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a b s t r a c t

Individual social power in the opinion formation process over social influence networks
has been under intense scientific investigation. Most related works assume explicitly or
implicitly that the interpersonal influence weights are always non-negative. In sharp com-
parison, we argue that such influence weights can be both positive and negative since there
exist various contrasting relationships in real-world social networks. Hence, this article
studies the evolution of opinion dynamics and social power on cooperative-competitive
networks whose influence structure changes via a reflected appraisal mechanism along a
sequence of issue discussions. Of particular focus is on identifying the pathways and effects
of social power on shaping public opinions from a graph-theoretic perspective. Then, we
propose a dynamic model for the reflected self-appraisal process, which enables us to dis-
cuss how the individual social power evolves over sequential issue discussions. By accom-
modating differential Lyapunov theory, we show the global exponential convergence of the
self-appraisal model for almost all network topologies. Finally, we conclude that the self-
appraisals and social powers are eventually dependent only on an interpersonal appraisal
profile.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Opinion dynamics have always been the prominent focus subject in socio-cybernetics [1–3] wherein social entities share
and aggregate thoughts, ideas, feelings, experiences, and observations over social networks, and generate new concepts,
trends, and reflections at the same time. Such social activities among humans can also find their similar counterparts in engi-
neered systems, e.g., robot and sensor networks, and natural communities, e.g., bacteria, neurons, and fireflies [4]. One cen-
tral line of research in the modeling of opinion pooling can trace back to the early influential works of French and DeGroot,
nowadays known as the French-DeGroot (FG) model [1]. The basis for these models is an empirical observation that individ-
uals update their opinions as a convex combination of their own and neighbors’ opinions; this observation is a historical
milestone of ‘‘cognitive and behavioral algebra” in experimental social psychology [2].

Related to the field of opinion dynamics, it is of particular interest to evaluate the social influence or power of individuals in
a collective debate on a given issue. Indeed, the seminal work [5] of French initiated the investigation of the total (direct and
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indirect) influence of an individual’s initial idea on the final collective opinion outcome. Especially, the individual social pow-
ers may change over time in a social group due to the interconnections and interactions among group members. Recent focus
is shifting from the single-issue opinion evolution to the opinion formation process on a sequence of different issues [6,7].
Among others, significant research efforts [8] have been conducted in studying the coevolution of opinion dynamics and
social power along the issue sequence [9]. Specifically, individuals can modify the relative influence structure before discus-
sion on the next issue in response to their perceived social impact on the opinion outcome of the ongoing issue discussion.
Such a self-modification of the influence network across an issue sequence is rooted in the theory of reflected appraisal [10].
The recent work [11] therefore introduces the so-called DeGroot-Friedkin (DF) model to describe the evolution of an opinion
dynamics process and an accompanying self-appraisal process. Fundamentally speaking, the principal objective of the DF
model is to explore how the individual social powers evolve through sequential discussion and reflected self-appraisal. Other
research efforts on developing the DF model include the validation by empirical data [8], the relaxation to reducible influ-
ence networks [9] and single-timescale model [7], the extension to dynamic interaction topology [12], distributed modeling
in both continuous- [13] and discrete-time [14], the connection with nonlinear Markov chain [15], and the variational inter-
pretation [16].

The afore-cited works on studying the dynamic evolution of social power often postulate explicitly or implicitly that indi-
viduals cooperatively interact with each other. Using graph-theoretic modeling of social networks, such pairwise cooperative
interactions are conventionally represented by edges of non-negative weights in the graph. This assumption, however, is not
always appropriate since there exist various antagonism, rebellion, and betrayal in many real-life networks [17,18]. In the
graph representation, those competitive interrelations appear in the form of negatively weighted edges in the so-called
signed graphs [19]. In the past few years, opinion dynamics in cooperative-competitive (coopetitive) social networks have
been studied extensively in the literature; see, e.g., [20–22]. Compared with cooperative networks, the opinion-forming pro-
cess on signed graphs may exhibit not only opinion consent, but also other complex outcomes, including neutrality, polar-
ization, and separation [23]. Nevertheless, the qualitative and quantitative analysis for individual social power in coopetitive
networks has been less studied than the unsigned cases.

In this article, we aim to study the evolution of opinion dynamics and social power in social networks containing antag-
onistic interconnections over the sequence of issues. This article first extends on the opinion formation process of sequential
issue discussions, which takes place on a coopetitive network. Along with the opinion discussions, we describes the updating
rule of the interpersonal influence structure via a reflected appraisal mechanism. For the influence mechanism, each individ-
ual accords weights to others’ opinions proportionally according to her/his positive or negative appraisals of them. As such,
the specification of group influence embodies the formal definition of social power in signed networks, which characterizes
the oriented effects of individual impact on shaping the collective opinion outcome. Different from the pioneering work, this
article further studies the topological characterization of social power from a graph-theoretic perspective rather than alge-
braic expression, which also paves the way for general extensions to broader network topologies. Then, we develop a concise
mathematical treatment for the self-appraisal process of individual social powers and its explicit formulation. A rigorous
theoretical analysis is then conducted to examine the convergence and stability of the developed model by taking into
account multiple structural properties of the appraisal networks. Especially, we employ differential Lyapunov theory to
study the incremental stability of nonlinear dynamical systems. More specifically, we show that groupmembers forget expo-
nentially fast their initial perception of social influence, and the long-term configuration of individual social powers is com-
pletely determined by an interpersonal appraisal network.

The remainder of the article is organized as follows. In Section 2, we fix the notation and introduce some basic concepts of
graph representation and control theory. Section 3 discusses the coevolution of opinion dynamics and influence networks
along issue sequence. The graph-theoretic description of social power over signed networks and explicit mathematical for-
mulation of self-appraisal dynamics can also be found in Section 3. Section 4 contains a complete analysis of the convergence
properties of the proposed models. Further theoretical extensions can be found in Section 5. Simulations and conclusions are
respectively provided in Section 6 and Section 7. All technical proofs are given in the appendices.
2. Preliminaries

This section is dedicated to fixing the notations and to offering a recap of basic concepts in algebraic graph and control
theory.
2.1. Notations

Let (R>0; RP0) R be the set of (positive, non-negative) real numbers. Vector 1n (0n) represents the n-dimensional column
vector of all ones (zeros) with appropriate dimensions. The canonical basis of Rn is defined by e1; . . . ; en and the n� n identity
matrix is given by In :¼ e1; . . . ; en½ �. The notation jaj denotes the absolute value of a scale a and jzj implies the entry-wise
absolute value of a vector z ¼ z1; . . . ; zn½ �, i.e., j z j¼ j z1 j; . . . ; j zn j½ �. Similarly, z P 0 and (z > 0) indicate n component-wise
inequalities zi P 0 (zi > 0). We denote the tangent space of an n-dimensional manifoldMn at z 2 Mn by TzM

n, and the tangent
bundle of Mn by TMn ¼ S

z2Mn zf g � TzM
n. A distance (or metric) dM : Mn �Mn ! RP0 on a manifold Mn is a non-negative

function and satisfies dM z1; z2ð Þ ¼ 0 iff (if and only if) z1 ¼ z2, and dM z1; z2ð Þ 6 dM z1; z3ð Þ þ dM z3; z2ð Þ for arbitrary
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z1; z2; z3 2 Mn. The l-norm of a vector and their induced matrix norms are denoted by k � kl, where l P 1. The set of n-
dimensional vectors whose 1-norm is 1 forms the surface of an n-dimensional cross-polytope or orthoplex, i.e.,
Cn :¼ z 2 Rnj � 1 6 z 6 1; kzk1 ¼ 1

� �
, which has an interior int Cnð Þ :¼ z 2 Rnj � 1 < z < 1; kzk1 ¼ 1

� �
. To save triviality, the

orthoplex manifold with the exclusion of vertices is given byrCn :¼ Cn n �e1; . . . ;�enf g. The n-dimensional simplex is given
by Sn :¼ z 2 Rnjz P 0;1T

nz ¼ 1
� �

with the interior int Snð Þ ¼ z 2 Rnjz > 0;1T
nz ¼ 1

� �
and the tangent space

TzS
n ¼ dz 2 Rnj1T

ndz ¼ 0
� �

. Finally, we denote rSn :¼ Sn n e1; . . . ; enf g.

2.2. Graph theory

A signed directed graph (digraph) is given by a triple G ¼ V; E;Að Þ where V ¼ 1; . . . ;nf g stands for the set of nodes,
A ¼ aij

� � 2 Rn�n is the weighted adjacency matrix, and E#V�V is a set of edges having elements as ordered pairs j; ið Þ
(an arc from node j to i) if the coupling weight aij – 0. Throughout this article, we confine ourselves to the digon sign-
symmetric graphs in which any pair of opposite edges (if exists) is identically signed, i.e. aijaji P 0. A signed graph is called
balanced if

Pn
j¼1;j–ijaijj ¼

Pn
j¼1;j–ijajij for all i 2 V. A signed digraph G ¼ V; Eð Þ is structurally balanced (SB) if V can be split into

two disjoint subsets (i.e., Vþ [V� ¼ V;Vþ \V� ¼ £) such that aij > 0 if i 2 Vþ; j 2 Vþ or i 2 V�; j 2 V�, and aij < 0 if
i 2 Vþ; j 2 V� or j 2 Vþ; i 2 V�. Without loss of generality, a SB graph entails an n-dimensional vector
q :¼ q1; . . . ;qn½ �T 2 �1f gn such that qi ¼ 1 if i 2 Vþ and qi ¼ �1 if i 2 V�. Structural balance epitomizes the famous sociolog-
ical aphorism: ‘‘my friend’s friend is my friend”, ‘‘my friend’s enemy is my enemy,” ‘‘my enemy’s enemy is my friend,” and
‘‘my enemy’s friend is my enemy.”.

