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death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission
Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in
the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images
are evaluated using qualitative and conventional quantitative indices. However, there is far
more information embedded in the images, which can be extracted by sophisticated algo-
rithms. Recently, the concept of uncovering and analyzing the invisible data extracted from
medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT
radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic
performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this
review, we provide a short overview of the technical aspects, as they are discussed in differ-
ent articles of this special issue. We mainly focus on the diagnostic performance of the [18F]
FDG-PET/CT�based radiomics and the role of artificial intelligence in non-small cell lung
cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers,
and patient’s outcomes.
Semin Nucl Med 52:759-780 © 2022 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

Lung cancer is the second most common cancer and the
leading cause of cancer-related death.1 Despite the

decrease in mortality in recent decades,2 it remains a public
health issue.3 The early diagnosis of the localized disease,
accurate staging, response assessment, and prognostication
are of paramount importance, which highly influence the
treatment strategies and prognosis.2, 4, 5

[18F]fluorodeoxyglucose positron emission tomography and/
or computed tomography ([18F]FDG-PET/CT) is the widely
accepted method for the non-invasive evaluation of non-small
cell lung cancer (NSCLC) in different clinical settings.5-8 How-
ever, some limitations hinder [18F]FDG-PET/CT from becom-
ing the ideal method. For example, inflammatory reactions in
the thoracic region may cause false-positive findings, and small
lesions and micro metastasis may be overlooked.9 Therefore,
759
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there is a need for improvement of the current imaging techni-
ques to fulfil the clinical requirements.
[18F]FDG-PET/CT images are visually and semi-quantita-

tively evaluated for the clinical assessment. Nevertheless, it
has been demonstrated that PET/CT images are not just pho-
tos. There are numerous other characteristics of the lesions
and surrounding tissues, embedded in the images, which are
imperceptible and are not calculated by the available practical
software.10 These quantitative parameters, called features,
can be extracted from the images and analyzed to predict dif-
ferent characteristics of the lesions. This process is known as
radiomics, so-called the “more than meets the eye11.”
Radiomics uses digital data to define morphology, inten-

sity, texture, etc. of the lesions and then correlates them with
clinical, histological, and molecular findings. Over the last
decade, [18F]FDG-PET/CT radiomics has been applied to dif-
ferentiate malignant solitary pulmonary nodules (SPN) from
benign lesions and increase staging accuracy, as well as to
predict histology, tumor biomarkers, response to therapy,
and prognosis. It should be noted that the number of the
extracted features is too much to be assessed by the statistical
analysis methods; therefore, artificial intelligence (AI) and
machine learning (ML) are exploited to produce more accu-
rate predictive models. There are several technical factors,
such as harmonized data sets, which may limit the optimal
implementation of radiomics in the clinical setting.12 To
overcome these limitations, guidelines are developed for
standardization,13 and also deep learning (DL) is increasingly
employed to reduce some of the restrictions.12 However,
there is still a gap between the studies and the translation of
radiomics into clinical practice.
Several studies have investigated the value of radiomics in

different aspects of NSCLC. Only 1% of the radiomics studies
priorly were performed in the field of nuclear medicine.14

Encouragingly, this has recently reached 16%, considering
that radiomics-like studies were present in nuclear medicine
even before the word of “radiomics” itself came to existence.12

The main purpose of the current review is to provide an
update on the recent status of [18F]FDG-PET/CT radiomics in
the evaluation of NSCLC. First, we provide a brief review of
the technical aspects. Afterwards, we summarize the recent
studies assessing current applications of [18F]FDG-PET/CT
Figure 1 Multiple steps of radiomics, including PET/CT imag
multiple correction steps, volume of interests’ delineation, app
learning steps (feature selection and classification/regression al
radiomics and AI in NSCLC and seek an answer for “Do radio-
mics and AI increase the diagnostic performance or implica-
tion of [18F]FDG PET/CT in the era of precision medicine?”
Technical Aspect of Radiomics
Radiomics and Artificial Intelligence
Radiomics is a process to convert conventional images to min-
able data by extracting high dimensional quantitative semantic
and/or agnostic features.15-18 Semantic features are defined as
commonly used features for the region of interest (ROI)
description by human observers.15-17 Agnostic features are
those extracted by a computational process for ROI heteroge-
neity assessment. These features could be extracted using
mathematical-based formula features (conventional radiomics
features described by the image biomarker standardization ini-
tiative [IBSI]19) or deep convolutional neural network (CNN)-
based features (extracted automatically through different con-
volutional layers).15-17 These features could be mine through
the data mining process, employing different AI algorithms.20

AI tries to mimic human behaviors and ML, as a subset of AI,
consists of different algorithms enabling computers to do this
task without explicit programming.21, 22 ML algorithms are
mostly applied to extracted features (agnostic and/or sematic)
with feature selection or dimensionally reduction and regres-
sion or classification steps. DL is a ML algorithm that performs
not only all these ML steps (feature selection, dimensionally
reduction, regression, or classification) but also features extrac-
tion in one package.21
Radiomics’ Steps
Radiomics is a multidisciplinary (imaging technologist, medi-
cal physicist, radiologist, oncologist, statistician, computer
scientist and data scientist) and multistep process, requiring
different experts’ collaboration.15-17, 23, 24 The standard
radiomics process includes data acquisition, image recon-
struction, image segmentation, image pre-processing, feature
extraction, feature selection and ML, as well as model evalua-
tion,25 which we will discuss in following sections (Fig. 1).
e data acquisition, image reconstruction with applying
lying preprocessing and feature extraction, and machine
gorithm).
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Data Acquisition
The image acquisition, the first step of radiomics study, is per-
formed by technologists using different imaging modalities.
Patients’ preparation and image acquisition should be per-
formed in line with guidelines26 for PET/CT imaging to pro-
vide high-quality images, enabling reproducible and
repeatable radiomics study. For PET image acquisition, the
radiotracer activity should be administered based on weight or
body mass index. The CT part of PET/CT scanning is usually
performed for attenuation and/or scatter correction and ana-
tomical localization and correlation. Using these data, PET
images will be reconstructed by different mathematical algo-
rithms to provide standard images for quantitative assess-
ment.27 Different image artifacts28, 29 could arise during PET/
CT image acquisition. These artifacts could be due to PET
image itself, including image noise due to radiotracer injection
or failure in the scatter correction process, which results in
halo artifact in regions with high activity.28, 29 Some studies
have addressed the image noise issue and employed advanced
image processing using ML and DL to successfully decrease
the image noise and increase the quality.30-36

Other artifacts could be due to CT, such as truncation and
metal artifact, which could change the quantitative informa-
tion of PET data.28, 29 Finally, the misregistration between
PET and CT results in mis location of lesions, for example,
those close to the liver dome.28, 29, 37 The impact of motion
should be considered for the radiomics analysis of lung
tumors.38, 39 Most recently, DL algorithms were proposed
for direct attenuation and scatter corrections, bypassing the
image reconstruction process with CT-based attenuation and
scatter corrections, which potentially avoid or correct the
mentioned artifacts.40 Image acquisition in PET (injected
dose, time-of-flight [TOF], and time per bed position) and
CT [kVp, mAs, and pitch]) also impact on radiomics features.
Proper values should be set to get high-quality images.26 In
addition, their impact should be considered for providing
repeatable and reproducible radiomics studies in multi-scan-
ner and multi-centric settings.41, 42

Image Reconstruction
PET images could be reconstructed with different parame-
ters, including reconstruction algorithm, TOF, point spread
function, matrix size, iteration number, number of subsets
and post-filtering.43 Previous studies have shown that recon-
structions’ parameters could highly affect radiomics repro-
ducibility in different imaging modalities.43-47 These effects
are feature dependent, and each parameter has a different
impact on radiomics features.43 Image reconstruction could
be harmonized across different centers; however, different
scanners from different providers have various sensitivity,
which makes it infeasible to use the same set-up among
imaging centers. Imaging data harmonization for different
centers has been proposed to tackle this challenge, which is
mentioned in the subsequent sections.

