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a b s t r a c t

Imitation is widely observed in nature and often used to model populations of decision-making agents,
but it is not yet known under what conditions a network of imitators will reach a state where they
are satisfied with their decisions. We show that every network in which agents imitate the best
performing strategy in their neighborhood will reach an equilibrium in finite time, provided that all
agents are opponent coordinating, i.e., earn a higher payoff if their opponent plays the same strategy
as they do. It follows that any non-convergence observed in imitative networks is not necessarily a
result of population heterogeneity nor special network topology, but rather must be caused by other
factors such as the presence of non-opponent-coordinating agents. To strengthen this result, we show
that large classes of imitative networks containing non-opponent-coordinating agents never equilibrate
even when the population is homogeneous. Comparing to best-response dynamics where equilibration
is guaranteed for every network of homogeneous agents playing 2 × 2 matrix games, our results imply
that networks of imitators have a lower equilibration tendency.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In social, economic, biological, technological, and other types
f networks, the dynamics of interconnected agents may give rise
o complex and seemingly unpredictable behaviors. While some
etworks may converge to a state of equilibrium, others may
erpetually cycle or experience chaotic fluctuations (Govaert,
enedese, Grammatico, & Cao, 2019; Meloni, Arenas, & Moreno,
009; Skyrms & Pemantle, 2000; Strogatz, 2001). Unfortunately,
ocalized analysis may reveal little about the underlying causes
f these emergent behaviors, in part because the major factors
riving the dynamics may lie not in the individual agents but
n their complex interconnections. However, studying the sys-
em from a broader perspective, at the cost of simplifying the
gent-level dynamics, allows studying critical problems such as
inding the conditions on the agents under which a network is
ikely to converge or not (Riehl, Ramazi, & Cao, 2018; Sandholm,
010). Indeed we have seen a substantial transition from local to
etwork-based analysis across various disciplines in the physical
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was recommended for publication in revised form by Associate Editor Claudio
Altafini under the direction of Editor Christos G. Cassandras.
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J. Riehl), m.cao@rug.nl (M. Cao).
ttps://doi.org/10.1016/j.automatica.2022.110185
005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
and social sciences and engineering. This network-oriented ap-
proach (captured by graphical games (Kearns, Littman, & Singh,
2013)) has led to many influential discoveries of collective behav-
iors, even when the individual agents are autonomous and highly
complex (De Domenico, Granell, Porter, & Arenas, 2016; Kitsak
et al., 2010).

Two common update rules describing individuals’ strategy re-
visions in collective behaviors are best-response (Abouheaf, Lewis,
Vamvoudakis, Haesaert, & Babuska, 2014; Cortés & Martínez,
2014; Mäs & Nax, 2016; Ramazi & Cao, 2017; Swenson, Mur-
ray, & Kar, 2018), that is, to play the strategy maximizing your
payoff against your neighbors, and imitation (Barreiro-Gomez &
Tembine, 2018; Chang, Piraveenan, & Prokopenko, 2019; Cheng,
Qi, He, Xu, & Dong, 2014; Hu, Zhang, & Tian, 2019; Zhu, Xia, &
Wu, 2016), that is, to play the strategy of the maximum-earning
individual in your neighborhood. A best-responder needs to know
the strategy distribution among her neighbors and how her payoff
depends on her own and her neighbors’ strategies, whereas an
imitator needs to know her neighbors’ payoffs and the strategy
of the maximum earner. Therefore, although leading to possibly
lower cooperation levels in the network (van den Berg, Molleman,
& Weissing, 2015), imitation is preferred in situations where
little, if not none, is known about the available strategies or their
consequences (Ackermann, Berenbrink, Fischer, & Hoefer, 2016).
A fundamental yet less-studied problem for networks governed
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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y these two update rules is whether each individual will set-
le on a particular action, or equivalently, whether the network
ill equilibrate. We have recently shown that any network of

ndividuals, either all playing coordination or all playing anti-
oordination games, and updating according to the best-response
ule, will reach an equilibrium in finite time (Ramazi, Riehl,
Cao, 2016). Therefore, none of network topology, individual

