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Abstract: In this paper, we study output consensus of coupled linear port-Hamiltonian systems
on graphs in the presence of constant disturbances, where couplings are allowed to be both static
and dynamic. Utilizing port-Hamiltonian structures, we present dynamic controllers achieving
output consensus where the consensus values are determined by the disturbances. Finally, the
utility of the proposed controller is illustrated by applying it to current sharing of DC microgrids.
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1. INTRODUCTION

Port-Hamiltonian structures naturally arise in networked
interconnections of physical systems such as electrical cir-
cuits and networked mechanical systems (van der Schaft,
2006). Taking advantages of passivity properties, various
control methodologies have been developed for stabiliza-
tion or trajectory tracking of port-Hamiltonian systems,
e.g. Vos et al. (2014, 2015). Motivated by power systems
and multi-agent systems, consensus control as a new trend
has also attracted research attentions, e.g., (Monshizadeh
and De Persis, 2017; Olfati-Saber et al., 2007; Li et al.,
2009; Ran and Xie, 2021). However, there is no general
control framework for consensus of port-Hamiltonian sys-
tems.

The consensus problem considered in this paper is mo-
tivated by current sharing of power systems in which the
consensus value of generated currents as outputs are deter-
mined by power loads as disturbances. That is, we consider
an output consensus problem driven by “disturbances”.
Such a consensus property is sometimes referred to as
output agreement (Monshizadeh and De Persis, 2017) to
distinguish it from ones typically appeared in the con-
text of multi-agent systems (Olfati-Saber et al., 2007)
in which consensus values are determined by “the initial
states”. In the paper Monshizadeh and De Persis (2017),
the authors consider the problem of output agreement for
port-Hamiltonian systems, in which dynamic interactions
(or dynamic edges) among subsystems are considered. As
will be shown later, in our paper, we are interested in a
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consensus problem in which the model of the coupled port-
Hamiltonian systems and the edges can be more general.

In this paper, we first introduce the model of intercon-
nected port-Hamiltonian systems, in which disturbance
is considered. The model allows the interaction to be
static and/or dynamic. Examples of static interaction and
dynamic interactions are provided later in Subsection 2.
Actually, for a single subsystem, the static and dynamic
interactions can be considered as the interaction ports,
defining the interaction of the system with (the rest of)
its environment (van der Schaft, 2006). For static inter-
action, two typical types are considered and they corre-
spond to power conserving and power dissipating types
of interconnections. The dynamic interactions acts as a
power conserving and also dissipating parts. At last, the
“large-scale” system composed by the interconnected port-
Hamiltonian systems is still a port-Hamiltonian system.
Compared with the paper (Monshizadeh and De Persis,
2017) where only the dynamic interactions among subsys-
tems are considered, the model in our paper can incorpo-
rate the cases of static and dynamic couplings, and the
dynamics of interactions can be expressed as a function of
subsystems’ state, i.e., the dynamics of interactions do not
necessarily have to be a function of the systems’ outputs.
For more details, we refer the readers to Remark 1.

The main control objects of this paper are output weighted
consensus of the interconnected/coupled port-Hamiltonian
systems and stability. By control system design, the steady
state of the output of each subsystem can be proportional
to a common value, in which the proportion is a constant
design parameter. The computation of the common value
depending on disturbance and controller reference signal
is also provided. If there is no interaction among the
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Port-Hamiltonian structures naturally arise in networked
interconnections of physical systems such as electrical cir-
cuits and networked mechanical systems (van der Schaft,
2006). Taking advantages of passivity properties, various
control methodologies have been developed for stabiliza-
tion or trajectory tracking of port-Hamiltonian systems,
e.g. Vos et al. (2014, 2015). Motivated by power systems
and multi-agent systems, consensus control as a new trend
has also attracted research attentions, e.g., (Monshizadeh
and De Persis, 2017; Olfati-Saber et al., 2007; Li et al.,
2009; Ran and Xie, 2021). However, there is no general
control framework for consensus of port-Hamiltonian sys-
tems.

