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ON THE SPLITTING PRINCIPLE FOR
COHOMOLOGICAL INVARIANTS OF
REFLECTION GROUPS

STEFAN GILLE* CHRISTTIAN HIRSCH**
Department of Mathematical and Bernoulli-Institute
Statistical Sciences University of Groningen
University of Alberta Nijenborgh 9
Edmonton T6G 2G1 9747 AG Groningen
Canada The Netherlands
gilleQualberta.ca c¢.p.-hirsch@rug.nl

Abstract. Let kg be a field of characteristic not two, (V,b) a finite-dimensional regular
bilinear space over kg, and W a subgroup of the orthogonal group of (V,b) with the
property that the subring of W-invariants of the symmetric algebra of V' is a polynomial
algebra over kg. We prove that Serre’s splitting principle holds for cohomological inva-
riants of W with values in Rost’s cycle modules.

1. Introduction

Let Fx, be the category of finitely generated field extensions of a field ko,
and M, a cycle module in the sense of Rost [27] over kg. A cohomological invariant
of degree n of an algebraic group G over ko with values in M, is a natural
transformation

a: H'(—,G) = M,(—-)

of functors on Fy,. Here H' ( —, G) denotes the first non-abelian Galois cohomology
set of G. Cohomological invariants are an old topic. For instance the discriminant,
or the Clifford invariant of a quadratic form can be interpreted as a cohomological
invariant of an orthogonal group. However the formalization of this concept has
been done only some 20 years ago by Serre, see his lectures [31] for a thorough
account and some information on the history of the subject.

In general the cohomological invariants of an algebraic group with values in a
given cycle module are hard (if not impossible) to compute. For most groups we
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know only some of the invariants, and even finding new ones can be quite a task,
as is exemplified in the construction of the Rost invariant, see, e.g., Merkurjev [19].
Besides (the natural) applications to the classification of algebraic groups and their
torsors there are further applications of the theory of cohomological invariants,
as for instance to rationality questions around Noether’s problem, see Serre’s
lectures [31, Sects. 33 and 34].

In [16] the second named author has computed the invariants of a Weyl group W

with values in a cycle module that is annihilated by 2 over a field kg, whose
characteristic does not divide the cardinality of . Crucial for these computations
is the so-called splitting principle for invariants of orthogonal reflection groups.
The proof of this principle is the content of this article. We show:
Theorem. Let ko be a field of characteristic not 2, (V,b) a finite-dimensional
reqular bilinear space over ko, and W C O(V,b) a finite subgroup of the orthogonal
group of (V,b). Assume that the W-invariants S(V)W of the symmetric algebra
S(V) of V' are a polynomial algebra over kg.

Then a cohomological invariant of degree n of W with values in a cycle module
M., over kg

a: HY (=, W) = M,(—)

is zero if and only if its restrictions to all abelian subgroups generated by reflections
are zero.

Note that by the Chevalley—Shephard—Todd theorem a group W as in the
theorem above is generated by orthogonal reflections in O(V,b), and is therefore
a so-called orthogonal reflection group. On the other hand by the same result,
if W C O(V,b) is generated by reflections and the order of W is prime to the
characteristic of the base field ko then S(V)W is a polynomial algebra over k.

The proof of the theorem makes use of the explicit description of a versal W-
torsor over kg, which we give in Section 4.4. This construction uses the fact that W
is a subgroup of the orthogonal group of some regular symmetric bilinear space
over kg. Hence, although the finite group W is defined as a finite group scheme
over an arbitrary field, for our proof of the splitting principle we have to assume
that the group W has an orthogonal representation W < O(V,b) over kg, such
that S(V)" is a polynomial algebra over ky.

Serre [32] has pointed out to us that thanks to a theorem of Demazure [8]
essentially the same arguments show the splitting principle for Weyl groups as
long as the characteristic of the base field is not one of the torsion primes, see
Sections 4.7 and 4.8. More general, Serre has shown that for invariants of Weyl
groups with values in abelian Galois cohomology with finite coefficients (these are
cycle modules in the sense of Rost) the splitting principle holds as long as the
characteristic of the base field is not two, see Remark 4.

Note that Ducoat in the unpublished preprint [10] claims the splitting principle
for the special case of invariants of Coxeter groups with values in Galois cohomology
with finite coefficients over (big enough) fields of characteristic zero.

This article as well as its sequel [16] are based on the 2010 Diploma thesis [15] of
the second named author. This diploma thesis does not deal with cycle modules of
Rost, but with Morel’s [23] Al-invariants sheaves with K /2-structure. However
the proof of the splitting principle in [15] has some gaps and flaws.
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Our original intention was to write this article in the same setting. We refrained
from this for the following two reasons. On the one hand, it has turned out to
be much easier and shorter (at least for us) to give the proof in the slightly
more restrictive setting of cycle modules. And on the other hand, we believe
that the most interesting invariants are anyway Galois cohomology-, or Milnor K-
theory (modulo some integer) invariants, which are both cycle modules, or Witt
invariants. Although Witt groups are not cycle modules our arguments work for
these invariants as well, see Section 5. An advantage of this restriction is also
that the article is readable for readers only interested in such invariants. They can
assume throughout that the cycle module M, in question is one of their favourite
theories.

Acknowledgement. We would like to thank Fabien Morel for advice and fruitful
discussions around this work. Furthermore we would like to thank Jean-Pierre
Serre for advice and comments on this article and its sequel [16], in particular for
pointing out to us unnecessary restrictions on the characteristic of the base field,
and for explaining to us that thanks to a theorem of Demazure our arguments
apply also to (most) Weyl groups.

This work has started (and slept long in between) more than 10 years ago,
when one of us (S.G.) was Assistant and the other (C.H.) Diploma Student of
Fabien Morel at the LMU Munich. The first named author would also like to
thank Volodya Chernousov, now his colleague at the University of Alberta. Visiting
Volodya in March 2008 has made a crucial impact on this work.

Finally we would like to thank the referees for their thorough reading, correcti-
ons, and very useful suggestions.

2. Preliminaries: Cycle modules, Galois cohomology and torsors

2.1. Notations

Given a field ko we denote by (kg)s its separable closure, and by Ty, its absolute
Galois group Gal((ko)s/ko)-

We denote by Fieldsy, the category of all field extensions of kg. More precisely,
the objects of Fieldsy, are pairs (L,j), where L is a field and j : kg — L a
homomorphism of fields. A morphism (E,i) — (L, j) is a morphism of fields ¢ :

E — L, such that
E—*% [
ko

commutes. For ease of notation the structure morphism will not be mentioned,
i.e., we only write L instead of (L, j).

If (¢,t) € Fieldsy, then Fields, can be identified with a full subcategory of the
category Fieldsy, via the embedding (L,j) — (L,j o ¢), which depends on the
structure morphism ¢ : kg — £.

The symbol Fx, denotes the full subcategory of Fieldsy, consisting of finitely
generated field extensions of kg, i.e., of pairs (L,j), where L is a field and j :
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ko — L a homomorphism of fields giving L the structure of a finitely generated
field extension of k. Again we can identify §, with a full subcategory of §y, for
all ¢ € Fx,-

2.2. Cycle modules

These have been invented by Rost [27] to facilitate Chow group computations. We
refer to this article for details and more information, in particular for the long list
of axioms, of which we recall here only those which play a role in this work.