eterogeneity and the sequence in which agents revise their
trategies can cause non-convergence behavior in these cases.
or imitation, however, it is not yet known under what condi-
ions, and particularly for which types of games, the network
ill settle at an equilibrium. Previous studies have investigated
his problem for well-mixed populations (Fu & Ramazi, 2019)
nd when individuals are homogeneous, i.e., share the same util-
ty function (Griffin, Rajtmajer, Squicciarini, & Belmonte, 2019),
here the evolution of mixed, rather than pure, strategies is
tudied (He & Tadmor, 2019). By means of numerical simulations,
t was shown in Cimini, Castellano, and Sánchez (2015) and Go-
aert, Ramazi, and Cao (2017) that even for homogeneous agents
pdating synchronously, imitation does not generally result in
quilibrium convergence, although it appears likely for coordi-
ation games. Moreover, networks of homogeneous individuals
laying congestion games are shown to converge to an equilib-
ium in Ackermann et al. (2016) and similar convergence results
old for potential games (Zino, Como, & Fagnani, 2017). It remains
o be seen under what conditions arbitrary networks of heteroge-
eous imitators, updating synchronously or asynchronously, and
hoosing from an arbitrary number of available strategies, can be
xpected to equilibrate, and that is the primary goal of this paper.
The key equilibration criterion turns out to be whether agents

arn a higher payoff when their opponents play the same strat-
gy as them. We call such agents opponent-coordinating, and

we show that every network consisting entirely of opponent-
coordinating agents will equilibrate under asynchronous updates.
Although not equal, the set of payoff matrices corresponding to
such agents has a significant intersection with that of coordina-
tion games, which explains why they are reported to be more
likely to drive the network to equilibration. We then show that
if the agents satisfy the more-constrained condition of being
strongly opponent-coordinating, then equilibration is guaranteed
even under fully or partially synchronous updates. In addition
to illuminating causes of perpetual fluctuations, knowing when
a network is expected to converge opens up avenues for further
research into control. As the second contribution, we provide sev-
eral never-equilibrating examples on heterogeneous networks,
including non-opponent-coordinating agents, which can be ex-
tended to substantial classes of networks of homogeneous agents.
The comparison of these results with those of the best-response
update rule (Kreindler & Young, 2014; Montanari & Saberi, 2010;
Young, 2011), known to govern any network of homogeneous
agents to an equilibrium (Ramazi et al., 2016), postulates conver-
gence under imitation as a relatively rare phenomenon, and also
helps to explain why networks in which imitation is prevalent
may exhibit cyclic or chaotic behavior more often (Fu & Ramazi,
2020).

2. Asynchronous imitation updates

Consider an undirected network G = (V, E) where the nodes
V = {1, . . . , n} correspond to agents who over time k ∈ {0, 1, . . .},
play 2-player games with their neighbors indicated by the edges
E . The agents start with one of the strategies 1, 2, . . . ,m at
k = 0. At each time step, every agent earns an accumulated
payoff against her neighbors, and then one random agent acti-
vates to mimic the strategy of the most successful agent in her
neighborhood. More specifically, the possible payoffs of an agent
2

i ∈ V against another agent j are summarized in the payoff matrix
π i

∈ Rm×m whose pqth entry corresponds to the strategy pair
p-against-q where p, q ∈ {1, . . . ,m}. Let xi ∈ {1, . . . ,m} denote
the strategy of agent i. Then the (accumulated) payoff or utility
of agent i against her neighbors is calculated by

ui =

∑
j∈Ni

π i
xi,xj ,

where Ni denotes the set of neighbors of agent i.
Consequently, agents with more neighbors may earn more

regardless of their strategies. However, this heterogeneous setup
allows the payoff matrices to be normalized such that the max-
imum possible utility for every agent becomes the same. The
imitation update rule for agent i, active at time k, dictates that
agent i updates her strategy at k + 1 to the strategy of the agent
earning the highest payoff at k in her neighborhood Ni ∪ {i}. In
case several agents with different strategies earn the highest pay-
off, we assume agent i sticks to her current strategy if she is also
earning the highest payoff. Otherwise, we assume a preference
on the strategies such that agent i chooses the smallest strategy
in magnitude, namely

xi(k + 1) =

{
xi(k) xi(k) ∈ SM

i (k)
min SM

i (k) xi(k) ̸∈ SM
i (k)

(1)

where SM
i (k) is the set of strategies resulting in the maximum

payoff at time k in the neighborhood of agent i, that is

SM
i (k) ∆

=

{
xj(k)

⏐⏐⏐ j = arg max
r∈Ni∪{i}

ur (k)
}

.

