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Abstract. Let k0 be a field of characteristic not two, (V, b) a finite-dimensional regular
bilinear space over k0, and W a subgroup of the orthogonal group of (V, b) with the
property that the subring of W -invariants of the symmetric algebra of V is a polynomial
algebra over k0. We prove that Serre’s splitting principle holds for cohomological inva-
riants of W with values in Rost’s cycle modules.

1. Introduction

Let Fk0
be the category of finitely generated field extensions of a field k0,

and M∗ a cycle module in the sense of Rost [27] over k0. A cohomological invariant
of degree n of an algebraic group G over k0 with values in M∗ is a natural
transformation

a : H1(−, G)→ Mn(− )

of functors on Fk0 . Here H1(−, G) denotes the first non-abelian Galois cohomology
set of G. Cohomological invariants are an old topic. For instance the discriminant,
or the Clifford invariant of a quadratic form can be interpreted as a cohomological
invariant of an orthogonal group. However the formalization of this concept has
been done only some 20 years ago by Serre, see his lectures [31] for a thorough
account and some information on the history of the subject.

In general the cohomological invariants of an algebraic group with values in a
given cycle module are hard (if not impossible) to compute. For most groups we
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know only some of the invariants, and even finding new ones can be quite a task,
as is exemplified in the construction of the Rost invariant, see, e.g., Merkurjev [19].
Besides (the natural) applications to the classification of algebraic groups and their
torsors there are further applications of the theory of cohomological invariants,
as for instance to rationality questions around Noether’s problem, see Serre’s
lectures [31, Sects. 33 and 34].

In [16] the second named author has computed the invariants of a Weyl group W
with values in a cycle module that is annihilated by 2 over a field k0, whose
characteristic does not divide the cardinality of W . Crucial for these computations
is the so-called splitting principle for invariants of orthogonal reflection groups.
The proof of this principle is the content of this article. We show:
Theorem. Let k0 be a field of characteristic not 2, (V, b) a finite-dimensional
regular bilinear space over k0, and W ⊆ O(V, b) a finite subgroup of the orthogonal
group of (V, b). Assume that the W -invariants S(V )W of the symmetric algebra
S(V ) of V are a polynomial algebra over k0.

Then a cohomological invariant of degree n of W with values in a cycle module
M∗ over k0

a : H1(−,W )→ Mn(− )

is zero if and only if its restrictions to all abelian subgroups generated by reflections
are zero.

Note that by the Chevalley–Shephard–Todd theorem a group W as in the
theorem above is generated by orthogonal reflections in O(V, b), and is therefore
a so-called orthogonal reflection group. On the other hand by the same result,
if W ⊆ O(V, b) is generated by reflections and the order of W is prime to the
characteristic of the base field k0 then S(V )W is a polynomial algebra over k0.

The proof of the theorem makes use of the explicit description of a versal W -
torsor over k0, which we give in Section 4.4. This construction uses the fact that W
is a subgroup of the orthogonal group of some regular symmetric bilinear space
over k0. Hence, although the finite group W is defined as a finite group scheme
over an arbitrary field, for our proof of the splitting principle we have to assume
that the group W has an orthogonal representation W ↪→ O(V, b) over k0, such
that S(V )W is a polynomial algebra over k0.

Serre [32] has pointed out to us that thanks to a theorem of Demazure [8]
essentially the same arguments show the splitting principle for Weyl groups as
long as the characteristic of the base field is not one of the torsion primes, see
Sections 4.7 and 4.8. More general, Serre has shown that for invariants of Weyl
groups with values in abelian Galois cohomology with finite coefficients (these are
cycle modules in the sense of Rost) the splitting principle holds as long as the
characteristic of the base field is not two, see Remark 4.

Note that Ducoat in the unpublished preprint [10] claims the splitting principle
for the special case of invariants of Coxeter groups with values in Galois cohomology
with finite coefficients over (big enough) fields of characteristic zero.

This article as well as its sequel [16] are based on the 2010 Diploma thesis [15] of
the second named author. This diploma thesis does not deal with cycle modules of
Rost, but with Morel’s [23] A1-invariants sheaves with KM

∗ /2-structure. However
the proof of the splitting principle in [15] has some gaps and flaws.
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ON THE SPLITTING PRINCIPLE

Our original intention was to write this article in the same setting. We refrained
from this for the following two reasons. On the one hand, it has turned out to
be much easier and shorter (at least for us) to give the proof in the slightly
more restrictive setting of cycle modules. And on the other hand, we believe
that the most interesting invariants are anyway Galois cohomology-, or Milnor K-
theory (modulo some integer) invariants, which are both cycle modules, or Witt
invariants. Although Witt groups are not cycle modules our arguments work for
these invariants as well, see Section 5. An advantage of this restriction is also
that the article is readable for readers only interested in such invariants. They can
assume throughout that the cycle module M∗ in question is one of their favourite
theories.

Acknowledgement. We would like to thank Fabien Morel for advice and fruitful
discussions around this work. Furthermore we would like to thank Jean-Pierre
Serre for advice and comments on this article and its sequel [16], in particular for
pointing out to us unnecessary restrictions on the characteristic of the base field,
and for explaining to us that thanks to a theorem of Demazure our arguments
apply also to (most) Weyl groups.

This work has started (and slept long in between) more than 10 years ago,
when one of us (S.G.) was Assistant and the other (C.H.) Diploma Student of
Fabien Morel at the LMU Munich. The first named author would also like to
thank Volodya Chernousov, now his colleague at the University of Alberta. Visiting
Volodya in March 2008 has made a crucial impact on this work.

Finally we would like to thank the referees for their thorough reading, correcti-
ons, and very useful suggestions.

2. Preliminaries: Cycle modules, Galois cohomology and torsors

2.1. Notations

Given a field k0 we denote by (k0)s its separable closure, and by Γk0
its absolute

Galois group Gal((k0)s/k0).
We denote by Fieldsk0

the category of all field extensions of k0. More precisely,
the objects of Fieldsk0 are pairs (L, j), where L is a field and j : k0 → L a
homomorphism of fields. A morphism (E, i) → (L, j) is a morphism of fields ϕ :
E → L, such that

E
ϕ // L

k0

j

??

i

``

commutes. For ease of notation the structure morphism will not be mentioned,
i.e., we only write L instead of (L, j).

If (`, ι) ∈ Fieldsk0
then Fields` can be identified with a full subcategory of the

category Fieldsk0 via the embedding (L, j) 7→ (L, j ◦ ι), which depends on the
structure morphism ι : k0 → `.

The symbol Fk0 denotes the full subcategory of Fieldsk0 consisting of finitely
generated field extensions of k0, i.e., of pairs (L, j), where L is a field and j :
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k0 → L a homomorphism of fields giving L the structure of a finitely generated
field extension of k0. Again we can identify F` with a full subcategory of Fk0

for
all ` ∈ Fk0

.

2.2. Cycle modules

These have been invented by Rost [27] to facilitate Chow group computations. We
refer to this article for details and more information, in particular for the long list
of axioms, of which we recall here only those which play a role in this work.

The prototype of a cycle module is Milnor K-theory, which has been introduced
by Milnor [21], and which we denote by

KM
∗ (F ) :=

⊕
n≥0

KM
n (F )

for a field F . Recall that this is a graded ring and as abelian group generated by
the pure symbols {x1, . . . , xn} ∈ KM

n (F ), where x1, . . . , xn are non-zero elements
of F .

A cycle module over a field k0 is a covariant functor

M∗ : Fk0
→ grAb, F 7→ M∗(F ) =

⊕
n∈Z

Mn(F ),

where grAb denotes the category of graded abelian groups, which is subject to the
(long list of) axioms in Rost [27, Sects. 1 and 2]. In particular, M∗(F ) is a graded
KM
∗ (F )-module for all F ∈ Fk0

. Following the foundational paper of Rost on cycle
modules and deviating from more usual customs we denote by ϕM the morphism
M∗(F )→ M∗(E) induced by a morphism ϕ : F → E in Fk0 .