Image segmentation
Image segmentation is a crucial step for mathematical-based
radiomic features extraction. Image segmentation could be
performed manually (by nuclear medicine physicians, radiol-
ogists, oncologists), semi-automated (set initial seed for seg-
mentation followed by manual editing), and fully automated
by DL algorithms.48-53 Different segmentations performed
on the same tumors result in different values of radiomics
features, and the reproducibility of these features should be
assessed precisely.54 Inter- and intra-observer variability and
labor-intensive process of manual segmentation impede gath-
ering large clean data sets for radiomic studies.55 DL-based
algorithms have been recently used in PET image segmenta-
tion to automatically delineate ROIs, which outperform con-
ventional PET image segmentation algorihms.32, 48, 50-53

Image pre-processing
Image pre-processing for radiomics analysis is performed for
various reasons, including noise reduction, computationally
efficient feature extraction, and extracting different flavor of
radiomics features. The image interpolation to isotropic voxel
size should be done to extract rotationally invariant texture
features, which could be performed by up or down sam-
pling.19, 56 Image discretization to fix bin number or fix bin
width should be performed to normalize intensities; how-
ever, choosing the appropriate methods is an open question
in radiomics studies.19, 56 Recently, some authors investi-
gated the impact of these parameters on the reproducibility
of PET image radiomics features 57-60 and showed that fixed
bin width results in reproducible features in PET images.57

Various flavor of radiomics features could be extracted by
using different filters, including wavelet (WL, applying either
a high- or a low-pass filter in each of the three dimensions),
Laplacian of Gaussian (LOG with different sigma values to
extract fine, medium, and coarse texture), Exponential, Gra-
dient, Logarithm, Square and Square Root scales for further
radiomic investigation.

Feature extraction
Different types of features could be extracted from images,
namely semantic and/or agnostic features.15 Semantic fea-
tures are calculated by human observers describing ROI
reporting different qualitative features that define the loca-
tion, necrosis, spiculation and vascularity, etc. of tumors.15

Agnostic features are computed by mathematical-based for-
mula description or deep CNN-based features. Mathemati-
cal-based radiomics features could be divided into shape-
based, intensity and histogram-based, and texture features.19,
56 Texture features consist of second-order, such as gray level
co-occurrence matrix (GLCM), and high-order, including
gray level run length matrix (GLRLM), gray level dependence
matrix (GLDM), gray level size zone matrix (GLSZM), and
neighboring gray tone difference matrix (NGTDM).10, 19, 56

As these features could be calculated employing different for-
mula, using IBSI features19, 56 is highly recommended to pro-
vide reproducible, and repeatable features. Different library
and software such as Pyradiomics, SERA, LifEx, CERR,
MITK, QIFE, CaPTk, RaCat, QuantImage, USZ, MIRP and
QIFE have been evaluated for agreement with IBSI.19, 56

Deep CNN-based features are automatically extracted using
different convolutional layers. They could be applied to



762 R. Manafi-Farid et al.
images for feature extraction; however, there is no guideline
for optimal number and order of layers and it highly depends
on developer and task.61

Feature Selection and Machine Learning Models
Large numbers of features could be extracted from ROIs;
however, all these features are not informative for a specific
task, and ML models (which perform classification, regres-
sion, or time to event task) would be highly prone to overfit-
ting. Dimensionality reduction and feature selection could be
performed in supervised (filter-based, model-based and
hybrid), semi-supervised and unsupervised approaches. Dif-
ferent ML algorithms, including rule-based model, linear and
nonlinear regression, neural networks, support vector, naïve
bays and ensemble learning-based have been developed.62

These algorithms could be applied to features for classifica-
tion (binary and multiclass classification), regression (ie, age
prediction) and time to event prediction (survival analy-
sis).63, 64 There is no “one fits all ML model ” for a specific
task, ML models parameters and hyperparameters should be
tuned based on task, and different ML models could be eval-
uated to reach the optimal ones.65, 66

MLModel Evaluation
Radiomics models could be evaluated using different metrics
(depending on the task) through different approaches.67

These approaches include data splitting to train and/or vali-
dation and/or test sets, one-leave-out, cross validation, boot-
strapping, one-leave-center-out (in case of multicentric
study).68 For the regression task, different metrics, including
mean error (ME), mean absolute error (MAE), relative error
(RE%), absolute relative error (ARE%), and normalized ver-
sion of these metrics could be calculated. For time to event
tasks, c-index and hazard ratio are the model parameter eval-
uation metrics.69 For classification tasks, different metrics
should be reported to assess models’ performance, namely,
accuracy, sensitivity, specificity, area under the receiver oper-
ating characteristic curve (AUC), positive predictive value
(PPV), and negative predicted value (NPV).70 For classifica-
tion task different metrics should be reported to assess mod-
els performances, specifically in case of unbalance classes,
NPV and PPV should be reported to assess power model in
rare cases as we can get high accuracy and AUC but missing
rare cases.70 Using external validation set is highly recom-
mended for model generalizability assessments.
Challenges and New Horizons
Different steps of radiomics such as image acquisition, recon-
struction and segmentation could highly affect radiomics fea-
tures value, resulting in non-repeatable and non-
reproducible features. Different studies have evaluated the
impact of these parameters on radiomics features’ repeatabil-
ity and reproducibility. Recently, harmonization approaches
have been purposed in the feature domain (ie, ComBat) and
image-level (ie, generative adversarial network) to tackle vari-
ability due to image acquisition, scanner, and reconstruction
setting.71-74
The imbalance class in radiomics studies is another chal-
lenge, which could potentially bias the model and still pro-
vide high accuracy but low specificity or low sensitivity
(depending on the class) that may not be useful in the clinical
practice.75 Different approaches, such as data augmentation
in image level or data sampling in features level have been
proposed to address this issue.75

Another subject is data sharing to build and evaluate a
generalizable model due to legal and ethical problems.76

Most recently, federated learning algorithms have been pro-
posed to build models without sharing data. These
approaches have been developed for two different tasks in
PET imaging and could potentially expand in radiomics stud-
ies.77, 78 CT image information could be integrated into
radiomics models in PET/CT studies using fusion in feature
and fusion levels. Further studies could evaluate DL perfor-
mance in PET/CT image fusion for radiomics models’
improvement.71, 79-82
Clinical Applications of [18F]
FDG-PET/CT Radiomics in Non-
Small Cell Lung Cancer
[18F]FDG-PET/CT is established as the standard imaging
modality for the clinical management of NSCLC.5-8 How-
ever, there are still challenges for the interpretation of [18F]
FDG-PET/CT images, especially for differentiation of inflam-
matory from cancerous tissues and for treatment monitoring
of the novel targeted therapies.83, 84, 85 Therefore, technical
and quantitative assisting tools are needed for improving the
diagnostic performance of [18F]FDG-PET/CT in lung cancer
for individualized disease management in different clinical
scenarios, such as the early diagnosis, staging, prognostica-
tion, non-invasive evaluation of biomarkers and response
assessment. To answer the clinical requirements, radiomics
and AI are increasingly investigated in NSCLC in recent
years. In the following sections, the value of [18F]FDG-PET/
CT radiomics is discussed in different clinical settings.
Pulmonary Nodules
The prevalence of SPN in normal populations ranges from
2%-24%, which increases to 17%-53% in patients with risk
factors of occult malignancy.86 A non-negligible fraction of
SPNs (ie, 1%-12%) harbors malignancy.87 Owing to more
employment of CT, especially in the COVID-19 era, guide-
lines have been developed to prevent unnecessary measures
for SPNs.88 A wide range of false-positive findings are
detected on CT, leading to unavoidable harms,89 and this is
where radiomics comes to play.

There are multiple public SPN datasets to serve as a
medium for radiomics surveys, of which the cancer imaging
archive (TCIA) is one of the well-known repositories for
[18F]FDG-PET/CT images.90-92 Some studies have shown
that radiomics using [18F]FDG-PET/CT are superior to CT
for the estimation of malignancy in SPNs (AUCs for
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conventional radiomics: 0.809-0.940 for [18F]FDG-PET/CT
vs 0.646-0.908 for CT; and AUCs for DL: 0.877 for [18F]
FDG-PET/CT vs 0.817 for CT).93-96 Interestingly, a recent
multicentric prospective head-to-head comparison of these
two modalities showed even more striking results. The AUCs
for dynamic contrast-enhanced CT and [18F]FDG-PET/CT
were 0.62 and 0.80, respectively, yet complementary to each
other (combined AUC = 0.90).97

Given the limited spatial resolution of [18F]FDG-PET/CT,
small pulmonary nodules may not be detectable on [18F]
FDG-PET and therefore, [18F]FDG-PET/CT is usually
reserved for SPNs > 8 mm.88 However, it seems that [18F]
FDG-PET-derived radiomics features can be more sensitive
(94% vs 58%) and accurate (93% vs 76%) than visual analy-
sis for the detection of small lesions.98 Moreover, emerging
data suggest that ML can be helpful to reduce the noise, scan
time, injected activity, and reconstruction time without a
meaningful drop in the AUCs.33, 99 Also, DL approaches
using newer image reconstruction methods may impact the
diagnosis of small SPNs.100