ithout such a deterministic tie breaking rule, situations could
rise where agents switch between strategies of their equally
igh-earning neighbors. This could unrealistically reduce the
umber of equilibrium states and generally make the network
ynamics less likely to converge. We study the evolution of
he strategy vector x(k) = (x1(k), . . . , xn(k))⊤, under update
ule (1) and the activation sequence of the agents, defining the
synchronous imitation dynamics. We assume that the activation
equence is persistent; that is, each agent activates infinitely
any times.
We provide three motivating examples. The agents may be

een as researchers who decide to work on the same scien-
ific topic as their highly-reputed fellows do. Their utilities may
e their satisfaction on the quality and quantity of their pub-
ished work (Fu & Ramazi, 2020). A similar setup applies to
eople deciding whether to take the vaccination of a seasonal dis-
ase, based on the anecdotal evidence (Fu, Rosenbloom, Wang, &
owak, 2011). The agents can also represent autonomous robots
eciding to push or not push an obstacle they encounter during a
oregoing task. Each robot’s utility indicates changes in its energy
evel and whether the group task, i.e., removing the obstacle, has
een fulfilled (Wang, Chen, Xie, & Cao, 2017). Each robot can be
rogrammed to occasionally imitate those with the highest utility
t the previous encounter.
An equilibrium of the dynamics is a state x∗ at which none

f the agents will change strategies if active, implying that if
(k) = x∗ for some k ≥ 0, then x(k+ 1) = x∗, regardless of which
gent is active at k. This is different from a Nash equilibriumwhere
o agent earns more by switching strategies. For example, a state
here all agents play the same strategy, say to cooperate, is an
quilibrium of the imitation dynamics, yet it is not a Nash equi-
ibrium if the payoff matrices correspond to that of the prisoner’s
ilemma (Riehl et al., 2018). Because of the implicit stochasticity
aused by the activation sequence and the nonlinearity of the
mitation dynamics, convergence of x(k) to an equilibrium is not
uaranteed. Indeed, we provide examples where x(k) fluctuates
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n a set of several states in the long run and never converges to a
ingle state. However, there are types of payoff matrices for which
he network always reaches an equilibrium, as we show in the
ext section.

. Convergence under asynchronous updates

In a 2-player matrix game, the best response strategy is the
ne corresponding to the maximum entry in the column of the
ayoff matrix defined by the opponent’s strategy. It is, there-
ore, intuitive that convergence relies on the ordering of the
ayoff values within each column (which determines whether
he agents are coordinating or anti-coordinating Ramazi et al.,
016). However, under imitation, an agent never compares the
ayoffs she may earn upon playing different strategies. In what
ollows, we show that the ordering of payoff values within each
ow appears to be the key. We say a payoff matrix π is opponent-
oordination if each diagonal entry is greater than all off-diagonal
entries in the same row, that is

πp,p > πp,q ∀p, q ∈ {1, . . . ,m}, p ̸= q. (2)

ntuitively, if a neighbor of agent i switches her strategy to that
f agent i, then agent i’s payoff increases. The payoff matrix of
coordination game satisfies a similar condition but over the

olumns, i.e., each diagonal entry is the greatest in its column. If
ach diagonal entry is additionally also greatest in its row, then
he coordination payoff matrix becomes opponent-coordination.
ence, payoff matrices of coordination games may or may not
atisfy the condition, however, those of snowdrift and prisoners’
ilemma games never do (Riehl et al., 2018). We call agents with
pponent-coordination payoff matrices, opponent coordinating.

heorem 1. Every network of opponent-coordinating agents
eaches an equilibrium under the asynchronous imitation update
ule.

Back to our examples, the theorem implies that if each scholar
xperiences higher quality and quantity research, and thus, higher
atisfaction when more researchers work on her topic, then we
xpect the network of researchers to settle on their topics of re-
earch eventually. While the same holds for autonomous robots,
t may not be the case for the vaccination example as more indi-
iduals taking the vaccination yields a more immune community,
owering the infection risk and motivation for vaccination.

For the proof, we make use of the energy-like function uM,
he payoff of the agent(s) with maximum payoff (a similar idea
as been discussed in Blanchini, Casagrande, Giordano, & Viaro,
019). Define M(k) as the set of agents in the network that have
he maximum payoff at time k, i.e.,

(k) =

{
i
⏐⏐ ui(k) = max

j∈V
uj(k)

}
.

learly, M(k) is nonempty for all k ≥ 0. At time k, every
ember of M(k) earns the same payoff that we denote by uM(k),

.e., uM(k) = ui(k)∀i ∈ M(k). Since uM is the sum of a finite
et of fixed payoff values, it is trivially upper bounded. The
ollowing lemma guarantees that uM is always non-decreasing,
nd increases when any of the neighbors of any of the agents
ith the maximum payoff switches strategies. To simplify the
tatements of the lemmas, we make the following assumption.

ssumption 1. The payoff matrix of every agent in the network
s opponent-coordination.
3

emma 1. The following holds under Assumption 1:

M(k+1) ≥ uM(k) ∀k ≥ 0. (3)

oreover, given k ≥ 0, if a neighbor of an agent i ∈ M(k) switches
trategies at k + 1, then

M(k+1) > uM(k). (4)

Proof. Consider an agent i ∈ M(k). This agent does not change
her strategy at k + 1 since she is already earning the maximum
payoff in the network. In general, one of the following two cases
takes place.