2.3. The second residue map

Let v be a discrete valuation of F ∈ Fk0
of geometric type which is trivial on k0. By

this we mean that there exists a normal integral k0-scheme X of finite type, such
that the function field k0(X) is equal to F , and such that v corresponds to a regular
codimension one point of X. Then there is a KM

∗ (k0)-linear homomorphism, the
so-called (second) residue map:

∂v : M∗(F )→ M∗−1(F (v)),

where F (v) is the residue field of v.
Associated with this homogenous homomorphism of degree −1 there is a homo-

genous homomorphism of degree 0, the so-called specialization homomorphism:

sπv : M∗(F )→ M∗(F (v)), x 7→ ∂v
(
{π} · x

)
,

which depends on the choice of a uniformizer π for v.
We recall the following four axioms, which play some role here. Let F, v, F (v)

be as above and ϕ : F → E a finite field extension. Assume there is a geometric
valuation w on E with residue field E(w) and with w|F = v. Let ew|v be the
ramification index and ϕ̄ : F (v)→ E(w) the induced homomorphism of the residue
fields. Then the following holds (numbering as in Rost [27, p. 329]):

(R2a) ϕM(x · z) = ϕKM (x) · ϕM (z) for all x ∈ KM
∗ (F ) and z ∈ M∗(F );

(R3a) ∂w ◦ ϕM = ew|v · ϕ̄M ◦ ∂v;
(R3c) if w is trivial on F , and so F (v) = F , then ∂w ◦ ϕM = 0; and
(R3d) if w is as in (R3c) and π is a uniformizer for w then sπw ◦ ϕM = ϕ̄M.
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2.4. Unramified cycle modules

Let X be an integral scheme, which is essentially of finite type over a field k0. By
the latter we mean that X is a finite type k0-scheme or a localization of such a
scheme. We denote by X(1) the set of points of codimension 1 in X. If a point x
in X(1) is regular, then its local ring OX,x is a discrete valuation ring and we get
a valuation vx on the function field k0(X) of X.

Given a cycle module M∗ over k0 and a regular codimension one point x of X
we have then a second residue map

∂x := ∂vx : M∗(k0(X))→ M∗−1(k0(x)),

where k0(x) denotes the residue field of x, as well as a specialization map

sπx := sπvx : M∗(k0(X))→ M∗(k0(x))

for every uniformizer π ∈ OX,x.
If X is regular in codimension one ∂x exists for all x ∈ X(1) and so we can

define

A0(X,Mn) := Ker
(

Mn(k0(X))
(∂x)

x∈X(1)

−−−−−−−−→
⊕

x∈X(1)

Mn−1(k0(x))
)
,

the here so-called unramified Mn-cohomology group of X.

Remark 1. If K is a field one considers also the subgroup Mn(K)unr of unramified
elements of Mn(K), which is defined as the intersection of the kernels of all residue
maps associated with geometric discrete valuations of K. Note that if K = k0(X)
is as above we have Mn(k0(X))unr ⊆ A0(X,Mn).

2.5. Non-abelian Galois cohomology

We recall now – mainly to fix notations – some definitions and properties of torsors
and non-abelian Galois cohomology sets. We refer to Serre’s well-known book [29]
and also to [18, §28 and §29] for details and more information.

Let F be a field and G a linear algebraic group over F . We denote by H1(F,G)
the first non-abelian Galois cohomology set, i.e., H1(F,G) = H1(ΓF , G(Fs)). If
a continuous map c : ΓF → G(Fs), σ 7→ cσ, is a 1-cocycle, we denote its class
in H1(F,G) by [c].

If ϕ : F → E is a morphism of fields we denote the induced restriction map
H1(F,G)→ H1(E,G) by rϕ, or if ϕ is clear from the context by rE/F .

If θ : H → G is a morphism of linear algebraic groups over F we denote
following [18] the induced homomorphism H1(F,H)→ H1(F,G) by θ1.

In the proof of Theorem 1 below we also consider the first non-abelian étale
cohomology set H1

et(X,G), where X is a scheme over F and G a linear algebraic
group over F . If f : X → Y is a morphism of such schemes we denote the pull-
back map H1

et(Y,G) → H1
et(X,G) by rf . We write then TX instead of rf (T ) for

T ∈ H1
et(Y,G) if f is clear from the context.

Note that since G is smooth the set H1
et(X,G) can be identified with the

isomorphism classes of G-torsors π : T → X over X, see, e.g., [20, Chap. III.4].
We denote the class of a G-torsor π : T → X over X by [T → X].

We use in the following also affine notations, i.e., we write H1
et(R,G) instead of

H1
et(X,G) if X = SpecR is affine. Note that if X = SpecK is the spectrum of a

field then H1
et(X,G) is naturally isomorphic to H1(K,G).
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Example 1. Let G be a finite group with trivial ΓF -action, where F is a field.
Then the non-abelian Galois cohomology set H1(F,G) can be identified with the
isomorphism classes of G-Galois algebras, see, e.g., [18, §18B].

A particular example of such a G-Galois algebra is a finite Galois extension E ⊃
F with group Gal(E/F ) = G. Then the continuous and surjective homomorphism
of groups c : ΓF → G, σ 7→ σ|E , represents the class of the G-Galois algebra E
in H1(F,G).

In this situation, if θ : H ⊂ G is a subgroup with fixed field L then the class of the
restriction rL/F ([c]) is represented by the continuous homomorphism c|ΓL : ΓL ⊂
ΓF

c−→ G, whose image is in the subgroup H. It follows that rL/F ([c]) = θ1([c′]),

where [c′] ∈ H1(L,H) is represented by c′ : ΓL
c|ΓL−−−→ H.

2.6. Versal torsors

Let T ∈ H1
et(X,G) be a G-torsor over the smooth integral F -scheme X with

function field K = F (X). Assume that for any infinite field L ∈ FF and every

element T̃ ∈ H1(L,G) there exists a dense set of L-points x of X, such that

TF (x) = T̃ in H1(F (x), G) = H1(L,G). Then TK ∈ H1(K,G) is called a versal
G-torsor, see [31, Def. 5.1].

Such torsors exists for every linear algebraic group over a field, see [31, 5.3].

Example 2. Let G be a finite group which acts faithfully on a finite-dimensional
k0-vector space V , where k0 is a field. Then G acts on the dual space V ∨ :=
Homk0

(V, k0) via (h.f)(v) := f(h−1.v) for all f ∈ V ∨, v ∈ V , and h ∈ G. This
induces a G-action on A(V ) := Spec S(V ∨), where S(V ∨) denotes the symmetric
algebra of V ∨. For g ∈ G denote by Vg the closed subset of A(V ) defined by the
ideal generated by all f ◦ (g− idV ) ∈ V ∨, f ∈ V ∨. The group G acts freely on the
open set

U := A(V ) \
⋃

idV 6=g∈G

Vg,

and so the quotient morphism q : U → U/G is a G-torsor. The generic fiber of
this torsor is a versal G-torsor, see [31, 5.4 and 5.5] for a proof. Note that the
function field k0(U/G) is the fraction field of the invariant ring S(V ∨)G. Hence
the class of this versal G-torsor in H1(k0(U/G), G) is the class of the G-Galois
algebra k0(U) over k0(U/G). In other words, the class of the Galois extension
k0(U) ⊇ k0(U)G = k0(U/G) is a versal G-torsor over k0.

3. Invariants in cycle modules

Definition 1. Let G be a linear algebraic group and M∗ a cycle module over
the field k0. A cohomological invariant of degree n of G with values in the cycle
module M∗ is a natural transformation of functors

a : H1(−, G)→ Mn(− ),
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i.e., for all ϕ : F → E in Fk0
the following diagram commutes:

H1(E,G)
aE // Mn(E)

H1(F,G)
aF

//

rϕ

OO

Mn(F )

ϕM

OO

.