A node that can reach any other nodes of the graph through a path is called the root. A digraph is quasi-strongly connected
(QSC) or has a spanning tree if it contains at least one root and is strongly connected (SC) if every node is a root. A digraph G is
called a star graph if there exists a unique node, called the center node, such that the edges of G pointing either all to or all
away from this center node. Moreover, a subgraph of graph G ¼ V; E;Að Þ is given by Gs ¼ Vs; Esð Þ where Vs #V and
Es # Vs �Vsð Þ \ E. We say a subgraph is in-isolated if no edge comes from V nVs to Vs. A subgraph Gs is an in-isolated struc-
turally balanced (ISB) component of a signed digraph G if it is an in-isolated subgraph of G and SB, and any other subgraph of
G strictly containing Gs is not in-isolated and SB.

For a matrix C :¼ cij
� � 2 Rn�n, we define the associated graph G Cð Þ of C to be a directed graph with node set 1; . . . ;nf g and

edge set E which contains a directed edge j; ið Þ 2 E if cij – 0 and j– i.

2.3. Contraction analysis and differential Lyapunov theory

Before closing this section, we present the needed tools for convergence and stability analysis of nonlinear dynamical
systems.

Regarding nonlinear dynamical systems, the prior knowledge of specific solutions (equilibrium points) or reference sig-
nals is a significant obstruction to the applicability of linear techniques and Lyapunov stability theory for convergence anal-
ysis. Instead of studying the convergence to a specific equilibrium or an unknown reference trajectory, one can look into the
evolution of the distance between a pair of trajectories. Along with this line of research, differential Lyapunov theory [24] has
been well recognized within the control community, central of which is the introduction of Finsler geometry and the lifting
of Lyapunov functions to the tangent bundle. For more details on incremental stability and contraction theory, we refer the
interested reader to the tutorial articles [24,25] and references therein.

Consider a deterministic discrete-time nonlinear system described by the difference equation
y t þ 1ð Þ ¼ g y; tð Þ; and y 0ð Þ :¼ y0 2 Mn ð1Þ

where g is a continuously differentiable vector field on an n-dimensional manifoldMn. Let / �; t0; y0ð Þ be the semi-flow of sys-
tem (1) starting from the initial condition y0 2 Mn at time t0, i.e., / t0; t0; y0ð Þ ¼ y0. Specifically, following the work [24], we
consider the forward invariant and connected subset Yn � Mn for (1), on which / t; t0; y0ð Þ is forward complete for every
y0 2 Yn.

To make this article self-contained, we recall the following definition of incrementally exponential stability which is a
discrete-time analog to that in [24, Definition 1].

Definition 1. Consider system (1) on a given manifold Mn. Let Yn � Mn be a connected and forward invariant set and
dM : Mn �Mn ! R be a continuous distance metric onMn. System (1) is incrementally exponentially stable (IES) on Yn if there
exists a metric dM; c1 P 1, and c2 > 1 such that
dM / t; t0; y1ð Þ;/ t; t0; y2ð Þð Þ 6 c1c
� t�t0ð Þ
2 dM y1; y2ð Þ: ð2Þ
holds for all y1; y2 2 Yn and t P t0 2 RP0.
Note that the IES property is uniform since the right-hand side of (2) depends only on the elapsed time t � t0 and thus in

the case of Yn ¼ Mn, we can say that system (1) is uniformly globally IES.
The dynamics of form (1) has an associated variational system as
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dy t þ 1ð Þ ¼ @g y; tð Þ
@y

dy tð Þ; ð3Þ
where dy tð Þ : RP0 ! TyM
n is a virtual displacement. System (1) together with (3) is referred to as the prolonged system. Fur-

thermore, the Finsler geometry is important in the deduction of incremental stability.

Definition 2. A Finsler structure F y; dyð Þ 2 TMn ! RP0 on the manifold Mn satisfies the following conditions:

(i) F is a smooth function on TMn n 0f g;
(ii) F y; dyð Þ P 0 where the equality holds iff dy ¼ 0;
(iii) F y; adyð Þ ¼ aF y; dyð Þ on TMn for a P 0;
(iv) F y; dy1 þ dy2ð Þ 6 F y; dy1ð Þ þ F y; dy2ð Þ for all dy1; dy1 2 TyM

n.

The development of the Finsler structure in the tangent bundle enables us to induce a well-defined distance on Mn
dM y1; y2ð Þ :¼ inf
C y1 ;y2ð Þ

Z 1

0
F c sð Þ; _c sð Þð Þds; ð4Þ
where c : 0;1½ � ! Yn is a curve on Yn satisfying c 0ð Þ ¼ y1; c 1ð Þ ¼ y2, and C y1; y2ð Þ is the collection of those piece-wise con-
tinuous curves.

In relation to continuous-time analogue in Ref. [24], the following theorem states the differential Lyapunov framework for
discrete-time systems.

Theorem 1. Consider system (1) on a smooth manifold Mn #Rn with a continuously differentiable vector-valued function g in a
connected and positively invariant set Yn � Mn. If there exist a Finsler structure F y; dyð Þ 2 TMn ! RP0, scalars
c1; c2 2 RP0; c3 2�0;1 ; l 2 RP1½ and a candidate differential Lyapunov function V y; dyð Þ 2 TMn ! RP0 being Lipschitz continuous,
such that, in coordinates,
c1F y tð Þ; dy tð Þð Þl 6 V y tð Þ; dy tð Þð Þ 6 c2F y tð Þ; dy tð Þð Þl ð5Þ
V y t þ 1ð Þ; dy t þ 1ð Þð Þ � V y tð Þ; dy tð Þð Þ 6 �c3V y tð Þ; dy tð Þð Þ
for t 2 R; y 2 Yn � Mn, and dy 2 TyM
n, then (1) is IES on the contraction region Yn.

The above theorem describes a Lyapunov function characterization for a contracting system and establishes the equiva-
lence between incrementally exponential stability and contraction analysis.

3. Coevolution of opinion dynamics and social power

In this section, we study the dynamical evolution of opinion dynamics and social power in the context of sequential issue
discussion. Our particular emphasis is on the influence network whose underlying graph may involve both positive and neg-
ative links and its self-regulation across the issue sequence via a reflected appraisal mechanism.

3.1. Motivation and mathematical description

The starting point of this work is the extension of Altafini’s model [20] of opinion formation processes on a single issue to
opinion discussions on a sequence of issues I ¼ 0;1;2; . . .f g. For any given issue s 2 I, each agent i 2 V (n P 2) is associated
with a time- and issue-dependent variable xi s; tð Þ 2 R that represents his/her attitude on issue s at time t. With the definition
x ¼ x1; . . . ; xn½ �T, the opinion dynamics of the entire group is given in a compact form
x s; t þ 1ð Þ ¼ P sð Þx s; tð Þ; x s; 0ð Þ 2 Rn ð6Þ

where P sð Þ is referred to as influence matrix. More specifically, each agent updates his/her opinion according to the following
rule
xi s; t þ 1ð Þ ¼ pii sð Þxi s; tð Þ þ
Xn
j–i

pij sð Þxj s; tð Þ
where pii sð Þ 2 0;1½ � is the self-weight and pij sð Þ 2 �1;1½ � is the interpersonal influence weight that agent i attaches to the

opinion of agent j such that
Pn

j¼1jpij sð Þj ¼ 1 on each issue s. For an easy exposition, the shorthand zi sð Þ 2 0;1½ � is used to
denote the self-weight pii sð Þ for all i 2 V.

From a psychological perspective, the diagonal and non-diagonal entries of the influence matrix have distinct roles. Par-
ticularly, the self-weight zi sð Þ is designated as the indicator of his/her self-appraisal (self-worth or self-confidence) corre-
sponding to the degree of assertiveness to his/her own opinion, whereas the interpersonal weight pij sð Þ (j– i) represents
his/her extent of trust-distrust to the displayed opinion of individual j. More importantly, the topology of influence networks



D. Xue et al. / Information Sciences 540 (2020) 449–468 453
evolves from issue to issue via the so-called reflected appraisal mechanism [10]. This mechanism illustrates that individuals
intentionally revise their influence structure based on the prior issue negotiation, thereby adjusting the allocation of influ-
ence weights [26]. Before discussing on the next issue, each individual therefore estimates his/her own influence on outcome
of prior issue discussion and regulates the interpersonal influence weights by
pij sð Þ ¼ 1� zi sð Þð Þqij sð Þ; i; j 2 V; ð7Þ

by which individuals allocate the aggregate relative influence 1� zi by scaling using the interpersonal appraisal scores
qij 2 �1;1½ � which represents individual i’s appraisal of individual j and satisfies qii ¼ 0 and

Pn
j jqij sð Þj ¼ 1 for all

i 2 1; . . . ;nf g, thus ensuring
Pn

j jpij sð Þj ¼ 1.

Remark 1. In addition to the self-regulation of influence matrix along issue sequence, individuals naturally prefer to revise
their (positive or negative) appraisals – friendships and enmities – of others [27]. Therefore, the interpersonal appraisal

structure is encoded by the zero-diagonal matrix Q sð Þ :¼ qij sð Þ
h i

2 Rn�n which updates from one issue to the next. Examples

of variant appraisal structures include a congress in the governance system where the representatives of different nations or
constituent states regularly assemble to manage issues in multiple domains involving political, economic and cultural
matters. Stemming from the common political and social benefit orientation, participants may form conglomerates on some
fixed issues while contesting with other opposition factions. These ‘‘stable” relationships, however, varies as the discussed
topic changes. For instance, conventioneers may realign themselves with others, or possibly even cooperate with the
opponents on prior issues. The consideration of dynamic appraisal topology is consistent with the political maxim: ‘‘no
eternal allies, no perpetual enemies, only eternal and perpetual interests.” To intrinsically understand how the opinion
dynamics and individual social powers evolve through sequential discussion and reflected self-appraisal, the matrix Q and
its associated spectral information are only regarded as an exogenous signal in this article. Nevertheless, works on the
evolution of interpersonal appraisals have recently appeared in Refs. [28,29], the developments of which seem to have a
great possibility for incorporation into this work.

