding each node with a border of overlapping pixel
data. Similarly, the mipmap data can be duplicated per node as well. This slight overhead enables
seamless trilinear and even anisotropic texture filtering. Figure 4.7 shows an example of such a
partitioning, with a center size of 4 and a border size of 2.

adjusted atlas coords(atlas coords) =
atlas coords · center size + border size

center size + 2 · border size
(4.12)

Because of the additional border, the atlas coords will have to be adjusted. Therefore the atlas co-
ordinates have to be remapped to fit the center of the node, which is achieved by Equation 4.12.

Figure 4.8: Shows a comparison between sampling using implicit gradients on the left and explicit
ones on the right. Notice the fine line of pixel errors at the LOD boundary on the left.

36 4.5. Chunked Clipmap

Unfortunately adjusting atlas coords is not enough to get trilinear and anisotropic filtering fully
working. As seen on the left in Figure 4.8, there is still a visual error at the edge where adjacent
textures meet, when relying on the hardware’s implicit derivate calculation. This error is because
the atlas coords variable is not continuous in those regions. To prevent this artifact, the texture
sampling gradients have to be calculated explicitly in the fragment shader. This can be achieved
using the Equation 4.13, which scales the derivative of the horizontal position of the fragment on
the terrain according to the underlying node’s dimensions. Using these gradients together with
the explicit variant of the texture filtering function, these artifacts can be entirely mitigated, as
shown on the right in Figure 4.8.

adjusted ddx(position, atlas lod) =
ddx(position)

center size · 2atlas lod

adjusted ddy(position, atlas lod) =
ddy(position)

center size · 2atlas lod

(4.13)

4.5.5 Layer Blending

Complicated texture filtering is not the only issue caused by the multi-resolution representation
of the terrain data. Another problem is caused by a harsh jump in resolution at the transition
between adjacent LODs. Although the spherical LOD greatly reduces its effect down to a line,
instead of entire nodes popping in and out of the view, there still is a noticeable discontinuity
visible on the screen.

To solve this issue, we sample the two LOD layers at the fringe of the LOD rings and interpo-
late between them. Depending on the range in which the data is blended, this will result in an
imperceptible and smooth transition. Figure 4.9 depicts such a blended LOD distribution.

Figure 4.9: Depicts the blended LOD distribution in one and two dimensions. The distance (bot-
tom axis) is measured in multiples of the view distance.

Chapter 4. A Novel Terrain Rendering Method 37

4.5.6 Node Preprocessing

To partition the nodes from the source data, three preprocessing steps are required, as can be seen
in Figure 4.10. At first, we split into the smallest LOD nodes one or multiple source images storing
the terrain data in a nonoverlapping way, according to the desired center and border size. During
this step, the overlapping border data can be simply copied for each node as well. With all of
the level zero nodes available, they can now be downsampled into the next LOD layer. Therefore
the center of four adjacent nodes is combined and downscaled linearly. The third step consists of
stitching adjacent nodes together, by copying over the border data from their neighbors. Borders
without a neighbor can fill the border by extending their center along the edges. These last two
steps are now repeated for each additional LOD layer until the entire node pyramid is built.

Figure 4.10: Illustrates the three steps (split, downsample and stitch) required to preprocess the
source terrain data into the node pyramid.

38 4.5. Chunked Clipmap

4.5.7 Updating the Chunked Clipmap

Because chunked clipmaps only cache a view-dependent subset of all terrain data, it is important
to keep this information up to date whenever the viewer’s position changes. This update is per-
formed by centering the clipped quadtree under the viewer while aligning the position of each
layer to the nearest multiple of the corresponding node size. Then for each entry of the quadtree,
the distance to the viewer is compared to the load distance parameter scaled by the LOD of the en-
try, thereby it is decided whether the node at that position should be loaded. All updates, of each
clipped quadtree of the terrain, are gathered and then compared against the node atlas. Nodes
with differing states in the update and the node atlas are then loaded depending on whether they
are requested by at least one view or unloaded if they are not requested by any of the views.

Whenever a node has finished loading it is copied into the node atlas and marked as available.
Due to the asynchronous nature of the node loading operation, the quadtrees can not assume that
their requested state is equal to the current state of the node atlas. Thus in a second adjustment
step, each entry of the clipped quadtree is updated with the best currently loaded node available
in the node atlas.

This four-step process is summarized by Figure 4.11. Nodes that are loaded in the atlas, but are
no longer in use may also be cached as long as the slot is not required by a newly loaded node.

Figure 4.11: Shows the four steps required for updating a chunked clipmap. They are performed
consecutively during each frame.

Chapter 5. Implementation 39

Chapter 5
Implementation

The following chapter is dedicated to outlining the challenges and important details encountered
during the implementation of the previously introduced terrain rendering method. The applica-
tion (https://github.com/kurtkuehnert/terrain_renderer), which was written alongside this
thesis, is developed using the programming language Rust and the upcoming graphics API We-
bGPU. This choice was made to try out new technology in the computer graphics domain, which
promises some great benefits over the traditional C++ and OpenGL (or Direct X) alternatives.

Rust is a modern general-purpose programming language that focuses on performance, relia-
bility, and productivity. It offers strong memory safety and concurrency guarantees, which make
multi-threading easy to do, as well as preventing the occurrences of segmentation faults and data
races.

WebGPU is a modern cross-platform graphics API, which provides 3D-rendering and GPU
computing, to web browsers and native applications alike. Unlike its predecessor WebGL, it intro-
duces many new capabilities, like GPU compute, storage buffers, and indirect draw commands to
the Web, which are utilized by the implementation of this terrain renderer. Additionally, WebGPU
comes with its own shading language called WGSL, which is used by this implementation as well
as all shader snippets of this thesis. It is a great choice for research implementations because it
is internally based on the existing platform native APIs: Vulkan, Metal, and Direct3D 12, which
means that every program developed using WebGPU can by definition also be implemented us-
ing one of the other three APIs. At the time of writing the specification of WebGPU is not yet fully
finalized and thus is not yet enabled by default in browsers today, but libraries implementing
the current draft of the specification already exist. Such libraries include Dawn (C++) and wgpu
(Rust, used by this project).