The consensus problem considered in this paper is mo-
tivated by current sharing of power systems in which the
consensus value of generated currents as outputs are deter-
mined by power loads as disturbances. That is, we consider
an output consensus problem driven by “disturbances”.
Such a consensus property is sometimes referred to as
output agreement (Monshizadeh and De Persis, 2017) to
distinguish it from ones typically appeared in the con-
text of multi-agent systems (Olfati-Saber et al., 2007)
in which consensus values are determined by “the initial
states”. In the paper Monshizadeh and De Persis (2017),
the authors consider the problem of output agreement for
port-Hamiltonian systems, in which dynamic interactions
(or dynamic edges) among subsystems are considered. As
will be shown later, in our paper, we are interested in a
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consensus problem in which the model of the coupled port-
Hamiltonian systems and the edges can be more general.

In this paper, we first introduce the model of intercon-
nected port-Hamiltonian systems, in which disturbance
is considered. The model allows the interaction to be
static and/or dynamic. Examples of static interaction and
dynamic interactions are provided later in Subsection 2.
Actually, for a single subsystem, the static and dynamic
interactions can be considered as the interaction ports,
defining the interaction of the system with (the rest of)
its environment (van der Schaft, 2006). For static inter-
action, two typical types are considered and they corre-
spond to power conserving and power dissipating types
of interconnections. The dynamic interactions acts as a
power conserving and also dissipating parts. At last, the
“large-scale” system composed by the interconnected port-
Hamiltonian systems is still a port-Hamiltonian system.
Compared with the paper (Monshizadeh and De Persis,
2017) where only the dynamic interactions among subsys-
tems are considered, the model in our paper can incorpo-
rate the cases of static and dynamic couplings, and the
dynamics of interactions can be expressed as a function of
subsystems’ state, i.e., the dynamics of interactions do not
necessarily have to be a function of the systems’ outputs.
For more details, we refer the readers to Remark 1.

The main control objects of this paper are output weighted
consensus of the interconnected/coupled port-Hamiltonian
systems and stability. By control system design, the steady
state of the output of each subsystem can be proportional
to a common value, in which the proportion is a constant
design parameter. The computation of the common value
depending on disturbance and controller reference signal
is also provided. If there is no interaction among the
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rate the cases of static and dynamic couplings, and the
dynamics of interactions can be expressed as a function of
subsystems’ state, i.e., the dynamics of interactions do not
necessarily have to be a function of the systems’ outputs.
For more details, we refer the readers to Remark 1.

The main control objects of this paper are output weighted
consensus of the interconnected/coupled port-Hamiltonian
systems and stability. By control system design, the steady
state of the output of each subsystem can be proportional
to a common value, in which the proportion is a constant
design parameter. The computation of the common value
depending on disturbance and controller reference signal
is also provided. If there is no interaction among the

port-Hamiltonian systems and let the proportion value
identical, then the consensus problem reduces to the nom-
inal output consensus problems of multi-agent systems in
the form of port-Hamiltonian systems. In the absence of
disturbance, the port-Hamiltonian systems can track the
average of the reference signals in the controllers with a
uniform gain.

The contributions of this paper are as follows.

• Our method is general in the sense that we can handle
weighted output consensus of general linear port-
Hamiltonian systems regardless of static or dynamics
interconnections. To the best of our knowledge, this is
the first attempt to solve output consensus problems
for such general interconnected port-Hamiltonian sys-
tems.

• Technical analysis is general in the sense of that
we compute the consensus value and correspond-
ing equilibrium point explicitly for the general port-
Hamiltonian systems mentioned above.

The remainder of this paper is organized as follows. In
Section 2, we provide a motivating example to explain
the whole picture of this paper such as the model of in-
terconnected port-Hamiltonian systems and control objec-
tives. In Section 3, we show the coupled port-Hamiltonian
systems on graphs in the presence of disturbances. Sec-
tion 4 presents distributed controllers for achieving output
consensus of general port-Hamiltonian systems, where the
consensus value is determined by the disturbances. In
Section 5, the proposed method is illustrated by a current
sharing problem of a DC microgrid.