From (7), the influence matrix in the sequence has the compact form
P z;Qð Þ ¼ diag z sð Þð Þ þ In � diag z sð Þð Þð ÞQ sð Þ: ð8Þ
If there is no confusion, we drop the explicit dependence of matrix P on z and Q , and still write P sð Þ for the simplicity of
notation. Regarding the scenario of social networks without antagonistic interactions, the influence matrix P sð Þ 2 Rn�n

P0 sat-
isfies the row-stochasticity for a given issue and thus, the strong connectedness of graph G P sð Þð Þ implies the existence of a
unique normalized left eigenvector p sð Þ 2 Rn

>0 associated with the dominant eigenvalue 1 such that limt!1Pt sð Þ ¼ 1npT sð Þ.
This is a direct application of the Perron-Frobenius theorem to irreducible non-negative matrices. Therefore, the issue dis-
cussion process (6) on issue s asymptotically reaches an opinion consensus
lim
t!1

x s; t þ 1ð Þ ¼ lim
t!1

Pt sð Þ
� �

x s;0ð Þ ¼ pT sð Þx s;0ð Þ� 	
1n:
Namely, the opinions of social actors converge to a common value as time progresses, which is equal to some convex
combination of individuals’ initial thoughts. However, P sð Þ usually needs not to be row-stochastic when there coexist pos-
itive and negative non-diagonal elements, and it even does not have a dominant eigenvalue 1 whatever G P sð Þð Þ is SC or not.
Different from opinion agreement on cooperative networks, outcomes of the opinion dynamics process (6) may involve rich
opinion behaviors including neutrality, consensus and polarity. Therefore, we need to characterize the properties of the
influence matrix.

Lemma 1. For each issue s 2 I, consider an interpersonal appraisal matrix Q sð Þ ¼ qij sð Þ
h i

2 Rn�n with qii sð Þ ¼ 0 andPn
j¼1jqij sð Þj ¼ 1 for all i 2 V. If the associated graph G Q sð Þð Þ is SC and SB, then the following claims hold for the influence

matrix P sð Þ defined in (8):
(i) The matrix P sð Þ has a simple dominant eigenvalue 1;
(ii) There exists a unique pair of vectors p sð Þ 2 Cn and q sð Þ ¼ qi sð Þ½ � 2 �1f gn satisfying Q sð Þq sð Þ ¼ q sð Þ, such that

pT sð ÞP sð Þ ¼ pT sð Þ;P sð Þq sð Þ ¼ q sð Þ, and limt!1Pt sð Þ ¼ q sð ÞpT sð Þ;
(iii) For z sð Þ ¼ 1=n;p sð Þ ¼ q sð Þ=n iff G Q sð Þð Þ is balanced;
(iv) Influence network G P sð Þð Þ is SB;
(v) If z sð Þ ¼ ei for some i 2 V, then G P sð Þð Þ has only one root at node i and p sð Þ ¼ qi sð Þei;
(vi) The graph G P sð Þð Þ is SC and diag q sð Þð Þp sð Þ > 0 for z sð Þ 2 rS

n.
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In the above lemma, we focus on the networks G Q sð Þð Þ that are SC and SB on each issue. As one will see, networks with
weaker topological constraints are also appreciated in the sequel of this article, thus making the developments applicable to
a wider range of real networks. An immediate consequence of claim (ii) in Lemma 1 is that the opinion dynamics (6) on
signed influence networks converge after each issue discussion
lim
t!1

x s; tð Þ ¼ pT sð Þx s;0ð Þ� 	
q sð Þ ð9Þ
where q sð Þ 2 �1f gn and p sð Þ 2 Cn are the dominant right- and left-eigenvector of the influence matrix P sð Þ on issue s,
respectively.

Now, we are in a position to formally state how the self-confidence level s# z sð Þ evolves along the issue sequence via the
reflected appraisal mechanism, thereby adjusting the interpersonal weights in terms of (7). The most important message of
the convergence limit (9) is that the coefficient vector p sð Þ mathematically specifies the true social contribution of individ-
uals made to the final decision making. In other words, p sð Þ can be regarded as a social metric that measures the ability of
individuals to relatively control the outcome of opinion discussion processes [30]. Therefore, the entry pi sð Þ is referred to as
the social power of individual i 2 V. Recalling the reflected appraisal mechanism that each agent tends to perceive his/her
individual social power over the sequence of issues, we therefore provide the following mathematical model for the self-
appraisal process in an antagonistic social network
z sþ 1ð Þ ¼ diag q sð Þð Þp sð Þ ð10Þ

where the normalized vector p sð Þ is used, i.e., kp sð Þk1 ¼ 1, so the elements of self-confidence level z sð Þ are nonnegative and
have unit sum, i.e., z sð Þ 2 Sn. From (7), adjusting the self-weights zi sþ 1ð Þ using qi sð Þpi sð Þ, the interpersonal weights pij sþ 1ð Þ
are also updated with 1� zi sþ 1ð Þð Þqij sþ 1ð Þ in (10), thereby engendering the evolution of individual social power pi sþ 1ð Þ.

Remark 2. The development in (10) reflects the psychological fact that there may be dramatically opposite between self-
perceived and veridical appraisals of individual social influence [10]. Indeed, the self-appraisal vector of individuals takes
values in Sn for all issues, while the social power metric p sð Þ allows a negative vector in Cn using Lemma 1. Such deviation in
the sign agrees with the psychological fact that self-appraisal entails an individual’s subjective but not necessarily objective
assessment of his/her own power [31]. On the one hand, the individual generally has a positive self-impression z. On the
other hand, the network-wide quantification p concerning social power represents what the actual appraisals of others on
the individual are, and is an objective study of the net effect.
Remark 3. For cooperative networks associated with a constant matrix Q , the self-appraisal model (10) degenerates to the
traditional DF model examined in [11,8], wherein the dominant right- and left-eigenvectors here reduce to 1n and a non-
negative vector, respectively. Hence, the DF framework that unfolds on a non-competitive network can be treated as a spe-
cial case of this work. In the spirit similar to the DF model, we also assume that the opinion formation process and the self-
appraisal process evolve on separate timescales for the simplicity of modeling and analysis. More specifically, opinion
dynamics reach convergence before updating the influence weights. The recent literature [7] modifies the original DF model
in the case of a single time-scale and provides some interesting insights into future work.

As such, the self-appraisal process (10) aims to adaptively modify the status of individuals (assertion vs. reconciliation,
confidence vs. uncertainty) in response to their absolute power over prior issue outcomes. In order to provide a deeper
insight into the reflected self-appraisal process, the next subsection is therefore dedicated to studying the dynamical and
transient characterization of individual social powers in a cooperative-competitive context.

3.2. Dynamical and graphical description of social power

According to claim (ii) in Lemma 1, the stack vector form of social power is given by
p sð Þ ¼ lim
t!1

Pt sð Þ� 	� �T

q sð Þ=n; ð11Þ
by which the self-regulation process of influence network using appraisal mechanism, as shown in (7) and (10), leads to the
evolution of social power along the sequence of issue.

Slightly different from the notion of social power arising in the cooperative context [30], coopetitive individuals’ social
power in (11) may appear identical magnitudes but with distinct signs according to Lemma 1. As such, the social power
admits an orientation system such that the relative control exerting along the forward direction leads to a positive effect
on discussions, while a negative influence along the backward direction, as addressed, e.g., in [32]. Sometimes, the sign pat-
tern of social power could be more significant than their exact values in practical scenarios. For instance, media industries
including traditional mass media, e.g., TV, radio, and newspaper, and the recently emerged socio-technical platforms, e.g.,
blogs, Facebook and Twitter, are of fundamental importance in information distribution. On some occasions, egoistic media
with high audience rating may release misleading reports for political or commercial reasons, and manage to persuade peo-
ple to believe a perceived but false truth. The social power entraining negative influence accounts for this phenomenon. An
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example is the shifting of U.S. public attitudes from ‘‘unjustified” to ‘‘justified” on the 2003 invasion of Iraq after Powel’s
speech [33]. From this point of view, the dominant right eigenvector q is as informative as the dominant left eigenvector
p. Moreover, note that the oriented effect of social power is argued on a relative scale; that is, the positiveness and negative-
ness of individual power are defined in a relative coordinate but do not imply its absolute direction. For instance, although
Powel’s speech fulfills a passive function on shaping the public opinion of the Iraq invasion, it plays an active role from the
perspective of a few politicians.

Next, we characterize the transient properties of the social power during each issue discussion s 2 I by accommodating
Kirchhoff’s matrix tree theorem [34] to the signed case.

Lemma 2. On a given issue s 2 I, assume the associated graph G P sð Þð Þ is QSC and SB. Let jP sð Þj ¼ diag q sð Þð ÞP sð Þdiag q sð Þð Þ where
q sð Þ and q sð Þ are the dominant left- and right-eigenvector of matrix P sð Þ. For each i 2 V;qi sð Þpi sð Þ is equal to the sum, over all
spanning tree rooted at node i in G jP sð Þjð Þ, of the products of weights of edges traversing each spanning tree.

Lemma 2 provides several insights into the perception of individual social power. The first hint is that when the SB influ-
ence network G P sð Þð Þ is SC for a given issue s 2 I, all individuals have a non-zero social power, since each node on G jP sð Þjð Þ
has at least one spanning tree rooted at it. Especially, the absolute social power jpi sð Þj for s 2 I is equal to the sum of the prod-
ucts of absolute weights jpij sð Þj of all the spanning trees starting from i in the graph G P sð Þð Þ without self-loop. A paradigm is
provided in Fig. 1. Notably, the positive and negative weighted interactions are treated equally without discrimination in the
evaluation of social power, although the total effect of social power may be positive or negative. Moreover, the individual
influence is usually not imposed via a single (direct) pathway, but through all available (indirect) paths reaching others.
In reference to p sð Þ 2 Cn, the social power pi sð Þ (up to sign) represents the ratio of the amount of spanning tree products that
start from i to the total number of the spanning tree products in the influence network.

Lastly, we specify two distinct configurations of social power: autocracy and democracy. The former features the existence
of a dictator-like individual who dominantly holds all the absolute social power and other members of the organization are
dramatically vulnerable to the interpersonal influence. Instead, the democratic specification means the members of social
networks equally involving in making the final decision.