The prototype of a cycle module is Milnor K-theory, which has been introduced
by Milnor [21], and which we denote by

K (F) = DK, (F)

n>0
for a field F'. Recall that this is a graded ring and as abelian group generated by
the pure symbols {z1,...,z,} € Kff(F)7 where x1,...,x, are non-zero elements
of F.

A cycle module over a field kg is a covariant functor

M,: i, — geAb, F — M,(F) = @MH(F),
nez
where gr2(b denotes the category of graded abelian groups, which is subject to the
(long list of) axioms in Rost [27, Sects. 1 and 2]. In particular, M (F') is a graded
KM (F)-module for all F' € Fy,. Following the foundational paper of Rost on cycle
modules and deviating from more usual customs we denote by ¢y the morphism
M, (F) — M. (FE) induced by a morphism ¢ : F — E in F,.

2.3. The second residue map

Let v be a discrete valuation of F' € §y, of geometric type which is trivial on kg. By
this we mean that there exists a normal integral ko-scheme X of finite type, such
that the function field k(X)) is equal to F', and such that v corresponds to a regular
codimension one point of X. Then there is a Kiu (ko)-linear homomorphism, the
so-called (second) residue map:

Oy Mu(F) = My_1(F(v)),

where F'(v) is the residue field of v.
Associated with this homogenous homomorphism of degree —1 there is a homo-
genous homomorphism of degree 0, the so-called specialization homomorphism:

st My(F) = M (F(v)), = 0,({n} ),

which depends on the choice of a uniformizer 7 for v.

We recall the following four axioms, which play some role here. Let F,v, F(v)
be as above and ¢ : ' — E a finite field extension. Assume there is a geometric
valuation w on E with residue field E(w) and with w|p = v. Let e, be the
ramification index and @ : F(v) — E(w) the induced homomorphism of the residue
fields. Then the following holds (numbering as in Rost [27, p. 329]):

(R2a) on(z-2) = pgm () - oar(2) for all z € KM(F) and 2z € M, (F);

(R?’a) aw oYM = €w|v : QBM o av;

(R3c) if w is trivial on F', and so F(v) = F, then 9, o oy = 0; and

(R3d) if w is as in (R3c) and 7 is a uniformizer for w then s7 o oM = @
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2.4. Unramified cycle modules
Let X be an integral scheme, which is essentially of finite type over a field kq. By
the latter we mean that X is a finite type kg-scheme or a localization of such a
scheme. We denote by X () the set of points of codimension 1 in X. If a point z
in XM is regular, then its local ring O X,z is & discrete valuation ring and we get
a valuation v, on the function field ko (X) of X.

Given a cycle module M, over kg and a regular codimension one point = of X
we have then a second residue map

8x — avm : M*(ko(X)) — M*—l(kO(x))a
where ko () denotes the residue field of x, as well as a specialization map
T .= g™ M*(ko(X)) — M*<k0($>)

T Ve
for every uniformizer m € Ox 5.
If X is regular in codimension one 9, exists for all z € X and so we can
define

(82),cx1
A%(X,M,,) := Ker (Mn(ko(X)) - Mn_l(ko(x))),
zeX @)
the here so-called unramified M,,-cohomology group of X.

Remark 1. If K is a field one considers also the subgroup M,, (K )uur of unramified
elements of M, (K'), which is defined as the intersection of the kernels of all residue
maps associated with geometric discrete valuations of K. Note that if K = kq(X)
is as above we have M,, (ko(X))unr € AY(X, M,,).

2.5. Non-abelian Galois cohomology

We recall now — mainly to fix notations — some definitions and properties of torsors
and non-abelian Galois cohomology sets. We refer to Serre’s well-known book [29]
and also to [18, §28 and §29] for details and more information.

Let F be a field and G a linear algebraic group over F. We denote by H' (F, Q)
the first non-abelian Galois cohomology set, i.e., HY(F,G) = H'('p, G(Fy)). If
a continuous map ¢ : 'y — G(F5), 0 — ¢4, is a 1-cocycle, we denote its class
in H'(F, G) by [¢].

If ¢ : FF — E is a morphism of fields we denote the induced restriction map
HY(F,G) — H(E,G) by T, or if ¢ is clear from the context by rg/p.

If 0 : H — G is a morphism of linear algebraic groups over F' we denote
following [18] the induced homomorphism H'(F, H) — H'(F,G) by 6.

In the proof of Theorem 1 below we also consider the first non-abelian étale
cohomology set H, (X, @), where X is a scheme over F and G a linear algebraic
group over F. If f : X — Y is a morphism of such schemes we denote the pull-
back map HY (Y, G) — HL (X,G) by r;. We write then Tx instead of 7(T) for
T € H.,(Y,G) if f is clear from the context.

Note that since G is smooth the set H. (X,G) can be identified with the
isomorphism classes of G-torsors 7 : T — X over X, see, e.g., [20, Chap. I1L.4].
We denote the class of a G-torsor 7 : 7 — X over X by [T — X].

We use in the following also affine notations, i.e., we write H (R, G) instead of
H. (X,@G) if X = Spec R is affine. Note that if X = Spec K is the spectrum of a
field then H., (X, @) is naturally isomorphic to H' (K, G).
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Example 1. Let G be a finite group with trivial I' p-action, where F' is a field.
Then the non-abelian Galois cohomology set HI(F ,GG) can be identified with the
isomorphism classes of G-Galois algebras, see, e.g., [18, §18B].

A particular example of such a G-Galois algebra is a finite Galois extension E D
F with group Gal(E/F) = G. Then the continuous and surjective homomorphism
of groups ¢ : T'r — G, 0 — 0|, represents the class of the G-Galois algebra F
in H(F, Q).

In this situation, if § : H C G is a subgroup with fixed field L then the class of the
restriction rz,/p([c]) is represented by the continuous homomorphism c|r, : T'z, C
I'r = G, whose image is in the subgroup H. It follows that rp,,r([c]) = 6*([]),

CIFL

where [¢/] € H'(L, H) is represented by ¢ : T, —= H.

2.6. Versal torsors

Let T € H.(X,G) be a G-torsor over the smooth integral F-scheme X with
function field K = F(X). Assume that for any infinite field L € §r and every
element T € H'(L,G) there exists a dense set of L-points = of X, such that
Tpz) = T in H'(F(z),G) = H'(L,G). Then Tx € H'(K,G) is called a versal
G-torsor, see [31, Def. 5.1].

Such torsors exists for every linear algebraic group over a field, see [31, 5.3].