Bevy To alleviate the burden of having to implement everything from scratch the author chose
to utilize the low-level open-source game engine framework called Bevy, which is responsible for
handling the data loading, organizing the different components, managing the window, input,
and graphics contexts, and determining the general structure of the entire application. It provides
all of this functionality as an easy-to-use cross-platform library. Additionally, it offers the benefit
of integrating with other plugins to combine projects for more extensive, detailed, and interesting
scenes.

https://github.com/kurtkuehnert/terrain_renderer

40 5.1. Terrain Geometry

5.1 Terrain Geometry

In the following sections, the implementation of the UDLOD algorithm will be discussed. The
code snippets, which are written in WGSL, rely on types, functions, uniform values, and shader
bindings that can be seen in Figure 1.

5.1.1 Tile Refinement

Implementing tile refinement, as described in Section 4.4.1, comes with the inherent challenge of
parallelizing the algorithm on the GPU. All parallel executions of the prepass read and write from
the same temporary tile list and must output tiles into the final tile list. To prevent duplicating,
or skipping work, it is important to never access these buffers simultaneously at the same index.
This can be achieved by incrementing them atomically, as can be seen in Figure 5.1.

fn parent_index(id: u32) -> i32 {
return i32(MAX_TILE_COUNT - 1u) * clamp(parameters.counter, 0, 1)

- i32(id) * parameters.counter;
}

fn child_index() -> i32 {
return atomicAdd(¶meters.child_index, parameters.counter);

}

fn final_index() -> i32 { return atomicAdd(¶meters.final_index, 1); }

Figure 5.1: These three functions are responsible for retrieving the indices used to access the tiles
during refinement. They are updated atomically to guarantee mutual exclusive access.

Unlike the approach used by the ”Far Cry 5” terrain renderer [12], this implementation only uses
a single temporary tile list, which is indexed from the front and the back simultaneously. One
index references the parent tiles, and the other identifies the position of newly written child tiles,
inside the buffer. After each layer has been processed, the indices are swapped and the no longer
required parent tiles will be overwritten by the child tiles of the following refinement.

@compute @workgroup_size(1, 1, 1)
fn prepare_next() {

if (parameters.counter == 1) {
parameters.tile_count =

u32(atomicExchange(¶meters.child_index, i32(MAX_TILE_COUNT - 1u)));
}
else {

parameters.tile_count =
MAX_TILE_COUNT - 1u - u32(atomicExchange(¶meters.child_index, 0));

}

indirect_buffer.workgroup_count.x = (parameters.tile_count + 63u) / 64u;
parameters.counter = -parameters.counter;

}

Figure 5.2: This shader is invoked after each pass of tile refinement to prepare the indices, the
counter, and the tile count for the next one.

Chapter 5. Implementation 41

The shader shown in Figure 5.2 is executed in between successive executions of the refinement
shader and inverts the counter, determining the increment direction of the parent and child in-
dices. Additionally, the indirect buffer, specifying the number of parent tiles to refine next, is
updated.

5.1.2 Tile Frustum Culling

As mentioned in Section 4.4.2, the number of tiles and by extension vertices to render can be
decreased drastically by utilizing basic frustum culling. Therefore the implementation uses an
optimized frustum culling algorithm, which is part of the tile refinement compute shader on the
GPU. The six planes, defined by their normal and their distance to the origin, are extracted from
the view frustum by the CPU and transmitted to the GPU as part of a uniform buffer. The shader
of Figure 5.3 shows the entire algorithm as it is defined in the blog post ”Geometric Approach –
Testing Boxes II”. [24]

fn frustum_cull(tile: Tile) -> bool {
let size = f32(tile.size) * TILE_SCALE;
let aabb_min = vec3<f32>(f32(tile.coords.x), 0.0, f32(tile.coords.y)) * size;
let aabb_max = vec3<f32>(aabb_min.x + size, MAX_HEIGHT, aabb_min.z + size);

for (var i = 0; i < 6; i = i + 1) {
let plane = FRUSTUM_PLANES[i];
var p_corner = vec4<f32>(aabb_min, 1.0);
var n_corner = vec4<f32>(aabb_max, 1.0);
if (plane.x >= 0.0) { p_corner.x = aabb_max.x; n_corner.x = aabb_min.x; }
if (plane.y >= 0.0) { p_corner.y = aabb_max.y; n_corner.y = aabb_min.y; }
if (plane.z >= 0.0) { p_corner.z = aabb_max.z; n_corner.z = aabb_min.z; }
if (dot(plane, p_corner) < 0.0) { return true; }
else if (dot(plane, n_corner) < 0.0) { return false; }

}
return false;

}

Figure 5.3: The frustum culling function returns true if the tile can be culled, or false otherwise.

To decide whether or not a tile is visible, for each plane the closest and furthest vertex along its
normal is determined. If the closest vertex is located on the outside (relative to the frustum) of the
plane, then it can be culled safely because no other vertex can lie within, otherwise, if the most
distant vertex in relation to the normal lies on the inside (relative to the frustum) of the plane, then
the box must intersect the plane. Should the tile pass all tests without being found to intersect or
lie outside the frustum, then the tile has to be rendered and can not be culled. [24]

42 5.1. Terrain Geometry

5.1.3 UDLOD Vertex Shader

The vertex shader of the UDLOD algorithm is responsible for mapping each vertex index to a
horizontal local position. Afterwards, the steps outlined in Section 4.4.3 are necessary and their
implementation can be seen in Figure 5.4. At first, the shader computes the tile index and the grid
index. Then the tile data is fetched from the tile list and the grid position is calculated using the
topmost function of Figure 5.5. Finally, the grid position is scaled, translated, and morphed at the
rim between two LOD rings, according to the tile information.

let tile_index = vertex.index / VERTICES_PER_TILE;
let grid_index = vertex.index % VERTICES_PER_TILE;

let tile = tiles.data[tile_index];
let grid_position = calculate_grid_position(grid_index);

let local_position = calculate_local_position(tile, grid_position);

Figure 5.4: Shows the vertex shader section of the UDLOD algorithm.