This definition is due to Serre and a special case of the one given in his lectures
[31], but it includes the main players of Serre’s text, cohomological invariants of
algebraic groups with values in Hn(−, C) for some finite discrete Γk0

-module C
of order prime to char k0. Note however that there is a subtle difference as we
consider here only the category Fk0 of finitely generated field extensions of k0 and
not the category Fieldsk0

of all field extensions of k0. This is forced by the fact
that for technical reasons an ”abstract” cycle module over a field k0 is not defined
for all field extensions of k0 but only for the finitely generated ones, cf. Rost [27,
p. 328]. If one is only interested in ”concrete” cycle modules as for instance Milnor
K-theory, or Galois cohomology with finite coefficients, there is no need for this
restriction. (Note however that by the detection principle, which is proven in Serre’s
lecture [31] for Galois cohomology invariants with finite coefficients and for Milnor
K-theory below, these invariants are determined by their values on the smaller
category Fk0

.)
Following Serre’s lectures [31] we denote the set of cohomological invariants of

degree n of the group G with values in M∗ by Invnk0
(G,M∗). The set Invnk0

(G,M∗)
has the structure of an abelian group as Mn(F ) is one for all F ∈ Fk0

.
We set

Invk0
(G,M∗) :=

⊕
n∈Z

Invnk0
(G,M∗),

and call elements of this direct sum cohomological invariants of G with values
in M∗. Note that the KM

∗ -structure of M∗ induces a KM
∗ (k0) operation on the

graded abelian group Invk0
(G,M∗) making the set of cohomological invariants

of G with values in M∗ a graded KM
∗ (k0)-module.

Example 3. We have Invk0(G,M∗) 6= 0 if M∗(k0) 6= 0. In fact, if x ∈ M∗(k0) then

cL : H1(L,G)→ M∗(L), t 7→ (ιL)M(x),

where L ∈ Fk0
with structure map ιL : k0 → L, defines an invariant. Such

invariants are called constant, respectively, constant of degree n if x ∈ Mn(k0),
and we write c ≡ x ∈ M∗(k0).

3.1. Restriction of invariants

Let θ : H → G be a morphism of linear algebraic groups over k0 and M∗ a cycle
module over k0. Composing a ∈ Invk0

(G,M∗) with the map θ1:

H1(−, H)
θ1

−−→ H1(−, G)
a−→ M∗(− )

we get an invariant θ∗(a) ∈ Invk0(H,M∗). In case θ : H ⊆ G is the embedding of
a closed subgroup we denote following Serre’s lecture [31] the induced homomor-
phism θ∗ : Invk0

(G,M∗)→ Invk0
(H,M∗) by ResHG and call it the restriction.
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Example 4. Let H be a subgroup of a finite group G, M∗ a cycle module over k0,
and a ∈ Invk0

(G,M∗). If g is an element of the normalizer NG(H) we denote
by ιg the inner automorphism of G defined by g. The isomorphism ιg acts also
on H and so consequently via ι∗g : a 7→ a ◦ ι1g on Invk0

(H,M∗) for all g ∈ NG(H)

giving Invk0
(H,M∗) the structure of a NG(H)-module. We claim that ResHG maps

Invk0
(G,M∗) into the subgroup Invk0

(H,M∗)
NG(H) of NG(H)-invariant elements

in Invk0
(H,M∗). In fact, by [31, Prop. 13.1] the map ι1g : H1(L,G) → H1(L,G)

is the identity for all L ∈ Fk0
. Since we have ResHG

(
ι∗g(a)

)
= ι∗g

(
ResHG (a)

)
for all

a ∈ Invk0
(G,M∗) this implies the claim.

3.2. Specialization theorem and detection principle

The following specialization theorem is an analog of a result of Rost on Galois
cohomology invariants. Its proof follows essentially the pattern of arguments in
Serre’s lecture [31, Thm. 11.1]. However it is more involved as we can not work
with the henselization of the field K which is in general not in Fk0

anymore.

Theorem 1. Let X be an integral scheme with function field K = k0(X), which is
essentially of finite type over the field k0. Let further M∗ be a cycle module over k0,
a ∈ Invk0

(G,M∗), where G is a linear algebraic group over k0, and T ∈ H1
et(X,G).

Let x ∈ X be a regular codimension one point. Then we have:

(i) ∂x
(
aK(TK)

)
= 0; and

(ii) sπx(aK(TK)) = ak0(x)(Tk0(x)) for all local uniformizers π ∈ OX,x.

In particular, if X is regular in codimension one, then aK(TK) ∈ A0(X,M∗).

Proof. Replacing X by SpecOX,x we can assume that X = SpecR for a discrete
valuation ring R, which is essentially of finite type over k0, and that x is the closed
point of X. We denote k = k0(x) the residue field of R, q : R → k the quotient
map, η : R→ K the embedding of R into its field of fractions K, and v the discrete
valuation of K corresponding to R. Then ∂x = ∂v : M∗(K)→ M∗−1(k), and for (i)
we have to show

∂v
(
aK(TK)

)
= 0 . (1)

To prove this we ‘construct’ a discrete valuation ring S, which is a local étale
extension of R with the same residue field k, and which contains a subfield ` with
G-torsor T̃ , such that TS = S ×R T ' S ×` T̃ . Having this ring S at our disposal
(1) is then essentially a formal consequence of the axioms of a cycle module.

To get the desired local étale extension, let ψ : R → Rh be the henselization
of R with fraction field Kh. This is also a discrete valuation ring with the same
residue field k, and there exist local étale R-algebras ϕi : R → Ri, i ∈ I, such
that Rh = lim

i∈I
Ri, see [26, Chap. VIII]. The rings Ri are also discrete valuation

rings with k as residue field. We denote by vi the induced valuation on the fraction
field Ki of Ri.
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We get a commutative diagram of homomorphisms of rings for all i ∈ I:

K
ϕ′i // Ki

ψ′i // Kh

R
ϕi

//

η

OO

Ri
ψi

//

ηi

OO

Rh

ηh

OO

,

where the up arrows are the respective inclusions of the rings R,Ri, and Rh into
their fraction fields. Note that ψ = ψi ◦ ϕi for all i ∈ I.

The homomorphism ϕi : R→ Ri is unramified at the maximal ideal of Ri, and
so by the cycle module Axiom (R3a), see Section 2.3, the square on the right-hand
side of the following diagram commutes

H1(Ki, G)
aKi // M∗(Ki)

∂vi // M∗−1(k)

H1(K,G)
aK //

rϕ′
i

OO

M∗(K)

(ϕ′i)M

OO

∂v // M∗−1(k)

=

OO
(2)

for all i ∈ I. Since a is an invariant also the one on the left-hand side is com-
mutative. Therefore to prove ∂v(aK(TK)) = 0 it is enough to show that there
exists i ∈ I, such that

∂vi
(
aKi(TKi)

)
= ∂vi

(
aKi(rϕ′i(TK))

)
= 0 .

To find this i ∈ I we use the fact that there exists a splitting j : k → Rh of the
quotient morphism qh : Rh → k, i.e., qh ◦ j = idk. In fact, if R̂ is the completion
of R we have a splitting ĵ : k → R̂ of the quotient map R̂ → k by (a special case
of) the Cohen structure theorem, see, e.g., [6, Chap. 8, §5, no. 2, Cor. 3 of Thm.
1]. This splitting factors via Rh since the henselian local domain Rh is excellent
by [12, Cor. 18.7.6], and therefore satisfies the approximation property by [3, Sect.

3.6, Cor. 9], which implies in particular, that the splitting ĵ of R̂ → k factors
via Rh.