3.3. Explicit Formulation of self-appraisal process over signed networks

Before ending this section, we explore an equivalent and explicit expression for the dynamics of self-appraisal process
(11) in terms of the interpersonal appraisal network.

Proposition 1. For each issue s 2 I, let the graph G Q sð Þð Þ associated to the per-issue zero-diagonal matrix Q sð Þ 2 Rn�n be SC and
SB. The dynamics of self-appraisal (10) are equivalent to the following discrete-time system
z sþ 1ð Þ ¼ f z; sð Þ; ð12Þ

where f : Sn � I ! Sn is a smooth map defined by
f z; sð Þ ¼ h z; sð Þ q1 sð Þq1 sð Þ
1� z1 sð Þ ; � � � ;qn sð Þqn sð Þ

1� zn sð Þ

 �T

ð13Þ
where h z; sð Þ ¼ 1=
Pn

i¼1
qi sð Þqi sð Þ
1�zi sð Þ is a scaling factor, the vectors q sð Þ :¼ qi½ � 2 Cn and q sð Þ :¼ qi½ � 2 �1f gn satisfy qT sð ÞQ sð Þ ¼ qT sð Þ

and Q sð Þq sð Þ ¼ q sð Þ.
The result of Proposition 1 that f is continuous and smooth is useful for the convergence analysis of self-appraisal dynam-

ics, as well as of the social power evolving process. Moreover, Proposition 1 implies that the dominant right- and left-
eigenvector of the interpersonal appraisal matrix Q appears an important role in the modeling and analysis of the self-
appraisal process and the true social power p sð Þ plays no direct role. As such, the dynamical evolution of the reflected apprai-
sal process combining (8) and (12) completely depends on an interpersonal appraisal mechanism. In conjunction with the
original model (10), Proposition 1 undertakes to study the evolution and the convergence properties of social power on
Fig. 1. An illustrative calculation of social power in an SC and SB signed graph: two spanning trees rooted from node 2.



Fig. 2. The schematic diagram of the coevolution of opinion dynamics and adaptive influence networks.

Fig. 3. The signed Thurman’s informal network: The cooperation interrelation is drawn in blue arrow line and competition is in red. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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coopetitive topologies combined with reflected appraisals. Fig. 2 describes the design philosophy of the theoretical frame-
work, in which the outputs of the interpersonal appraisal systems push forward the coevolutionary networks concerning
with the feedback loop of influence structure and opinion dynamics.

4. Convergence analysis

In this section, we study the theoretical analysis of the proposed self-appraisal model in coopetitive social networks.

4.1. Constant interpersonal appraisal with structural balance

In this subsection, we consider the invariant interpersonal appraisal structure Q along the issue sequence. That is to say,
issue discussants stick to their original impression of others and thus the social ties are solid from issue to issue. The self-
appraisal dynamics (12) therefore degenerate to a nonlinear autonomous system.

First, we consider the special case when the underlying graph G Qð Þ has a star topology.

Lemma 3. Suppose that n P 3 and the digraph G Qð Þ is a SC and SB. Let q be the dominant left eigenvector of Q associated to
eigenvalue 1. Then, the following statements hold

(i) jqij 6 1=2 for all i 2 1; . . . ; nf g;
(ii) there exists a node i with jqij ¼ 1=2 iff G Qð Þ is a star centered at node i. For any initial condition z 0ð Þ 2 rSn, the self-weight

vector z sð Þ governed by the dynamics (12) converges to ei and the social power p sð Þ asymptotically reaches to qiei according
to (10).

Lemma 3 features the predictable emergence of autocratic configuration in individuals’ absolute social power when the
graph G Qð Þ is with a star topology. More intuitively, social power tends to accumulate at the center node corresponding to
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the dictator-like individual, for almost every initial conditions except for the vertices of the simplex. Since then, the discus-
sion outcomes of subsequent issues are determined exclusively by the initial attitudes of this autocrat actor.

Next, we provide the following theorem regarding the convergence and stability of the self-appraisal mechanism (12)
with a non-star graph G Qð Þ.

Theorem 2. For n P 3, consider the interpersonal appraisal graph G Qð Þ of a non-star topology. If G Qð Þ is SC and SB, then the
following claims hold for the self-appraisal system (12):
(i) Fixed points: the set of equilibrium points of f is e1; . . . ; en; z�f g, where z� 2 int Snð Þ.
(ii) Convergence: for any non-autocratic initial conditions z 0ð Þ 2 rSn, the self-weight vector z sð Þ converges exponentially to the

equilibrium configuration z� 2 int Snð Þ and thus the social power p sð Þ converges exponentially to diag qð Þz� 2 int Cnð Þ as
s ! 1.

(iii) Stability: the fixed point in the interior of simplex is the unique stable equilibrium for dynamics (12) in Sn.
(iv) Democracy: if G Qð Þ is further balanced, then for all z 0ð Þ 2 rSn; z sð Þ converges exponentially to the democratic configura-

tion 1=n as s ! 1.

The results of Theorem 2 provide several important indications. First, the convergence and stability analysis benefits sub-
stantially from the aid of the differential Lyapunov framework. The differential structure results in the exponential conver-
gence of nonlinear dynamics in question rather than asymptotic results explored in Refs. [11,9]. The convergence property of
contractive systems, which is independent of initial conditions, gives that individuals exponentially forget their original self-
appraisal of relative control along the issue sequence. Put differently, sequential issue discussion combined with the
reflected appraisal mechanism eliminates the initial perception of social power and the true social influence only depends
on the interpersonal appraisal network.

Moreover, Theorem 2 implies that the graph eigenvector centrality jqj for the graph G Qð Þ gives some ranking impli-
cations for the configuration of individual social power at the equilibrium point: z�i < z�j (jp�

i j < jp�
i j) iff jqij < jqjj for any

pair of i and j, and z�i ¼ z�j (jp�
i j ¼ jp�

j j) iff jqij ¼ jqjj. Recalling the proof of Theorem 2, the set

An ¼ z 2 S
nj0 6 zi 6 1� rf g � rS with r 6 mini2V

1�2qiqi
1�qiqi

is forward f -invariant and the stable equilibrium point z� exists

in this contraction region. Therefore, it is reasonable to obtain an upper bound for the absolute social power of indi-
viduals at the equilibrium point, i.e., 0 < jp�

i j < jqij= 1� jqijð Þ, by which a smaller jqij gives a tighter upper bound for jp�
i j.

In the meanwhile, a threshold value qthreshold ¼ 1=3 can be attained such that if jqij < qthreshold for all i 2 V, then
jp�

i j < 1=2 for all i 2 V. In other words, there is no such agent who holds more than half of the total absolute power
after each issue discussion.

Regarding the proof of Lemma 3, a Lyapunov-based method is applied to conduct the convergence analysis of self-
appraisal dynamics when G Qð Þ is a star graph. The implicit prediction or prior knowledge of the equilibrium point at the
autocratic state allows for the applicability of Lyapunov theory. However, the first challenge encountered in using the Lya-
punov methodology to non-star networks is that the explicit calculation of the equilibriummay be an intractable task due to
the nonlinear nature of dynamics. The customized remedy in the proof of Theorem 2 does not directly seek to find a
Lyapunov-based metric on the state space. Instead, a differential framework by lifting the Lyapunov function to the tangent
bundle is employed to investigate the contraction of infinitesimal dynamics, thus establishing the equilibrium-independent
convergence of the self-appraisal dynamics.

Finally, we note that the topological interpretation of social power in Section 3.2 enables us to extend the results of
Theorem 2 to the case that G Qð Þ is not SC but with multiple root nodes. On this occasion, only individuals possessing
spanning trees could exert their social powers on the issue discussions. More importantly, the individuals correspond-
ing to non-root nodes of G Qð Þ belong to the vulnerable groups in social activities. Since such individuals have few
network-scale interpersonal relationships, sequential discussion together with reflected appraisal mechanism removes
their social influence, even they are initially empowered the supreme power in an autocratic configuration, i.e.,
pi sð Þ ! 0 as s ! 1 when jp 0ð Þj ¼ ei and i has no spanning tree on G Qð Þ. We omit the detailed extension to save
the risk of overlap.

4.2. Extension to dynamic interpersonal appraisal structure

In this subsection, we begin to examine the convergence behavior of the proposed self-appraisal mechanism in a general
context in which the interpersonal appraisal structure does not remain unchanged along the issue sequence.

The paradigm shift from a static appraisal structure to a dynamic appraisal network makes the self-appraisal dynamics
(12) become a nonlinear non-autonomous system. To clarify the presentation, the following set encapsulates all interper-
sonal appraisal matrices under consideration
Q :¼ Q 2 Rn�nj the non-star graph G Qð Þ is SC and SBf g;

where we assume Q is a finite set for theoretical rigor.
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Theorem 3. For n P 3, consider the self-appraisal system (12) on Sn and the interpersonal appraisal matrix Q sð Þ 2 Q at issue
s 2 I wherein Q sð Þ is independent of z sð Þ. For any z 0ð Þ 2 rSn, the self-weight vector z sð Þ 2 Sn governed by the nonlinear map f in
(13) converges exponentially to a steady-state trajectory z� sð Þ 2 int Snð Þ. The network-scale social power p sð Þ 2 Cn converges
exponentially to the trajectory diag q sð Þð Þz� sð Þ 2 int Cnð Þ as s ! 1.

As illustrated in Fig. 2, the left- q sð Þ and right-eigenvector q sð Þ can be treated as external inputs for the self-appraisal
dynamics (12), which encode the topologically structural information of graph G Q sð Þð Þ on issue s 2 I. Therefore, the
steady-state solution z� sð Þ, in some sense, is specified implicitly by the interpersonal appraisal mechanism.