The inherent nature of [18F]FDG-PET/CT leads to well-
known false-positive findings, interfering with the diagnosis
of lung cancer.101 This challenge has been addressed by
radiomics studies trying to reduce the false-positive rate.
Radiomics can more accurately differentiate benign inflam-
matory lesions, such as tuberculosis (AUC = 0.889-0.93),102-
104 pneumonia (accuracy = 82.5%),105 and radiation pneu-
monitis (accuracy = 85%)106 from lung cancer.84, 107 Also,
some studies using texture analysis have suggested a possible
added benefit of dual time-point imaging to further enhance
the AUCs of radiomics (from 0.52-0.75 to 0.63-0.87).108, 109

A nomogram has also been developed using [18F]FDG-PET/
CT radiomics combined with manual diagnosis, which has
decreased the false-positive rate of manual diagnosis by
21.5% (AUC = 0.92).104 Moreover, CNN method has shown
a 93% reduction in false-positive results with a cost of 7%
reduction in the sensitivity.110 On the other hand, some
studies have shown that radiomics-based nomograms using
conventional radiomics did not outperform nuclear medicine
experts in the validation cohort, while DL algorithms margin-
ally surpassed physicians.103, 111

In a study to differentiate tuberculosis from lung adenocar-
cinoma, Hu et al. showed that the radiomics model outper-
formed the clinical model with marginal inferiority to the
combined model (AUCs of 0.889, 0.644 and 0.909, respec-
tively).102 Another study demonstrated insignificantly lower,
yet complementary, performance of [18F]FDG-PET- com-
pared to CT-based features for differentiation of tuberculosis
from lung cancer (AUC: 0.91 vs 0.85, P = 0.1554).103

The summary of the studies is provided in Table 1.
Although there are potential benefits for the prediction of
malignancy in SPNs, there are some drawbacks,112 and AI is
still immature in this field to be clinically applied. In fact, a
comprehensive review revealed that most radiomics studies
in this domain lack relevant comparator or independent and/
or external validation of the models.113 Also, for ML, 3D
approaches still suffer from sufficient sample size for such
purposes.114-116 Noteworthy, along with the ability of
automatic detection, DL algorithms seem to have higher dis-
criminative power, possibly due to bypassing the segmenta-
tion and considering the tumor surrounding and whole-
body data. Future studies should focus on the algorithms of
DL combined with clinical information to increase the diag-
nostic performance of AI in the detection of nodules and dif-
ferentiation of malignant from benign lesions.
Histologic Subtype Differentiation
Given the invasive nature of tissue biopsy, inadequacy and/or
non-feasibility of sampling in some cases, and also the unmet
need to differentiate the pathologic subtypes for treatment
planning, radiomics come to play for the non-invasive differ-
entiation of the histologic tumor subtypes.117

In this regard, different studies have shown a discrimina-
tive role for radiomics and ML models.118, 119 Table 2 pro-
vides the summary of the investigations. Early radiomics
studies pointed out that texture features had a role in distin-
guishing adenocarcinoma (ADC) from Sqamous cell carci-
noma (SqCC).119 Some authors showed that [18F]FDG-PET
radiomics features and ML models outperformed those of CT
(AUC: 0.80-0.83 vs 0.69-0.79).120, 121 Also, DL methods
have been employed, showing superiority over conventional
radiomics for differentiation of ADC from SqCC (AUC:
0.841 vs 0.794).117

Additionally, some authors implemented clinical factors in
the prediction models, demonstrating the additive value of
combined models over radiomics-only models (AUCs of
0.78-0.98 vs 0.70-0.94).121-123 Ren et al. showed that the
model based on both clinical factors and tumor markers is
superior to imaging-based models for discrimination of sub-
types; however, the combined model had a higher AUC of
0.90.121

There are also some efforts to differentiate primary and
metastatic lung lesions using radiomics (AUC: 0.61-
0.97).120, 124 Again, [18F]FDG-PET-based radiomics were
superior to CT-based features (AUC: 0.57 vs 0.88).120 A
hybrid approach using ML models could optimally classify
primary and metastatic lung lesions using [18F]FDG-PET
(AUC = 0.983) and CT (AUC = 0.828).125 Another study
showed that fused signature combining [18F]FDG-PET/CT
and clinical findings achieved the highest diagnostic accuracy
(AUC = 0.953).126 Moreover, the ComBat harmonization
method has been applied to multicenter data, improving the
predictive performance of PET and fused PET/CT models.82

Overall, the [18F]FDG-PET/CT-based radiomics seem
promising for the differentiation of tumor subtypes, espe-
cially using DL and implementing clinical factors in the pre-
diction models. The non-invasive evaluation is of particular
importance in patients with large or unresectable lesions or
those with known other malignancies. Apparently, due to
higher prevalence, most studies have focused on ADC and
SqCC. Differentiating other subtypes is also worth investigat-
ing in future studies using multiclass classification ML algo-
rithms.



Table 1 Summary of Studies Evaluating the Discriminative Power of Radiomics and Artificial Intelligence in Predicting the Nature of Pulmonary Nodules

Author Year Pt No. Aim
Reference
standard

Segmentation
method Classifier Dataset classification* Result

Chen107 2017 85 Malignant vs Benign Pathology
or follow-up

Manual ML Resampling - type 1b AUC = 0.91

Guo106 2017 40 Discrimination of lung
cancer from pneumonia

- Manual ML - Accuracy = 85%

Suga238 2021 63 Discrimination of lung
cancer from pneumonia

Pathology Semiautomatic Statistical
analysis

One dataset - type 1a AUC = 0.82-0.83

Watanabe105 2018 20 Discrimination of lung
cancer from pneumonia

Pathology
or follow-up

Semiautomatic ML - Accuracy = 82.5%

Wu115 2018 2,789,675 Malignant vs Benign - - ML - Accuracy = 77%
Chen108 2019 116 Malignant vs Benign Pathology

or follow-up
Manual Statistical

analysis
Resampling - type 1b AUC = 0.89

Kang104 2019 268 Reducing PET/CT false
positive rate

Pathology
or follow-up

Manual and
Semiautomatic

ML Random split-sample - type 2a AUC = 0.98

Nakajo109 2019 59 Malignant vs Benign Pathology Manual and
automatic

Statistical
analysis

One dataset - type 1a AUC = 0.98

Zhang94 2019 135 Malignant vs Benign Pathology Manual ML Resampling - type 1b AUC = 0.887
Hu102 2020 235 Malignant vs Benign Pathology

or follow-up
Semiautomatic ML Random split-sample - type 2a AUC = 0.889

Chen84 2021 317 Malignant vs Benign Pathology Semiautomatic ML Random split-sample - type 1b AUC = 0.727
Du103 2021 174 Malignant vs Benign Pathology Manual ML Random split-sample - type 2a AUC = 0.93
Park95 2021 359 Malignant vs Benign Pathology - DL - AUC = 0.837

and 0.877
Shao114 2021 106 Malignant vs Benign Pathology

or follow-up
Semiautomatic DL Resampling - type 1b AUC = 0.97

Zhou125 2021 769 Discrimination of
lung cancer from
metastasis

Pathology Semiautomatic ML Random
split-sample - type 1b/2a

AUC = 0.983

Zhang111 2022 174 Malignant vs Benign Pathology Manual DL/ ML Resampling - type 1b AUC = 0.84

AUC, Area under curve; DL, Deep learning; ML, Machine learning; PET/CT, Positron emission tomography/computed tomography; Pt No., Number of patients.
All studies were retrospective.
*Based on TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) classification.
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Table 2 The Summary of Studies Differentiating the Histologic Subtypes of Non-Small Cell Lung Cancer Using Radiomics and Artificial Intelligence

Author Year Pt No. Aim
Reference
standard

Segmentation
method Classifier Dataset Classification* Results

Ma119 2018 341 Differentiation of subtypes Pathology Manual ML Resampling - type 1b AUC = 0.89
Kirienko120 2018 534 Differentiation between primary

and metastatic lung lesions
Pathology Semiautomatic ML Random split-sample - type 2a AUC = 0.91

Li126 2018 207 Classification
of pulmonary nodules/
Predicting histological subtypes

Pathology - ML Resampling - type 1b AUC � 0.907

Sha123 2019 100 Differentiation of subtypes Pathology Manual ML Temporal external
validation - type 2b

AUC = 0.781

Han117 2021 1419 Differentiation of subtypes Pathology Semiautomatic ML, DL Random split-sample - type 2a AUC= 0.903
Koyasu118 2020 188 Differentiation of subtypes Pathology Manual ML - AUC= 0.843
Yan124 2020 445 Differentiation of subtypes and

primary and metastatic
lung lesions

Pathology Automatic ML Random split-sample 1b/2a AUC= 0.98
and 0.99

Zhou125 2021 769 Differentiation of subtypes Pathology Semiautomatic ML Random split-sample - type 1b/2a AUC = 0.897
Ren121 2021 315 Differentiation of subtypes Pathology Manual ML Random split-sample - type 2a AUC= 0.90
Ji122 2021 253 Differentiation of subtypes Pathology Semiautomatic ML Temporal external

validation - Type 2b
AUC= 0.978-0.989

AUC, Area under curve; DL, Deep learning; ML, Machine learning; Pt No., Number of patients.
All studies are retrospective.
*Based on TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) classification.