Case 1: None of the neighbors of agent i switch strategies at k + 1.
Then the payoff of agent i does not change, i.e.,

ui(k + 1) = ui(k). (5)

Now one of the following two cases can happen at k + 1.

ase 1-1: i ∈ M(k + 1). Then according to (5), uM(k+1) = uM(k).
ase 1-2: i ̸∈ M(k + 1). Then there exists an agent j ∈ M(k + 1)

who earns more than agent i at k+ 1. This in view of (5) implies
uj(k + 1) > ui(k), resulting in uM(k+1) > uM(k). By summarizing
he two cases, we arrive at (3).

ase 2: A neighbor r of agent i, switches strategies at k + 1.
ccording to update rule (1), agent r changes her strategy to that
f one of her neighbors, say j, that has the highest payoff among
he rest (j may equal i). Hence, since agent i is already earning
he highest payoff in the network at k, agent j must also do so,
.e., j ∈ M(k). Therefore, agent j does not switch strategies at
+ 1. Moreover, because of the asynchronous updating, no other
eighbor of j except for agent r switches strategies at k + 1. So,
he payoff of agent j at k equals

j(k) = π
j
xj(k),xr (k)

+

∑
s∈Nj−{r}

π
j
xj(k),xs(k)

nd at k + 1 equals

j(k + 1) = π
j
xj(k),xj(k)

+

∑
s∈Nj−{r}

π
j
xj(k),xs(k)

ence, according to (2),

j(k + 1) − uj(k) = π
j
xj(k),xj(k)

− π
j
xj(k),xr (k)

> 0. (6)

ow one of the following two cases can happen at k + 1.

ase 2-1: j ∈ M(k + 1). Then according to (6), uM(k+1) > uM(k).

ase 2-2: j ̸∈ M(k + 1). Then there exists an agent q ∈ M(k + 1)
ho earns more than agent j at k+ 1. This in view of (6) implies
q(k + 1) > uj(k), resulting in uM(k+1) > uM(k). By summarizing
he two cases, we arrive at (4), which completes the proof. □

Using Lemma 1, we can show the convergence of the strategies
f the agents with maximum payoffs.

emma 2. Under Assumption 1, there exists some time k1 ≥ 0
fter which the strategies of all agents in M(k1) and their neighbors
emain unchanged, i.e.,

j(k) = xj(k1) ∀j ∈ Ni ∪ {i} ∀i ∈ M(k1)∀k ≥ k1. (7)

roof. Since uM(k) is upper-bounded, Lemma 1 implies the
xistence of some time kM ≥ 0, such that

M(k) = uM(kM) ∀k ≥ kM, (8)

nd that for k ≥ kM, none of the neighbors of any agent i ∈ M(k)
witch strategies at k + 1 as otherwise (4) would be violated:

(k) = x (k + 1) ∀j ∈ N ∀i ∈ M(k), ∀k ≥ k . (9)
j j i M
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ow, (8) implies that if an agent earns the maximum payoff at
ome time k ≥ kM, she will keep doing so in future time steps,
ielding M(k) ⊆ M(k + 1) for all k ≥ kM. Therefore, since

is upper-bounded by V , it will become fixed after some time
k1 ≥ kM, i.e.,

M(k) = M(k1)∀k ≥ k1.

Hence, in view of (9),

xj(k) = xj(k + 1) ∀j ∈ Ni ∀i ∈ M(k1)∀k ≥ k1,

resulting in

xj(k) = xj(k1) ∀j ∈ Ni ∀i ∈ M(k1)∀k ≥ k1.

ow since the strategies of all neighbors of each agent i ∈ M(k1)
re fixed, agent i’s strategy also becomes fixed in view of update
ule (1), which results in (7). □

Now consider the time k1 in Lemma 2, and define the set
2 = V − M(k1). If V2 is empty, the network has reached a state
hich has to be an equilibrium due to the persistent assumption
n the activation sequence. Otherwise, define M2 similar to how
is defined, i.e.,

2(k) =

{
i
⏐⏐ ui(k) = max

j∈V2
uj(k)

}
.

learly, M2(k) is nonempty for all k ≥ k1. Denote by uM2(k) the
ayoff of any member in M2(k) at time k, i.e.,

M2(k) = ui(k)∀i ∈ M2(k).

ne can prove a similar result to that of Lemma 1, for uM2(k), as
tated in the following lemma. The proof is omitted due to limited
pace.

emma 3. Consider the time k1 in Lemma 2. Under Assumption 1,
t holds that

M2(k+1) ≥ uM2(k)∀k ≥ k1.

oreover, given k ≥ k1, if a neighbor of an agent i ∈ M2(k) switches
trategies at k + 1, then

M2(k+1) > uM2(k).