From Theorem 2, the equilibrium ordering of self-weight/social-power for the constant Q is related to the dominant
eigenvectors q and q rather than waiting until the end of the issue sequence. In the case of issue-varying Q sð Þ, the self-
appraisal system exhibits, however, the non-equilibrium asymptotic behavior because of the dynamic interpersonal apprai-
sal mechanism. In fact, this interrelated correspondence usually fails to preserve for the non-constant Q sð Þ. Nevertheless, the
self-weights in some special scenarios may coincidentally reach a stationary fixed point. Let 	e be an equivalence relation in
the set Q such that for arbitrary Q 1;Q 2 2 Q, it holds Q1	eQ 2 if Q 1 and Q 2 share the same left-eigenvector q and right-
eigenvector q. Such relation enables us to define an equivalent class Q½ �	e

of matrix Q 2 Q.

Corollary 1. For arbitrary initial appraisal matrix Q 0ð Þ 2 Q which has the left eigenvector q 0ð Þ and right eigenvector q 0ð Þ
associated to eigenvalue 1, if it holds Q sð Þ 2 Q 0ð Þ½ �	e

over the sequence of issue I, then the self-weight vector z sð Þ governed by the

vector field (13) converges exponentially to a static equilibrium point z� 2 int Snð Þ and the social power p sð Þ has an equilibrium
configuration p� 2 int Cnð Þ. Moreover, the equilibrium self-weights (social powers) of individuals satisfies: z�i < z�j (jp�i j < jp�i j) iff
jqi 0ð Þj < jqj 0ð Þj for any pair of i and j, and z�i ¼ z�j (jp�i j ¼ jp�j j) iff jqi 0ð Þj ¼ jqj 0ð Þj.

The proof can be easily derived from Theorem 3 and therefore is omitted in this article. Although the developed results of
Corollary 1 provide preferable ranking implication for the equilibrium social power, we have to admit such static configu-
ration of relative control is a rare case, while self-appraisal mechanism of social power exposes mostly the stationary
non-equilibrium dynamical behavior.

5. Structural unbalanced interpersonal appraisal mechanism

Until now, we usually postulate explicitly or implicitly the structural balance for the interpersonal appraisal structure in
the study of opinion dynamics and reflected appraisal mechanism. This condition, however, may not always be satisfied in
many real-life social networks [23]. For example, large-scale online social networks typically have complex and multidimen-
sional appraisal structures. Hence, the interpersonal appraisal graphs arising from such networks hardly satisfy the struc-
tural balance condition. So in what follows, we investigate the evolution of social power with structurally unbalanced
interpersonal appraisal mechanism.

For any issue s 2 I, the opinion forming process on G P sð Þð Þ which is SC and structurally unbalanced, tends towards neu-
trality no matter what individuals’ initial ideas are, i.e., lim1t!1x s; tð Þ ¼ 0, for any x s;0ð Þ 2 Rn. In reference to (11), social
power for opinion neutrality leads to p sð Þ ¼ 0 as limt!1Pt sð Þ ¼ 0. Note that the magnitudes of all eigenvalues of P sð Þ are
strictly smaller than 1. In other words, the neutral opinion dynamics represent that all individuals make no direct contribu-
tion to the issue discussion and hence, the self-weights are accordingly set to zero for everyone. An intuitive interpretation
for this situation would be that all individuals have no desire for power.

Theorem 4. For n P 3, consider the self-appraisal system (12) and (10). Assume the associated graph G Qð Þ of the constant
interpersonal appraisal matrix Q is aperiodic, strongly connected, and structurally unbalanced. The map f on Sn [ 0f g in (12) is
then defined by
f zð Þ ¼ ei if z sð Þ ¼ ei; foralli 2 V;

0 if z 2 rSn [ 0f g:

�

Furthermore, the equilibrium points of f belong to e1; . . . ; en;0f g. For arbitrary initial condition z 0ð Þ 2 rS

n [ 0f g, the self-
weight vector z sð Þ (social power vector p sð Þ) are constantly 0 for s 2 1;2; . . .f g.

Regarding Theorem 4, there are several interesting consequences. First, the non-autocratic configuration of initial condi-
tions gives rise to that individuals do not take sides on any issue. Second, the proof of Theorem 4 shows that the presence of
autocratic social power (e.g., z 0ð Þ ¼ ei) can generate different collective behavior in opinion forming including a consensus
outcome, two opposite settled opinions, or a set of unreconciled views. This finding may open up avenues for driving the
occurrence of clustering in human populations [35] using self-perception of their relative control.

6. Numerical simulation and further discussion

This section serves to demonstrate the proposed mathematical model and the theoretical analysis via numerical tests.
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6.1. Self-appraisal dynamics with constant Q

Thurman’s informal network of interpersonal ties among 15 staffs in the office of an oversea branch of an international
corporation is reported in Ref. [36]. To fit our work, we make a slight modification such that the antagonism is also involved
as shown in Fig. 3, such that fAnn, Tina, Katy, Lisa, Pete, Amyg and fPresendent, Rose, Mary, Mike, Emma, Peg, Minna, Andy,
Billg are two hostile cliques. The associated interpersonal appraisal matrix is given by Q1 associated with a SC and SB graph
G Q 1ð Þ, which has a dominant right-eigenvector
Fig. 4.
average
q ¼ 1;1;�1;1;1;1;�1;�1;1;1;�1;�1;1;1;�1½ �T
and a dominant left-eigenvector
q ¼ 0:027;0:026;�0:106;0:027;0:164; 0:111;�0:148;�0:066;0:027;�0:14;�0:048;0:014;0:009;�0:058½ �T:

We numerically study the proposed self-appraisal framework on this modified Thurman’s social network. For illustrative

purpose, we conduct the simulation in a Monte-Carlo (MC) trial of 200 initial conditions. The dynamical trajectories of the
self-appraisals of individuals are illustrated in Fig. 4(a) which shows the self-weights z sð Þ converge exponentially to an equi-
librium point, independent of initially perceived appraisals z 0ð Þ. Especially, all self-weights strictly belong to the domain
�0;1½, evidencing that the equilibrium self-confidence lies in the interior of the simplex Sn. In other words, individual social
powers p sð Þ in (10) exponentially forget their initial configuration p 0ð Þ as a consequence of sequential opinion discussion
combined with the reflected-appraisal mechanism. The numerical test is consistent with the statements in Theorem 2.
6.2. Comparisons of social power metrics

Next, we compare different metrics of individual social powers. First, we introduce two additional measures of individual
relative influence. Since each column of Q collects others’ assessments of the corresponding individual, the product

Pn
j¼1qjqij

can be treated as the collective appraisal of others on the individual i 2 V. Thereby, one can also refer to the eigenvector cen-
trality q as the consensual appraisal of individuals based on the fact qi ¼

Pn
j¼1qjqij. Another vector-based index arising from
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this context is an average interpersonal appraisal qave :¼ QTq=n. Those influence metrics provide profound implications to
the equilibrium ranking of individual social power.

To this end, Fig. 4(b) shows the comparison results among different social power metrics, where p� is the steady-state

social power, q is the consensual appraisal, qave ¼ QT
1q=n is the average interpersonal appraisal, and pbd ¼ qi

1�qiqi

h i
is the social

power bound for i 2 V. The first observation is that Emma who has the most spanning tree starting from her, reaches the
maximal personal influence; While Bill who has the least spanning tree, lies at the lowest power layer in the office. This
demonstrates Lemma 2. Second, as discussed in Section 4.1, the absolute social power of individuals is strictly upper
bounded by pbd, i.e., jp�

i j < jqi j
1�jqi j for all i 2 V. Moreover, although those influence metrics (final social power p�, consensual

appraisal q, average appraisal qave) are different in the exact value, they share the same ordering of the importance ranking,

that is jp�
i j > jp�

i j iff jqij > jqjj (jqi
avej > jqj

avej) for i; j 2 V. Moreover, since all eigenvector centralities are lower than 1=3 in mod-
ulus, as discussed in Section 4.1, nobody in the office possesses more than half of the total social power at equilibrium. Even
though there is no predominant actor in this organization, the experiment retains the ‘‘iron law of oligarchy” in sociological
study [37]. By giving a threshold 1� h z�ð Þ ¼ 0:1123 at the equilibrium, we can observe from Fig. 4(b) that social powers are
accumulated in the individuals with jqij > 0:1123. More specifically, an oligarchic hierarchy is formed by Emma, Pete and
Lisa, since their social power satisfies jp�

i j > jqij.
6.3. Self-appraisal dynamics with dynamic appraisal topology

Next, we study the self-appraisal system (13) on a dynamic appraisal network. Let G Q 2ð Þ be the graph by converting all
edges with negative weights of graph G Q 1ð Þ into the positively weighted edges. Obviously, the graph G Q2ð Þ is unsigned and
SC. By converting the cooperative link 7;5ð Þ in graph G Q 1ð Þ to an antagonistic one, we can explore a SC and structurally
unbalanced graph G Q 3ð Þ. Then, we implement the self-appraisal dynamics on a periodically switching appraisal networks
Q1;Q2;Q3f g, the Monte Carlo trial in Fig. 4(c) exposes that the self-weights asymptotically fall into an attractor system
which relies on the setup of the interpersonal appraisal mechanism, independent of the setup of the initially perceived states
z 0ð Þ 2 rS

n. Note that it is generally difficult to draw any conclusion on the ordering of social power in the case of dynamic
topology, since there does not exist a static equilibrium point.

In addition, we examine the evolution of opinion dynamics over sequential issue discussion and the periodically switch-
ing appraisal structure Q1;Q2;Q3f g. Fig. 5 presents the opinion formation on the first three issues, exhibiting polarization in
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Fig. 5(a), consensus in Fig. 5(b), and neutrality in Fig. 5(c). Using the interpersonal appraisal matrix Q 3, we also study the
forming process of opinions under autocratic configuration of social power. Allocation of autocratic power at a specific indi-
vidual results in community cleavages of opinion on issues as shown in Fig. 6. What is intriguing is the case z sð Þ ¼ e3
depicted in Fig. 6(b) in which the opinions of Ann and Rose polarize at the exact opposite values and the opinions of all other
members in the office lie in between these two polarized values. As shown in Fig. 6(c), the perception of social power
z sð Þ ¼ e7 gives rise to that the attitudes of the entire office evolve into two polarized camps.