This last step proved to be the most complicated. The translated local position is computed and
the corresponding world position is estimated using the approximate height. Afterward, the
morph value is calculated, using the middle function of Figure 5.5. Finally, the local position of
every other vertex is interpolated towards its neighbor, based on this ratio.

fn calculate_grid_position(grid_index: u32) -> vec2<u32>{
let row_index =

clamp(grid_index % VERTICES_PER_ROW, 1u, VERTICES_PER_ROW - 2u) - 1u;
let column_index = grid_index / VERTICES_PER_ROW;
return vec2<u32>(column_index + (row_index & 1u), row_index >> 1u);

}

fn calculate_morph(tile_size: u32, world_position: vec4<f32>) -> f32 {
let viewer_distance = distance(world_position.xyz, VIEW_POSITION.xyz);
let morph_distance = MORPH_DISTANCE * f32(tile_size << 1u);
return clamp(1.0 - (1.0 - viewer_distance / morph_distance)

/ MORPH_RANGE, 0.0, 1.0);
}

fn calculate_local_position(tile: Tile, grid_position: vec2<u32>) -> vec2<f32> {
let size = f32(tile.size) * TILE_SCALE;
let local_position =

(vec2<f32>(tile.coords) + vec2<f32>(grid_position) / GRID_SIZE) * size;

let world_position = approximate_world_position(local_position);
let morph = calculate_morph(tile.size, world_position);
let even_grid_position = vec2<f32>(grid_position & vec2<u32>(1u));

return local_position - morph * even_grid_position / GRID_SIZE * size;
}

Figure 5.5: Depicts the local position calculation of the UDLOD algorithm. The topmost function
maps the grid position to each vertex based on the grid index. The middle function
determines the ratio at which to morph vertices with even grid positions.

Chapter 5. Implementation 43

5.2 Terrain Data

Three steps must be performed to access the terrain data. At first, the LOD, at which the in-
formation is required, and the blend ratio used to interpolate between two adjacent layers, is
determined. Then the specific node storing the best available data is identified for one or both of
them. Finally, the desired information is sampled and filtered.

5.2.1 Multiple Terrain Attachments

For an extensible implementation of a terrain renderer, it is crucial to represent multiple differ-
ent kinds of terrain data with varying resolutions. Therefore the chunked clipmaps, outlined in
Section 4.5, have to be adapted to support an arbitrary amount of different terrain data layers,
so-called terrain attachments.

Each attachment possesses a unique atlas texture array as part of the node atlas, which stores all
of its currently loaded data. For each node, one associated texture for each attachment is stored,
which all have to finish loading before the information can be accessed.

The function shown in Figure 5.6 combines all the coordinate remapping, described in Section 4.5.3,
required for accessing the node at a horizontal position and a specific LOD.

fn lookup_node(lod: u32, local_position: vec2<f32>) -> NodeLookup {
let quadtree_lod = min(lod, LOD_COUNT - 1u);
let quadtree_coords = vec2<i32>((local_position / node_size(quadtree_lod))

% f32(NODE_COUNT));
let lookup = textureLoad(quadtree, quadtree_coords, i32(quadtree_lod), 0);
let atlas_index = i32(lookup.x);
let atlas_lod = lookup.y;
let atlas_coords = (local_position / node_size(atlas_lod)) % 1.0;
return NodeLookup(atlas_lod, atlas_index, atlas_coords);

}

Figure 5.6: This function is used to look up the node, at the given position and LOD, in the
quadtree of this viewer.

5.2.2 Blending

Before the data can be sampled from a node, at first the blend ratio and LOD are computed.
Similar to morphing, the blend ratio is calculated based on the world position of the point and its
distance to the viewer. For that, the function depicted in Figure 5.7 is used.

fn calculate_blend(world_position: vec4<f32>) -> Blend {
let viewer_distance = distance(world_position.xyz, VIEW_POSITION.xyz);
let log_distance = max(log2(2.0 * viewer_distance / BLEND_DISTANCE), 0.0);
let ratio = (1.0 - log_distance % 1.0) / BLEND_RANGE;
return Blend(u32(log_distance), ratio);

}

Figure 5.7: This function computes the blend ratio and the LOD used to sample the terrain data.

44 5.2. Terrain Data

The following two code snippets, shown in Figure 5.8, describe the entire process of gathering the
terrain data in the vertex and fragment shader respectively. The world position is approximated
in the vertex shader once more, the blend value is calculated, and the node corresponding to the
position is looked up in the quadtree. If the blend ratio lies within the range of zero and one,
then the terrain data is sampled a second time, using the lower LOD of the parent node, and both
sampled values are blended together. To use trilinear and anisotropic filtering in the fragment
shader, the gradients of the local position in the x and y directions are determined and passed to
the terrain data sampling function.

let world_position = approximate_world_position(local_position);
let blend = calculate_blend(world_position);
let lookup = lookup_node(blend.lod, local_position);
var height = sample_height(lookup);

if (blend.ratio < 1.0) {
let lookup2 = lookup_node(blend.lod + 1u, local_position);
let height2 = sample_height(lookup2);
height = mix(height2, height, blend.ratio);

}

let ddx = dpdx(local_position);
let ddy = dpdy(local_position);
let blend = calculate_blend(world_position);
let lookup = lookup_node(blend.lod, local_position);
var data = sample_fragment_data(lookup, ddx, ddy);

if (blend.ratio < 1.0) {
let lookup2 = lookup_node(blend.lod + 1u, local_position);
let data2 = sample_fragment_data(lookup2, ddx, ddy);
data = blend_fragment_data(data, data2, blend.ratio);

}

Figure 5.8: Shows the vertex (top) and the fragment (bottom) shader section, that is used to access
the data from a chunked clipmap.