Example 2. Let G be a finite group which acts faithfully on a finite-dimensional
ko-vector space V, where kg is a field. Then G acts on the dual space VV :=
Homy, (V, ko) via (h.f)(v) := f(h~tw) for all f € VY, v € V, and h € G. This
induces a G-action on A(V) := SpecS(V"), where S(VV) denotes the symmetric
algebra of VV. For g € G denote by V, the closed subset of A(V') defined by the
ideal generated by all fo(g—idy) € VV, f € VV. The group G acts freely on the
open set

U=AWV)\ U Ve

idy #g€G

and so the quotient morphism ¢ : U — U/G is a G-torsor. The generic fiber of
this torsor is a versal G-torsor, see [31, 5.4 and 5.5] for a proof. Note that the
function field ko(U/G) is the fraction field of the invariant ring S(VV)¢. Hence
the class of this versal G-torsor in H'(ko(U/G),G) is the class of the G-Galois
algebra ko(U) over ko(U/G). In other words, the class of the Galois extension
ko(U) D ko(U)% =ko(U/G) is a versal G-torsor over k.

3. Invariants in cycle modules

Definition 1. Let G be a linear algebraic group and M, a cycle module over
the field ko. A cohomological invariant of degree n of G with values in the cycle
module M, is a natural transformation of functors

a: HY(—,G) = M,(-),
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ie., for all p: F' = E in §y, the following diagram commutes:

HY(E,G) —E> M, (E)

H'(F, G) —> Ma(F)

This definition is due to Serre and a special case of the one given in his lectures
[31], but it includes the main players of Serre’s text, cohomological invariants of
algebraic groups with values in H"( —, C) for some finite discrete I'y,-module C'
of order prime to charkgy. Note however that there is a subtle difference as we
consider here only the category Fk, of finitely generated field extensions of ko and
not the category Fieldsy, of all field extensions of kq. This is forced by the fact
that for technical reasons an ”abstract” cycle module over a field kg is not defined
for all field extensions of ko but only for the finitely generated ones, cf. Rost [27,
p. 328]. If one is only interested in ”concrete” cycle modules as for instance Milnor
K-theory, or Galois cohomology with finite coefficients, there is no need for this
restriction. (Note however that by the detection principle, which is proven in Serre’s
lecture [31] for Galois cohomology invariants with finite coefficients and for Milnor
K-theory below, these invariants are determined by their values on the smaller
category Fk,-)

Following Serre’s lectures [31] we denote the set of cohomological invariants of
degree n of the group G with values in M, by Invy’ (G, M,). The set Invy} (G, M.)
has the structure of an abelian group as M, (F) is one for all F' € F,.

We set

Invy, (G, M,) := @ Inv (G, M),
ne”Z
and call elements of this direct sum cohomological invariants of G with values
in M,. Note that the K-structure of M, induces a K (ko) operation on the
graded abelian group Invy,(G,M,) making the set of cohomological invariants
of G with values in M, a graded K (kq)-module.

Example 3. We have Invy, (G, M,) # 0if M, (ko) # 0. In fact, if 2 € M. (ko) then
cr: HY(L,G) = M. (L), t = (tp)m(z),

where L € §y, with structure map ¢r, : ko — L, defines an invariant. Such
invariants are called constant, respectively, constant of degree n if x € M, (ko),
and we write ¢ = x € M., (ko).

3.1. Restriction of invariants

Let 6 : H — G be a morphism of linear algebraic groups over kg and M, a cycle
module over kq. Composing a € Invy, (G, M,) with the map 6':

HY(—, H) 25 HY(—,G) <% M,(-)

we get an invariant 6*(a) € Invy,(H,M,). In case § : H C G is the embedding of
a closed subgroup we denote following Serre’s lecture [31] the induced homomor-
phism 6*: Tnvy, (G, M,) — Invy, (H,M,) by ResZ and call it the restriction.



1268 STEFAN GILLE, CHRISTIAN HIRSCH

Example 4. Let H be a subgroup of a finite group G, M, a cycle module over kg,
and a € Invy, (G, M,). If g is an element of the normalizer Ng(H) we denote
by ¢4 the inner automorphism of G defined by g. The isomorphism ¢, acts also

on H and so consequently via ¢} : a — a oty on Invy,(H,M,) for all g € Ng(H)

giving Invy, (H, M.,) the structure of a Ng(H)-module. We claim that ResZ maps
Invy, (G, M,) into the subgroup Invy, (H, M,)No(H) of N (H)-invariant elements
in Invy, (H,M,). In fact, by [31, Prop. 13.1] the map ¢} : H'(L,G) — H'(L,G)
is the identity for all L € Fy,. Since we have Resg (1}(a)) = ¢ (Resd (a)) for all
a € Invy, (G, M,) this implies the claim.

3.2. Specialization theorem and detection principle

The following specialization theorem is an analog of a result of Rost on Galois
cohomology invariants. Its proof follows essentially the pattern of arguments in
Serre’s lecture [31, Thm. 11.1]. However it is more involved as we can not work
with the henselization of the field K which is in general not in §y, anymore.

Theorem 1. Let X be an integral scheme with function field K = ko(X), which is
essentially of finite type over the field kqg. Let further M, be a cycle module over Ky,
a € Tnvy, (G, M,), where G is a linear algebraic group over ko, and T € HE (X, G).
Let © € X be a regular codimension one point. Then we have:

(i) 9 (ax(Tx)) = 0; and
(i) s7(arx(Tk)) = axy(z)(Tio(a)) for all local uniformizers m € Ox ;.

In particular, if X is reqular in codimension one, then ax (Tk) € A°(X,M,).

Proof. Replacing X by Spec Ox , we can assume that X = Spec R for a discrete
valuation ring R, which is essentially of finite type over kg, and that x is the closed
point of X. We denote k = ko(z) the residue field of R, ¢ : R — k the quotient
map, 17 : R — K the embedding of R into its field of fractions K, and v the discrete
valuation of K corresponding to R. Then 9, = 9,: M, (K) — M,_1(k), and for (i)
we have to show

8v(aK(TK)) =0. (1)

To prove this we ‘construct’ a discrete valuation ring .S, which is a local étale
extension of R with the same residue field k, and which contains a subfield £ with
G-torsor T, such that Ts = S xrp T~ S x, T. Having this ring S at our disposal
(1) is then essentially a formal consequence of the axioms of a cycle module.

To get the desired local étale extension, let 1) : R — R" be the henselization
of R with fraction field K". This is also a discrete valuation ring with the same
residue field k, and there exist local étale R-algebras ¢; : R — R;, i € I, such
that R" = 11€HIl R;, see [26, Chap. VIII]. The rings R; are also discrete valuation

rings with £ as residue field. We denote by v; the induced valuation on the fraction



ON THE SPLITTING PRINCIPLE 1269

We get a commutative diagram of homomorphisms of rings for all i € I:

KLKZ-L)K}L

s

R——>R,——>R"
¥i pi
where the up arrows are the respective inclusions of the rings R, R;, and R" into
their fraction fields. Note that ¢ =); o ; for all ¢ € I.
The homomorphism ¢; : R — R; is unramified at the maximal ideal of R;, and
so by the cycle module Axiom (R3a), see Section 2.3, the square on the right-hand
side of the following diagram commutes

HY(K;, G) — M, (K3) — e M,y (k)

%;T (sp;)MT T— (2)

HY(K,G) —2 o M, (K) —2> M,_, (k)

for all ¢ € I. Since a is an invariant also the one on the left-hand side is com-
mutative. Therefore to prove 0,(ax(Tx)) = 0 it is enough to show that there
exists ¢ € I, such that

Oy, (aK.(TK.)) =0, .(aK.(r /(TK))) =0.