Notation: We denote by R the set of real numbers.
Given y ∈ R, R≥y denotes the set of real numbers that
are not smaller than y. Let 0 denote the column vector
or the matrix with the appropriate dimensions having
all 0 elements. Let 1 denote the column vector with
the appropriate dimension having all 1 elements. For a
symmetric matrix Ψ, Ψ > 0 and Ψ ≥ 0 mean that Ψ
is positive definite and positive semi-definite, respectively.
Let Ψ+ denote the Moore-Penrose inverse of Ψ. Let I
denote the identity matrix with the appropriate dimension.

Preliminaries of graph theory: We let the graph G =
(N , E) denote the topology between subsystems, where
N = {1, 2, · · · , N} denotes the set of subsystems and
E ⊆ N ×N denotes the set of edges (interconnecting the
N subsystems) with cardinality E. Let Ni denote the set
of the neighbors of subsystem i, where i = 1, 2, · · · , N . In
this paper, we assume that the graph G is undirected and
connected, i.e., if j ∈ Ni, then i ∈ Nj . Let AG = [aij ] ∈
RN×N denote the adjacency matrix of the graph G, where
aij = 1 if and only if j ∈ Ni and aii = 0. Accordingly,
define the Laplacian matrix L = [lij ] ∈ RN×N , in which

lii =
∑N

j=1 aij and lij = −aij if i ̸= j.

2. MOTIVATING EXAMPLE: A DC MICRO GRID

In this paper, we are interested in coupled port-Hamiltonian
systems on graphs. Such system structures can be widely
found in practice as exemplified by DC micro grids in
the left picture of Fig. 1, e.g., (Ferguson et al., 2021;
Trip et al., 2018), where the voltage sourced converters

Table 1. Tables of coefficients and variables in
Section 2

Table of coefficients

Lsi Filter inductance
Rsi Filter resistance
Lk Line inductance
Rk Line resistance
Csi Filter capacitor
Zi Load resistance

Table of variables

ϕi Flux (node)
qi Charge
ψk Flux (line)
usi Control input
ILi Current load
yi Output

(VSCs) and power lines are modeled as vertices and edges,
respectively as in the right picture of Fig. 1. For the
ease of exposition, we sometimes use the terminologies
“interconnection”, “coupuling”, and “line” instead of an
edge; they all have the same meaning.

We see that the DC micro grids can be represented as
port-Hamiltonian systems on graphs. As node dynamics,
for instance, we consider the model of a distributed gen-
eration (storage) unit including a VSC and a current load
(Ferguson et al., 2021). With the notation in Table 1, the
dynamics of the i-th VSC can be expressed as

ϕ̇i = −Rsi

Lsi
ϕi −

1

Csi
qi + usi (1a)

q̇i = − 1

ZiCsi
qi +

1

Lsi
ϕi − ILi −

∑
k∈Ei

1

Lk
ψk (1b)

yi =
ϕi

Lsi
. (1c)

Next, we consider models of edges. In fact, depending on
problems, edges can be static and dynamic.

Case i) Static edges: By neglecting the inductance of lines,
the flux in the resistive line k connecting VSCs i and j is
expressed by

ψk

Lk
=

1

Rk

(
qi
Csi

− qj
Csj

)
. (2)

Substituting (2) into (1b), one can rewrite (1) into the
form of port-Hamiltonian system as follows

[
ϕ̇i

q̇i

]

︸ ︷︷ ︸
ẋi

=

[
−Rsi −1
1 −Z−1

i

]

︸ ︷︷ ︸
Ji−Ri

[
L−1
si 0
0 C−1

si

]

︸ ︷︷ ︸
Qi

[
ϕi

qi

]

︸ ︷︷ ︸
xi

+

[
1
0

]

︸︷︷︸
Bi

usi

+

[
0
−1

]

︸ ︷︷ ︸
Mi

ILi −
∑
k∈Ei

[
0 0
0 R−1

k

]

︸ ︷︷ ︸
Sij

(Qixi −Qjxj) (3a)

yi = [ 1 0 ]︸ ︷︷ ︸
BT

i

[
L−1
si 0
0 C−1

si

]

︸ ︷︷ ︸
Qi

[
ϕi

qi

]

︸ ︷︷ ︸
xi

(3b)
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Fig. 1. Left: A DC micro grid; Right: The corresponding
graph.
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where Ri = diag(Rsi, Z
−1
i ) and Ji =

[
0 −1
1 0

]
.