Finally, we modify the graph G Q 1ð Þ in Fig. 3 by breaking up the existing links 4;5ð Þ; 10;14ð Þ; 10;13ð Þ and building up pos-
itively weighted links 14;10ð Þ; 13;10ð Þ such that there is no spanning tree starting from the members fMike, Andy, Billg.
Therefore, let G Q4ð Þ present the resulting graph which is QSC but still SB. The associated interpersonal appraisal matrix
Q 4 from G Q4ð Þ gives a dominant right-eigenvector by
Fi
q ¼ 1; 1; �1; 1; 1; 1; �1; �1; 1; 1; �1; �1; 1; 1; �1½ �T;

and a unique dominant left-eigenvector
q ¼ 0:0353; 0:0286; �0:1143; 0; 0:1767; 0:1187; �0:1514; �0:0637; 0:0353; �0:1365; �0:0498; 0; 0; �0:0545½ �T:

Then, the dynamical trajectories of the self-weights with 200 randomly initial conditions are illustrated in Fig. 7(a). Like-

wise, individuals exponentially forget their originally perceived social influence. In analogy with the strongly connected case,
Emma still has the maximum equilibrium social power and the statements on the ordering of the social power ranking at
equilibrium point hold, as illustrated in Fig. 7(b). The observation that Mike, Andy and Bill have zero social power in the equi-
librium configuration verifies that statement that the non-root individuals lose social power in the limit.

6.4. Numerical tests on the Sampson’s monastery network

The last test is on a real signed network which is inferred from Sampson’s dataset for monastery interactions [38]. The
graph G Q5ð Þ associated with the fourth time window of Sampson’s empirical data on the interpersonal esteem of the mon-
astery’s relation is SB and SC; see Fig. 8(a). The corresponding two dominant eigenvectors of Q 5 are
q ¼ 1;1;1;1;1;1;1;1;1;1;1;1;1;1;�1;�1;�1;�1½ �T;
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g. 6. Evolution of opinion dynamics with autocratic social power: (a). Opinion clustering; (b). Opinion separation; (c). Opinion polarization.
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Fig. 7. Self-appraisal dynamics on the QSC and SB graph G Q 4ð Þ: (a). Monte Carlo trial of 200 initial conditions; (b). Comparsion of different evaluation
metrics.

5 10 15
invividual

-0.1

-0.05

0

0.05

0.1

0.15

sc
or

e

SP p
CA q

AA qave
SPB pbd

Fig. 8. Numerical test on a real social network: (a). Sampson’s monastery interaction network consists of two hostile campus: 1;2; . . . ;14f g and
15; . . . ;18f g; (b). The self-appraisal process; (c). Comparison of different social power metrics.
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q¼ 0:0667;0:0778;0:0333;0:0778;0:0333;0:0556;0:0667;0:0444;0:0444; . . .0:0667;0:0444;0:0778;0:0444;0:0778;½
�0:0444;�0:0556;�0:0444;�0:0444�
Similarly, we implement the self-appraisal dynamics (12) in a Monte-Carol trial of 200 randomly initial conditions and
the resultant trajectories are drawn in Fig. 8(b) which shows that the individual self-appraisals converge to an equilibrium
state in an exponential rate without dependence of initial conditions. That is to say, the social power at the equilibrium point
is determined only by q and q. Moreover, we also compare the different metrics of individual social power in this case. The
results are shown in Fig. 8(c). In addition to the observations that have been obtained in previous cases, note that some pairs
of nodes share the same absolute social powers but with different signs, e.g., p�

6 ¼ 0:0553 and p�
16 ¼ �0:0553.
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7. Conclusions and future works

In this article, we study the dynamic evolution of social power and self-appraisal in a coopetitive network that holds the
opinion formation process along a sequence of issues. First, we explore an interpersonal appraisal mechanism in the config-
uration of influence relationships among individuals, such that the interpersonal influences are proportional to the interper-
sonal appraisals. This employment provides a natural, plausible explanation for the emergence of positiveness and
negativeness in social interrelations. We also present the algebraic definition and graph-theoretical properties for the social
powers of signed networks. The dynamic evolution of social power is then studied by means of the reflected self-appraisal
process across the issue sequence. Regarding the theoretical analysis, the accommodation of differential Lyapunov theorem
establishes the exponential convergence of the self-appraisal system and the associated dynamics of social power. In more
detail, we show that individuals gradually forget their initial perception of relative importance in the networks as the issue
sequence enlarges. Individual social powers in the limit therefore rely only on the topological properties of the interpersonal
appraisal structure. For better applicability, we also examine the theoretical framework under the consideration of networks
with different topological hypotheses. The numerical illustrations confirm the specifications of the theoretical results in this
article.

There is much further work remaining to be done along this research line. First, we have not addressed the specific
dynamics of the interpersonal appraisal mechanism throughout the article. As presented in Fig. 2, we study the coevolution
framework as a whole from an open-loop context, whereby the appraisal matrix and its associated dominant spectral prop-
erties are regarded as an exogenous signal. Therefore, the mathematical descriptions given in [28,29] which explain how an
appraisal network evolves, are likely to incorporate in a closed-loop sense with our framework. Furthermore, the self-
appraisal process of individual importance in sequential opinion-forming is implemented in a centralized manner. From
the viewpoint of network systems, we aim to develop the rigorously mathematical methodology of the reflected appraisal
mechanism in a distributed way. Potential ideas involve distributed computation of objective eigenvectors [39] and other
distributed learning approaches [40]. In support of the obtainedmodels and theoretical results, we need more empirical tests
on signed networks inferred from the well-known sociology datasets, e.g., in Ref. [41].
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Appendix A. Proofs

A.1. Proof of Theorem 1

As demonstrated by Ref. [42, Theorem 15], contraction analysis is equivalent to uniform exponential incremental stabil-
ity. The proof closely follows the continuous-time version found in Ref. [24, Theorem 1], which can mimic the discrete-time
counterpart of incremental Lyapunov stability criterion given by Ref. [42, Theorem 9] and contraction analysis shown by Ref.
[42, Theorem 11]. The details are omitted due to space limitations.

A.2. Proof of Lemma 1

To make this treatment self-contained, the proof is not presented in the same order as the claims appearing in the lemma.
For a given issue s 2 I, the argument s of vectors or matrices in question will be dropped for the simplicity of this proof.

First, we note that when z ¼ ei for some i 2 V or more concretely, let i ¼ n without loss of generality, the matrix P can be
calculated by
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P ¼ diag 0; . . . ;0;1ð Þ þ diag 1; . . . ;1;0ð ÞQ ¼
eQ
eTn

" #
ðA:1Þ
where the matrix eQ 2 R n�1ð Þ�n is obtained by removing the n-th row from Q . As G Qð Þ is SC, each node of G Qð Þ has paths con-
necting to others. The observation that the associated graph of P given in (A.1) has no other root except for node n, implies
G Pð Þ is only QSC in the case z ¼ ei. Especially, simple calculation shows p ¼ qiei and the proof of statement (v) is complete.
Here, G Pð Þ can be obtained from G Qð Þ by removing all incoming edges of node i and thus inherits the same structural balance
from G Qð Þ.

Regarding claim (vi), condition z 2 rS
n implies the graph G P � diag zð Þð Þ has the same sign pattern on the edge set as

G Qð Þ’s, namely, G P � diag zð Þð Þ is SC and SB. As the self-appraisals is zi 2 0;1½ Þ for all i 2 1; . . . ;nf g, the graph G Pð Þ is also
SC and SB. The statements (iv) and the first part of statement (vi) are proved.

Next, the structural balance of G Pð Þ implies the node set can be split into two disjoint subsets that the negatively
weighted edges only exist between nodes belonging to distinct groups. By associating a vector q 2 �1f gn to graph G Pð Þ,
an observed relation is pij ¼ jpijjqiqj for all i; j 2 V, and thus one has diag qð ÞPdiag qð Þ ¼ jPj. It is not difficult to show that
jPj is a non-negative matrix and is row-stochastic. Thanks to the similar transformation, P and jPj share the same spectrum.
Therefore, the application of the Perron-Frobenius theorem to jPj shows indirectly the existence, uniqueness, and other prop-
erties of the dominant left eigenvector p of matrix P, as well as the spectral property. This is the proof of statement (i). Note
that diag qð Þp is the left-eigenvector associated to eigenvalue 1 of jPj, i.e., pTdiag qð ÞjPj ¼ pTdiag qð Þ. Therefore, if G Pð Þ is SC, as
is G jPjð Þ, then the matrix jPj admits a unique (up to a scaling) left eigenvector diag qð Þp > 0. The second part of statement (vi)
is proved.

Moreover, direct calculation shows that
Pn

j pijqj ¼
Pn

j jpijjqi ¼ qi, for all i 2 V, which implies the 1-norm of each row of P

equals to 1, i.e., Pq ¼ q. The final asymptotic behavior limt!1Pt ¼ qpT is an immediate consequence of claim (i), so the proof
of claim (ii) is completed.

Finally, in regard to claim (iii) where z sð Þ ¼ 1=n, the relation (8), by left multiplying qT sð Þ=n to both sides, results in
qT sð ÞP sð Þ=n ¼ qT sð Þdiag 1n=nð Þ=nþ n� 1ð ÞqT sð ÞQ sð Þ=n2, thus due to p sð Þ ¼ q sð Þ=n, yielding
qT sð Þ=n ¼ qT sð Þdiag 1n=nð Þ=nþ n� 1ð ÞqT sð ÞQ sð Þ=n2:
Therefore, the equation qT
n sð ÞQ sð Þ ¼ qT

n sð Þ holds, i.e., G Qð Þ is balanced according to the definition. Meanwhile, if G Qð Þ is
balanced, one can immediately prove that qT sð ÞP sð Þ=n ¼ qT sð Þ=n, i.e., p sð Þ ¼ q sð Þ=n.

A.3. Proof of Lemma 2

Following the proof of Lemma 1, diag q sð Þð Þp sð Þ is known to be the dominant left eigenvector of matrix jP sð Þj, from which
one can form a Laplacian matrix by L sð Þ ¼ I � jP sð Þj. It is obvious that G L sð Þð Þ is QSC, provided that G P sð Þð Þ is QSC and SB, so
that dim ker LT sð Þ� 	 ¼ 1 and diag q sð Þð Þp sð Þð ÞTL sð Þ ¼ 0n.