To find this ¢ € I We use the fact that there exists a splitting j : k — R" of the
quotient morphism ¢" Rh — k, ie. ,q¢"oj =1idy. In fact, if R is the completion
of R we have a splitting j k— R of the quotient map R—k by (a special case
of) the Cohen structure theorem, see, e.g., [6, Chap. 8, §5, no. 2, Cor. 3 of Thm.
1]. This splitting factors via R" since the henselian local domain R" is excellent
by [12, Cor. 18.7.6], and therefore satisfies the approximation property by [3, Sect.
3.6, Cor. 9], which implies in particular, that the splitting j of R — k factors
via R". i,

The composition of maps H' (k, G) — H., (R", G) LN H'(k,G) is the identity,
and by [9, Chap. XXIV, Prop. 8.1] the map rpn : HY (R",G) — H'(k,G) is an
isomorphism. Therefore r; : H' (k, G) — HL (R", G) is one as well, and moreover
we have 7;(Ty) = Tgrr since 7gn (Tgrr) = rgn (ry(T)) = ro(T) = Ty

Let k; be the pre-image of j(k) under the homomorphism 1; : R; — R". The
set k; \ {0} is contained in the set of units of R; and so k; is a field. This implies
also that v; is trivial on k;. The kg-linear quotient homomorphism ¢; : R; — k
maps k; onto a subfield of k. It follows, see [5, Chap. 5, §14, no 7, Cor. 3], that k;
is also a finitely generated field extension of kg and so in §y, for all 7 € I.

By the definition of the fields k; we have a commutative diagram

k‘—>Rh

T Twl (3)

H

S

0
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for all i € I, where j; is the inclusion k; C R; and v; the homomorphism induced
by ;. Note that 1); = ¢; 0 j; as go j = idy.

Diagram (3) gives in turn a commutative diagram of pointed non-abelian coho-
mology sets

Hl (ku G) L> H(let (Rh7 G)

H (ki, G) —— Hey (Ri, G)

We have k = heHIl k; and therefore by [2, Chap. VII, Thm. 5.7] (or by direct
7
verification) that H'(k,G) = llirrll H'(k;, G). Hence there exists 49 € I and Tj, €
1€

H'(k;,, G), such that
rg., (Tiy) = Ty € H' (K, G). (5)

By (4) we have
Tio (500 (Tio)) = 75 (rg,, (Tig)) = 15(T) = Trr = ry,, (Try,) -
Now R = lzlenll R; and so by [2, Chap. VII, Thm. 5.7] again we have
lim He, (R, G) = He (R, G).
Hence replacing ig by a ’larger’ element of I if necessary we can assume that also
Tjio (Tio) = Thy, - (6)

We claim that this index ig does the job, i.e., we have 9, (ax, (Tk, )) =0.In
fact, since a is a cohomological invariant we have a commutative diagram

1 0
H (KZ'O, G) — M*(Klo)
T(nig °110)T T(”io ojig)M
Hl(k'io s G) T) M*(kio)

0
and therefore taking (6) into account

aK;, (TKiO) = 0K, (T(m0 Ojio)(n )) = (nio © jio)M(akio (Ti )) .

But v;, |k, = 0 and so by the cycle module Axiom (R3c), see Section 2.3, we have
Du,, (2) = 0 for all 2 € M. (Kj,), which are in the image of (7;, © ji,)m. We have
proven (i).
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For the proof of (ii) we continue with the above notation, i.e., R = Ox 4,
Rh = lvinl1 R;, and so on. We fix further a uniformizer 7 of R. Since the extensions
1€

@; : R — R; are unramified the image of the uniformizer 7 in R; is also one, which
we denote by 7 as well. We have s] = s], and so taking the right-hand side of
the commutative diagram (2), the definition of the specialization map, as well as
Axiom (R2a), see Section 2.3, into account we have CHIS (@i )M = 7.

We get then

sy (ax(T)) = 57, (¢, )m(ax (Tk)))
= sy, (aKiO (Twi;o (Tk))) a is invariant
= Sgio (O'Kio (7"1’”0 (TRLO ))) Since 77io © L)OZ'O = SO'ILO © TI
= 5;:0 (G‘Ki,o (T(mo Ojio)(ﬂo))) by (6)
= sy, (g © Jio)Mm(an,, (Ti,))) a is invariant
= (Yio)m(ar,, (Tiy)) by (R3d)
=ay (rd—uo (T; )) a is invariant
= ax(Tk) by (5)

as claimed. We are done. [

A consequence of this result is the following corollary, which is the analog of [31,
12.2] for cycle module invariants.

Corollary 2. Let R be a regular local ring, which is essentially of finite type over
the field kg. Denote by K and k the fraction and residue field, respectively, of R.
Let further G be a linear algebraic group over kg, and M, a cycle module over k.
Then

aK(TK)ZO — ak(Tk)ZO

for all T € HY (R, G) and all a € Invy, (G, M,).

Proof. The proof is the same as the one of [31, 12.2]. We recall the arguments for
the convenience of the reader.

If dimR = 1 this follows from part (ii) of the theorem above, so let d :=
dim R > 2, and ¢t € R a regular parameter. Then R/Rt is also a regular local ring
with the same residue field k, and which is essentially of finite type over kg. The
fraction field of R/Rt is the residue field K; of the discrete valuation ring Rg; (the
localization at the codimension one prime ideal Rt). By the dimension one case we
have ag, (Tx,) = 0, and so by induction ax(Ty) =0. O

Finally we state and prove the following detection principle, which is the cycle
module analog of [31, Thm. in 12.3]. Again the proof is the same as in Serre’s
lecture and only recalled for the convenience of our reader.

Theorem 3. Let G be a linear algebraic group over the field kg, and T € H' (K, G)
a versal G-torsor. Then we have for a given cycle module M, over kg and a,b €
IHVkO (G, M*) N

aK(T):bK(T) — a=b.
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Proof. Replacing a by b — a it is enough to show that ax (T) = 0 implies a = 0.
We have to show a,(S) = 0 for all k € §y, and all S € H (k, G).

Replacing k& by the rational function field k(7") if necessary, we can assume
that &k is an infinite field. In fact, since @ is an invariant the following diagram
commutes:

H (K(T), G) "% M. (k(T))
H'(k,G) —2— M, (k)

where ¢ : k < k(T) is the natural embedding. By Rost [27, Prop. 2.2 (H)]| the
homomorphism uy: My (k) — M. (k(T)) is injective and so a1y (Sk(r)) = 0 implies
ak(S) =0.

To prove the claim for an infinite field k we use that since T € H'(K,G) is a
versal G-torsor there exists a G-torsor 7 — X over a smooth integral scheme X
with function field K, such that the generic fiber of 7 — X is isomorphic to T,
and such that there exists z € X (k) with S = [T — X]x,(z). We have ax (Tk) =0
by assumption, and so we conclude that ay, () ([T = X]k,(z)) = 0 by Corollary 2
above (note that Ox , is regular since X is smooth).