Table 3 Summary of Studies Evaluating the Staging in Non-Small Cell Lung Cancer Patients Using Radiomics and Artificial Intelligence

Author Year Pt. No. Aim Reference standard Segmentation method Classifier Dataset Classification* Results

Gao144 2015 132 LN-staging Pathology Manual ML Random split-sample - type 2a AUC = 0.689
Coroller158 2016 108 Prediction of DM - - - - AUC = 0.64
Wu159 2016 101 Prediction of DM Pathology Semiautomatic ML Temporal external

validation - Type 2b
AUC = 0.80

Kirienko130 2017 31 LN-staging Pathology Semiautomatic Statistical
analysis

One dataset - type 1a For some features:
p>0.05

Wang146 2017 168 LN-staging Imaging and pathology Manual ML, DL Resampling - type 1b AUC = 0.91
Kirienko131 2018 472 T-staging Imaging and pathology Semiautomatic DL Random split-sample - type 2a AUC = 0.68
Lyu153 2020 130 LN-staging Pathology - ML - AUC = 0.917
Tau152 2020 264 Prediction of

LN and DM
Imaging, pathology,
and follow-up

Semiautomatic
and manual

DL Resampling - type 1b LN: AUC = 0.8
DM: AUC = 0.65

Chang149 2021 528 LN-staging Pathology Manual ML Random split-sample - type 2a AUC = 0.94
Taralli148 2021 540 LN-staging Pathology Semiautomatic DL Resampling - type 1b AUC = 0.769
Wallis154 2021 125 LN-staging Pathology Semiautomatic DL Different scanner external

validation - type 2b
Sensitivity = 0.88

Yoo147 2021 980 LN-staging Pathology Semiautomatic ML Resampling - type 1b AUC = 0.85
Zheng145 2021 716 LN-staging Pathology Manual ML Split-sample - type 2a AUC = 0.80

AUC, Area Under Curve; DL, Deep learning; DM, Distant metastasis; LN, Lymph node; ML, Machine learning; Pt No., Number of patients.
All studies were retrospective.
*Based on TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) classification.
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Staging
T-staging
T-staging is usually performed using CT,101, 127, 128 and can
be improved by [18F]FDG-PET data (Table 3).101, 128, 129 A
few studies in this subtopic exists for the role of [18F]FDG-
PET/CT radiomics.130, 131 For example, Kirienko et al.
designed a CNN-based algorithm and classified NSCLC as
T1/2 or T3/4 with an AUC of 0.68.131
N-staging
Lymph node (LN) staging is a crucial step for optimum treat-
ment in NSCLC and is still a challenging issue. The current
imaging modalities do not provide enough accuracy for this
purpose, especially in endemic areas of granulomatous dis-
eases.132, 133 The patient-based and node-based sensitivities
of [18F]FDG-PET/CT are approximately 62%-67% with the
specificities of about 87%-93%.134, 135 The corresponding
values for diffusion-weighted magnetic resonance imaging
are 72% and 97%, respectively.135 Therefore, invasive patho-
logic evaluation is used for mediastinal N-staging with its
inherent disadvantages.5, 136, 137 The discrimination of N0
and N1 disease is especially important when the standard
surgery is not planned and the LNs are not dissected. There-
fore, the additive value of radiomics is being evaluated in
mediastinal N-staging.
Traditionally, the Hounsfield unit of CT and standardized

uptake value (SUV) of [18F]FDG-PET are used to predict LN
metastasis.134, 138 The use of ML-based classification in this
subtopic roots back to before applying radiomics,139 when
simple metabolic parameters, such as SUVmax, were imple-
mented in non-radiomics studies to build predictive ML
models (AUCs: 0.886-0.962).140-142 Moreover, some studies
evaluated the CT-based radiomics and added only the SUV-

max to the models to discover the additive value of metabolic
parameters for N-staging (AUCs: combined = 0.838-0.872 vs
CT = 0.822-0.828).9, 143Although the models showed an
acceptable predictive power, it was marginally higher than
the accuracy of conventional parameters.9 The corresponding
values were 0.73 for short-axis diameter � 1.0 cm and 0.82
for SUVmax � 2.5.9

Using [18F]FDG-PET/CT radiomics, the reported accura-
cies for N-staging are rather wide. In an early study, ML was
not superior to traditional SUVmax (0.652 vs 0.579-0.689,
respectively).144 However, in another study, the [18F]FDG-
PET/CT-based model resulted in an AUC of 0.80 compared
to 0.61 for physicians. 145 Also, Wang et al. claimed that the
accuracy of CNN for N-staging is not significantly higher
than that of assessed by experts (AUC = 0.91 and
accuracy = 0.86 vs accuracy = 0.82).146 It seems that AI mod-
els show higher sensitivity while physicians’ reports have
higher specificity with comparable accuracy for predicting
histologic LN status.146-148 One of the interesting results of
Yoo et al.’s study was that the sensitivity of ML was approxi-
mately twice higher than that of physicians in LNs with SUV-

max < 3.5, but the specificity was still lower.147

Some authors have incorporated the clinical information
into [18F]FDG-PET/CT radiomics, reporting higher
performance for combined models.147, 149 Yoo et al. reported
an AUC of 0.85 for the combined model vs 0.75 for
physicians.147

Patients with more hypermetabolic tumors have a higher
chance of occult LN metastasis.150, 151 The radiomics of the
primary tumor has also been evaluated to predict occult LN
involvement, reaching an AUC of 0.78 with ML145 and 0.80
with CNN152. Of interest, a model combining [18F]FDG-PET
with breath-hold thin-slice chest CT achieved the AUC of
0.917 in stage I adenocarcinoma.153

One of the main challenges is the robustness of the fea-
tures or models using different acquisition systems or recon-
struction methods. Wallis et al. used CNN to predict LN
metastasis in the mediastinum.154 They applied transfer
learning to the second set of data obtained from another
acquisition system, which increased the sensitivity from
0.53-0.88. However, the false-positive rate was also increased
(from 0.24-0.69).154

In summary (Table 3), there are limitations for the assess-
ment of N-staging using [18F]FDG-PET/CT radiomics, such
as the presence of reactive LNs or difficulty in histologic eval-
uation of each LN. The diagnostic performance of AI in the
prediction of LN involvement seems only slightly higher
than that of experts. In this regard, a recent systematic review
studied the performance of the radiomics models for staging
purposes.155 The AUCs, sensitivities and specificities of the
studies were 0.64-0.94, 52%-99%, and 60%-99%, respec-
tively.155 The authors concluded that heterogeneous study
designs and lack of prospective validation in most studies
preclude using radiomics for current clinical decisions.155

Additionally, there are limitations for most studies, excluding
small or inactive lesions, although the small size and low
metabolism of the metastasis are the main challenges for N-
staging. Future studies should focus on the role of automatic
detection, DL, and combined models-incorporating all LN
features, primary tumor characteristics and clinical informa-
tion.