5.2.3 Sampling and Filtering

As seen in the previous Section 4.5, the sampling and filtering of chunked clipmaps do require
special care. Additionally, the previously computed atlas coordinates have to be adjusted to fit
the center of the node, which actually contains the non-overlapping node data. This can be im-
plemented using a single multiplication and addition, as can be seen in Figure 5.9. To fetch the
best available data from the node (e.g. in the vertex shader) a simple texture sample at mip level
zero is used.

// for each attachment adjust the coordinates and sample its data
let attachment_coords = lookup.atlas_coords * ATTACHMENT_SCALE + ATTACHMENT_OFFSET;
let data = textureSampleLevel(attachment_atlas, atlas_sampler, attachment_coords,

attachment_index, 0.0);

Figure 5.9: Depicts how to sample data from an attachment using bilinear filtering.

Chapter 5. Implementation 45

The derivatives of the trilinear and anisotropic filters used in the fragment shader should also
be adjusted. They have to be divided by the node size and scaled according to the individual
attachment size. At last, the data can be retrieved using the texture sample gradient function, as
seen in Figure 5.10.

let ddx = ddx / f32(1u << lookup.atlas_lod);
let ddy = ddy / f32(1u << lookup.atlas_lod);

// for all attachments adjust the coordinates and derivatives
let attachment_coords = lookup.atlas_coords * ATTACHMENT_SCALE + ATTACHMENT_OFFSET;
let attachment_ddx = ddx / ATTACHMENT_SIZE;
let attachment_ddy = ddy / ATTACHMENT_SIZE;

// sample the data of the attachment
let data = textureSampleGrad(attachment_atlas, atlas_sampler, attachment_coords,

attachment_index, attachment_ddx, attachment_ddy);

Figure 5.10: Depicts how to sample data from an attachment using trilinear/anisotropic filtering.

5.2.4 Normal Calculation

Although the normals could be stored as yet another terrain attachment, they can also be com-
puted from the height data in the fragment shader. This offers many benefits, such as reduced
VRAM usage and simpler updating of the terrain data. To calculate these normals the function
seen in Figure 5.11 is used. Therefore the height map is sampled four times with an offset of one
texel in the x- or z-axis. These are then used to span a vector perpendicular to the terrain’s surface,
the approximate terrain normal. This calculation also uses the texture sample gradient function
to enable trilinear filtering as well.

fn calculate_normal(coords: vec2<f32>, atlas_index: i32, atlas_lod: u32,
ddx: vec2<f32>, ddy: vec2<f32>) -> vec3<f32> {

let offset = 1.0 / HEIGHT_ATTACHMENT_SIZE;
let left = textureSampleGrad(height_atlas, atlas_sampler,

coords + vec2<f32>(-offset, 0.0), atlas_index, ddx, ddy).x;
let up = textureSampleGrad(height_atlas, atlas_sampler,

coords + vec2<f32>(0.0, -offset), atlas_index, ddx, ddy).x;
let right = textureSampleGrad(height_atlas, atlas_sampler,

coords + vec2<f32>(offset, 0.0), atlas_index, ddx, ddy).x;
let down = textureSampleGrad(height_atlas, atlas_sampler,

coords + vec2<f32>(0.0, offset), atlas_index, ddx, ddy).x;
return normalize(vec3<f32>(right - left, f32(2u << atlas_lod) / MAX_HEIGHT,

down - up));
}

Figure 5.11: This function calculates the surface normal using four samples from the height map.

Chapter 6. Results 47

Chapter 6

Results

Figure 6.1: Depicts Hartenstein (left), a small town, and Dresden (right), the capital of Saxony,
rendered using the method presented in this thesis. The renderer is able to reproduce
the landscape up close as well as from afar.

This chapter showcases and analyzes the capabilities of the chunked clipmap, the UDLOD algo-
rithm, and the implementation of the terrain renderer. Figure 6.1 depicts two images rendered
in real-time, using the method presented in this thesis. As can be seen, the described terrain ren-
derer can scale effortlessly from small villages to vast regions. All performance measurements
were taken on an Apple M1 chip equipped with 16 GB of memory.

48 6.1. Saxony Terrain Data

6.1 Saxony Terrain Data

To test and benchmark this implementation, an extensive terrain data set was required. Conse-
quently, the author chose to utilize the open geodata supplied by the government of the Free State
of Saxony [19]. Therefore the entire DTM, DSM, and DOP data was gathered, preprocessed, and
partitioned into the format required by the chunked clipmap. Figure 6.2 compares the resulting
images when rendering using either the DTM or the DSM as the height data of the terrain.

Figure 6.2: A comparison of the rendered images using different types of terrain data. On the left,
only the height data is displayed, whereas on the right the terrain is colored according
to the DOP information. The top half of the image uses the DTM for rendering, while
the bottom one is based on the DSM data.

To demonstrate the capability of the terrain renderer to scale desirably across numerous orders
of magnitude, three benchmark datasets were chosen. They encompass the Saxony geodata at a
resolution of one pixel per square meter and cover multiple square kilometers. The three datasets
are compared in Figure 6.3.

Figure 6.3: Compares the three datasets that were used to benchmark the terrain renderer.

Chapter 6. Results 49

6.2 Configuring the Chunked Clipmap

Determining a proper configuration of the chunked clipmap parameters is important for achiev-
ing high-quality images. Ideally, for each pixel of the frame buffer, one texel of the terrain data
should be sampled. Unfortunately, this correspondence is impossible to maintain across the entire
screen, due to many factors such as the field of view of the camera, the steepness of the terrain,
and the camera’s pitch angle. Nevertheless, if enough terrain data is accessible in the chunked
clipmap then the rendered image will not look blurry. It turns out that if the resolution of the data
stored in each layer of the chunked clipmap is greater than or equal to twice the screen resolution,
the terrain will be rendered satisfactory.