Remark 2.

(i) As one referee has pointed out to us Guillot [14, §6] also considers cohomologi-
cal invariants of algebraic groups with values in Rost cycle modules. However he
does not prove basic results as for instance the detection principle above.

(ii) A further generalization of cohomological invariants is due to Pirisi [25],
who introduced cohomological invariants of algebraic stacks with values in cycle
modules.

4. The splitting principle
4.1. Pseudo-reflections

We recall first some definitions and properties of reflection groups and their root
systems, merely to fix our notations. We refer to the standard reference Bourbaki
[7] for details and more information.

Let V be a finite-dimensional vector space over the field ko. We denote by GL(V)
the group of kg-linear automorphisms of V. An element s of GL(V) is called a
pseudo-reflection if rank(s — idy) = 1. A finite subgroup of GL(V) is called a
pseudo-reflection group if it is generated by pseudo-reflections. A pseudo-reflection
is called a reflection if it has exponent 2.

We have then the following well-known result. A proof can be found for instance
in [17, Sects. 18.1 and 19.1]; see also [7, Chap. V, §5, no 3, Thm. 3 and Chap. V,
85, Ex. 7 and 8], or Serre [28].

Theorem 4 (Chevalley—Shephard-Todd-Bourbaki—Serre). Let V' be a finite-di-
mensional vector space over ko and W C GL(V) a finite subgroup. Consider the
following two assertions:
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(i) The algebra of invariants S(V)W is a polynomial algebra.
(ii) The subgroup W of GL(V') is generated by pseudo-reflections, i.e., W is a
pseudo-reflection group.
Then (1) implies (ii), and if charky and |W| are coprime (i) and (ii) are equivalent.

The following lemma, which is due to Serre, is well known. For the sake of
completeness we give a proof following Nakajima [24, Proof of Lem. 1.4]. Recall
here that if a group W acts on a vector space V then it acts on the dual space V'
by (w.f)(z) = f(w™t.z) forallw € W, f € V¥, and z € V. We set then also

WT::{w€W|w.x:x} and Wiz::{wEW\w.x::tx}

forxeVorzeVV.

Lemma 5. Let V be a finite-dimensional ko-vector space and W C GL(V) a finite
group, such that S(V)W is a polynomial algebra. Then S(V)W7 is isomorphic to
a polynomial algebra in n = dim V' variables over kg, and so Wy is generated by
pseudo-reflections (in GL(V)) for all f € VY.

Proof. We can assume f # 0. Let S(f) : S(V)) — ko be the morphism of ky-algebras
induced by f and my its kernel.
We claim that
Wy={weW |wms) =my}.

One inclusion is clear. For the other, let w € W \ Wy. Then w™'.f # f and so
there exists « € V, such that f(w.xz) # f(x). It follows that w.(x — f(x)) & my,
and hence the claim.

Therefore Wy is the decomposition group of my, and so by [4, Chap. 5, §2, no 2,

Wy w
mns(v)Wr 2 S(V)mfﬁs(

Since by assumption S(V)" is a polynomial ring the localization S(V)

Prop. 4] the extension of rings S(V) vyw is unramified.

w
mfﬂS(V)W

is a regular local ring. It follows that S(V)mffms(v)wf = (S(V)m,) ' is a regular
local ring as well.

We introduce a new grading on S(V') by assigning to v — f(v), 0 # v € V, the
degree 1. We denote S(V') with this grading by S := @ S;. Thenm; = S = @ ;.

i>0 i>1
It follows that S(Vgévf) = (S(V)mf)wf is a regular local ring, and so by [30, Chap.
+

IV, App. ITI, Thm. 1] we get that S = S(V)"7 is a polynomial ring in n = dim V/
variables over kg.

The last assertion is a consequence of Theorem 4 above. [

4.2. Orthogonal reflection groups

In the rest of this section we denote by k¢ a field of characteristic # 2.
Let (V,b) be a regular symmetric bilinear space of finite dimension over kg, and
v € V an anisotropic vector, i.e., b(v,v) # 0. Then

2b(v, w)
b(v,v)

Sp: V=V, w—w-—
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is an element of the orthogonal group O(V,b), called the (orthogonal) reflection
associated with v.

Note that a pseudo-reflection s in O(V, b) is automatically an orthogonal reflec-
tion. In fact, such an s has determinant +1. If det(s) = 1 we have s = idy,
see, e.g., [13, Prop. 5.7], and if det(s) = —1 the number —1 is an eigenvalue
and s is diagonalizable. Let w be an eigenvector for —1. Then we have b(v,w) =
b(s(v), s(w)) = —b(v,w) for all v € ker(s —idy) and so V = ker(s —idy) L k¢ - w.
It follows that s = s,,.

Definition 2. Let (V,b) be a regular symmetric bilinear space of finite dimension
over kg. A finite subgroup of O(V,b) that is generated by orthogonal reflections is
called a (finite) orthogonal reflection group over the field ko.

4.3. The root system of an orthogonal reflection group

Given an orthogonal reflection group W C O(V,b) let Ry be the set of reflections
in W. Recall now that
wosaow*1 = Sw.a -

Hence the set Ry, is the disjoint union of conjugacy classes Ry = U R;. For
=1
every R; we choose an anisotropic vector 8; with sg, € R;. Then we have R; =

{8w.p; |we W} forall<i<m.Let

for all 1 < i < m, and set

m

A;:HA,

Note that the sets A; are W-invariant by definition. The set A is called a root
system associated with W. It has the following properties:

(R1) if @ € A then A-a € A for A € kg if and only if A = £1, and

(R2) for all o, 5 € A we have s,.8 € A.
(In fact, if w.cc = X~ then b(a, ) = b(w.a, w.at) = b(A -, A - ) = A2b(cx, @), and
so A = +£1, hence (R1). Property (R2) is by construction.)

Moreover, also by construction the set {s, | & € A} is the set of all reflections
in W, and so in particular W is generated by all s,, o € A.

Since b is a regular bilinear form the homomorphism b : V — VY, v — b(v, — ),
is an isomorphism. We use this isomorphism to equip V' with a regular symmetric
bilinear form:

o~

BV VY X VY = ko, (f.g) = b(7HF),071(g)).

The isomorphism b is then a W-linear isometry (V,b) = (VV,bY), which induces
a W-linear isomorphism of kg-algebras S(b) : S( ) = S(VVY). Hence S(V)W is a
polynomial algebra over kg if and only if S(VV)W is so.

For o € A we set
2b(c, v)

bla, @)

aY(v) =
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for all v € V. With this notation we have s, (z) =z — oV (z) - a.
For later use we record the following:

a’'(B)=0 & () =0 & 54 088 = 830 Sq (7)
for all a, 8 € A.

Lemma 6. Let ko be a field, (V,b) a finite-dimensional regular bilinear space
over ko, and W a finite subgroup of the orthogonal group O(V,b). Assume that
S(VYW is a polynomial ring over ko, and so W is in particular an orthogonal
reflection group by Theorem 4. Let A be a root system of W. Then we have:

(i) Wo =Wov and Wi, = Wigv for all a € A.