The composition of maps H1(k,G)
rj−→ H1

et(R
h, G)

r
qh−−→ H1(k,G) is the identity,

and by [9, Chap. XXIV, Prop. 8.1] the map rqh : H1
et(R

h, G) → H1(k,G) is an

isomorphism. Therefore rj : H1(k,G) → H1
et(R

h, G) is one as well, and moreover
we have rj(Tk) = TRh since rqh(TRh) = rqh(rψ(T )) = rq(T ) = Tk.

Let ki be the pre-image of j(k) under the homomorphism ψi : Ri → Rh. The
set ki \ {0} is contained in the set of units of Ri and so ki is a field. This implies
also that vi is trivial on ki. The k0-linear quotient homomorphism qi : Ri → k
maps ki onto a subfield of k. It follows, see [5, Chap. 5, §14, no 7, Cor. 3], that ki
is also a finitely generated field extension of k0 and so in Fk0 for all i ∈ I.

By the definition of the fields ki we have a commutative diagram

k
j // Rh

ki
ji

//

ψ̄i

OO

Ri

ψi

OO

(3)
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for all i ∈ I, where ji is the inclusion ki ⊂ Ri and ψ̄i the homomorphism induced
by ψi. Note that ψ̄i = qi ◦ ji as q ◦ j = idk.

Diagram (3) gives in turn a commutative diagram of pointed non-abelian coho-
mology sets

H1(k,G)
rj // H1

et(R
h, G)

H1(ki, G)
rji

//

rψ̄i

OO

H1
et(Ri, G)

rψi

OO

. (4)

We have k = lim
i∈I

ki and therefore by [2, Chap. VII, Thm. 5.7] (or by direct

verification) that H1(k,G) = lim
i∈I

H1(ki, G). Hence there exists i0 ∈ I and Ti0 ∈

H1(ki0 , G), such that

rψ̄i0 (Ti0) = Tk ∈ H1(k,G) . (5)

By (4) we have

rψi0
(
rji0 (Ti0)

)
= rj

(
rψ̄i0 (Ti0)

)
= rj(Tk) = TRh = rψi0 (TRi0 ) .

Now Rh = lim
i∈I

Ri and so by [2, Chap. VII, Thm. 5.7] again we have

lim
i∈I

H1
et(Ri, G) = H1

et(R
h, G) .

Hence replacing i0 by a ’larger’ element of I if necessary we can assume that also

rji0 (Ti0) = TRi0 . (6)

We claim that this index i0 does the job, i.e., we have ∂vi0
(
aKi0 (TKi0 )

)
= 0. In

fact, since a is a cohomological invariant we have a commutative diagram

H1(Ki0 , G)
aKi0 // M∗(Ki0)

H1(ki0 , G)
aki0

//

r(ηi0◦ji0 )

OO

M∗(ki0)

(ηi0◦ji0 )M

OO

,

and therefore taking (6) into account

aKi0 (TKi0 ) = aKi0
(
r(ηi0◦ji0 )(Ti0)

)
= (ηi0 ◦ ji0)M

(
aki0 (Ti0)

)
.

But vi0 |ki0 ≡ 0 and so by the cycle module Axiom (R3c), see Section 2.3, we have
∂vi0 (z) = 0 for all z ∈ M∗(Ki0), which are in the image of (ηi0 ◦ ji0)M. We have
proven (i).
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For the proof of (ii) we continue with the above notation, i.e., R = OX,x,
Rh = lim

i∈I
Ri, and so on. We fix further a uniformizer π of R. Since the extensions

ϕi : R→ Ri are unramified the image of the uniformizer π in Ri is also one, which
we denote by π as well. We have sπx = sπv , and so taking the right-hand side of
the commutative diagram (2), the definition of the specialization map, as well as
Axiom (R2a), see Section 2.3, into account we have sπvi0 ◦ (ϕ′i0)M = sπv .

We get then

sπv (aK(TK)) = sπvi0

(
(ϕ′i0)M(aK(TK))

)
= sπvi0

(
aKi0 (rϕ′i0

(TK))
)

a is invariant

= sπvi0

(
aKi0 (rηi0 (TRi0 ))

)
since ηi0 ◦ ϕi0 = ϕ′i0 ◦ η

= sπvi0

(
aKi0 (r(ηi0◦ji0 )(Ti0))

)
by (6)

= sπvi0

(
(ηi0 ◦ ji0)M(aki0 (Ti0))

)
a is invariant

= (ψ̄i0)M

(
aki0 (Ti0)

)
by (R3d)

= ak
(
rψ̄i0 (Ti0)

)
a is invariant

= ak(Tk) by (5)

as claimed. We are done. �

A consequence of this result is the following corollary, which is the analog of [31,
12.2] for cycle module invariants.

Corollary 2. Let R be a regular local ring, which is essentially of finite type over
the field k0. Denote by K and k the fraction and residue field, respectively, of R.
Let further G be a linear algebraic group over k0, and M∗ a cycle module over k0.
Then

aK(TK) = 0 =⇒ ak(Tk) = 0

for all T ∈ H1
et(R,G) and all a ∈ Invk0

(G,M∗).

Proof. The proof is the same as the one of [31, 12.2]. We recall the arguments for
the convenience of the reader.

If dimR = 1 this follows from part (ii) of the theorem above, so let d :=
dimR ≥ 2, and t ∈ R a regular parameter. Then R/Rt is also a regular local ring
with the same residue field k, and which is essentially of finite type over k0. The
fraction field of R/Rt is the residue field Kt of the discrete valuation ring RRt (the
localization at the codimension one prime ideal Rt). By the dimension one case we
have aKt(TKt) = 0, and so by induction ak(Tk) = 0. �

Finally we state and prove the following detection principle, which is the cycle
module analog of [31, Thm. in 12.3]. Again the proof is the same as in Serre’s
lecture and only recalled for the convenience of our reader.

Theorem 3. Let G be a linear algebraic group over the field k0, and T ∈ H1(K,G)
a versal G-torsor. Then we have for a given cycle module M∗ over k0 and a, b ∈
Invk0

(G,M∗):
aK(T ) = bK(T ) =⇒ a = b .
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Proof. Replacing a by b − a it is enough to show that aK(T ) = 0 implies a ≡ 0.
We have to show ak(S) = 0 for all k ∈ Fk0

and all S ∈ H1(k,G).

Replacing k by the rational function field k(T ) if necessary, we can assume
that k is an infinite field. In fact, since a is an invariant the following diagram
commutes:

H1(k(T ), G)
ak(T ) // M∗(k(T ))

H1(k,G)
ak //

rι

OO

M∗(k)

ιM

OO
,

where ι : k ↪→ k(T ) is the natural embedding. By Rost [27, Prop. 2.2 (H)] the
homomorphism ιM : M∗(k)→ M∗(k(T )) is injective and so ak(T )(Sk(T )) = 0 implies
ak(S) = 0.

To prove the claim for an infinite field k we use that since T ∈ H1(K,G) is a
versal G-torsor there exists a G-torsor T → X over a smooth integral scheme X
with function field K, such that the generic fiber of T → X is isomorphic to T ,
and such that there exists x ∈ X(k) with S = [T → X]k0(x). We have aK(TK) = 0
by assumption, and so we conclude that ak0(x)([T → X]k0(x)) = 0 by Corollary 2
above (note that OX,x is regular since X is smooth). �

Remark 2.

(i) As one referee has pointed out to us Guillot [14, §6] also considers cohomologi-
cal invariants of algebraic groups with values in Rost cycle modules. However he
does not prove basic results as for instance the detection principle above.

(ii) A further generalization of cohomological invariants is due to Pirisi [25],
who introduced cohomological invariants of algebraic stacks with values in cycle
modules.

4. The splitting principle

4.1. Pseudo-reflections

We recall first some definitions and properties of reflection groups and their root
systems, merely to fix our notations. We refer to the standard reference Bourbaki
[7] for details and more information.