Case ii) Dynamic edges: When lines are resistive and
inductive as in (Trip et al., 2018), the dynamics of the flux
in the resistive-inductive line k connecting VSCs i and j
is expressed as

ψ̇k =

(
qi
Csi

− qj
Csj

)
− Rk

Lk
ψk. (4)

Similarly, the dynamics in (1) can be written in the form
of port-Hamiltonian system as follows

[
ϕ̇i

q̇i

]

︸ ︷︷ ︸
ẋi

=

[
−Rsi −1
1 −Z−1

i

]

︸ ︷︷ ︸
Ji−Ri

[
L−1
si 0
0 C−1

si

]

︸ ︷︷ ︸
Qi

[
ϕi

qi

]

︸ ︷︷ ︸
xi

+

[
1
0

]

︸︷︷︸
Bi

usi +

[
0
−1

]

︸ ︷︷ ︸
Mi

ILi −
∑
k∈Ei

[
0
1

]

︸︷︷︸
Hk

1

Lk︸︷︷︸
T−1
k

ψk (5a)

yi = [ 1 0 ]︸ ︷︷ ︸
BT

i

[
L−1
i 0
0 C−1

si

]

︸ ︷︷ ︸
Qi

[
ϕi

qi

]

︸ ︷︷ ︸
xi

, (5b)

and the dynamics of ψk can be described by

ψ̇k = − Rk︸︷︷︸
Dk

1

Lk︸︷︷︸
T−1
k

ψk + [ 0 1 ]︸ ︷︷ ︸
HT

k

(Qixi −Qjxj) , (6)

where Ji and Ri are the same as those in Case i).

In both Cases i) and ii), the dynamics of VSC i are written
in the form of a port-Hamiltonian system (3) and (5),
respectively. Load ILi can be considered as disturbance
entering the port-Hamiltonian system. In particular, the
terms

∑
k∈Ei

Sij(Qixi − Qjxj) in (3) and
∑

k∈E Hkψk in

(5) represent the overall flux exchange of VSC i with its
neighbors through the lines. However, one can observe that
the dynamics of the port-Hamiltonian systems in the two
cases, i.e., (3) and (5), are different due to the cases of
dynamic and static models of lines.

In both cases, output consensus of the systems are im-
portant in practices. Note that yi = ϕi/Lsi equals to
the generated current of VSC i. An approach to realizing
current sharing among the VSCs (yi = yj) is to achieve
output consensus for the systems in (3) or (5)–(6). How-
ever, there is still no uniform framework of control design
for output consensus, which can handle both static and
dynamic couplings. Consequently, we are interested in the
following theoretical-oriented question: Given a “general”
model of distributed port-Hamiltonian systems (including
(3) and (5)), whether we can design distributed controllers
to achieve output consensus.

3. PORT-HAMILTONIAN SYSTEMS ON GRAPHS

3.1 Node Dynamics and Interconnection Structures

In this subsection, we consider general linear port-
Hamiltonian systems on graphs. Each node dynamics is
given by

ẋi = (Ji −Ri)Qixi +Biui + di + Ci(zk, xi, xj) (7a)

yi = BT
i Qixi, (7b)

where xi ∈ Rni and ui ∈ Rm denote the state and
input of node i, respectively, and di ∈ Rni represents
the constant disturbance injected to node i. The matrices
Ji, Ri, Qi ∈ Rni×ni are Ji = −JT

i , Ri ≥ 0, and Qi > 0.
In this paper, as a stabilizability assumption, we assume
that Bi ∈ Rni×m is of full column rank, and (Ri|Bi) is of
full row rank.