(il) Wia = (Sa).Wa =~ Z/2 x Wy, where (so) = {idv, Sa} is the subgroup

generated by s, for all a € A.
(iii) S(V)We and S(V)W*e are polynomial algebras in m = dimV wvariables
over kg, and so the groups W, and W4, are generated by orthogonal reflecti-
ons in O(V,b).
(iv)
U Ker(a") = U Ker(w —idy) .
aEA idy ZweWw
Proof. (i) This follows since b is a regular bilinear form.

(ii) If w.cc = —a then s, o w € W, and so Wy, is equal to the semidirect
product (sq) X W.

To show that this is a direct product and so Wi, ~ Z/2 x W, we have to
show that s, commutes with all elements of W,. This can be seen as follows.
By assumption, S(V) is a polynomial algebra over kg, and so by Lemma 5 the
subgroup W,v, which coincides with W, by (i), is generated by reflections. Hence
it is enough to show sg o s, = s, 0 sg for all sg3 € W,. But sg is in W,, if and only
if Y (a) = 0, and this implies that s, and sg commute with each other by (7).

(iii) Since W, = W,v and S(V)"W is a polynomial ring over ko by assumption,
we get from Lemma 5 that the algebra S(V)"We is a plynomial algebra over k.

Let now H := Ker V. We have then V =k -a @ H, and so

S(V)We ~ S(kg - @) @y, S(H)WVeltt ~ kot] @y, S(H)Wal

Using now the decomposition W, ~ Z/2 x W, from (ii) we get that S(V )W+« is
isomorphic as kg-algebra to

S(ko - @)%/% @y, S(H)Weltt ~ ko [y?] @1, S(H)Welt ~ ko[t] @, S(H) Vel

Consequently, S(V)W+e is a polynomial algebra over kg as well.
The last assertion of (iii) is a consequence of Theorem 4.
Finally we prove (iv). Since Kera“ = Ker(s, — idy) the left-hand side is
contained in the right-hand side. For the other inclusion let z € V'\ |J Ker(a"),
aEA
and assume that W, # {idy }. Since b is non-degenerate we have W, = Wy, _),

and so by Lemma 5 there exists a reflection s, in W,. We get the contradiction
a¥(z)=0. O

We can state and prove now our main theorem.
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Theorem 7. Let (V,b) be a finite-dimensional regular symmetric bilinear space
over the field ko and W C O(V,b) a finite subgroup, such that S(V)W is a polyno-
mial ring over kg (in particular, W is an orthogonal reflection group). Further, let
M., be a cycle module over kg. Then a cohomological invariant

a: HY (=, W) = M,(-)

over ko is zero if and only if its restrictions to all abelian subgroups generated by
reflections are zero.

For the proof we have to describe a versal W-torsor over kq. For this, let A be
a root system of W.

4.4. A versal torsor for W
Define U C A(V) = SpecS(VV) as in Example 2, i.e., U is the open complement
of the union of closet sets V,,, w € W\ {idy }, where V,, is the closed set defined
by the ideal generated by all fo (idy —w), f € VV. The group W acts freely on U,
and the generic fiber of the quotient morphism ¢ : U — U/W is a versal W-torsor
over kg, see Example 2.

By Lemma 6 (iv) we have for all field extensions L 2 kq that

U Ker(id, ® ") = U Ker ((id, @ w) — drg,, v ). (8)
acA idy AweW

We get U = Spec (S(VY)[gx']), where we have set

ga = [ ¥ € s(vY).
aEA

Hence the quotient morphism ¢ : U — U/W corresponds to the embedding of
rings
W, _ -
(S(VY)) " lga'l = S(VV)[ga']-
The generic fiber of ¢ is equal to the Galois extension Spec E — Spec EW with
Galois group W, where E denotes the fraction field of S(VV). We set in the

following K := EW, and denote by [E/K] € H'(K, W) the class of the W-Galois
algebra E D K, which is a versal W-torsor over k.

4.5. An unramified extension
Let @ be a prime ideal of height one in S(VV)" that is not in the open subscheme
U/W = Spec (S(V¥V)"[gx']), i.e., ga € Q. Since by our assumption S(V)V ~
S(VV)W is a polynomial ring over kg the local ring R := (S(VV)W)Q at @ is
a discrete valuation ring. Let P be a prime ideal in S(VV) above Q. Then there
exists a € A, such that P = P, := S(VV) - V. The Galois group W of E D K
acts transitively on the prime ideals above Q.

Since w.av = +av is equivalent to w.a¥ = +a" it is a consequence of (R1) that
the decomposition group Wp, = {w € W|w(P,) = P,} is equal to

Wiaz{w6W|w.a::|:0¢},
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which in turn by Lemma 6 (ii) is equal to (s4). Wy ~ Z/2 x W,.
Denote by F,, the fixed field of W, in E, by Lo the embeddmg K CF,, and
by S the integral closure of R in F,. We set S, := SSﬂP This is a discrete

valuation ring with maximal ideal Qo := (S N P ) SSOPQ. By construction
the extension of discrete valuation rings S, 2 R is unramified, and the residue
field ko(Qq) of Sy is equal to the one of R, which we denote ko(Q). Hence by the
cycle module Axiom (R3a), see Section 2.3, we have a commutative diagram

M. (Fa) 2% M, 1 (ko(Q))

(La)MT T‘ (9)
M, (K) —22+ M, _1 (ko (Q)

for all cycle modules M, over kg.

4.6. Proof of Theorem 7

The proof is by induction on m = |W|. If m < 5 there is nothing to prove, so let
m > 6. Using the induction hypothesis we show first the following.

Claim. ax ([E/K]) € A° (A(V)/W, M,).

To prove the claim we have to show
9q (ax ([E/K])) =0 (10)

for all prime ideals Q of height one in S(VV)W. This is clear by Theorem 1 if @Q
is in the open subset U/W C A(V)/W = Spec(S(VY)") since [E/K] is by
construction the generic fiber of U — U/W.

So assume @ ¢ U/W. Then @ contains ga. Let Q, and ¢, : K C F,, be as in
Section 4.5. By Diagram (9) above it is enough to show

Q. ((ta)m(ax ([E/K]))) = 0. (11)

Since a is an invariant we have (to)Mm(ax([E/K])) = ag, (r,, ([E/K])), where r,_
denotes the pull-back H*(K, W) — H'(F,, W), see Section 2.5. Hence equation
(11) is equivalent to

9q. (ar, (. ([E/K]))) = 0. (12)
Now we distinguish two cases:

(a) Fy = K: Then W = (s4). W, ~ Z/2 x W, (in the notation of Section 4.5),
and therefore we have

H'(—, W) ~ H(—,2/2) x H' (=, W,).