Let V be a finite-dimensional vector space over the field k0. We denote by GL(V )
the group of k0-linear automorphisms of V . An element s of GL(V ) is called a
pseudo-reflection if rank(s − idV ) = 1. A finite subgroup of GL(V ) is called a
pseudo-reflection group if it is generated by pseudo-reflections. A pseudo-reflection
is called a reflection if it has exponent 2.

We have then the following well-known result. A proof can be found for instance
in [17, Sects. 18.1 and 19.1]; see also [7, Chap. V, §5, no 3, Thm. 3 and Chap. V,
§5, Ex. 7 and 8], or Serre [28].

Theorem 4 (Chevalley–Shephard–Todd–Bourbaki–Serre). Let V be a finite-di-
mensional vector space over k0 and W ⊆ GL(V ) a finite subgroup. Consider the
following two assertions:
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(i) The algebra of invariants S(V )W is a polynomial algebra.
(ii) The subgroup W of GL(V ) is generated by pseudo-reflections, i.e., W is a

pseudo-reflection group.

Then (i) implies (ii), and if char k0 and |W | are coprime (i) and (ii) are equivalent.

The following lemma, which is due to Serre, is well known. For the sake of
completeness we give a proof following Nakajima [24, Proof of Lem. 1.4]. Recall
here that if a group W acts on a vector space V then it acts on the dual space V ∨

by (w.f)(x) := f(w−1.x) for all w ∈W , f ∈ V ∨, and x ∈ V . We set then also

Wx :=
{
w ∈W | w.x = x

}
and W±x :=

{
w ∈W | w.x = ±x

}
for x ∈ V or x ∈ V ∨.

Lemma 5. Let V be a finite-dimensional k0-vector space and W ⊆ GL(V ) a finite
group, such that S(V )W is a polynomial algebra. Then S(V )Wf is isomorphic to
a polynomial algebra in n = dimV variables over k0, and so Wf is generated by
pseudo-reflections (in GL(V )) for all f ∈ V ∨.

Proof. We can assume f 6= 0. Let S(f) : S(V )→ k0 be the morphism of k0-algebras
induced by f and mf its kernel.

We claim that
Wf =

{
w ∈W | w(mf ) = mf

}
.

One inclusion is clear. For the other, let w ∈ W \Wf . Then w−1.f 6= f and so
there exists x ∈ V , such that f(w.x) 6= f(x). It follows that w.(x − f(x)) 6∈ mf ,
and hence the claim.

Therefore Wf is the decomposition group of mf , and so by [4, Chap. 5, §2, no 2,

Prop. 4] the extension of rings S(V )
Wf

mf∩S(V )Wf
⊇ S(V )Wmf∩S(V )W is unramified.

Since by assumption S(V )W is a polynomial ring the localization S(V )Wmf∩S(V )W

is a regular local ring. It follows that S(V )
Wf

mf∩S(V )Wf
=
(

S(V )mf
)Wf is a regular

local ring as well.
We introduce a new grading on S(V ) by assigning to v − f(v), 0 6= v ∈ V , the

degree 1. We denote S(V ) with this grading by S :=
⊕
i≥0

Si. Then mf = S+ =
⊕
i≥1

Si.

It follows that S
Wf

(SWf )+
=
(

S(V )mf
)Wf is a regular local ring, and so by [30, Chap.

IV, App. III, Thm. 1] we get that SWf = S(V )Wf is a polynomial ring in n = dimV
variables over k0.

The last assertion is a consequence of Theorem 4 above. �

4.2. Orthogonal reflection groups

In the rest of this section we denote by k0 a field of characteristic 6= 2.
Let (V, b) be a regular symmetric bilinear space of finite dimension over k0, and

v ∈ V an anisotropic vector, i.e., b(v, v) 6= 0. Then

sv : V → V, w 7→ w − 2b(v, w)

b(v, v)
· v,
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is an element of the orthogonal group O(V, b), called the (orthogonal) reflection
associated with v.

Note that a pseudo-reflection s in O(V, b) is automatically an orthogonal reflec-
tion. In fact, such an s has determinant ±1. If det(s) = 1 we have s = idV ,
see, e.g., [13, Prop. 5.7], and if det(s) = −1 the number −1 is an eigenvalue
and s is diagonalizable. Let w be an eigenvector for −1. Then we have b(v, w) =
b(s(v), s(w)) = −b(v, w) for all v ∈ ker(s− idV ) and so V = ker(s− idV ) ⊥ k0 ·w.
It follows that s = sw.

Definition 2. Let (V, b) be a regular symmetric bilinear space of finite dimension
over k0. A finite subgroup of O(V, b) that is generated by orthogonal reflections is
called a (finite) orthogonal reflection group over the field k0.

4.3. The root system of an orthogonal reflection group

Given an orthogonal reflection group W ⊆ O(V, b) let RW be the set of reflections
in W . Recall now that

w ◦ sα ◦ w−1 = sw.α .

Hence the set RW is the disjoint union of conjugacy classes RW =
m⋃
i=1

Ri. For

every Ri we choose an anisotropic vector βi with sβi ∈ Ri. Then we have Ri =
{sw.βi | w ∈W} for all 1 ≤ i ≤ m. Let

∆i :=
{
w.βi | w ∈W

}
for all 1 ≤ i ≤ m, and set

∆ :=

m⋃
i=1

∆i .

Note that the sets ∆i are W -invariant by definition. The set ∆ is called a root
system associated with W . It has the following properties:

(R1) if α ∈ ∆ then λ · α ∈ ∆ for λ ∈ k0 if and only if λ = ±1, and
(R2) for all α, β ∈ ∆ we have sα.β ∈ ∆.

(In fact, if w.α = λ ·α then b(α, α) = b(w.α,w.α) = b(λ ·α, λ ·α) = λ2b(α, α), and
so λ = ±1, hence (R1). Property (R2) is by construction.)

Moreover, also by construction the set {sα | α ∈ ∆} is the set of all reflections
in W , and so in particular W is generated by all sα, α ∈ ∆.

Since b is a regular bilinear form the homomorphism b̂ : V → V ∨, v 7→ b(v, − ),
is an isomorphism. We use this isomorphism to equip V ∨ with a regular symmetric
bilinear form:

b∨ : V ∨ × V ∨ → k0, (f, g) 7→ b(̂b−1(f), b̂−1(g)) .

The isomorphism b̂ is then a W -linear isometry (V, b)
'−→ (V ∨, b∨), which induces

a W -linear isomorphism of k0-algebras S(̂b) : S(V )
'−→ S(V ∨). Hence S(V )W is a

polynomial algebra over k0 if and only if S(V ∨)W is so.
For α ∈ ∆ we set

α∨(v) :=
2b(α, v)

b(α, α)
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for all v ∈ V . With this notation we have sα(x) = x− α∨(x) · α.
For later use we record the following:

α∨(β) = 0 ⇔ β∨(α) = 0 ⇔ sα ◦ sβ = sβ ◦ sα (7)

for all α, β ∈ ∆.

Lemma 6. Let k0 be a field, (V, b) a finite-dimensional regular bilinear space
over k0, and W a finite subgroup of the orthogonal group O(V, b). Assume that
S(V )W is a polynomial ring over k0, and so W is in particular an orthogonal
reflection group by Theorem 4. Let ∆ be a root system of W . Then we have:

(i) Wα = Wα∨ and W±α = W±α∨ for all α ∈ ∆.
(ii) W±α = 〈sα〉.Wα ' Z/2 × Wα, where 〈sα〉 = {idV , sα} is the subgroup

generated by sα, for all α ∈ ∆.
(iii) S(V )Wα and S(V )W±α are polynomial algebras in n = dimV variables

over k0, and so the groups Wα and W±α are generated by orthogonal reflecti-
ons in O(V, b).