The following lemma can also be proven similar to Lemma 2,
hich guarantees the convergence of the strategies of agents with
he second-maximum payoffs.

emma 4. Consider the time k1 in Lemma 2. Under Assumption 1,
here exists some time k2 ≥ k1 after which the strategies of all agents
n M2(k2) and their neighbors remain unchanged, i.e.,

j(k) = xj(k1) ∀j ∈ Ni ∪ {i} ∀i ∈ M2(k2)∀k ≥ k2.

Now consider the time k2 in Lemma 4, and define the set
V3 = V2 − M2(k2). If V3 is empty, the network has reached an
equilibrium. Otherwise, we again define M3 similar to how M2
is defined, and show that the same result as in Lemma 4 holds
for M3. We continue this procedure and define V3,V4, . . . until
we reach an empty set Vl, l > 0. This will certainly happen since
Vi| < |Vi−1| for all i ≥ 1 such that Vi ̸= ∅. Then the network has
reached an equilibrium, which completes the proof of Theorem 1.

3.1. Convergence time

Define

L ∆
= nm

∑
i∈V

(
degi +m − 1

m − 1

)
.

The following result provides an upper bound for the equilibrium
convergence time in terms of the number of agents’ switches of
strategies.
4

Proposition 1. Every network of agents with opponent-coordination
payoff matrices equilibrates after at most (L + 1)n−1 number of
strategy switches.

Proof. Consider a network of opponent-coordinators G. Starting
from an arbitrary initial state and under any activation sequence,
let L̄ denote the maximum number of changes in the maximum
utility uM, and r denote the maximum number of switches
between two consecutive changes of uM. According to Lemma 1,
M is a monotonically increasing function. Thus, by at most
r + 1)L̄ switches, uM reaches its maximum. Again, starting from
n arbitrary initial state and under any activation sequence, let
(G) denote the maximum number of switches that it takes for

he network to equilibrate, and Mi(G) be the maximum number
f switches that all non-neighbors of agent i, i.e., V −Ni −{i}, can
ake, given that agent i and her neighbors remain fixed in their
trategies. Let p1 be an agent with the maximum Mi(G), i.e., p1 ∈

rgmaxi∈V Mi(G). Once uM reaches its maximum, at most Mp1 (G)
ore switches can happen until the network equilibrates. Hence,

(G) ≤ (r + 1)L̄ + Mp1 (G). (10)

Now, we obtain L̄. First, we find the number of different
tilities ui that an agent i may earn. The utility of agent i can
e written as ui = 1⊤

xiπ
is, where 1j is the jth column of the

× m identity matrix and s ∈ {0, 1, . . . , degi}m is the stacking
f sj, the number of agent i’s neighbors who play strategy j, for
= 1, . . . ,m. Hence, the number of distinct values of ui is at
ost equal to the number of distinct combinations of 1xi and s.
he vector 1xi takes m different forms. The number of possible
ectors s equals the number of distinct solutions to the equation

1 + s2 + · · · + sm = degi, sj ∈ Z≥0∀j ∈ {1, . . . ,m},

hich is the number of m-compositions of degi (Heubach &
ansour, 2004):

degi +m − 1
m − 1

)
.

hus, the number of distinct ui’s for an agent i is at most m times
he above term, and over all agents i’s is at most nm times the
bove term. Consequently, uM takes at most L different values,
ielding L̄ = L.
Now, we upper-bound r . Starting from an arbitrary state,

or the value of uM to change, either a neighbor of a high-
st earner must switch strategies, which happens after at most
p1 (G) switches, or an agent that is not a highest earner must
witch strategies and become the new highest earner, which
akes at most Mp1 (G) switches. Hence, r ≤ Mi(G). Therefor, (10)
becomes

M(G) ≤ Mp1 (G)(L + 1) + L.