M-staging
Current imaging modalities can determine the M-stage with
high accuracy.156, 157 Even though [18F]FDG-PET/CT is the
modality of choice in this realm, with the exception of central
nervous system metastasis, any suspicious foci of metastatic
involvement should be ascertained by using additional imag-
ing or biopsy.101 Radiomics has been implemented to also
predict distant metastasis. In early radiomics studies, the fea-
tures of the primary tumor barely predicted distant metasta-
sis (AUC = 0.64-0.71).158, 159 Interestingly, even CNN did
not improve the performance for prediction for distant
metastasis at diagnosis (AUC = 0.71).152 Whether [18F]FDG-
PET/CT radiomics may one day obviate the need for comple-
mentary imaging or biopsy is yet to be determined.
Prediction of Biomarkers
Lung cancer is a heterogeneous tumor,160 and various
responsible gene mutations have been detected so far.160

Tumor genotype is translated into its phenotype. Evaluation



Table 4 Summary of Studies Evaluating the Prediction of Biomarkers in Non-Small Cell Lung Cancer Patients Using Radiomics and Artificial Intelligence

Author Year Pt No. Aim
Reference
standard

Segmentation
method Classifier Dataset classification* Results

Yip172 2017 348 Predicting EGFR and
KRAS mutations

Genomic analysis Semiautomatic Statistical
analysis

One dataset - type 1a AUC = 0.67 and 0.54,
retrospectively

Zhang167 2018 180 Predicting EGFR mutation Genomic analysis Manual ML Split-sample AUC = 0.8725
Novikov162 2019 84 Prediction of tumor grade Pathology Semiautomatic DL Random split-sample - type 2a Accuracy = 91- 100%
Moon164 2019 176 Prediction of mutation burden Genomic analysis Semiautomatic Statistical

analysis
One dataset - type 1a r = 0.592, p = 0.028

Li168 2019 115 Predicting EGFR mutation Genomic analysis Manual and
Semiautomatic

ML Resampling - type 1b AUC = 0.805

Moitra189 2019 211 Automated grading Histology - ML Resampling - type 1b AUC = 0.96
Jiang178 2019 80 Predicting EGFR mutation Genomic analysis Semiautomatic ML Resampling - type 1b AUC = 0.953
Mu177 2020 616 Treatment guidance (TKI vs ICI) Genomic analysis,

follow-up and imaging
Semiautomatic DL External validation -type 3 AUC = 0.81

Zhang169 2020 248 Predicting EGFR mutation Genomic analysis Semiautomatic ML Random split-sample - type 2a AUC = 0.87
Nair170 2020 50 Predicting EGFR mutation/

Differentiating mutation exons
Genomic analysis Manual ML Resampling - type 1b AUC = 0.87 and 0.86,

respectively
Shiri171 2020 150 Predicting EGFR and KRAS mutations Genomic analysis Semiautomatic ML Random split-sample - type 2a AUC = 0.82 and 0.80,

respectively
Shiri71 2022 136 Predicting EGFR and KRAS mutations Genomic analysis Semiautomatic ML Random split-sample - type 2a AUC = 0.94 and 0.93,

respectively
Sanduleanu163 2020 221 Prediction of tumor hypoxia Hypoxia-PET Manual ML External validation -type 3 AUC = 0.73
Whi174 2020 64 Predicting EGFR mutation Genomic analysis Manual Statistical

analysis
One dataset - type 1a OR = 4.08-4.57

Yang180 2020 174 Predicting EGFR mutation/
Differentiating mutation exons

Genomic analysis Semiautomatic ML Random split-sample - type 2a AUC = 0.71 and 0.73,
respectively

Jiang186 2020 399 Predicting PD-L1
expression

IHC Semiautomatic ML Random split-sample - type 2a >1%: AUC = 0.85-0.97
>50%: AUC = 0.88-0.77

Zhang182 2020 173 Predicting EGFR mutation/
Differentiating mutation exons

Genomic analysis Manual and
automatic

ML Random split-sample - type 1b AUC = 0.827 and 0.661,
respectively

Liu181 2020 148 Predicting EGFR mutation Genomic analysis Manual ML Random split-sample - type 2a AUC = 0.87
Chang176 2021 583 Predicting EGFR mutation Genomic analysis Semiautomatic and

manual
ML Random split-sample - type 1b/2a AUC = 0.84

Yin175 2021 301 Predicting EGFR mutation Genomic analysis Manual DL Random split-sample - type 2a AUC = 0.84
Li184 2021 255 Predicting PD-L1

expression
IHC Semiautomatic ML Random split-sample � type 2a/1b >1%: AUC = 0.762

>50%: AUC = 0.814
Nie143 2021 272 Predicting lymphovascular

invasion
Histology Semiautomatic ML External validation -type 3 AUC= 0.838

Chang187 2021 526 Predicting ALK
rearrangement status

IHC Semiautomatic ML Random split-sample - type 2a AUC= 0.88

ALK, Anaplastic lymphoma kinase; AUC, Area Under Curve; DL, Deep learning; EGFR, Epidermal growth factor receptor; ICI, Immune checkpoint inhibitor; IHC, Immunohistochemistry; KRAS, Kirsten
rat sarcoma virus; ML, Machine learning; OR, Odds Ratio; PD-L1, Programmed death-ligand 1; PET, Positron emission tomography; Pt No., Number of patients; TKI, Tyrosine kinase inhibitor.

All studies were retrospective.
*Based on TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) classification.
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of mutations is becoming an inevitable step in the manage-
ment of NSCLC,161 impacting the treatment options. Addi-
tionally, some features, such as tumor grade,162

lymphovascular invasion (LVI),4 or hypoxia,163 influence the
outcome. Therefore, predicting the presence of such bio-
markers using the standard diagnostic imaging would be
substantially advantageous, which is being investigated using
[18F]FDG-PET/CT radiomics (Table 4).
A study failed to demonstrate a significant relation

between radiomics features and the mutation burden.164 The
other showed modest relations between a number of muta-
tions and [18F]FDG-PET/CT radiomics.165 To begin with,
mutations in epidermal growth factor receptor (EGFR) have
a significant role in the development of NSCLC.166 Those
with EGFR mutation respond better to tyrosine kinase inhibi-
tors (TKIs).167 Therefore, the non-invasive prediction of
EGFR mutation is tempting. Tumors with EGFR mutation
tend to have more heterogeneity,168, 169 which might be cap-
tured by radiomics. Employing [18F]FDG-PET/CT conven-
tional radiomics and ML for the prediction of EGFR
mutation, a wide range of predictive power has been
reported (AUC = 0.5-0.87), mostly around 0.75-0.80.168, 170-
174 [18F]FDG-PET/CT-based features seemed superior over
CT and PET-only radiomics (AUC = 0.80-0.84, 0.67-0.72,
and 0.74-0.79, respectively).168, 175 Also, ML models outper-
formed conventional factors (AUCs = 0.82 vs 0.75).171

To further improve the accuracy, a number of scholars
added clinical data in the predictive models, showing that
the combined models (AUC = 0.82-0.87) surpassed imaging-
based models (AUC = 0.68-0.77)168, 169, 176 and the clinical
model alone (AUC = 0.69).169 However, the accuracies of DL
and DL plus clinical data were similar in another survey
(AUC = 0.81 vs 0.84).177 Moreover, in a study, [18F]FDG-
PET/CT data combined with visual features of the images
yielded a high AUC of 0.953.178 In an attempt to increase
performance, Shiri et al. applied feature harmonization,
which proved to be feature-dependent, and slightly increased
AUC for the prediction of EGFR mutation in different image
modality including PET, CT and fused PET/CT image using
ML algorithm (AUC increased from 0.87�0.90 to
0.92�0.94).71

There are two major EGFR mutations, 19DEL and
21L858R, which influence outcome and treatment
options.179 In this regard, [18F]FDG-PET/CT radiomics may
discriminate 19DEL from 21L858R (AUC of 0.73-0.87).170,
180 Liu et al. predicted the presence of 19DEL and 21L858R
with AUC of 0.77 and 0.92, respectively.181 On the other
hand, Zhang et al. incorporated clinical information in the
predictive model and reported that only one [18F]FDG-PET-
based feature could differentiate 19DEL from 21L858R muta-
tion with low predictive potential (AUC =0.66).182

Kristen rat sarcoma viral (KRAS) also plays a significant
role in NSCLC.166 The predictive role of radiomics for KRAS
mutation status is controversial. None of the [18F]FDG-PET-
based features predicted KRAS mutation in a study by Yip
et al..172 However, Shiri et al. demonstrated that a few fea-
tures are predictive for KRAS mutation (AUC = 0.71).171

Also, they reported that the best model for predicting KRAS
mutation is the CT-based ML model.171 In a most recent
study by Shiri et al. AUCs of 0.91�0.94 were reported for
KRAS mutation classification using harmonized PET/CT
fused image.71

The level of programmed death-ligand 1 (PD-L1) expres-
sion is an important factor for choosing immunotherapy in
NSCLC.183 The potential of radiomics to predict PD-L1
expression status is evaluated in a few studies. The PD-L1
expression levels >1% and >50% were predicted with
AUCs of 0.762 and 0.814, respectively.184 Similarly, Zhou
et al. assessed tumor microenvironment immune types (ie, a
combination of PD-L1 and CD8+ expression) and reached
similar results with AUCs of 0.794, 0.699 and 0.811 for
[18F]FDG-PET/CT-radiomics, clinical and combined models,
respectively.185 However, Jiang et al., showed that CT-
derived models (AUC 0.80-.097) are superior to [18F]FDG-
PET-based models (0.61-0.75) for the prediction of PD-L1
expression.186