(iv) ⋃
α∈∆

Ker(α∨) =
⋃

idV 6=w∈W

Ker(w − idV ) .

Proof. (i) This follows since b is a regular bilinear form.
(ii) If w.α = −α then sα ◦ w ∈ Wα and so W±α is equal to the semidirect

product 〈sα〉nWα.
To show that this is a direct product and so W±α ' Z/2 × Wα, we have to

show that sα commutes with all elements of Wα. This can be seen as follows.
By assumption, S(V ) is a polynomial algebra over k0, and so by Lemma 5 the
subgroup Wα∨ , which coincides with Wα by (i), is generated by reflections. Hence
it is enough to show sβ ◦ sα = sα ◦ sβ for all sβ ∈Wα. But sβ is in Wα if and only
if β∨(α) = 0, and this implies that sα and sβ commute with each other by (7).

(iii) Since Wα = Wα∨ and S(V )W is a polynomial ring over k0 by assumption,
we get from Lemma 5 that the algebra S(V )Wα is a plynomial algebra over k0.

Let now H := Kerα∨. We have then V = k0 · α⊕H, and so

S(V )Wα ' S(k0 · α)⊗k0
S(H)Wα|H ' k0[t]⊗k0

S(H)Wα|H .

Using now the decomposition W±α ' Z/2×Wα from (ii) we get that S(V )W±α is
isomorphic as k0-algebra to

S(k0 · α)Z/2 ⊗k0 S(H)Wα|H ' k0[y2]⊗k0 S(H)Wα|H ' k0[t]⊗k0 S(H)Wα|H .

Consequently, S(V )W±α is a polynomial algebra over k0 as well.
The last assertion of (iii) is a consequence of Theorem 4.
Finally we prove (iv). Since Kerα∨ = Ker(sα − idV ) the left-hand side is

contained in the right-hand side. For the other inclusion let x ∈ V \
⋃
α∈∆

Ker(α∨),

and assume that Wx 6= {idV }. Since b is non-degenerate we have Wx = Wb(x,− ),
and so by Lemma 5 there exists a reflection sα in Wx. We get the contradiction
α∨(x) = 0. �

We can state and prove now our main theorem.
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Theorem 7. Let (V, b) be a finite-dimensional regular symmetric bilinear space
over the field k0 and W ⊆ O(V, b) a finite subgroup, such that S(V )W is a polyno-
mial ring over k0 (in particular, W is an orthogonal reflection group). Further, let
M∗ be a cycle module over k0. Then a cohomological invariant

a : H1(−,W )→ Mn(− )

over k0 is zero if and only if its restrictions to all abelian subgroups generated by
reflections are zero.

For the proof we have to describe a versal W -torsor over k0. For this, let ∆ be
a root system of W .

4.4. A versal torsor for W

Define U ⊂ A(V ) = Spec S(V ∨) as in Example 2, i.e., U is the open complement
of the union of closet sets Vw, w ∈ W \ {idV }, where Vw is the closed set defined
by the ideal generated by all f ◦ (idV −w), f ∈ V ∨. The group W acts freely on U ,
and the generic fiber of the quotient morphism q : U → U/W is a versal W -torsor
over k0, see Example 2.

By Lemma 6 (iv) we have for all field extensions L ⊇ k0 that⋃
α∈∆

Ker(idL⊗α∨) =
⋃

idV 6=w∈W

Ker
(
(idL⊗w)− idL⊗k0

V

)
. (8)

We get U = Spec
(

S(V ∨)[g−1
∆ ]
)
, where we have set

g∆ :=
∏
α∈∆

α∨ ∈ S(V ∨) .

Hence the quotient morphism q : U → U/W corresponds to the embedding of
rings (

S(V ∨)
)W

[g−1
∆ ]→ S(V ∨)[g−1

∆ ] .

The generic fiber of q is equal to the Galois extension SpecE → SpecEW with
Galois group W , where E denotes the fraction field of S(V ∨). We set in the
following K := EW , and denote by [E/K] ∈ H1(K,W ) the class of the W -Galois
algebra E ⊃ K, which is a versal W -torsor over k0.

4.5. An unramified extension

Let Q be a prime ideal of height one in S(V ∨)W that is not in the open subscheme
U/W = Spec

(
S(V ∨)W [g−1

∆ ]
)
, i.e., g∆ ∈ Q. Since by our assumption S(V )W '

S(V ∨)W is a polynomial ring over k0 the local ring R :=
(

S(V ∨)W
)
Q

at Q is

a discrete valuation ring. Let P be a prime ideal in S(V ∨) above Q. Then there
exists α ∈ ∆, such that P = Pα := S(V ∨) · α∨. The Galois group W of E ⊃ K
acts transitively on the prime ideals above Q.

Since w.α = ±α is equivalent to w.α∨ = ±α∨ it is a consequence of (R1) that
the decomposition group WPα = {w ∈W |w(Pα) = Pα} is equal to

W±α =
{
w ∈W |w.α = ±α

}
,
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which in turn by Lemma 6 (ii) is equal to 〈sα〉.Wα ' Z/2×Wα.
Denote by Fα the fixed field of W±α in E, by ια the embedding K ⊆ Fα, and

by S̃ the integral closure of R in Fα. We set Sα := S̃S̃∩Pα . This is a discrete

valuation ring with maximal ideal Qα := (S̃ ∩ Pα) · S̃S̃∩Pα . By construction
the extension of discrete valuation rings Sα ⊇ R is unramified, and the residue
field k0(Qα) of Sα is equal to the one of R, which we denote k0(Q). Hence by the
cycle module Axiom (R3a), see Section 2.3, we have a commutative diagram

M∗(Fα)
∂Qα // M∗−1(k0(Q))

M∗(K)
∂Q //

(ια)M

OO

M∗−1(k0(Q))

=

OO
(9)

for all cycle modules M∗ over k0.

4.6. Proof of Theorem 7

The proof is by induction on m = |W |. If m ≤ 5 there is nothing to prove, so let
m ≥ 6. Using the induction hypothesis we show first the following.

Claim. aK([E/K]) ∈ A0
(
A(V )/W, Mn

)
.

To prove the claim we have to show

∂Q
(
aK([E/K])

)
= 0 (10)

for all prime ideals Q of height one in S(V ∨)W . This is clear by Theorem 1 if Q
is in the open subset U/W ⊂ A(V )/W = Spec

(
S(V ∨)W

)
since [E/K] is by

construction the generic fiber of U → U/W .
So assume Q 6∈ U/W . Then Q contains g∆. Let Qα and ια : K ⊆ Fα be as in

Section 4.5. By Diagram (9) above it is enough to show

∂Qα
(
(ια)M(aK([E/K]))

)
= 0 . (11)

Since a is an invariant we have (ια)M(aK([E/K])) = aFα(rια([E/K])), where rια
denotes the pull-back H1(K,W ) → H1(Fα,W ), see Section 2.5. Hence equation
(11) is equivalent to

∂Qα
(
aFα(rια([E/K]))

)
= 0 . (12)

Now we distinguish two cases:

(a) Fα = K: Then W = 〈sα〉.Wα ' Z/2×Wα (in the notation of Section 4.5),
and therefore we have

H1(−,W ) ' H1(−,Z/2)×H1(−,Wα) .

We claim that a`(x, y) = 0 for all (x, y) ∈ H1(`,Z/2)× H1(`,Wα) and all ` ∈ Fk0 .
This implies a = 0, and so ∂Q(aK(T )) = 0.
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For this, let ` ∈ Fk0
, and x ∈ H1(`,Z/2), and consider F` as a full subcategory

of Fk0
, cf. Section 2.1. The maps

bxL : H1(L,Wα) → Mn(L), z 7→ aL(rj(x), z),

where j : `→ L is the structure map in F`, define an invariant of degree n of Wα

over ` with values in Mn, i.e., we have bx ∈ Invn` (Wα,M∗).
Let H ⊆ Wα be an abelian subgroup generated by reflections. Then the sub-

group H ′ := 〈sα〉.H of W is an abelian subgroup generated by reflections as well,

and therefore by assumption the restriction ResH
′

W (a) is trivial. Now for L ∈ F`
with structure map j : `→ L and z ∈ H1(L,H) we have

ResHWα
(bx)L(z) = ResH

′

W (a)L(rj(x), z) = 0 .