A similar bound is obtained for Mp1 (G) by considering uM2
defined as the maximum utility of the agents in V2 = V − {p1}:

Mp1 (G) ≤ Mp1,p2 (G)(L + 1) + L,

where Mp1,v(G) is the maximum number of switches that the
agents in V−Np1−Nv−{p1, v} can make, given that the strategies
of agents p1 and v and their neighbors are fixed over time, and
p2 ∈ maxv∈V2 Mp1,v(G). This recursive process can be repeated
for at most n steps, because at each step, the strategy of at least
one agent becomes fixed. Hence, we obtain the following general
recursive inequality for i = 2, . . . , n:

Mp1,...,pi−1 (G) ≤ Mp1,...,pi (G)(L + 1) + L.

At step n− 1, we end up at Mp1,p2,...,pn−1 (G) that is the maximum
number of switches that the agents in V −

∑n−1 N ∪ {p } can
i=1 pi i
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ake, given that the remaining agents have fixed their strategies.
ince V−

∑n−1
i=1 Npi ∪{pi} includes at most one agent, which is iso-

lated, it holds that Mp1,p2,...,pn−1 (G) = 0. Thus, the corresponding
recurrence inequality yields

M(G) ≤ Mp1,p2,...,pn−1 (G)(L + 1)n−1
+ L

n−2∑
i=0

(L + 1)i

= (L + 1)n−1
− 1 ≤ (L + 1)n−1.

.2. Rational imitation

One can show the same convergence result for the case when
nstead of imitation, some agents decide based on the rational
imitation update rule (Govaert, Ramazi, & Cao, 2021), implying
that they imitate the highest-earner only if doing so earns them
a higher payoff:

xi(k + 1) =

{
yi(k) ui(yi(k), k) > ui(k)
xi(k) otherwise,

where yi(k) = min SM
i (k), and ui(s, k) is the payoff agent i earns if

she plays strategy s and the remaining agents play their strategies
at time k.

Corollary 1. A network of opponent-coordinating agents reaches
an equilibrium if every agent updates asynchronously according to
either the imitation or the rational imitation update rule.

The proof can be done similarly to that of Theorem 1. In
particular, all previous lemmas remain valid. The difference is
that in the same situation, a rational imitator switches less often
compared to an imitator, yet still if she switches, the maximum
payoff does not decrease.

4. Convergence under arbitrary number of simultaneous up-
dates

The result of Theorem 1 can be extended to when multiple
agents can update simultaneously at any time step. Then the
activation sequence becomes {Ak}

∞

k=0 where Ak ⊆ V consists
of agents that are active at k, and where |Ai| and |Aj| are not
necessarily equal for i ̸= j. However, in order to guarantee
convergence, the agents must satisfy a stronger condition than
being opponent-coordinating; namely, their payoff matrices must
satisfy

π i
p,p + (degi −1)π i

p,pmin
> degi π

i
p,pmax

(11)

here degi denotes the degree of agent i, pmin denotes the column
f the minimum off-diagonal entry of the pth row in π i and
max denotes the column of the maximum off-diagonal entry of
he pth row in π i. We call agents satisfying the above condition
trongly-opponent-coordinating. Intuitively, each diagonal entry of
uch agents’ payoff matrix is sufficiently greater than the off-
iagonal entries in the same row. As with asynchronous updates,
ere we assume the activation sequence is persistent. The proof
f the following results is similar to that of Theorem 1.

orollary 2. Every network of strongly-opponent-coordinating
gents reaches an equilibrium under the imitation update rule, re-
ardless of how many agents update simultaneously at any time
tep.

For the special case of m = 2, an opponent-coordinating
gent turns out to be also strongly row-coordinating, yielding the
ollowing result.
 0

5

Fig. 1. Three anti-coordinating agents in a line. The payoff matrices of agents
1, 2 and 3 are π0 , ϵπ0 and π0 , respectively. The superscripts in blue indicate the
payoffs. (a) Agents’ initial strategies. (b) Agents’ strategies at the first time step
an agent switches strategies. The agents’ strategies at the next time step when
an agent switches will be the same as those in (a), resulting in an oscillating
behavior.

Corollary 3. Every network of opponent coordinating agents with
only two available strategies, i.e., m = 2, reaches an equilibrium
under the imitation update rule, regardless of how many agents
update at the same time.

Remark 1. Theorem 1 and Corollary 2 hold even when the
persistence assumption does not hold; however, then after some
finite time, the network reaches and remains at a final state that
may not be an equilibrium.

5. Non-convergence behavior

We provide counterexamples to demonstrate cases in which
networks containing non-opponent-coordinating agents never
reach an equilibrium.