The term Ci(zk, xi, xj) accounts for the (physical) cou-
plings of subsystem i with other subsystems j ∈ N (j ̸= i),
given by

Ci(zk, xi, xj)

= −
∑
k∈E

HkT
−1
k zk

︸ ︷︷ ︸
dynamic

+
∑
j∈N

GijQjxj

︸ ︷︷ ︸
static

+
∑
j∈N

Sij(Qjxj −Qixi)

︸ ︷︷ ︸
static

(8)

żk = −DkT
−1
k zk +HT

k (Qixi −Qjxj), (9)

where zk ∈ Rk represents the state of the dynamic in-
teraction between subsystems i and j ̸= i, and Dk and
Tk ∈ Rk×k are positive definite matrices with Dk specify-
ing the energy dissipation associated with the (physical)
interaction, and Hk ∈ Rni×k. For the sake latter analysis,
the incidence matrix of the interconnection between sub-
systems i and j in (9) is given by Bi,k = +1 if subsystem i is
the positive end of the labeled interaction k. Or Bi,k = −1,
if subsystem i is the negative end. Otherwise, Bi,k = 0. In
the static interaction in (8), Gij = −GT

ij and Sij ≥ 0
if j ∈ Ni. Otherwise, Gij = 0 and Sij = 0. The term∑

j∈N GijQjxj accounts for the static interactions with-

out energy losses, and the term
∑

j∈N Sij(Qjxj − Qixi)
can model the interactions with energy losses, which will
be observed later when we represent the overall system in
compact form. Also, it will become clearer that the whole
system consisting of the subsystems (7) and interconnec-
tions (8) and (9) is again a port-Hamiltonian system.

Remark 1. Compared with the model in (Monshizadeh
and De Persis, 2017) in which only the dynamic inter-
actions among subsystems are considered, the model (7)-
(9) in this paper can incorporate the cases of static and
dynamic couplings. Moreover, dynamics of interactions (or
called edges) in (Monshizadeh and De Persis, 2017) are
żk = yj − yi. Therefore, output consensus is automatically
achieved when the system is stabilized. This is not always
true in this paper, since dynamics of interactions zk in
this paper also depend on Dk and Hk. In case Hk, Gij

and Sij are matrices with all zero entries, the model in (7)
reduces to multi-agent systems as the one in (Vos et al.,
2015, 2014). ■

3.2 Compact Forms

Combining (7)–(9) leads to the compact form for the whole
networked systems as in

ẋ = (J +G−R− S)Qx+Bu+ d+ (B ⊗ In)HT−1z
(10a)

y = BTQx (10b)

ż = −DT−1z −HT (BT ⊗ In)Qx, (10c)

where x := [xT
1 · · ·xT

N ]T , u := [u1 · · ·uN ]T , z =
[zT1 · · · zTE ]T , and d = [dT1 · · · dTN ]T . The block diagonal ma-
trices are Q = diag(Q1, · · · , QN ), J = diag(J1, · · · , JN ),
R = diag(R1, · · · , RN ), B = diag(B1, · · · , BN ), D =
diag(D1, · · · , DE), H = diag(H1, · · · , HE), and T =
diag(T1, · · · , TE). The matrices G and S are given by

G =




0 G12 G13 · · · G1N

G21 0 G23 · · · G2N

G31 G32 0 · · · G3N

...
...

...
. . .

...
GN1 GN2 GN3 · · · 0




S =




N
p=1 S1p −S12 · · · −S1N

−S21

N
p=1 S2p · · · −S2N

...
...

. . .
...

−SN1 −SN2 · · ·
N

p=1 SNp



.

The description of the interconnected systems can be
further simplified by defining x̃ = [xT zT ]T . Indeed, it
follows that

˙̃x = (J̃ − R̃)Q̃x̃+ B̃u+ d̃ (11a)

y = B̃T Q̃x̃, (11b)

where Q̃ = diag(Q, T−1) and

J̃ =


J +G (B ⊗ In)H

−HT (BT ⊗ In) 0


, (12)

R̃ =


R+ S 0

0 D


, B̃ =


B
0


, d̃ =


d
0


. (13)

It is worth emphasizing that this compact form is a
port-Hamiltonian system because of the structure of node
dynamics (7) and interconnections (8) and (9). Namely,

J̃ = −J̃T , R̃ ≥ 0, and Q̃ > 0. Moreover, B̃ is of full column
rank, and (R̃|B̃) is of full row rank. The aforementioned
DC microgrid can be represented in the form of (11).