We claim that ag(z,y) = 0 for all (z

,y) H'(¢,2/2) x H' (¢,W,,) and all £ € Fy,.
This implies ¢ = 0, and so dg(ax(T)) =
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For this, let £ € §y,, and x € H'(¢,Z/2), and consider §, as a full subcategory
of Fk,, cf. Section 2.1. The maps

vi: HY(L,W,a) — Mu(L), 2 = ar(rj(z),2),

where j : £ — L is the structure map in §, define an invariant of degree n of W,
over £ with values in M,,, i.e., we have b* € Invy (W, M,).

Let H C W, be an abelian subgroup generated by reflections. Then the sub-
group H' := (s,).H of W is an abelian subgroup generated by reflections as well,

and therefore by assumption the restriction Res{fvl (a) is trivial. Now for L € F,
with structure map j: £ — L and z € Hl(L, H) we have

Resf (b°)1(2) = Resty (a)1(r(x),2) = 0.

Asz € Hl(L, H) and L € §,; were arbitrary this implies Resfva (™) is trivial. This
holds for all abelian subgroups H of W, generated by reflections and therefore since
S(V)W« is a polynomial algebra by Lemma 6(iii) above we can apply the induction
assumption to conclude b® = 0. In particular, we have 0 = b7 (y) = ae(z,y) as
claimed. We are done in the case F, = K.

(b) Fy # K: Then W # (s4). W, = Wi,. By Example 1 we have
[E/K]Fp, = 7. ([E/K]) = 0"(T") (13)

for some T” € Hl(Fa, Wia), where 0 : Wy, < W is the inclusion.
Let H be an abelian subgroup of W, generated by reflections. Then

ResVHVia (Reswi“(a)) = Resti (a),

and since H is also an abelian subgroup of W generated by reflections we have
Resty; (a) = 0 by our assumption. It follows that

Resiy, (Res%i"(a)) =0

for all abelian subgroups H of W, that are generated by reflections.
Since S(V)"W=e is a polynomial algebra over ko, see Lemma 6 (iii), we conclude
by induction that
Resy*(a) = 0. (14)

Using this we compute

9. (ar, (r., ([E/K)]))) = 0q., (ar, ((E/K]F,))

= 0q. (ar, (01(T"))) by (13)
= 9. ( Resy** (a) s, (T")) by definition of Resy "
=0 by (14).

Hence (12) holds also if K # F, and we therefore have dg(ax ([E/K])) = 0 as
claimed.
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We have proven the claim, and can now finish the proof of the theorem. By
assumption S(V)W is a polynomial ring over k. We have S(VV)W ~ S(V)W see
Section 4.3, and so the ko-scheme A(V)/W = SpecS(VV)"W is an affine space
over kg. Therefore by homotopy invariance of the cohomology of cycle modules,
see Rost [27, Prop. 8.6], we have A° (A(V)/W,M,,) ~ M, (ko). Hence the detection
principle, Theorem 3, implies that the invariant a is constant. However the restric-
tion of a to an abelian subgroup generated by reflections is zero, and so a has to
be zero. [

In the corollary below we understand by a ‘maximal abelian subgroup generated
by reflections’ a subgroup which is maximal with respect to the two properties (a)
abelian and (b) generated by reflections.

Corollary 8. Let kg and W be as in Theorem 7 and M, a cycle module over k.
Let further G1, ..., G, be different mazimal abelian subgroups generated by reflecti-
ons, which represent all such subgroups up to conjugation, i.e., if G is a mazximal
abelian subgroup of W generated by reflections then G = wG;w™! for some 1 <
i <7 and somew € W.

Then the product of restriction morphisms

-
(Resg}' )::1: Invy (W, M,,) — @IHVQD(Gi,M*)NW(Gi)

=1

is injective for all n € 7Z. (Recall from Exzample 4 that the image of Resﬁ} 18
contained in the subgroup Invy, (G, MW for all 1 <i <))

Proof. Let a € Invy (W, M,) be a non-trivial invariant. Then by Theorem 7 there
exists an abelian subgroup H of W generated by reflections, such that Res{,{, (a) #
0. Let G be a maximal abelian subgroup generated by reflections, which contains H.
Then there exists 1 < ig < r and wg € W, such that woGwo_l =G,,. Let H C G,
be the image of H under the inner automorphism ¢y, : g — wo - g - wal of W.

Since the morphism ¢, : Invy! (W,M,) — Invy! (W, M,) is the identity by [31,
Prop. 13.1] we get

L*wO(Res‘I,{V/ (a)) = Resf, (i () = Resty, (a) # 0,

Wo

and so 0 # Res{,{,/ (a) = Resg:0 (Resg}o (a)). It follows Reslc,;viO (a) 20. O
4.7. Weyl groups

The arguments above also apply to invariants of Weyl groups as long as the
characteristic of the base field is not one of the torsion primes. We briefly indicate
the details, recalling first the definition of Weyl groups.

A reduced root system in the sense of Bourbaki [7, Chap. VI, see also [9, Chap.
XXIT], consists of the following data: A free and finitely generated abelian group M,
a finite subset A C M, and a map p : A - M"Y := Homz(M,Z), o — «V. The
triple (M, p, A) is subject to the following axioms:

(R1) Aa € Aif and only if A = =1, and
(R2) s4(B) € A and s,v(8Y) € AV := p(A), where s,(z) := 2z —a"(z) -« and
sav(f)=f—fla)-aVforallz e M, f € MY, and o € A.
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We assume in the following that the root system is semisimple, i.e., A generates
the Q-vector space Q ®z M.

The map p is injective and the triple (MY, p~! AY) is also a reduced root
system, the inverse root system of (M, p, A). For ease of notation if M and p are
clear from the context we call A a root system and AV its inverse.

Let GL(M) be the group of all automorphisms of the abelian group M. The
subgroup W = W(A) of GL(M) generated by all s,, a € A, is finite and called
the Weyl group associated with the root system A.

Remark 8. A finite subset A C M satisfying only (R2) is called (non-reduced)
root system. If A is irreducible it contains a reduced root system Ay, such that the
associated Weyl group W (4Ay) is equal the subgroup of GL(M) generated by all
Say & € A, see [7, Chap. VI, §1, no 4, Prop. 13], i.e., every Weyl group associated
with a root system is equal to a Weyl group associated with a reduced root system.

The group W acts on the dual MV via (w.f)(m) = f(w~'.m). We have then
Sa-f = sov(f) foralla € A and f € V'V, and 50 s4 > S,v induces an isomorphism
of W onto the Weyl group WV := W (AY) C GL(M") of the inverse root system.

Set V = ko ®z M. If charky = 0 then there is a regular symmetric bilinear
form b on V, which is W-invariant, see, e.g., [7, Chap. VI, §1, no. 1, Prop. 3],
and so W C O(V, b) is an orthogonal reflection group. Moreover by the Shephard—
Todd-Bourbaki Theorem 4 we know that S(V)" is a polynomial ring over ko and
so the splitting principle Theorem 7 holds for W over fields of characteristic 0.

Using the following result of Demazure [8, Cor. of Thm. 2, Thm. 3, and Prop.
8] we can prove a more general splitting principle for Weyl groups.