5.1. Three anti-coordinating agents in a line

In a network containing only two agents, any asynchronous
imitation will result in an equilibrium. Therefore, the smallest
network in which asynchronous imitation may lead to non-
convergence is one consisting of three agents. Such a network can
be constructed out of three anti-coordinating agents connected
in a path, i.e. one edge connects agents 1 and 2 and the other
edge connects agents 2 and 3 (Fig. 1). The minimum number of
strategies required for non-convergence is two, i.e., m = 2. We
refer to strategies 1 and 2 as A and B, respectively. Define the
payoff matrix π0 = ((0 1)⊤, (1 0)⊤), and let π1

= π3
:= π0, and

π2
= ϵπ0, where ϵ < 1. The network undergoes a cycle of length

2 and will never reach equilibrium. This configuration can also
appear embedded in much larger networks and demonstrates
that imitative anti-coordinating agents who receive less payoff
than their neighbors for the same types of interactions can quite
easily be made to waver between the strategies of more steadfast
neighbors.

5.2. Extension to a homogeneous network

We extend the previous example to a network of homoge-
neous agents with the payoff matrix

π i
=

(
R S
T P

)
, P > 0, 0 < R < T , S > P + R. (12)

For this, we need to add α1 initially A-playing neighbors to agent
1, and α2 initially B-playing neighbors to agent 3 (Fig. 2) where
α1, α2 ≥ 1 are positive integers satisfying

Rα1 ≥ S, Pα2 ≥ T , (13)

⌊
R
T
(α1 + 1) −

P
T

α2⌋ = 0. (14)

uch α1 and α2 exist since one can first choose them to be large
nough to satisfy (13), then increase α2 so that R(α1 +1)−Pα2 <

, and then start increasing α until the first time R(α +1)−Pα
1 1 2
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Fig. 2. Extension of the example in Section 5.1 to a homogeneous network.
ll agents’ payoff matrices equal that in (12), implying a homogeneous network.
he superscripts in blue indicate the payoffs. (a) Agents’ initial strategies. (b)
gents’ strategies at the first time step when an agent switches strategies. The
gents’ strategies at the next time step when an agent switches will be the same
s those in (a), resulting in an oscillating behavior.

Fig. 3. Ring of asynchronous homogeneous non-opponent-coordinating
agents. All agents’ payoff matrices equal that in (15). The superscripts in blue
indicate the payoffs. (a) Agents’ initial strategies. It holds that x(0) ∈ X̂ . (b)
Agents’ strategies at k = 1 when agent 2 was active at k = 0. It holds that
x(1) ∈ X̄ . (c) Agents’ strategies at k = 2 when agent 1 was active at k = 1. It
olds that x(1) ∈ X̂ , meaning that the strategy configuration has reached the
ame structure as it had at k = 0. A similar process takes place for any other
ctivation sequence. Therefore, the network never reaches an equilibrium.

ecomes positive. Since R < T , it then follows that 0 < R(α1 +

)− Pα2 < T , satisfying (14), proving the existence of α1 and α2.
As in the previous example, we assume that the initial strate-

ies of agents 1, 2 and 3 are (A, A, B). It then follows that the
etwork never equilibrates and the same can be shown when the
ast three inequalities in (12) are replaced with R > 0, 0 < P < S
nd T > P + R. Both cases correspond to significant classes of
ayoff matrices, implying that even networks of homogeneous
gents may often not converge. This is further supported by the
ext example.

.3. Ring of asynchronous, homogeneous, non-opponent-coordin-
ting agents

Consider a ring network G = (V, E) where E = {(1, 2), (2, 3),
. . , (n − 1, n), (n, 1)}. The network is homogeneous in that the
gents’ payoff matrices π i, i ∈ V , are the same and equal to π i in
12), but when

< T , T + P < R + S < 2T . (15)

he agents’ initial strategies are as follows: x1(0) = B and xi(0) =

for all i ∈ V − {1} (Fig. 3(a)). One can show that the network
luctuates between two sets of states: first, X̂ = {x̂i | i ∈ V},
here x̂i ∈ {A, B}n and is defined by x̂ij = B if j = i and x̂ij = A

otherwise; and second, X̄ = {x̄i | i ∈ V} where x̄i ∈ {A, B}n and
s defined by x̄ij = B if j = i or j = i + 1 and x̄ij = A otherwise,
here i + 1 is counted modulo n. One can further construct an
ctivation sequence that results in a cycle.
6

Fig. 4. Ring of synchronous homogeneous non-opponent-coordinating
agents. All agents’ payoff matrices equal π0 , implying a homogeneous network.
The superscripts in blue indicate the payoffs. (a) Agents’ initial strategies. (b)
Agents’ strategies at k = 1. (c) Agents’ strategies at k = 2. The resulting strategy
onfiguration is the same as that at k = 0 but shifted by 4 agents. Therefore,
he network game undergoes a cycle of length 4 and never converges to an
quilibrium.