4. CONTROL DESIGN FOR WEIGHTED OUTPUT
CONSENSUS

4.1 Control Objective

In this paper, the control objective is to achieve the
following two goals simultaneously.

i) The state of the port-Hamiltonian systems (7) asymp-
totically converges to some value x̄ determined by the
constant disturbance d;

ii) The port-Hamiltonian systems achieve weighted out-
put consensus, i.e.,

lim
t→∞

(wjyj(t)− wiyi(t)) = 0, i, j = 1, . . . , N, (14)

where wi ∈ Rm×m, i = 1, . . . , N are non-singular.

In the above, the parameters wi, i = 1, . . . ,m are for
making the consensus problem more general. Selecting
wi = I, i = 1, . . . ,m recovers the standard (proportional)
output consensus limt→∞(yj(t)− yi(t)) = 0.

4.2 Distributed controller design

To achieve the control objectives i) and ii), we design the
distributed controller as follows

ui = −Kiyi + wi


j∈Ni

(ξj − ξi) + ri (15a)

ξ̇i =

j∈Ni

(wjyj − wiyi), (15b)

where ξi ∈ Rm, and Ki > 0. As will be shown later, the
constant ri ∈ Rm is used to shift the steady state. For
example, when one wants to achieve current sharing, it is
also desirable to regulate the voltage towards the reference
value.

The compact form of the controller dynamics is given by

u = −Ky +WLξ + r (16a)

ξ̇ = −LWy (16b)

where u = [u1 · · ·uN ]T , ξ = [ξ1 · · · ξN ]T , and r =
[r1 · · · rN ]T . For the matrices, K = diag(K1, · · · ,KN ),
W = diag(w1, · · · , wN ), and L = BBT is the Laplacian
matrix for the topology of distributed systems.

4.3 Analysis of the closed-loop systems

Substituting (16) into (11), one obtains the compact form
of the closed-loop system as follows

˙̃x= (J̃ − R̃− B̃KB̃T )Q̃x̃+ B̃WLξ + d̃+ B̃r (17a)

ξ̇ =−LWB̃T Q̃x̃. (17b)

One of the most important fact is that this is a port-
Hamiltonian system. In other words, the controller (15)
is designed to preserve the port-Hamiltonian structure.

In the rest of this section, we show that this closed-loop
system satisfies the objectives i) and ii). First, we show
that its equilibrium point can be computed explicitly.

Proposition 1. Given constants d and r, the following
(x̄, ξ̄) is an equilibrium point of the closed-loop system
(17):

x̄ = Q̃−1A−1(B̃Wv − c) (18)

ξ̄ =


1T

L

+ 
1T ξ(0)
−v


, (19)

v := (WT B̃TA−1B̃W )−1(α1+WT B̃TA−1c), (20)

α := −1T (WT B̃TA−1B̃W )−1B̃TA−1c

1T (WT B̃TA−1B̃W )−11
(21)

A := J̃ − R̃− B̃KB̃T (22)

c := d̃+ B̃r, (23)

where ξ(0) is the initial state of ξ(t). Moreover, the output

ȳ := B̃T Q̃x̄ satisfies

Wȳ = α1. (24)

Proof. First, we confirm that (x̄, ξ̄) is well defined by

showing the non-singularity of A and WT B̃TA−1B̃W .
Since (R̃|B̃) is of full row rank, R ≥ 0, and K > 0, we

have R̃+ B̃KB̃T > 0. Therefore, A is non-singular.