In Section 4.5.4, the author explained that sampling compound textures causes issues at the tex-
ture borders. This is illustrated by Figure 6.4. The image is zoomed in to better highlight this
artifact. To prevent this issue, a texture border was introduced, which stores duplicated infor-
mation, required by the sampling unit. Testing showed, that a border size of one is sufficient to
alleviate this problem for regular sampling. However, due to the normal calculation requiring the
data of adjacent texels, a border size of two is necessary to fix these artifacts entirely.

Figure 6.4: Highlights the issue of sampling compound textures. On the left, a border size of zero
causes a noticeable seam, between adjacent nodes. On the right, the issue is resolved
by using a border size of one.

Depending on the view distance, slight shimmering and aliasing may be observed, even when the
anisotropic filtering method, described in Section 4.5.4, is employed. This issue, of oversampling
the node textures, is less noticeable, than the texture seams. That is why, the use of additional mip
layers, to alleviate this problem, is not always required. However, they can slightly improve the
image quality, under certain camera angles.

50 6.2. Configuring the Chunked Clipmap

Figure 6.5: A table comparing the view distance and quadtree size required to achieve maximum
image quality at different screen resolutions. The overhead indicates the percentage
of overlapping data required to seamlessly filter the terrain data.

The most important parameter of a chunked clipmap is the view distance. It has to be calculated,
depending on the resolution of the frame buffer. Therefore, the maximum resolution, of the x or y
direction, has to be divided by the center size of the node. Figure 6.5 shows the ideal view distance,
determined for multiple combinations of texture size, mip count, and display resolution. The
greater the mip count the less shimmering will be noticeable when looking parallel to the terrain,
but this also increases the overhead caused by the redundant storage of node border and mip
maps. The load distance parameter has to be specified according to the maximum speed of the
viewer to ensure that all data inside the view distance has been loaded.

Figure 6.6 depicts the different LOD layers of the chunked clipmap overlayed on top of the ter-
rain’s surface. On the left, the underlying nodes can be seen, and on the right, the blended layers
are shown.

Figure 6.6: Depicts a comparison between the loaded nodes on the left and the blended LOD
layers on the right, overlayed on top of the terrain’s surface.

Chapter 6. Results 51

6.3 Configuring the Uniform Distance-Dependent Level of Detail

Figure 6.7: A table comparing the performance of selected combinations of UDLOD parameters.

Configuring the UDLOD algorithm is not as straightforward as it is for the chunked clipmap. Its
parameters are largely dependent on the available frame time budget dedicated to rendering the
terrain. The quotient of tile scale and grid size determines the approximate side length of each
triangle in screen space. This means that for a pixels per quad ratio of one - every two triangles
cover one pixel of the final image. However, rendering that many triangles is unreasonable even
on modern hardware, thus a comparison of different configurations is shown in Figure 6.7. A
single frame was recorded and measured for each configuration, using the Apple Xcode Profiler.
The corresponding mesh for each pixels per quad value can be examined in Figure 6.8.

Figure 6.8: Shows the same view rendered using different pixels per quad ratios side by side.

Analyzing these results of Figure 6.7 uncovers some important considerations for tweaking the

52 6.3. Configuring the Uniform Distance-Dependent Level of Detail

Figure 6.9: Plots the time spent during the vertex shader per frame depending on the
pixels per quad ratio on the left and on the grid size on the right.

UDLOD parameters. Figure 6.9 confirms that the time spent in the vertex shader decreases for
increasing pixels per quad values and thus fewer rendered triangles. Interestingly the same be-
havior is also true for the fragment shader, as can be seen in Figure 6.10. Because of the relatively
small amount of work done in the prepass, the execution time is mostly limited by the compute
shader dispatch overhead and not by its actual algorithm. As explained in Section 4.4.3, larger
grid size cause less vertex shader overhead and are thus preferable, when utilizing only inexpen-
sive versions of culling. This effect can be observed in the right diagram of Figure 6.9.

Figure 6.10: Graphs the time spent during the prepass on the left and during the fragment shader
on the right depending on the pixels per quad ratio.

Chapter 6. Results 53

6.4 Evaluation of the Terrain Rending Method

At the beginning of Chapter 4 the author established eight requirements for the ”ideal terrain
renderer”. Now the novel terrain rendering method, consisting of the UDLOD algorithm and
the chunked clipmap data structure, will be evaluated against those criteria. To evaluate the
final visual quality of the rendered images produced by this implementation, a supplementary
video was recorded. It can be watched at https://youtu.be/ZRMt1GV50nI. The video showcases
additional terrain data from the open geodata of Switzerland [25], to demonstrate the capability
of handling steep terrains. Figure 6.11 depicts such an image.

1 Hardware Adaptive Quality Both UDLOD and chunked clipmaps provide multiple parame-
ters allowing for fine-grained tuning of the quality and performance of the terrain renderer. Es-
pecially the view distance and the tile scale can be adjusted seamlessly, without having to change
anything about the preprocessed terrain data.

2 Unlimited Terrain Size As demonstrated in the prior section, the method is well suited for
rendering large-scale terrains with high fidelity in real-time. The limiting factor is the storage
capacity required by the terrain data.

3 Seamless Viewing Distances The seamless viewing distances can not be demonstrated using
images alone. This chapter showcased the terrain, rendered using many different viewpoints.
The auxiliary video was recorded to evaluate the continuous image quality while the camera is in
motion.

4 Uniform Screen-Space Error The UDLOD algorithm provides a uniform tesselation in world
space, as can be seen in Figure 6.8, which translates well into screen space for most landscapes,
and only causes issues for very jagged or steep terrains. However, those kinds of terrains can not
be approximated satisfactorily using height maps anyway.

5 Smooth Vertex Morphing The tesselation produced by the UDLOD algorithm is entirely lo-
cally and temporally continuous. Every LOD transition is morphed to guarantee the absence of
cracks and pops.