Such behavior never shows up for a network of opponent co-
rdinating agents in view of Theorem 1. Indeed for an opponent-
oordinating agent, we have that

> T ⇒ T + P > 2T ,

iolating the inequality in (15). Other types, however, may sat-
sfy the inequality, including most well-known types of agents.
or example, the payoff matrices π SD1 = ((1 4)⊤, (3 1)⊤) and
SD2 = ((2 3)⊤, (3 1)⊤) corresponding to two snowdrift games,
oth satisfy (15). So any homogeneous network of agents with
he payoff matrix π SD1 or homogeneous network of agents with
he payoff matrix π SD2 never converges to a single state.

The results can also be extended to heterogeneous networks
y modifying the condition in (15) as follows. Assume that each
gent i ∈ V has a possibly unique payoff matrix as in (15),
ut when the payoffs are replaced with the personalized values
i, Si, Ti, Pi ∈ R, and that for any (not necessarily distinct) i, j ∈ V ,
t holds that (Ri < Tj), (Ti + Pi < Rj + Sj), and (Rj + Sj < 2Ti). Then
t can be verified that again starting from x̂1, the network does
ot converge to a single state. As a result, any network of agents,
ome of which having π SD1 and others π SD2 , never converges.

.4. Long cycles in synchronous networks

When networks of anti-coordinating agents update in full
ynchrony under imitation dynamics, it is possible for relatively
ong cycles to emerge. This is in sharp contrast with synchronous
est-response dynamics, in which it has been shown that cycles
f length at most 2 can occur (Adam, Dahleh, Ozdaglar, et al.,
012). Following is an example of how cycles of length n

2 can
appear in rings of synchronous anti-coordinating agents. Consider
a ring of 4p agents, where p ∈ {2, 3, . . . }, and let the payoffs
of each agent be given by the anti-coordinating matrix π0. The
network will then persist in cycles of length 2p if it starts with the
initial condition (Fig. 4(a)) xi(0) = A if (i − 1)mod 4 ≤ 1 or i = n
and xi(0) = B otherwise. For example, in a ring of 8 agents,
the initial strategies are (A0, A1, B1, B1, A1, A1, B2, A1), where the
superscripts indicate the initial payoffs (Fig. 4).

6. Concluding remarks

The opponent-coordination setup applies to collective net-
works where agents’ payoffs are highest when their opponents
also play the same strategy, e.g., financial investments (Decker &
Günther, 2016), the spread of social norms (Montanari & Saberi,
2010), technological innovations (Young, 2011) and voting opin-
ions (Moreno & del Pino Ramos-Sosa, 2017). In all of these cases,
our results imply that if the agents simply imitate the most suc-
cessful in their neighborhood, then regardless of how the agents
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re linked (network topology) and how differently they perceive
he interaction outcomes (heterogeneity of the payoff matrices),
very agent will eventually fix her strategy. Consequently, non-
onvergent behavior in such situations may imply the presence of
ndividuals who perceive the social context extremely differently
rom the conventional understanding, e.g., anti-coordinators who
arn more when they play the opposite strategy of the majority
f their neighbors.
The second contribution of this paper has been to show that

ompared to best-response, convergence under imitation seems
o be a relatively rare phenomenon. In the case of two avail-
ble strategies, best response guarantees equilibration for every
etwork of homogeneous agents and every network of hetero-
eneous agents that consists of either all coordinating or all
nticoordinating (Ramazi et al., 2016). Imitation, however, may
rive a network of all anticoordinating agents to perpetual fluctu-
tions, and the same holds for networks of homogeneous agents.
e have provided significant classes of payoff matrices that can

esult into this non-equilibration. Even a well-mixed population
f all anticoordinating agents may not equilibrate if a few agents
mitate rather than best-respond (Le & Ramazi, 2021). The com-
arison suggests that frequency-based learners (best-responders)
re more influential in leading an entire network to satisfactory
ecisions than success-based learners (imitators), at least in anti-
oordination social contexts, where agents benefit from playing
pposite strategies. The reason may be that imitators are less
ndependent (or less self-confident) and ignore their own options.
xceptions to this general claim may correspond to special situ-
tions, e.g., every agent follows the same most-successful fellow
ho does not change over time.
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