Recall that W is non-singular. Then, it suffices to show the
non-singularity of B̃TA−1B̃. Consider a vector p such that
B̃TA−1B̃p = 0. Using this p, define q := A−1B̃p. Then, it
follows that

B̃T q = B̃TA−1B̃p = 0, (25)
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where x := [xT
1 · · ·xT

N ]T , u := [u1 · · ·uN ]T , z =
[zT1 · · · zTE ]T , and d = [dT1 · · · dTN ]T . The block diagonal ma-
trices are Q = diag(Q1, · · · , QN ), J = diag(J1, · · · , JN ),
R = diag(R1, · · · , RN ), B = diag(B1, · · · , BN ), D =
diag(D1, · · · , DE), H = diag(H1, · · · , HE), and T =
diag(T1, · · · , TE). The matrices G and S are given by

G =




0 G12 G13 · · · G1N

G21 0 G23 · · · G2N

G31 G32 0 · · · G3N

...
...

...
. . .

...
GN1 GN2 GN3 · · · 0
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N
p=1 S1p −S12 · · · −S1N

−S21

N
p=1 S2p · · · −S2N
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. . .
...

−SN1 −SN2 · · ·
N

p=1 SNp
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also desirable to regulate the voltage towards the reference
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[r1 · · · rN ]T . For the matrices, K = diag(K1, · · · ,KN ),
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Substituting (16) into (11), one obtains the compact form
of the closed-loop system as follows

˙̃x= (J̃ − R̃− B̃KB̃T )Q̃x̃+ B̃WLξ + d̃+ B̃r (17a)

ξ̇ =−LWB̃T Q̃x̃. (17b)

One of the most important fact is that this is a port-
Hamiltonian system. In other words, the controller (15)
is designed to preserve the port-Hamiltonian structure.

In the rest of this section, we show that this closed-loop
system satisfies the objectives i) and ii). First, we show
that its equilibrium point can be computed explicitly.

Proposition 1. Given constants d and r, the following
(x̄, ξ̄) is an equilibrium point of the closed-loop system
(17):

x̄ = Q̃−1A−1(B̃Wv − c) (18)

ξ̄ =
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L

+ 
1T ξ(0)
−v


, (19)

v := (WT B̃TA−1B̃W )−1(α1+WT B̃TA−1c), (20)

α := −1T (WT B̃TA−1B̃W )−1B̃TA−1c

1T (WT B̃TA−1B̃W )−11
(21)

A := J̃ − R̃− B̃KB̃T (22)

c := d̃+ B̃r, (23)

where ξ(0) is the initial state of ξ(t). Moreover, the output

ȳ := B̃T Q̃x̄ satisfies

Wȳ = α1. (24)

Proof. First, we confirm that (x̄, ξ̄) is well defined by

showing the non-singularity of A and WT B̃TA−1B̃W .
Since (R̃|B̃) is of full row rank, R ≥ 0, and K > 0, we

have R̃+ B̃KB̃T > 0. Therefore, A is non-singular.

Recall that W is non-singular. Then, it suffices to show the
non-singularity of B̃TA−1B̃. Consider a vector p such that
B̃TA−1B̃p = 0. Using this p, define q := A−1B̃p. Then, it
follows that

B̃T q = B̃TA−1B̃p = 0, (25)
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i.e., qT B̃ = 0. Also, it holds that Aq = B̃p, and thus

qTAq = qT B̃p = 0. (26)

From the definition of A in (22), we have q = 0. Since

B̃ is of full column rank, p = 0. Therefore, B̃TA−1B̃ is
non-singular.

Next, we verify that (x̄, ξ̄) is an equilibrium point. Substi-
tuting (x̄, ξ̄) into the right-hand side of (17a) yields

(J̃ − R̃− B̃KB̃T )Q̃x̄+ B̃WLξ̄ + d̃+ B̃r

= B̃Wv − c+ B̃W (−v) + d̃+ B̃r = 0.

Substituting x̄ into the right-hand side of (17b) yields

−LWB̃T Q̃x̄ = −LWB̃TA−1B̃Wv + LWB̃TA−1c

= −L(α1+WT B̃TA−1c) + LWB̃TA−1c

= 0

Finally, we compute Wȳ at x̄ as follows:

Wȳ = WB̃T Q̃x̄

= WB̃TA−1B̃Wv −WB̃TA−1c

= α1+WT B̃TA−1c−WB̃TA−1c = α1.