6 Random-Access Terrain Data Although this feature is not implemented in the showcased ter-
rain renderer, accessing terrain data on the CPU and the GPU, for purposes other than rendering
the terrain, is possible when using the chunked clipmap data structure.

7 Seamless High-Quality Texturing As seen in Chapter 4 and Chapter 5, special considera-
tions were taken to develop a texturing scheme that allows for seamless high-quality trilinear
and anisotropic filtering. This is also highlighted in the video.

8 Multiple Views Another important quality of the chunked clipmap technique is the ability to
accommodate multiple clipped quadtrees, and thus multiple independent views, which can share
common terrain data. Although features like split-screen or shadow rendering are not part of the
demo application, they are possible, as demonstrated in the video.

https://youtu.be/ZRMt1GV50nI

54 6.5. Final Benchmark

Figure 6.11: Depicts the Swiss Alps, rendered by the terrain renderer.

6.5 Final Benchmark

With the configuration for both the chunked clipmap and the UDLOD algorithm discussed, a final
benchmark, between the three datasets, to demonstrate the suitability of the terrain rendering
method for large-scale terrains is given. The results can be seen in Figure 6.12. All three terrains
can be rendered in real-time at full HD resolution, using 4x multisample anti-aliasing and 16x
anisotropic filtering. The parameters were chosen to represent features such as trees and buildings
of the DSM accurately, but rendering smoother DEM terrains does not require such expensive
parameters.

Figure 6.12: Shows a benchmark comparing the results of the same view for all three datasets.
The three rendered images correspond to the three terrains and were rendered using
a view distance of 4, a grid size of 4, and a pixels per quad ratio of 2.

Chapter 7. Conclusion and Future Work 55

Chapter 7
Conclusion and Future Work

This thesis was concerned with two fundamental questions of large-scale terrain rendering, namely
”How to represent and manage the terrain data?”, as well as, ”How to approximate the terrain
geometry?”. The paper presented an overview of the currently available terrain rendering tech-
niques using the raster graphics pipeline. Based on those previous works, eight requirements of
such a terrain renderer were provided and the previous techniques were all found to be unsatis-
factory at solving all of them at once. Thus this thesis set out to solve all of them simultaneously.

7.1 Contributions

To solve the two key questions, the author introduced two novel terrain rendering concepts,
namely the Uniform Distance-Dependent Level of Detail (UDLOD) and the Chunked Clipmap.

Uniform Distance-Dependent Level of Detail (UDLOD) The Uniform Distance-Dependent
Level of Detail (UDLOD) algorithm combines the CDLOD method with the quadtree subdivision
of the ”Fary Cry 5” terrain renderer. This allows for a seamless and uniform view-dependent
triangulation of large planes, which can in turn be displaced into heightfield terrains. Their con-
tinuous, fully customizable tesselation density let them adapt perfectly to any quality or perfor-
mance targets. Additionally, UDLOD provides a great foundation for implementing advanced
GPU-based culling techniques to render terrains even more efficiently.

Chunked Clipmap The chunked clipmap constitutes an evolution of the original clipmap data
structure, which in turn is an enhancement of the texture mipmap concept. It offers the possibility
to represent the data of a virtually unlimited terrain in a view-dependent way. Its chunked rep-
resentation can be efficiently paged in and out of memory and allows for reusing the same data
between multiple views. Additionally seamless trilinear and anisotropic filtering is possible and
its implementation was covered by this thesis.

56 7.2. Future work

7.2 Future work

Although the terrain rendering method presented in this thesis satisfies all eight requirements it
set out to solve, there are still parts that could be improved upon. The programmable hardware-
based tessellation stage could be used to tesselate the tiles differently according to a tile-based
error metric. Also, the recently introduced mesh shading pipeline could be used to combine both
the refinement compute shader of the UDLOD prepass with the rendering of the tiles into the
same pipeline. Furthermore, an extension of the chunked clipmap and the UDLOD algorithm to
the spherical domain, would allow for rendering high-resolution planets.

Another unsolved question is the real-time modification of the terrain. Due to time limitations
while writing this thesis the author could not add this feature to the reference implementation.
Although the constraints introduced by the seamless sampling of the terrain data, make updating
the terrain data more difficult, it should be possible. Additionally, a more sophisticated node-
loading strategy could result in requiring less memory and bandwidth. Especially replacing in-
visible but loaded nodes, in favor of more impactful ones, should improve the performance and
quality of the terrain on memory constraint systems.

Another interesting possibility would be utilizing Technologies like DirectStorage, allowing the
node data to be loaded immediately from the hard drive into VRAM without passing it through
the CPU.

True-to-life landscape rendering is not limited to just rendering terrain geometry and albedo but
includes more challenges, such as shadow rendering, or global illumination, as well as, realistic
texturing and shading. The field of terrain rendering poses a wide variety of related, but vastly
different problems, such as rendering the sky, vegetation, water bodies, and man-made struc-
tures.

58

Acronyms

RAM random access memory

VRAM video random access memory

API application programming interface

GIS geographical information systems

FPS frames per second

TIN triangulated irregular network

RTIN right-triangulated irregular network

LEB longest edge bisection

OOC out-of-core

LOD level of detail

DLOD discrete level of detail

CLOD continuous level of detail

MLOD multi-resolutional level of detail

DEM digital elevation model

DTM digital terrain model

DSM digital surface model

DOP digital orthophoto

ROAM Real-time Optimally Adapting Mesh

PGM Persistent Grid Mapping

CDLOD Continuous Distance-Dependent Level of Detail

CBT Concurrent Binary Tree

UDLOD Uniform Distance-Dependent Level of Detail

59

Appendix

Name Description
lod count number of LOD levels the implicit quadtree possess
tile scale continuous scale factor of the tiles used to adjust the quality
grid size number of rows and columns of each tile grid
view distance determines the distances at which the LOD changes
tile count number of tiles to render (length of the final tile list)
vertex index index of the current vertex (vertex shader built-in)
tile index identifies the tile corresponding to a vertex in the tile list
tile coords coordinates of a tile (fetched from the tile list)
tile size size of a tile (fetched from the tile list)
grid index identifies a vertex inside the grid of the current tile
vertices per tile number of vertices required by each grid/tile
grid position the horizontal position of a vertex inside the grid
local position the horizontal position of the vertex in local space
morphed local position the morphed position of the vertex in local space

Table 1: An overview of all different parameters and variables required by UDLOD.