Anaplastic lymphoma kinase (ALK) inhibitors are also
used for the treatment of NSCLC patients with ALK rear-
rangement or positive for ROS1 (c-ros oncogene 1) or RET
(rearranged during transfection) fusion.187, 188 Change et al.
employed radiomics to predict ALK mutation status and
reported that [18F]FDG-PET/CT radiomics predicted ALK
mutation with an AUC of 0.86.187 The result was comparable
with the model based on combined [18F]FDG-PET/CT plus
clinical data (AUC = 0.88).187 The predictive features were
more selected from CT features, possibly due to the higher
resolution of CT compared to PET (1 mm vs 5 mm).187

Moreover, Yoon et al. distinguished ALK, ROS1, or RET
fusion-positive NSCLC from fusion-negative tumors with
sensitivity and specificity of 73% and 70%, respectively.188

Higher tumor grade162 and LVI4 are associated with a
poorer prognosis. Novikov et al. employed radiomics-based
models using different segmentation methods to predict
tumor grade.162 None of the individual features were predic-
tive.162 However, incorporating all features in predictive
models, all three tumor grades were discriminated with over-
all accuracies of 71 to 100%.162 Also, Moitra et al. reported
that fuzzy-rough nearest neighbor classifier, among other ML
methods, provides higher performance for grading.189 More-
over, Nie and colleagues could predict LVI using imaging-
based features, with the CT-based radiomics plus SUVmax

providing the highest AUC (0.79).143

The proliferation rate is another prognostic factor in
NSCLC.190 In this regard, Palumbo et al. evaluated SUVmax

and diameter of lesions on [18F]FDG-PET/CT images and
applied ML to predict Ki-67 index, showing that the combi-
nation of SUVmax and lesion diameter could predict Ki-67 of
> 25% with an accuracy of 82%.190

Hypoxia is another biomarker which causes resistance to
treatment in NSCLC. Sanduleanu et al. predicted hypoxic
fraction > 20% using PET and CT-derived radiomics with
AUC of 0.71-0.82 in both lung and head and neck
cancers.163

All in all, there is a plethora of factors and biomarkers
impacting NSCLC patients’ outcomes. Radiomics seems to
predict EGFR mutation with acceptable but not ideal
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accuracy. However, the primary results regarding KRAS
mutation status are less favorable. Except for EGFR and
KRAS mutations, other biomarkers have been evaluated in
only a handful of studies. Radiomics in this field is rather
unexplored. Also, studies implementing DL are lacking,
mainly because of size of available data. Considering the
growing knowledge about the impact of different biomarkers
on the outcome, the non-invasive evaluation of such factors
would promote individualized treatment approaches. Note-
worthy, to be able to compare the results of different studies,
complying with the standardized immunohistochemistry
techniques and radiomics reporting criteria is necessary for
the evaluation of biomarkers.191 Future studies can shed
light on the role of radiomics in the non-invasive evaluation
of different biomarkers in NSCLC.
Prognosis and Outcome
Predicting the outcome is an essential step for the patients’
management. Various prognostic factors, such as stage, bio-
markers, etc., have been identified.192-196 Also, the conven-
tional semi-quantitative metabolic parameters on [18F]FDG-
PET/CT have shown prognostic value.197-199 It is crucial to
detect patients with a higher probability of recurrence who
may benefit from more aggressive local or systemic treat-
ments.200 The role of radiomics have also been investigated
in this scenario (Table 5).
Early studies pointed out the inverse relation between

tumor heterogeneity and overall survival (OS).201 For exam-
ple, in a study, the reduced heterogeneity was associated
with a response to erlotinib.202 Also, texture features such as
entropy, dissimilarity, coarseness, contrast, and busyness
were predictors of outcome in patients undergoing radiation
therapy (RT) or chemoradiotherapy.203-206 Others found
Asphericity to be a predictor of outcome.207 These features
had additional prognostic value to metabolic tumor volumes
(MTVs) and/or clinical variables.208-210 Later, radiomics-
based models were successfully developed to predict more
outcome measures, namely OS, disease-specific survival and
regional control.211

Attempts to predict OS or progression-free survival (PFS)
using textural features showed promising results
(AUCs = 0.665-0.762).212 The majority of studies showed an
additive prognostic value of radiomics to clinical risk fac-
tors.124, 213 Even in some studies, radiomics features outper-
formed the combined clinical and radiomics data (AUCs of
0.68-0.75 vs 0.61-0.65).214 Also, combined PET/CT models
seem superior to each modality alone.79-81 In contrast, some
studies have reported that radiomics features were incapable
of predicting PFS in patients undergoing curative RT,215 and
some have questioned the independent prognostic value of
[18F]FDG-PET only images.216

Surgery
Surgery is the treatment of choice in stage I/II NSCLC,5, 217

and some patients with stage IIIA disease or even some cases
with oligometastasis.5, 218 However, 30%-55% of patients
experience local/distant recurrence after curative surgery.219
The value of [18F]FDG-PET/CT textural features for better
stratification of the patients undergoing surgery has been
addressed in a number of studies.220-222

Ahn et al. assessed the value of [18F]FDG-PET/CT radio-
mics for the prediction of disease-free survival (DFS) in
patients undergoing surgery.223 They predicted recurrence
with AUCs of 0.871-0.956 using ML.223 However, the clini-
cal stage was a more powerful factor for the prediction of
DFS.223 Kirienko et al. showed that the AUC of the CT-based
model was higher than that of [18F]FDG-PET (0.75 vs
0.68).214 Unexpectedly, the AUCs dropped after consider-
ation of clinical findings (0.61 vs 0.65).214 Using two differ-
ent scanners and the lack of some important clinical data
limited their study.214 On the other hand, Christie et al.
added clinical stage to [18F]FDG-PET/CT radiomics model
and achieved an AUC of 0.79.224

“Extracting more information from medical images” needs
one to think creatively and outside of the box.225 Radiomics
studies usually focus on the target lesion while capturing
more data from the penumbra and/or peritumoral area or
even outside the tumor boundaries may provide additional
information of prognostic significance.226 For example, Mat-
tonen et al. evaluated the peritumoral region radiomics to
predict recurrence and/or progression.200 The clinical stage
was the best predictor of recurrence and/or progression
(AUC = 0.68).200 However, adding MTV to peritumoral data
empowered the predictive model (AUC = 0.74).200 Also, fur-
ther addition of bone marrow uptake radiomics improved
performance (AUC = 0.78).227 Others have tried to predict
cachexia as an independent prognostic factor.228 This kind
of approach to radiomics highlights the need for an interdis-
ciplinarity approach, an essential requirement for radiomics
studies.229
Radiation Therapy
RT is another treatment option for NSCLC patients.5, 230

Unfortunately, no universal model beyond staging exists for
prognostication of patients undergoing RT.230 Radiomics
and pattern recognition using textural features may have a
role to address the need for prediction of local recurrence,
nodal failure or distant metastasis following RT.

In an early study, tumor- and LN-conventional features
were used to predict recurrence after RT; however, the study
failed to show a significant predictive power for local recur-
rence, tumor and LN features predicted overall recurrence
(AUC = 0.69).231 Li et al. predicted OS and nodal failure
(AUCs = 0.64 and 0.66, respectively).232 Furthermore, Oiko-
nomou et al. showed the superiority of [18F]FDG-PET/CT
radiomics over simple SUVmax measurements for the predic-
tion of OS and recurrence.211 The performance was also
improved involving clinical information (AUC = 0.97),233 as
well as genetic and follow-up data (AUC = 0.79) during ther-
apy (known as delta features).234.