As z ∈ H1(L,H) and L ∈ F` were arbitrary this implies ResHWα
(bx) is trivial. This

holds for all abelian subgroups H of Wα generated by reflections and therefore since
S(V )Wα is a polynomial algebra by Lemma 6(iii) above we can apply the induction
assumption to conclude bx = 0. In particular, we have 0 = bx` (y) = a`(x, y) as
claimed. We are done in the case Fα = K.

(b) Fα 6= K: Then W 6= 〈sα〉.Wα = W±α. By Example 1 we have

[E/K]Fα = rια([E/K]) = θ1(T ′) (13)

for some T ′ ∈ H1(Fα,W±α), where θ : W±α ↪→W is the inclusion.
Let H be an abelian subgroup of W±α generated by reflections. Then

ResHW±α
(

Res
W±α
W (a)

)
= ResHW (a),

and since H is also an abelian subgroup of W generated by reflections we have
ResHW (a) = 0 by our assumption. It follows that

ResHW±α
(

Res
W±α
W (a)

)
= 0

for all abelian subgroups H of W±α that are generated by reflections.
Since S(V )W±α is a polynomial algebra over k0, see Lemma 6 (iii), we conclude

by induction that

Res
W±α
W (a) = 0 . (14)

Using this we compute

∂Qα
(
aFα

(
rια([E/K])

))
= ∂Qα

(
aFα([E/K]Fα)

)
= ∂Qα

(
aFα(θ1(T ′))

)
by (13)

= ∂Qα
(

Res
W±α
W (a)Fα(T ′)

)
by definition of Res

W±α
W

= 0 by (14).

Hence (12) holds also if K 6= Fα and we therefore have ∂Q(aK([E/K])) = 0 as
claimed.
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We have proven the claim, and can now finish the proof of the theorem. By
assumption S(V )W is a polynomial ring over k0. We have S(V ∨)W ' S(V )W , see
Section 4.3, and so the k0-scheme A(V )/W = Spec S(V ∨)W is an affine space
over k0. Therefore by homotopy invariance of the cohomology of cycle modules,
see Rost [27, Prop. 8.6], we have A0

(
A(V )/W,Mn

)
' Mn(k0). Hence the detection

principle, Theorem 3, implies that the invariant a is constant. However the restric-
tion of a to an abelian subgroup generated by reflections is zero, and so a has to
be zero. �

In the corollary below we understand by a ‘maximal abelian subgroup generated
by reflections’ a subgroup which is maximal with respect to the two properties (a)
abelian and (b) generated by reflections.

Corollary 8. Let k0 and W be as in Theorem 7 and M∗ a cycle module over k0.
Let further G1, . . . , Gr be different maximal abelian subgroups generated by reflecti-
ons, which represent all such subgroups up to conjugation, i.e., if G is a maximal
abelian subgroup of W generated by reflections then G = wGiw

−1 for some 1 ≤
i ≤ r and some w ∈W .

Then the product of restriction morphisms

(
ResGiW

)r
i=1

: Invnk0
(W,M∗)→

r⊕
i=1

Invnk0
(Gi,M∗)

NW (Gi)

is injective for all n ∈ Z. (Recall from Example 4 that the image of ResGiW is
contained in the subgroup Invnk0

(Gi,M∗)
NW (Gi) for all 1 ≤ i ≤ r.)

Proof. Let a ∈ Invnk0
(W,M∗) be a non-trivial invariant. Then by Theorem 7 there

exists an abelian subgroup H of W generated by reflections, such that ResHW (a) 6=
0. LetG be a maximal abelian subgroup generated by reflections, which contains H.
Then there exists 1 ≤ i0 ≤ r and w0 ∈W , such that w0Gw

−1
0 = Gi0 . Let H ′ ⊆ Gi0

be the image of H under the inner automorphism ιw0
: g 7→ w0 · g · w−1

0 of W .
Since the morphism ι∗w0

: Invnk0
(W,M∗) → Invnk0

(W,M∗) is the identity by [31,
Prop. 13.1] we get

ι∗w0

(
ResH

′

W (a)
)

= ResHW
(
ι∗w0

(a)
)

= ResHW (a) 6= 0,

and so 0 6= ResH
′

W (a) = ResH
′

Gi0

(
Res

Gi0
W (a)

)
. It follows Res

Gi0
W (a) 6= 0. �

4.7. Weyl groups

The arguments above also apply to invariants of Weyl groups as long as the
characteristic of the base field is not one of the torsion primes. We briefly indicate
the details, recalling first the definition of Weyl groups.

A reduced root system in the sense of Bourbaki [7, Chap. VI], see also [9, Chap.
XXI], consists of the following data: A free and finitely generated abelian group M ,
a finite subset ∆ ⊂ M , and a map ρ : ∆ → M∨ := HomZ(M,Z), α 7→ α∨. The
triple (M,ρ,∆) is subject to the following axioms:

(R1) λα ∈ ∆ if and only if λ = ±1, and
(R2) sα(β) ∈ ∆ and sα∨(β∨) ∈ ∆∨ := ρ(∆), where sα(x) := x−α∨(x) ·α and

sα∨(f) = f − f(α) · α∨ for all x ∈M , f ∈M∨, and α ∈ ∆.
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We assume in the following that the root system is semisimple, i.e., ∆ generates
the Q-vector space Q⊗Z M .

The map ρ is injective and the triple (M∨, ρ−1,∆∨) is also a reduced root
system, the inverse root system of (M,ρ,∆). For ease of notation if M and ρ are
clear from the context we call ∆ a root system and ∆∨ its inverse.

Let GL(M) be the group of all automorphisms of the abelian group M . The
subgroup W = W (∆) of GL(M) generated by all sα, α ∈ ∆, is finite and called
the Weyl group associated with the root system ∆.

Remark 3. A finite subset ∆ ⊂ M satisfying only (R2) is called (non-reduced)
root system. If ∆ is irreducible it contains a reduced root system ∆0, such that the
associated Weyl group W (∆0) is equal the subgroup of GL(M) generated by all
sα, α ∈ ∆, see [7, Chap. VI, §1, no 4, Prop. 13], i.e., every Weyl group associated
with a root system is equal to a Weyl group associated with a reduced root system.

The group W acts on the dual M∨ via (w.f)(m) = f(w−1.m). We have then
sα.f = sα∨(f) for all α ∈ ∆ and f ∈ V ∨, and so sα 7→ sα∨ induces an isomorphism
of W onto the Weyl group W∨ := W (∆∨) ⊂ GL(M∨) of the inverse root system.

Set V := k0 ⊗Z M . If char k0 = 0 then there is a regular symmetric bilinear
form b on V , which is W -invariant, see, e.g., [7, Chap. VI, §1, no. 1, Prop. 3],
and so W ⊆ O(V, b) is an orthogonal reflection group. Moreover by the Shephard–
Todd–Bourbaki Theorem 4 we know that S(V )W is a polynomial ring over k0 and
so the splitting principle Theorem 7 holds for W over fields of characteristic 0.

Using the following result of Demazure [8, Cor. of Thm. 2, Thm. 3, and Prop.
8] we can prove a more general splitting principle for Weyl groups.