Theorem 9 (Demazure). Let kg be a field (of characteristic # 2) and (M, p, A)
a reduced semisimple oot system with associated Weyl group W = W (A). Assume
that charky # 3 if A has components of type Eg, E7, or Fy, and charky # 3,5
if it has components of type Eg. Then the ko-algebras S(V)W and S(VV)W are
polynomial (over ko).

(For the claim that S(VV)" is a polynomial ring over ko note that S(VV)W =
S(VV)W" by the isomorphism W = WV, 54 — sqv.)

4.8. A splitting principle for Weyl groups

Let ko, (M,p,A), W, and V = kg ®; M be as in the theorem of Demazure
above. It follows then from Lemma 5 that W,v is generated by reflections and
that S(V)We¥ is a polynomial ring over ko. We have (w.a)V = w.aV (since
W So-w L = Sw.a), and so W, = Wyv and also Wi, = Wi,v. We conclude
now as in the proof of Lemma 6(ii) and (iii) that Wi, = (s4). Wy =~ Z/2 x W,
and that S(V)W#e is a polynomial ring over kq. Also the analog of Lemma 6(iv)
holds, i.e., |J KeraV = U Ker(w —idy), with the same proof. One has
€A idy AweW
only to observe that identifying V ~ VVV, it follows from Lemma 5 that W, is
generated by reflections for all z € V since S(VV)"W is a polynomial ring over ko by
Demazure’s theorem above. Hence the analog of Lemma 6 holds in this situation.
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Finally, since the s,’s are all reflections in W, see [7, Chap. VI, §1, no 1, Rem. 3)],
the groups W, and W, which are generated by reflections, correspond to Weyl
groups of sub-root systems of A. We can copy now word by word the reasoning in
Section 4.6 to get (taking Demazure’s Theorem 9 above into account) the following
result.

Theorem 10. Let ko be a field (of characteristic not 2), and W a Weyl group
associated with a reduced root system A. Assume that charkg # 3 if A has compo-
nents of type Eg, E7, or Fy, and that charkgy # 3,5 if it has components of type Eg.
Further, let M, be a cycle module over ky. Then a cohomological invariant

a: H' (=, W) = M,(-)

over kg is zero if and only if its restrictions to all abelian subgroups generated by
reflections are zero.

Remark 4. For W a symmetric group and M, = H*(—,C), where C is a finite
I'k,-module of order prime to the characteristic of the base field, the splitting
priniciple holds in broader generality. Besides of being of characteristic # 2 the
field ko can be arbitrary. This has been shown by Serre [31, Thm. 24.9] for the
symmetric group, and in his letter [32] he informed us that he has a proof for the
general case:

Let kg be a field of characteristic # 2 and W a Weyl group. Further, let C' be a
finite 'y, -module, whose order is prime to the characteristic of the base field k.
Then a cohomological invariant

a: H'(—,G) —» H*(—,C)

is zero if and only if its restrictions to all abelian subgroups generated by reflections
are zero.

Note that the Galois cohomology groups H*(—,C') with appropriate twisting
by roots of unity (on C) are also a cycle module in the sense of Rost as long as
the order of C is not divisible by the characteristic of the base field, see [27, Rem.
1.11).

5. On the splitting principle for Witt invariants
5.1. Witt groups and the fundamental ideal

Throughout this section we assume that all fields are of characteristic # 2.

Given a field F' we denote by W(F) its Witt group (of bilinear forms), and by
I"(F), n € N, the nth power of the fundamental ideal I(F)) C W(F) of forms of
even rank. We set I"(F) := W(F) for all integers n < 0, and I"(F) := @ I"(F).

n>0

Given a valuation v on a field F with residue field F(v), which is also assumed
to be of characteristic # 2, and a uniformizer 7 there exists a (so-called) second
residue map

Opn: W(F) = W(F(v)),
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which depends on the choice of the uniformizer 7, see, e.g., [22, Chap. IV, §1].
Note that 9, (1" (F)) C 1"~ Y(F(v)) for n > 0 by Arason [1, Satz 3.1].
The kernel of 9,  does not depend on 7 but only on the valuation v.

5.2. Unramified Witt groups

Let be X be a scheme over a field kg, which is regular in codimension one. The
nth unramified Witt group of X is then defined as

AY(X, T = Ker(I”(ko(X)) rmmedaexv | D I”’l(ko(x))>,

zEX(l)

for all n > 0, where v, denotes the valuation of the function field ko (X) associated
with the regular codimension one point x, ko(z) denotes the residue field of z, and
e € Ox , is a uniformizer.

Definition 3. Let G be a linear algebraic group over the base field kg and n > 0
an integer. A Witt invariant of degree n is a natural transformation

a: Hl(f,G) —=I"(-),

where we consider H'( —, G) and I"( —) as functors on Fieldsy,, the category of
all field extensions of kg, with values in the category of pointed sets, respectively
of abelian groups.

We denote by Invy (G,I7) the set of all Witt invariants of G of degree n over
the field kg. The addition in the Witt ring induces a group structure on this set.
We further set

Invy, (G, 1Y) Galnvk0 (G, 1)
n>0

If H C G is a closed subgroup of the algebraic ko-group G and a € Inv (G,T7)
then the composition of natural transformations

H'(— H) = H'(-,G) = I"(~)

is a Witt invariant of degree n of H, which we call the restriction of the invariant a
to H, and denote it by resf (a).

5.3. The splitting principle

For the proof of the splitting principle for Witt invariants of orthogonal reflection
groups one needs the analogs of Theorem 1(i) and of the detection Theorem 3.
These can be proven as for cycle modules in Section 3 above, or one can follow
the arguments used in Serre’s lectures, see [31, Sect. 27]. Part (ii), the detection
principle, is also a special case of a general theorem [19, Thm. 3.3] of Merkurjev.
Note however that Merkurjev’s result does not apply to cycle modules as its proof
uses completions.
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Theorem 11. Let kg be a field and G a linear algebraic group over kq.

(i) Let X be an integral scheme, which is essentially of finite type over the base
field ko, with function field K = ko(X), and T € HL (X, G). Then for a
reqular codimension one point x of X with uniformizer m, we have

&mm (CLK(TK)) =0

for all a € Invy, (G, T7).

(ii) Let K be a finitely generated field extension of kg and T € HY(K,G) a
versal G-torsor. Then ax(T) = bi (T) implies that the invariants a and b
are equal for all a,b € Invy, (G,T).

With these results at our disposal we can now follow essentially word by word
the arguments in Section 4.6 to prove the splitting principle for Witt invariants
of orthogonal reflection groups. We have only to observe that the analog of the
diagram (9) in Section 4.5 commutes since a uniformizer for R is also one for S, as
the extension S, 2 R is unramified, and that by Fasel [11, Thm. 11.2.9] we have
A°(A(V)/W,T") ~ T"(kg), since by assumption S(VY)"V is a polynomial algebra
over the base field k.

The same arguments apply also to the Witt invariants of Weyl groups as long
as char kg does not divide the torsion primes.

Hence we have:

Theorem 12. Let kg and W be as in Theorem 7, or as in Theorem 10. Then
a € Invy, (W, T%) is zero if and only if its restrictions to all abelian subgroups gene-
rated by reflections are zero.
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