Name Description
lod count number of LOD layers of the clipped quadtree
node count number of nodes per side of the clipped quadtree
leaf node size size of the smallest nodes (LOD 0) in local space
node size size of the nodes adjusted for their LOD in local space
center size the size of the area of unique terrain data in the center of each node
border size the size of the border of duplicated terrain data around each node
view distance determines the distances at which the LOD changes
load distance determines the distances at which nodes should be loaded
approximate height the height of the terrain under the current viewer position
distance the approximate distance between the position and the viewer
quadtree lod LOD, based on the distance to the viewer, used to access the quadtree
quadtree coords coordinates (of the corresponding position) in the quadtree
atlas index identifies a corresponding node in the atlas
atlas lod identifies the LOD (and thus the size) of the node in the atlas
atlas coords coordinates (of the corresponding position) inside the node of the atlas
adjusted atlas coords atlas coordinates adjusted to exclude the border of the node
adjusted ddx/ddy the texture gradients adjusted for the node

Table 2: An overview of all different parameters and variables required by the Chunked Clipmap.

60

struct Parameters {
tile_count: u32,
counter: i32,
child_index: atomic<i32>,
final_index: atomic<i32>,

}
struct IndirectBuffer { workgroup_count: vec3<u32> }
struct Tile { coords: vec2<u32>, size: u32 }
struct TileList { data: array<Tile> }
struct NodeLookup { atlas_lod: u32, atlas_index: i32, atlas_coords: vec2<f32> }
struct Blend { lod: u32, ratio: f32 }

// uniform values:
var<uniform> LOD_COUNT: u32;
var<uniform> NODE_COUNT: u32;
var<uniform> VIEW_POSITION: vec4<f32>;
var<uniform> FRUSTUM_PLANES: array<vec4<f32>, 6>;
var<uniform> MAX_TILE_COUNT: u32;
var<uniform> TILE_SCALE: f32;
var<uniform> VERTICES_PER_TILE: u32;
var<uniform> VERTICES_PER_ROW: u32;
var<uniform> GRID_SIZE: f32;
var<uniform> APPROXIMATE_HEIGHT: f32;
var<uniform> MAX_HEIGHT: f32;
var<uniform> LEAF_NODE_SIZE: f32;
var<uniform> BLEND_DISTANCE: f32; // view_distance * leaf_node_size
var<uniform> BLEND_RANGE: f32;
var<uniform> MORPH_DISTANCE: f32; // view_distance * leaf_node_size
var<uniform> MORPH_RANGE: f32;

// for each attachment:
var<uniform> ATTACHMENT_SIZE: f32; // center_size + 2 * border_size
var<uniform> ATTACHMENT_SCALE: f32; // center_size / ATTACHMENT_SIZE
var<uniform> ATTACHMENT_OFFSET: f32; // border_size / ATTACHMENT_SIZE
var attachment_atlas: texture_2d_array<f32>;

// prepass bindings
var<storage, read_write> indirect_buffer: IndirectBuffer;
var<storage, read_write> parameters: Parameters;
var<storage, read_write> temporary_tiles: TileList;
var<storage, read_write> final_tiles: TileList;
var quadtree: texture_2d_array<u32>;

// render bindings
var<storage> tiles: TileList;
var quadtree: texture_2d_array<u32>;
var atlas_sampler: sampler;

fn node_size(lod: u32) -> f32 { return f32(LEAF_NODE_SIZE * (1u << lod)); }

fn approximate_world_position(local_position: vec2<f32>) -> vec4<f32> {
return vec4<f32>(local_position.x, APPROXIMATE_HEIGHT, local_position.y, 1.0);

}

Figure 1: Depicts the structures, uniform parameters, bindings, and helper functions used in the
code snippets of Chapter 5.

61

Additional Material

Accompanying this thesis, the author provides a reference implementation of the introduced
method, as described in Chapter 5. The source code can be found at the following link: https:
//github.com/kurtkuehnert/terrain_renderer. This repository contains the instructions for
compiling two executables. One of which downloads the desired terrain dataset from the geo-
data portal of Saxony [19] or that of Switzerland [25]. The other is the demo terrain renderer. It
can visualize the datasets downloaded by the former tool. For further information, please refer to
the instructions provided in the repository.

To better showcase the capabilities of the terrain renderer, a supplementary video was recorded.
It can be found at https://youtu.be/ZRMt1GV50nI.

https://github.com/kurtkuehnert/terrain_renderer
https://github.com/kurtkuehnert/terrain_renderer
https://youtu.be/ZRMt1GV50nI

63

References

[1] Raphaël Lerbour. “Adaptive streaming and rendering of large terrains”. PhD thesis. Uni-
versité Rennes 1, 2009.

[2] Michael Garland and Paul S Heckbert. Fast polygonal approximation of terrains and height fields.
1995.

[3] Jonathan Dupuy. “Concurrent Binary Trees (with application to longest edge bisection)”.
In: Proceedings of the ACM on Computer Graphics and Interactive Techniques 3.2 (2020), pp. 1–
20.

[4] Mark Duchaineau et al. “ROAMing terrain: Real-time optimally adapting meshes”. In: Pro-
ceedings. Visualization’97 (Cat. No. 97CB36155). IEEE. 1997, pp. 81–88.

[5] David Luebke et al. Level of Detail for 3D Graphics. 2003.
[6] Thatcher Ulrich. Rendering Massive Terrains using Chunked Level of Detail Control. 2002.
[7] Peter Lindstrom et al. “Real-time, continuous level of detail rendering of height fields”. In:

Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. 1996,
pp. 109–118.