Let cof L sð Þð Þ be the cofactor matrix associated to Laplacian L sð Þ where the i; jð Þ-th cofactor cof L sð Þð Þ½ �ij of L sð Þ is equal to

�1ð Þiþjbij sð Þ where bij sð Þ is the determinant of the i; jð Þ-th minor of L sð Þ. A well-known fact is that
cof L sð Þð Þ � LT sð Þ ¼ det L sð Þð ÞIn ¼ 0n�n. Since the sum of the rows of the Laplacian L sð Þ is zero for a given issue s 2 I, i.e,
L sð Þ1n ¼ 0n, the characteristics of the determinant function reveal that the entries of each column of cof L sð Þð Þ are uniform.
That is to say, cof L sð Þð Þ½ �ij is independent of i and thus, one says cof L sð Þð Þ½ �ij ¼ qj sð Þpj sð Þ P 0 without loss of generality. Put
differently, qi sð Þpi sð Þ is equal to the sum, over all spanning tree rooted at node i in G L sð Þð Þ, of the products of weights of edges
traversing each tree according to Kirchhoff matrix tree theorem [43].

A.4. Proof of Proposition 1

According to statement (v) of Lemma 1, one has known that z sþ 1ð Þ ¼ ei if z sð Þ ¼ ei. For the self-weight vector z sð Þ 2 rS
n

at issue s 2 I, an immediate deduction from the fact P sð ÞTpT sð Þ ¼ pT sð Þ and (10) is
PT sð Þdiag q sð Þð Þz sþ 1ð Þ ¼ diag q sð Þð Þz sþ 1ð Þ:

In conjunction with the forming of influence matrix given in (8), straightforward computation shows
QT sð Þdiag 1n � z sð Þð Þdiag q sð Þð Þz sþ 1ð Þ ¼ diag 1n � z sð Þð Þdiag q sð Þð Þz sþ 1ð Þ;

which means that diag 1n � z sð Þð Þdiag q sð Þð Þz sþ 1ð Þ is a left eigenvector corresponding to eigenvalue 1 of Q sð Þ. Bearing in mind
z sþ 1ð Þ 2 S

n, one can acquire qi sð Þ 1� zi sð Þð Þzi sþ 1ð Þ ¼ h z; sð Þqi sð Þ, for all i 2 V, wherein the scaling coefficient

h z; sð Þ ¼ 1=
Pn

i¼1
qi sð Þqi sð Þ
1�zi sð Þ guarantees z sþ 1ð Þ 2 S

n.

About the smoothness of the map f : Sn � I ! Sn, we first consider the self-appraisal process in a neighborhood of any
vertex ei which is given by Bi :¼ z 2 SnjdS z; eið Þ 6 c; z – eif g, where c > 0 is a constant scalar. For any z sð Þ 2 Bi, we can there-
fore rewrite the vector field into the following pattern
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f z; sð Þ ¼ h zð Þ
1� zi sð Þ

q1 sð Þq1 sð Þ 1� zi sð Þð Þ
1� z1 sð Þ ; . . . ;

h zð Þqi sð Þqi sð Þ
1� zi sð Þ ; . . . ;

h zð Þ
1� zi sð Þ

qn sð Þqn sð Þ 1� zi sð Þð Þ
1� zn sð Þ


 �T
¼ 1Pn

j–i
qjqj 1�zið Þ

1�zj
þ qiqi

q1q1 1� zið Þ
1� z1

; . . . ;qiqi; . . . ;
qnqn 1� zið Þ

1� zn


 �T
; ðA:2Þ
by which one can immediately attain f ! ei as z sð Þ ! ei. Thus, the map f is continuous at vertices of the simplex. Namely, the
continuity of f on Sn is clear due the analytic expression for z 2 Sn.

Now, the remaining task is to prove the differentiability of f on simplex Sn. For any z sð Þ 2 Bi, entries of z sð Þ satisfy
zj sð Þ < 1 for all j 2 1; � � � ;nf g which allows for the computation of the Jacobian of the vector field f in this neighborhood
Bi. That is to say, f is differentiable for any z sð Þ 2 rSn at issue s 2 I. Next, the Jacobian matrix of the vector field f at ei
can be calculated from (A.2) by
@f
@z

z; sð Þ ¼

0 � � � � q1 sð Þq1 sð Þ
qi sð Þqi sð Þ � � � 0

..

. ..
. ..

.

0 � � � 1�qi sð Þqi sð Þ
qi sð Þqi sð Þ � � � 0

..

. ..
. ..

.

0 � � � � qn sð Þqn sð Þ
qi sð Þqi sð Þ � � � 0

266666666664

377777777775
ðA:3Þ
which implies that f is also differentiable at ei. Obviously, the first order partial derivative of f is continuous for z sð Þ 2 Sn. The
higher order differentiability of function f can be deduced in the same manner. Therefore, the smoothness of f is the imme-
diate consequence of the differentiability for all orders and thus, the proof is completed.
A.5. Proof of Lemma 3

We first note that a signed graph with star topology is always SB and it can, in some sense, be treated as an unsigned
graph under gauge transformation [20]. Hence, the proof of statement (i) and the first-half part of the statement (ii) closely
follows the proof of [11, Lemma 2.3] The details are omitted due to space limitation.

The second-half part of the statement (ii) resembles the proof of [11, Lemma 3.2] by using jqijj ¼ qiqjqij, which again using

the SB nature of star graphs. Thus, we can demonstrate the nonexistence of equilibrium in rS
n when graph G Qð Þ has a star

topology. After assuming agent n be the center node of graph G Qð Þ, without loss of generality, we summarize that
zn sþ 1ð Þ � zn sð Þ > 0 for zn sð Þ 2 0;1½½ and zn sþ 1ð Þ ¼ zn sð Þ when zn sð Þ ¼ 1. The specific details are omitted due to space limi-
tations and can be found in [11, Lemma 3.2].

Consider a Lyapunov function candidate by V z sð Þð Þ ¼ kz sð Þ � enk1=2, for z 2 Sn, which has the difference
V z sþ 1ð Þð Þ � V z sð Þð Þ ¼ zn sð Þ � h z sð Þð Þqnqn

1� zn sð Þ ; ðA:4Þ
where h zð Þ is well defined and h zð Þ > 0 for z sð Þ 2 rS
n.

In the trivial case zn sð Þ ¼ 0, the difference of Lyapunov function (A.4) leads to V z sþ 1ð Þð Þ < V z sð Þð Þ. For the nontrivial sit-
uation zn sð Þ > 0, the factor h zð Þ has a lower bound as follows
h zð Þ ¼ 1
qnqn

1�zn sð Þ þ
Pn�1

j¼1
qjqj

1�zj sð Þ
P

1
qnqn

1�zn sð Þ þ qnqn
zn sð Þ

¼ zn 1� znð Þ
qnqn

;

where the inequality is derived from 1� zj P zn for j 2 V n nf g and qnqn ¼ Pn�1
j¼1 qjqj. Additionally, we underline the lower

bound is given in a strict sense. That is, in the case that there exists k 2 V n nf g such that 1� zk ¼ zn, one can obtain thatPn�1
j

qjqj
1�zj sð Þ ¼ qkqk

1�zk sð Þ þ qnqn � qkqkð Þ < qnqn
zn

, wherein the property jqnj > jqkj for all k 2 V n nf g is used. Hence, one can draw con-

clusion on the difference of Lyapunov function along the issue sequence as V z sþ 1ð Þð Þ < V z sð Þð Þ; 8z sð Þ 2 rS
n, where

V z sð Þð Þ > 0 for all z sð Þ 2 rS
n. In conclusion, we claim that en is the asymptotically stable equilibrium point for self-

appraisal dynamic (12) in the case of G Qð Þ having a star topology. This is a direct application of Lyapunov stability theory
to discrete-time system [44]. Therefore, given the center node of graph G Qð Þ being i and lims!1z sð Þ ¼ ei, one can immedi-
ately compute that qiei is the appropriate dominant left eigenvector of P eið Þ, which is equivalent to lims!1p sð Þ ¼ qiei. The
proof is completed.
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A.6. Proof of Theorem 2

From the analytic expression (13), the vertices ei (i 2 VÞ of Sn are naturally fixed points of the map f . Furthermore, the
factor h zð Þ is strictly positive for z sð Þ 2 rS

n, which suffices to ensure z sþ 1ð Þ > 0. Namely, no fixed point exists on the
boundary of simplex S

n.
We define a compact set by An ¼ z 2 Snj0 6 zi 6 1� r;8i 2 Vf g, where r 2 R>0 is a extremely small scalar and satisfies

0 < r 6 mini2V
1�2qiqi
1�qiqi

. Note that the properties of the dominant left eigenvector q developed in Lemma 3 ensures that

1� 2qiqið Þ= 1� qiqið Þ > 0 for all i 2 V and graphs G Qð Þ with a non-star topology.
We first calculate the i-th entry of vector field f zð Þ by
f i zð Þ ¼ qiqi

1� zið ÞPn
j
qjqj
1�zj

¼ 1

1þ
Pn

j–i

qjqj
1�zj

qiqi=1�zi

6 1
1þ r

qiqi

Pn
j–i

qjqj
1�zjð Þ

; ðA:5Þ
as 1� zi P r. Due to 1� zj < 1 for z 2 rS
n and qiqi ¼ 1�Pn

j–iqjqj, the formula (A.5) further becomes
f i zð Þ < qiqi
rþ 1�rð Þqiqi

¼ 1�qiqið Þr2þ 2qiqi�1ð Þr
rþ 1�rð Þqiqi

þ 1� r

¼
r 1�qiqið Þ r�1�2qi qi

1�qiqi

� �
rþ 1�rð Þqiqi

þ 1� r 6 1� r;
where the last inequality is based on the fact that r 6 1�2qiqi
1�qiqi

for all i 2 V. Hence, one can derive the conclusion that

f Anð Þ � An. In what follows, we restrict the consideration of self-appraisal dynamics to this compact set An.
Referred to system (12), we attain the prolonged system by
z sþ 1ð Þ ¼ f zð Þ
dz sþ 1ð Þ ¼ @f

@z zð Þdz sð Þ

(
ðA:6Þ
where the infinitesimal displacement is dz 2 TzS
n and the Jacobian matrix of vector field f has the form
@f
@z


 �
ij

zð Þ ¼
zi sþ1ð Þ 1�zi sþ1ð Þð Þ

1�zi sð Þ if j ¼ i

� zi sþ1ð Þzj sþ1ð Þ
1�zj sð Þ if j – i;

8<:

where the relation @h zð Þ

@zi
¼ � qiqih

2 zð Þ
1�zið Þ2 is an intermediate for the computation.