Theorem 9 (Demazure). Let k0 be a field (of characteristic 6= 2) and (M,ρ,∆)
a reduced semisimple root system with associated Weyl group W = W (∆). Assume
that char k0 6= 3 if ∆ has components of type E6, E7, or F4, and char k0 6= 3, 5
if it has components of type E8. Then the k0-algebras S(V )W and S(V ∨)W are
polynomial (over k0).

(For the claim that S(V ∨)W is a polynomial ring over k0 note that S(V ∨)W =

S(V ∨)W
∨

by the isomorphism W
'−→W∨, sα 7→ sα∨ .)

4.8. A splitting principle for Weyl groups

Let k0, (M,ρ,∆), W , and V = k0 ⊗Z M be as in the theorem of Demazure
above. It follows then from Lemma 5 that Wα∨ is generated by reflections and
that S(V )Wα∨ is a polynomial ring over k0. We have (w.α)∨ = w.α∨ (since
w · sα · w−1 = sw.α), and so Wα = Wα∨ and also W±α = W±α∨ . We conclude
now as in the proof of Lemma 6(ii) and (iii) that W±α = 〈sα〉.Wα ' Z/2 ×Wα,
and that S(V )W±α is a polynomial ring over k0. Also the analog of Lemma 6(iv)
holds, i.e.,

⋃
α∈∆

Kerα∨ =
⋃

idV 6=w∈W
Ker(w − idV ), with the same proof. One has

only to observe that identifying V ' V ∨∨, it follows from Lemma 5 that Wx is
generated by reflections for all x ∈ V since S(V ∨)W is a polynomial ring over k0 by
Demazure’s theorem above. Hence the analog of Lemma 6 holds in this situation.
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Finally, since the sα’s are all reflections in W , see [7, Chap. VI, §1, no 1, Rem. 3)],
the groups Wα and W±α, which are generated by reflections, correspond to Weyl
groups of sub-root systems of ∆. We can copy now word by word the reasoning in
Section 4.6 to get (taking Demazure’s Theorem 9 above into account) the following
result.

Theorem 10. Let k0 be a field (of characteristic not 2), and W a Weyl group
associated with a reduced root system ∆. Assume that char k0 6= 3 if ∆ has compo-
nents of type E6, E7, or F4, and that char k0 6= 3, 5 if it has components of type E8.
Further, let M∗ be a cycle module over k0. Then a cohomological invariant

a : H1(−,W )→ Mn(− )

over k0 is zero if and only if its restrictions to all abelian subgroups generated by
reflections are zero.

Remark 4. For W a symmetric group and M∗ = H∗(−, C), where C is a finite
Γk0 -module of order prime to the characteristic of the base field, the splitting
priniciple holds in broader generality. Besides of being of characteristic 6= 2 the
field k0 can be arbitrary. This has been shown by Serre [31, Thm. 24.9] for the
symmetric group, and in his letter [32] he informed us that he has a proof for the
general case:

Let k0 be a field of characteristic 6= 2 and W a Weyl group. Further, let C be a
finite Γk0

-module, whose order is prime to the characteristic of the base field k0.
Then a cohomological invariant

a : H1(−, G)→ H∗(−, C)

is zero if and only if its restrictions to all abelian subgroups generated by reflections
are zero.

Note that the Galois cohomology groups H∗(−, C) with appropriate twisting
by roots of unity (on C) are also a cycle module in the sense of Rost as long as
the order of C is not divisible by the characteristic of the base field, see [27, Rem.
1.11].

5. On the splitting principle for Witt invariants

5.1. Witt groups and the fundamental ideal

Throughout this section we assume that all fields are of characteristic 6= 2.
Given a field F we denote by W(F ) its Witt group (of bilinear forms), and by

In(F ), n ∈ N, the nth power of the fundamental ideal I(F ) ⊂ W(F ) of forms of
even rank. We set In(F ) := W(F ) for all integers n ≤ 0, and I∗(F ) :=

⊕
n≥0

In(F ).

Given a valuation v on a field F with residue field F (v), which is also assumed
to be of characteristic 6= 2, and a uniformizer π there exists a (so-called) second
residue map

∂v,π : W(F )→W(F (v)),
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which depends on the choice of the uniformizer π, see, e.g., [22, Chap. IV, §1].
Note that ∂v,π

(
In(F )

)
⊆ In−1(F (v)) for n ≥ 0 by Arason [1, Satz 3.1].

The kernel of ∂v,π does not depend on π but only on the valuation v.

5.2. Unramified Witt groups

Let be X be a scheme over a field k0, which is regular in codimension one. The
nth unramified Witt group of X is then defined as

A0(X, In) := Ker
(

In(k0(X))
(∂vx,πx )

x∈X(1)

−−−−−−−−−−→
⊕

x∈X(1)

In−1(k0(x))
)
,

for all n ≥ 0, where vx denotes the valuation of the function field k0(X) associated
with the regular codimension one point x, k0(x) denotes the residue field of x, and
πx ∈ OX,x is a uniformizer.

Definition 3. Let G be a linear algebraic group over the base field k0 and n ≥ 0
an integer. A Witt invariant of degree n is a natural transformation

a : H1(−, G)→ In(− ),

where we consider H1(−, G) and In(− ) as functors on Fieldsk0
, the category of

all field extensions of k0, with values in the category of pointed sets, respectively
of abelian groups.

We denote by Invnk0
(G, I∗) the set of all Witt invariants of G of degree n over

the field k0. The addition in the Witt ring induces a group structure on this set.
We further set

Invk0
(G, I∗) :=

⊕
n≥0

Invnk0
(G, I∗) .

If H ⊆ G is a closed subgroup of the algebraic k0-group G and a ∈ Invnk0
(G, I∗)

then the composition of natural transformations

H1(−, H)→ H1(−, G)
a−→ In(− )

is a Witt invariant of degree n of H, which we call the restriction of the invariant a
to H, and denote it by resHG (a).

5.3. The splitting principle

For the proof of the splitting principle for Witt invariants of orthogonal reflection
groups one needs the analogs of Theorem 1(i) and of the detection Theorem 3.
These can be proven as for cycle modules in Section 3 above, or one can follow
the arguments used in Serre’s lectures, see [31, Sect. 27]. Part (ii), the detection
principle, is also a special case of a general theorem [19, Thm. 3.3] of Merkurjev.
Note however that Merkurjev’s result does not apply to cycle modules as its proof
uses completions.
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Theorem 11. Let k0 be a field and G a linear algebraic group over k0.

(i) Let X be an integral scheme, which is essentially of finite type over the base
field k0, with function field K = k0(X), and T ∈ H1

et(X,G). Then for a
regular codimension one point x of X with uniformizer πx we have

∂vx,πx
(
aK(TK)

)
= 0

for all a ∈ Invk0(G, I∗).
(ii) Let K be a finitely generated field extension of k0 and T ∈ H1(K,G) a

versal G-torsor. Then aK(T ) = bK(T ) implies that the invariants a and b
are equal for all a, b ∈ Invk0

(G, I∗).

With these results at our disposal we can now follow essentially word by word
the arguments in Section 4.6 to prove the splitting principle for Witt invariants
of orthogonal reflection groups. We have only to observe that the analog of the
diagram (9) in Section 4.5 commutes since a uniformizer for R is also one for Sα as
the extension Sα ⊇ R is unramified, and that by Fasel [11, Thm. 11.2.9] we have
A0(A(V )/W, In) ' In(k0), since by assumption S(V ∨)W is a polynomial algebra
over the base field k0.

The same arguments apply also to the Witt invariants of Weyl groups as long
as char k0 does not divide the torsion primes.

Hence we have:

Theorem 12. Let k0 and W be as in Theorem 7, or as in Theorem 10. Then
a ∈ Invk0

(W, I∗) is zero if and only if its restrictions to all abelian subgroups gene-
rated by reflections are zero.
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d’Algèbre (Paris, 1967), Exp. 8, Secrétariat mathématique, Paris.
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