[8] Martin Hedberg. Rendering of Large Scale Continuous Terrain Using Mesh Shading Pipeline.
2022.

[9] Egor Yusov. GPU Pro3 - Real-Time Deformable Terrain Rendering with DirectX 11. 2018.
[10] Willem H De Boer. “Fast terrain rendering using geometrical mipmapping”. In: Unpublished

paper, available at http: // flipcode. com/ articles/ article_ geomipmaps. pdf (2000).
[11] Filip Strugar. “Continuous distance-dependent level of detail for rendering heightmaps”.

In: Journal of graphics, GPU, and game tools 14.4 (2009), pp. 57–74.
[12] Jeremy Moore. Terrain Rendering in ’Far Cry 5’. 2018.
[13] Daniel Wagner. “Terrain geomorphing in the vertex shader”. In: ShaderX2: shader program-

ming tips and tricks with DirectX 9 (2004), pp. 18–32.
[14] Tomas Akenine-Möller et al. Real-Time Rendering Fourth Edition. 2018.
[15] Ulrich Haar and Sebastian Aaltonen. GPU-Driven Rendering Pipelines. 2015.
[16] Kai Ninomiya, Brandon Jones, and Myles C. Maxfield. WebGPU W3C Working Draft. 2022.

URL: https://www.w3.org/TR/webgpu/.
[17] Christopher C Tanner, Christopher J Migdal, and Michael T Jones. “The clipmap: a virtual

mipmap”. In: Proceedings of the 25th annual conference on Computer graphics and interactive
techniques. 1998, pp. 151–158.

[18] Louise Croneborg et al. DIGITAL ELEVATION MODELS. 2015.
[19] Staatsbetrieb Geobasisinformation und Vermessung Sachsen [GeoSN]. Offene Geodaten Sach-

sen (DOP20, DGM1, DOM1). 2022. URL: https://www.geodaten.sachsen.de/.

http://flipcode.com/articles/article_geomipmaps.pdf
https://www.w3.org/TR/webgpu/
https://www.geodaten.sachsen.de/

64

[20] Frank Losasso and Hugues Hoppe. “Geometry clipmaps: terrain rendering using nested
regular grids”. In: ACM Siggraph 2004 Papers. 2004, pp. 769–776.

[21] Arul Asirvatham and Hugues Hoppe. “Terrain rendering using GPU-based geometry clipmaps”.
In: GPU Gems 2 (2005), pp. 27–45.

[22] Yotam Livny et al. Persistent Grid Mapping: A GPU-Based Framework for Interactive Terrain
Rendering. Jan. 2007.

[23] Kevin Brothaler. Android Lesson Eight: An Introduction to Index Buffer Objects (IBOs). 2012.
URL: http://www.learnopengles.com/android-lesson-eight-an-introduction-to-
index-buffer-objects-ibos/.

[24] Geometric Approach – Testing Boxes II. 2011. URL: http://www.lighthouse3d.com/tutorials/
view-frustum-culling/geometric-approach-testing-boxes-ii/.

[25] Federal Office of Topography [swisstopo]. Open Geodata Switzerland (DTM2, DOM2). 2022.
URL: https://www.swisstopo.admin.ch/.

http://www.learnopengles.com/android-lesson-eight-an-introduction-to-index-buffer-objects-ibos/
http://www.learnopengles.com/android-lesson-eight-an-introduction-to-index-buffer-objects-ibos/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/geometric-approach-testing-boxes-ii/
https://www.swisstopo.admin.ch/

	Abstract
	Introduction
	Problem Statement
	Goal of this Thesis

	Terminology
	Triangulation
	Regular Grids
	Triangulated Irregular Networks
	Right-Triangulated Irregular Networks

	Level of Detail
	Discrete Level of Detail
	Continuous Level of Detail
	Multi-resolutional Level of Detail
	Level of Detail Morphing

	Visibility Culling
	View Frustum Culling
	Backface Culling
	Z-Buffering
	Occlusion Culling

	Hardware Tessellation
	Terrain Data
	Quadtree
	Clipmap

	Real-World Data
	Digital Elevation Model (DEM)
	Digital Orthophoto (DOP)

	Previous Work
	Real-time Optimally Adapting Meshes (ROAM)
	Geometrical MipMapping (GeoMipMap)
	Chunked Level of Detail
	Geometry Clipmaps
	Persistent Grid Mapping (PGM)
	Continuous Distance-Dependent Level of Detail (CDLOD)
	Far Cry 5 Terrain Renderer
	Concurrent Binary Trees (CBT)

	A Novel Terrain Rendering Method
	The Ideal Terrain Renderer
	Evaluation of existing Literature
	Implementation - CPU vs GPU
	Triangulation - Regular Grids vs TIN vs RTIN
	Level of Detail - Continuous vs Multi-resolutional
	Terrain Data - Quadtree vs Clipmap

	Method Overview
	Uniform Distance-Dependent Level of Detail (UDLOD)
	Tiling Prepass
	Tile Culling
	Drawing the Tiles
	Tile Morphing

	Chunked Clipmap
	Structure of a Chunked Clipmap
	Approximatig the Distance to the Viewer
	Accessing the Terrain Data
	Texture Filtering for Chunked Clipmaps
	Layer Blending
	Node Preprocessing
	Updating the Chunked Clipmap

	Implementation
	Terrain Geometry
	Tile Refinement
	Tile Frustum Culling
	UDLOD Vertex Shader

	Terrain Data
	Multiple Terrain Attachments
	Blending
	Sampling and Filtering
	Normal Calculation

	Results
	Saxony Terrain Data
	Configuring the Chunked Clipmap
	Configuring the Uniform Distance-Dependent Level of Detail
	Evaluation of the Terrain Rending Method
	Final Benchmark

	Conclusion and Future Work
	Contributions
	Future work

	Acronyms
	Appendix
	Additional Material
	References