For distant metastasis prediction, radiomics studies
showed the additive role of radiomics to the simple imaging
or clinical parameters.159, 235 Also, the ML model based on
both [18F]FDG-PET and CT achieved higher AUC compared



Table 5 Summary of the Studies Evaluated the Prognostic Value of Radiomics and Artificial Intelligence in Non-Small Cell Lung Cancer Patients

Author Year Pt No.
Aim
(prediction of) Treatment

Segmentation
method Classifier Data classification*

Follow-up time
(months) Results

Tixier201 2014 102 OS, recurrence-free
survival

Surgery, RT, chemotherapy,
combination therapy

Manual
and automatic

Statistical
analysis

One dataset - type 1a 36.6 (Median) Some features predicted
survival with p < 0.05

Nakajo221 2018 55 OS Surgery Semiautomatic Statistical
analysis

One dataset - type 1a 23 (Median) Multivariate analysis:
Stage HR = 1.62,
IV HR = 6.19

Harmon222 2019 64 OS, PFS Surgery Semiautomatic Statistical
analysis

One dataset - type 1a - DFS:
HR = 0.72
OS:
HR = 0.65

Mattonen227 2019 227 DFS Surgery Manual and
semiautomatic

ML Temporal
split-sample - type 2b

41 (Median) AUC = 0.72

Mattonen200 2019 291 Time to recurrence/
progression

Surgery Semiautomatic ML External validation - type 3† 32-50 (Median varies
per dataset)

AUC = 0.74

Christie224 2021 135 Recurrence Surgery Semiautomatic ML Split-sample - type 2 - AUC = 0.79
Pyka204 2015 45 LR and DSS SBRT Semiautomatic Statistical

analysis
One dataset - type 1a 21.4 (Median) Entropy for LR

AUC = 0.872/ HR of entropy
for LR: 7.48/ none for OS

Lovinfosse203 2016 63 OS, DFS, DSS SBRT Semiautomatic Statistical
analysis

One dataset - type 1a 27.1 (Median) HR for dissimilarity =
DSS: 0.822 and DFS: 0.834

Hao237 2017 48 Distant failure SBRT - ML Resampling - type 1b 18 (Median) AUC = 0.70
Takeda205 2017 26 LC, OS, PFS SBRT Semiautomatic Statistical

analysis
One dataset - type 1a 36 (Median) AUC for HILAE for LC = 0.72

Zhou235 2017 52 Distant failure SBRT Semiautomatic ML Resampling - type 1b 18 (Median) AUC = 0.87
Li236 2018 110 Distant failure SBRT Semiautomatic ML Split-sample - type 2 18 (Median) AUC = 0.74
Li232 2018 100 OS, Nodal failure SBRT Semiautomatic ML Resampling - type 1b - AUC = 0.640 and 0.664,

respectively
Oikonomou211 2018 150 RC, disease control,

RFP, DSS, and OS
SBRT Manual ML Resampling - type 1b 27 (Median) Radiomics remained the

only predictors of OS,
DSS and RC.

Dissaux233 2020 87 LC SBRT Semiautomatic ML External validation - type 3 21.1-25.5 (Median
varies per dataset)

Accuracy = 0.91

Cook206 2013 53 treatment response,
OS, PFS, local PFS

Chemoradiotherapy Manual Statistical
analysis

One dataset - type 1a 21.2 (Median) AUCs for prediction of
response: contrast = 0.82
coarseness = 0.8
busyness = 0.72

Apostolova207 2014 60 OS, PFS Surgery § (chemo)
radiotherapy
or chemoradiotherapy

Semiautomatic Statistical
analysis

One dataset - type 1a 10.1 (Median) PFS:
asphericity (HR = 3.66)
and solidity (HR = 2.11)
OS: asphericity
(HR= 3.19)

Fried209 2015 195 OS Chemoradiotherapy Semiautomatic ML Resampling - type 1b >1 years; for living
patients = 37 (Median)

AUC = 0.62

Li231 2015 25 Local and
overall relapse

Chemoradiotherapy Manual ML Resampling - type 1b† 26 (Median) AUC = 0.69

Ohri208 2016 201 OS Chemoradiotherapy Semiautomatic ML Resampling - type 1b 24 The optimal cut-points for
MTV and SUVmean
were 93.3 cm3, 0.018,
respectively.

Dong212 2016 58 OS, PFS Chemoradiotherapy Semiautomatic Statistical
analysis

One dataset - type 1a 60 (Median) PFS: HR = 0.476,
OS: HR = 0.519

Kirienko214 2017 295 DFS RT or chemotherapy Semiautomatic Statistical
analysis

Random split-sample 20.1-20.5 (for CT or
PET dataset, Median)

AUC = 0.68

Luo234 2018 118 LC and Radiation
Pneumonitis

(Chemo)radiotherapy - ML Temporal split-sample
- type 2b

61-65 (Median varies
per group)

AUCs for:
pre-treatment = 0.77;
During-treatment = 0.79

Jensen210 2018 79 OS Chemoradiotherapy Semiautomatic ML One dataset - type 1a 22 (Median) AUC = 0.739
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Table 5 (Continued )

Author Year Pt No.
Aim
(prediction of) Treatment

Segmentation
method Classifier Data classification*

Follow-up time
(months) Results

Arshad249 2019 358 OS (Chemo)radiotherapy Semiautomatic ML Random and nonrandom
split-sample - type 2

22 (Median) HR = 1.61

Krarup215 2019 233 PFS Chemoradiotherapy Semiautomatic ML One dataset - type 1a 631.5 days (Mean) No radiomics features
predicted PFS

van Timmeren248 2019 138 OS (Chemo)radiotherapy Manual ML Random split-sample - type 2a 3.4-6.9 years
(Median varies
per dataset)

AUC ranged from
0.66 to 0.89

Ahn223 2019 93 DFS Surgery § chemoradiotherapy Semiautomatic ML Resampling - type 1b 45 (Median) AUC for
RF = 0.956

Astaraki251 2019 30 OS Chemoradiotherapy. Semiautomatic ML Resampling - type 1b 2 years AUC = 0.90
Konert216 2020 362 OS Chemoradiotherapy Semiautomatic ML External validation - type 3 17-24

(Median varies
per dataset)

AUC = 0.51 to 0.59
less than clinical model

Zhang247 2020 82 PFS Chemoradiotherapy Manual ML Random split-sample - type 2a 1.9-2 years
(Median varies
per group)

AUC = 0.77-0.79

Carles252 2021 48 OS, LR, DM Chemoradiotherapy Manual and
Semiautomatic

ML External validation - type 3† - AUC = 0.63

Moran250 2021 39 OS Chemoradiotherapy - Statistical
analysis

- - AUC = 0.82-0.83

Park262 2018 182 PFS TKI Semiautomatic ML Split-sample - AUC = 0.662
Mu253 2020 194 DCB, PFS, OS ICI Semiautomatic ML Temporal external

validation - type 3†
- AUCs:

DCB = 0.81
OS = 0.80
PFS = 0.77

Park259 2020 181 CAS (marker for
prediction of OS,
PFS, treatment response)

ICI Semiautomatic DL External validation - type 3 - AUCs = 0.74-0.88

Valentinuzzi257 2020 30 Treatment response
(OS >median
of 14.9 months)

ICI Semiautomatic Statistical
analysis

Resampling - type 1b 21.4 (Median) AUC = 0.90

Polverari256 2020 57 Treatment response ICI Manual and
semiautomatic

Statistical
analysis

One dataset - type 1a 10 (Median) Association between
several features
with progressive disease

Mu254 2021 697 DCB, PFS, OS ICI Semiautomatic DL External validation - type 3 - AUC = 0.82
Mu228 2021 210 Cachexia ICI Semiautomatic ML External validation - type 3 26 (Median) AUCs� 0.74
Shao263 2021 250 PFS TKI Manual ML External validation - type 3 >2 years AUC = 0.60-0.71

AUC, Area under curve; CXR, Chest X-ray; CAS, Cytolytic activity score; DCB, Durable clinical benefit; DFS, Disease-free survival; DL, Deep learning; DM, Distant metastasis; DSS, Disease-specific
survival; HILAE, High-intensity large-area emphasis; HR, Hazard ratio; ICI, Immune checkpoint inhibitor; LC, Local control; LR, Local recurrence; ML, Machine learning; OS, Overall survival; PFS,
Progression-free survival; PET/CT, Positron emission tomography/computed tomography; Pt No., Number of patients; RC, Regional control; RFP, Recurrence-free probability; RT, Radiotherapy;
SBRT, Stereotactic body radiation therapy; TKI, Tyrosine kinase inhibitor.