For each s 2 I; z 2 An, and dz 2 TzA
n, we consider a candidate Finsler-Lyapunov function of the form
V z sð Þ; dz sð Þð Þ ¼
Xn
i¼1

dzi sð Þ
1� zi sð Þ
 ; ðA:7Þ
which satisfies conditions of Definition 2 by using factors c1 ¼ c2 ¼ l ¼ 1 and a Finsler structure F z sð Þ; dz sð Þð Þ ¼ V z sð Þ; dz sð Þð Þ1l
in (5).

Denote P z sð Þð Þ :¼ diag 1= 1� z1 sð Þð Þ; . . . ;1= 1� zn sð Þð Þð Þ for clarity of presentation. The Finsler-Lyapunov function then can
be rewritten to a form V ¼ kP z sð Þð Þdz sð Þk1 in terms of the 1-norm, which has a difference calculation along the issue
sequence
V z sþ 1ð Þ; dz sþ 1ð Þð Þ � V z sð Þ; dz sð Þð Þ ¼ kP z sþ 1ð Þð Þ @f
@z

z sð Þð Þdz sð Þk1 � kP z sð Þð Þdz sð Þk1
¼ kK z sþ 1ð ÞP z sð Þð Þdz z sð Þð Þk1 � kP z sð Þð Þdz sð Þk1ð ðA:8Þ
where K z sð Þð Þ represents the matrix with entries
K½ �ij z sð Þð Þ ¼
zi sð Þ if j ¼ i

� zi sð Þzj sð Þ
1�zi sð Þ if j – i:

(

Due to 0 < zi 6 1� r for all i 2 V and
P

izi ¼ 1, one can obtain zi=1� zj < 1 for arbitrary j– i. Thus, the 1-norm of each

column of the matrix K z sð Þð Þ has a strict upper bound, i.e., zi sð Þ þPn
j¼1;j–i

zi sð Þzj sð Þ
1�zj sð Þ < 1, for all i 2 V, which guarantees, as well

as the compactness of the set An; kK z sð Þð Þk1 < 1� j for some 0 < j < 1 for all z sð Þ 2 An. The difference inequality (A.8) can
be reformulated by
V z sþ 1ð Þ; dz sþ 1ð Þð Þ � V z sð Þ; dz sð Þð Þ < 1� jð ÞkP z sð Þð Þdz sð Þk1 � kP z sð Þð Þdz sð Þk1 ¼ �jV z sð Þ; dz sð Þð Þ; ðA:9Þ
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which means the differential Lyapunov function V decreases non-trivially along the trajectories of the prolong system (A.6).
As a consequence of Theorem 1, the self-appraisal system (10) is incrementally exponentially stable on rSn � Sn with
respect to the contraction measure V given in (A.7).

Then, we prove the existence and uniqueness of the equilibrium in the interior of the simplex. The construction of the
distance dS concerning curve integration (4) endows Sn with the structure of metric space. Specifically, the distance function
dS induced by F z; d zð Þð Þ ¼ V z; d zð Þð Þ in coordinates reads
dS z1; z2ð Þ ¼ inf
C z1 ;z2ð Þ

Z
J
V c sð Þ; @c sð Þ

@s

� �
ds
where C z1; z2ð Þ is the collection of piece-wisely differential curves c : J ! rS � S; J :¼ s 2 Rj0 6 s 6 1f g, connecting z1 to z2,
namely, c 0ð Þ ¼ z1 and c 1ð Þ ¼ z2. For any initial conditions z1 and z2, and any given converging sequence
v1; . . . ;vk; . . .

� � 2 R>0 with limk!1vk ¼ 0, one can develop a sequence of continuously differential curves ck : Jk ! S
n s.t.
lim
k!1

Z
Jk

V ck sð Þ; @ck sð Þ
@s

� �
ds 6 lim

k!1
1þ vk

� 	
dS z1; z2ð Þ ¼ dS z1; z2ð Þ; ðA:10Þ
where Jk follows a reparameterization of c : J ! rS.
From (A.9), one can get V z sð Þ; dz sð Þð Þ 6 1� jð ÞsV z 0ð Þ; dz 0ð Þð Þ, for all s P 0, which together with (A.10) implies that in the

limit of k ! 1, for arbitrary initial conditions z1; z2 2 rSn,
dS / s;0; z1ð Þ;/ s;0; z2ð Þð Þ 6
Z
Jk

V ck sð Þ; @ck sð Þ
@s

� �
ds 6 1� jð Þ½ �sdS z1; z2ð Þ:
Since the Lipschitz constant 1� jð Þs is strictly smaller than 1, the map f : Sn ! Sn is a contraction mapping on Sn.
Thereby, the employment of Banach fixed-point theorem [44] to the complete metric space rS

n; dSð Þ suffices to prove the
existence and uniqueness of a fixed point z� 2 rS

n such that z� ¼ f z�ð Þ. Since the previous examination has addressed that
there is no other fixed-point on the boundary of the simplex, this non-vertex equilibrium z� only appears in the interior
z� 2 int Snð Þ. The proof of statement (i) is achieved.

Hence, one can draw the conclusion that the trajectory of the solutions to z sþ 1ð Þ ¼ f z sð Þð Þ converge exponentially to a
unique equilibrium point z� 2 int Snð Þ. As a by-product of the convergence of self-weights, the social power indicators p sð Þ
converges exponentially to a unique fixed point p� 2 int Cnð Þ as the issue sequence progresses. The statement (ii) is finished.

The stability of the fixed point in the interior of simplex has been addressed in the above statement. That is, the fixed
point z� 2 int Snð Þ is an exponentially stable equilibrium point for the self-appraisal dynamics. It remains to elucidate that
the vertices ei (i 2 1; . . . ;nf g) are unstable fixed point. The Jacobian matrix evaluated at the vertex of simplex can be found
in the proof of Proposition 1. Without loss of generality, for any i 2 V, the virtual system with the Jacobian (A.3) at z ¼ ei
characterizes the linearization of (12) about the vertex z ¼ ei. In particular, this Jacobian has a single eigenvalue at
1� jqijð Þ=jqij and all other eigenvalues are zero. From Lemma 3, the entry qi of the influence matrix satisfies jqij < 1=2 if
the graph G Qð Þ has no star topology, thus implying 1� jqijð Þ=jqij > 1. Hence, the vertices of simplex are unstable equilibrium
points for the self-appraisal dynamics Proposition 1 according to the adoption of Lyapunov’s indirect method [44] to a
discrete-time setting, thus claiming the statement (iii). The balancedness of G Qð Þ implies q ¼ q=n and the remaining proof
of the statement (iv) is simply the special case of the statement (ii).

A.7. Proof of Theorem 3

It is straightforward to conduct the convergence analysis following from the proofs of Theorem 2. In particular, one can
treat the self-appraisal dynamics with vector field (13) as a switching system and then employ the function (A.7) as a com-
mon (differential) Lyapunov function in the studying of stability. The contraction region here is modified by

An ¼ z 2 Snj0 6 zi 6 1� r;8i 2 Vf g, where r 6 inf i2V;s2I
1�2qi sð Þqi sð Þ
1�qi sð Þqi sð Þ . The rest of proof can be induced issue-wise from the proof

of Theorem 2 and is omitted in order to save triviality. Since An is convex and compact, by incremental exponential stability,
the solution z sð Þ starting from z 0ð Þ 2 rS

n exponentially approaches to a limiting trajectory z� sð Þ 2 int S
nð Þ being independent

of its initial conditions.
Finally, the limit set of z sð Þ is a trajectory in the interior of the simplex and the social power p sð Þ converges either to a

limiting trajectory jz� sð Þj 2 int Cnð Þ. The proof is completed.

A.8. Proof of Theorem 4

For a given issue s 2 I and any z sð Þ 2 rS
n [ 0f g, the graph G P sð Þð Þ is aperiodic, SC and structurally unbalanced according

to the definition (8) since SC graph G Qð Þ is structurally unbalanced and aperiodic, inducing the formulation f zð Þ ¼ 0.
Moreover, if z sð Þ ¼ ei for some i 2 V (without loss of generality, let i ¼ n), then graph G P sð Þð Þ is QSC, as node n is the only

root vertex in G P sð Þð Þ. Two cases are considered. First, if G P sð Þð Þ is SB, it equivalently means that removing one or multiple
incoming edges of node n in G Qð Þ retrieves the structural balance. Thus, the vector field in this case has the same form as in
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the situation when G Qð Þ is QSC and SB, i.e., f eið Þ ¼ ei. Second, if G P sð Þð Þ is structurally unbalanced, there exists one, and only
one (ISB) component definitely containing n in G P sð Þð Þ. By contradiction, assume there exists another ISB component H in
G P sð Þð Þ. Since node n as a root has a path to contact any nodes belonging to H, so H has at least one inward edge, which
contradicts the definition of in-isolated subgraph. In this situation, P sð Þ has a dominant eigenvalue 1 associated with a (up to
scaling) left eigenvector ei. Thus, we have f eið Þ ¼ ei for some i 2 V. Finally, following the fact that f keeps constantly zero in
rSn [ 0f g, one can immediately show lims!1z sð Þ ¼ 0 and lims!1p sð Þ ¼ 0.
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