That completes the proof. ■

The consensus value α depends on c = d̃ + B̃r, where
d̃ contains an (uncontrollable) constant disturbance, but
r is a design parameter that can be used to specify α.
Proposition 1 implies that if x converges to x̄, then the
weighted output consensus (14) is automatically achieved,
where the consensus value α is in (21). In other words,
control objective i) also implies objective ii). Indeed, it is
possible to show the convergence of x.

Theorem 1. Given constants d and r, the closed-loop sys-
tem (17) satisfies

lim
t→∞

Wy(t) = α1

for α in (21). That is, the distributed controller (15)
achieves weighted output consensus (14) for the port-
Hamiltonian system (11). Moreover, the state x̃ converges
to the equilibrium x̄ asymptotically.

Proof. According to Proposition 1, it only suffices to show
x̃ → x̄ as t → ∞. Consider the Lyapunov candidate,

V =
(x̃− x̄)T Q̃(x̃− x̄)

2
+

(ξ − ξ̄)T (ξ − ξ̄)

2
.

Its time derivative along the solution to (17) satisfies

V̇ = (x̃− x̄)T Q̃(J̃ − R̃− B̃KB̃T )Q̃(x̃− x̄)

+ (x̃− x̄)T Q̃B̃WL(ξ − ξ̄)

− (ξ − ξ̄)TLWB̃T Q̃(x̃− x̄)

= −(x̃− x̄)T Q̃(R̃+ B̃KB̃T )Q̃(x̃− x̄).

It follows from R̃ + B̃KB̃T > 0 and Q̃ > 0 that x̃ → x̄ as
t → ∞. ■

5. SIMULATION

We revisit Case ii) in Section 2 and consider four pro-
sumers in the DC micro grid (Ferguson et al., 2021). The
incidence matrix for the topology of the DC micro grid is
given by

Table 2. Coefficients of VSCs and lines

VSC 1 VSC 2 VSC. 3 VSC 4

Lsi (mH) 1.8 2.0 3.0 2.2
Csi (mF) 2.2 1.9 2.5 1.7
Rsi (mΩ) 2.0 3.0 1.5 1.0
ILi (A) 30 15 30 26
Zi (Ω) 16.7 20 16.7 20

Line 1 Line 2 Line 3 Line 4

Rk (mΩ) 70 50 80 60
Lk (µH) 2.1 2.0 3.0 2.2

B =



−1 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 1


 . (27)

The coefficients of the VSCs and lines are listed in Table 2.
Moreover, we select Ki = 0.01, wi = 1 and ri = 380.
ri is the nominal value of voltage in this example. The
current load di of the four VSCs is written compactly
as [30 15 30 26]T (A) at the initial time and has a vari-
ant [1.1 1.9 1.6 − 1]T (A) at 1s. Note that the output
yi = ϕi/Lsi is actually the generated current of prosumer
i, denoted by Isi. Therefore, from Theorem 1, current
sharing, i.e., Isi = Isj for i, j ∈ N is achieved.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

42.5

43

43.5

44

44.5

45

C
u
rr

e
n
t 
(A

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

378

379

380

381

382

V
o
lt
a
g
e
 (

V
)

Fig. 2. Top: Generated current of VSCs; Bottom: Voltage
of VSCs

Figure 2 shows the simulation results. From the top,
one can see that the current sharing is achieved after
the variant of loads, where the consensus value α =
43.8073 after 1s matches the one theoretically computed
in Proposition 1. Next, the bottom plots the time response
of the voltage Vi = qi/Csi of VSC i. One can see that the
voltage is closely attached to 380V as the consequence of
imposing ri in the controller.

6. CONCLUSIONS

In the paper, we designed a controller achieving output
consensus for coupled port-Hamiltonian systems on graphs
in the presence of constant disturbances. The considered
class of port-Hamiltonian systems is fairly general as it
can incorporate with static and dynamic couplings. We
explicitly computed the consensus value of the output as
well as the equilibrium point of the closed-loop system;

both depend on disturbances. Then, we proved closed-
loop stability, which implies output consensus. For more
details, we refer the readers to Kawano et al. (2022), which
generalizes the output consensus problem to nonlinear
systems and includes the result of linear systems as a
special case.
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