*Based on TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) classification.
†At least one cohort included prospectively gathered cases.
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to either alone.236 Moreover, DL outperformed ML models
for predicting distant disease.237

Differentiating radiation pneumonitis from residual/recur-
rent disease to avoid delay in treatment is a challenging issue
after RT.238 These may have a similar appearance on CT.239-
241 Also, increased metabolism due to inflammation is com-
mon in [18F]FDG-PET/CT images,240, 242 which may
decrease the accuracy of SUVs. To distinguish these two enti-
ties, Suga et al. showed that two conventional radiomics fea-
tures outperformed SUV (AUC = 0.83-0.82 vs 0.63-0.64) but
not MTV (AUC = 0.86).238

Chemoradiotherapy
Concurrent chemoradiotherapy is usually recommended for
stage II LN-positive or stage III diseases.5 It may make
patients prone to toxicity from intensive therapy without
having a significant survival benefit.243, 244 For patients
receiving chemoradiation, several factors are of prognostic
significance.244-246 Yet, current clinical and imaging parame-
ters are still imperfect in terms of prognostic power.244-246

The added value of radiomics signature to SUVs or clinical
factors in NSCLC patients undergoing chemoradiation has
been described (AUCs: 0.72-0.79)210, 247. A study could not
build a successful radiomics-based model.248 However, a
multicenter study evaluated the pre-therapy [18F]FDG-PET/
CT radiomics features for the prediction of survival in stage
I-III NSCLC.249 The radiomics features-derived hazard ratio
(HR) was 1.61 (CI 95%: 1.16-2.24), while SUV-related
parameters were not predictive.249 Another smaller study
emphasized the added value of combined [18F]FDG-PET
radiomics with “conventional prognostic factors” to “conven-
tional prognostic factors”-alone or CT radiomics for the pre-
diction of OS (AUCs of 0.82, 0.68, and 0.62,
respectively).250 Similarly, Astaraki et al. focused on a new
partitioning method to predict OS. Their ML method outper-
formed conventional radiomics features (AUC = 0.90 vs.
0.71).251 Using the changes in radiomics features (delta fea-
tures) in the follow-up studies after chemoradiation, patients
with increasing homogeneity in the primary tumor had a
higher rate of local recurrence.252

Immunotherapy
Immune checkpoint inhibitors (ICIs) have an emerging role
as consolidation therapy after chemoradiation in stage II/III
NSCLC. They can also be employed with/without chemo-
therapy for the first-line treatment of metastatic patients.5 To
predict response to ICIs, a study found a good AUC for [18F]
FDG-PET/CT radiomics (0.81) and showed its additive value
to the nomogram (AUCs of 0.77 and 0.80 for the prediction
of OS and PFS, respectively). 253 Furthermore, Mu et al. used
DL and predicted PD-L1 expression status (AUC �0.82),
durable clinical benefit (AUC = 0.87), PFS (AUC = 0.77), and
OS (AUC = 0.70).254

Following immunotherapy, pseudoprogression is likely,
and imaging criteria may lag months to define the real pro-
gression warranting additional imaging.255 Radiomics may
help predict the tumor response. Given that tumor heteroge-
neity can predict disease progression in these patients,256 a
study compared immunotherapy radiomics (so-called “iRA-
DIOMICS”) with iRECIST (immunotherapy response evalua-
tion criteria in solid tumors), showing a higher AUC for the
prediction of response to treatment with pembrolizumab
(0.90 vs 0.79-0.86).257

For the prediction of response to neoadjuvant immuno-
therapy in early-stage NSCLC, [18F]FDG-PET-derived radio-
mics features were uneventful in a study with small numbers
of patients.258 However, employing tumor immune microen-
vironment, cytolytic activity score was predictive using [18F]
FDG-PET/CT-based DL (AUCs = 0.74-0.88), which also cor-
related with PFS and OS.259 Also, responders to ICI were dis-
criminated from non-responders (P = 0.005).259

Additionally, some authors tried to predict cachexia (as a fac-
tor for resistance to immunotherapy, AUC �0.74)228 or
severe immune-related adverse events (AUC = 0.88).253

Tyrosine Kinase Inhibitors
Adjuvant TKIs are reserved for stage IB-IIIA EGFR-mutated
NSCLC.5 Simple measures such as SUVmax suffer from ade-
quate diagnostic power for the prediction of EGFR status
(summary ROC = 0.68).260 As discussed above, there is a
possible role for [18F]FDG-PET/CT radiomics if the quality
of the studies is further improved.261 To predict outcome
after treatment with TKI, some radiomics features and the
changes in their values during therapy (delta features) pre-
dicted OS and response to TKI (erlotinib).202 In another sur-
vey, pretreatment intratumoral heterogeneity was related to
PFS after TKI treatment (gefitinib or erlotinib).262 Also,
radiomics predicted rapid progression after receiving TKI.263

Interestingly, the model based on radiomics showed better
performance compared to the model combining radiomics
with clinicopathologic data (AUCs: 0.76 vs 0.71) for the pre-
diction of PFS.263 To evaluate the clinical benefit of DL in
predicting EGFR mutation and its impact on treatment deci-
sion, Mu et al. reported that patients with high EGFR muta-
tion signature have longer PFS when treated with TKIs while
those with low EGFR mutation signature respond better to
ICIs.177
Discussion and Conclusion
An exponentially increasing number of studies are being
published evaluating the role of AI in medical imaging. The
preliminary results show that [18F]FDG-PET/CT-based
radiomics provides additional valuable information in
NSCLC patients.

To recapitulate, AI provides the possibility of automatic
detection and also denoising and increasing the quality of
studies with low-dose imaging, theoretically opening a hori-
zon for screening of malignancies. In addition, radiomics
may differentiate malignant pulmonary nodules and the sub-
types of the primary lesions, especially when combined with
clinical data, slightly better than physicians, moving one
more step toward the non-invasive characterization of the
lesions. The superiority of radiomics for the T- and M-staging
has not been proved in the limited number of surveys.
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Likewise, the prediction of LN involvement seems only
slightly higher than that of experts. Additionally, the expand-
ing field of biomarkers in oncology has been addressed. Most
studies have shown promising potential for the prediction of
EGFR mutation status, which may influence the decision for
targeted therapies in the future. However, other biomarkers
have scarcely been assessed. Moreover, it is crucial to predict
the response to therapy in the early stages of treatment to
timely adjust the management. In this regard, a large propor-
tion of studies have reported the promising role of radiomics
in predicting outcome as the endpoint of cancer manage-
ment.
Nevertheless, the immediate physiological relevance of

radiomics is not yet defined.249 A recent systematic review in
this regard also concluded that the quality score of the stud-
ies is low, reflecting a lack of reproducibility.264 There are a
few studies evaluating the prognostic value of [18F]FDG-
PET/CT radiomics to predict outcomes after surgery or che-
moradiation, showing a wide range of accuracies. There are
known prognostic clinical factors. They should also be
implemented in the predictive models to augment the predic-
tive performance. Moreover, incorporating data from the
peritumoral regions or even outside the tumor boundaries
may provide additional prognostic information. Given the
whole-body evaluation with DL, it may show higher perfor-
mance in this regard. Also, there is a debate regarding the
role of radiomics in prognostication after RT.239 Two recent
systematic reviews addressed the utility of radiomics in this
regard,230, 265 showing a modest predictive value for conven-
tional radiomics for OS.230 However, DL seems more prom-
ising, which should be employed in future studies. These
emerging pieces of evidence are expressed as a “significant
potential” of radiomics in the recent EANM/SNMMI/ESTRO
guidelines on the role of [18F]FDG-PET/CT in RT plan-
ning.266 Moreover, targeted therapies will have prominent
roles in the management of NSCLC in future. Considering
the costs and adverse events of targeted therapy, it is better
to define which patients will have a durable clinical benefit.
Incorporating radiomics may enhance the prognostic power
of [18F]FDG-PET/CT and may impact the decision making.
A comprehensive review on radiomics biomarkers in the field
of immunotherapy is available, yet data on [18F]FDG-PET
radiomics is not solid and warrants further improvement.267

Finally, delta features seem to possess prognostic significance
in response evaluation. However, there are challenges in
maintaining the consistency of parameters in different studies
and robustness of the relevant features.
In conclusion, [18F]FDG-PET/CT radiomics seems to be

advantageous for the evaluation of NSCLC in different set-
tings. However, all fields suffer from shared drawbacks,112,
155, 191, 248, 261, 264, 267-270 i.e. standardized imaging, the
method of radiomics implementation, and reporting, limit
comparative studies and translation of radiomics into clinical
practice. The repeatability and reproducibility of radiomics
features should be assessed for robust radiomics modeling.
Harmonization, data augmentation and federated learning
algorithm could be employed to tackle acquisition/recon-
struction variability, imbalance classes and data sharing
challenges in the clinic, respectively. Efforts have been made
for standardization and improving the quality of reports,
including the development of IBSI,13 TRIPOD (transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis)271, and RQS (radiomics quality
score)17, yet to be implemented in all published studies.
Moreover, DL algorithms are increasingly employed and
seemingly have equal or superior performance compared to
conventional statistical analysis and ML models. Moreover,
adding the clinical information into predictive models, mim-
icking the human decision approach, may improve the effi-
cacy.

The wide implementation of AI in medical imaging
research is to reach the unfulfilled dream of developing a
rapid, one-step, diagnostic “machine.” It seems that there is
still a long way to reach that goal. Also, whether virtual
biopsy one day will become a reality remains to be
answered.272 However, by publishing standard reports,
experts can use AI to improve their reports and enhance
patients’ management. To accelerate the clinical use of radio-
mics, future studies should comply with the guidelines.
Introducing the potential applications, advantages and limi-
tations of AI in scientific meetings, seminars, and webinars
would help increase awareness.
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