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An Informativity Approach to the Data-Driven Algebraic
Regulator Problem

Harry L. Trentelman , Fellow, IEEE, Henk J. van Waarde , and M. Kanat Camlibel , Member, IEEE

Abstract—In this article, the classical algebraic regulator prob-
lem is studied in a data-driven context. The endosystem is
assumed to be an unknown system that is interconnected to a
known exosystem that generates disturbances and reference sig-
nals. The problem is to design a regulator so that the output of
the (unknown) endosystem tracks the reference signal, regardless
of its initial state and the incoming disturbances. In order to do
this, we assume that we have a set of input-state data on a finite
time-interval. We introduce the notion of data informativity for reg-
ulator design, and establish necessary and sufficient conditions
for a given set of data to be informative. Also, formulas for suitable
regulators are given in terms of the data. Our results are illustrated
by means of two extended examples.

Index Terms—Data-driven control, informativity, linear control
systems, tracking and regulation.

I. INTRODUCTION

Recently the paradigm of data-driven control has gained a
lot of attention in the analysis and controller design of linear
systems [1], [3], [4], [7], [8], [11], [16]–[18], [20], [22]–[24].
Instead of using an explicit mathematical model, the data-driven
approach uses only data obtained from the unknown system for
verifying its system theoretic properties and for constructing
controllers. Recently, it was argued in [23] that the data-driven
approach can also be useful in cases where the given data do
not give sufficient information to identify the “true” model for
the system; for example, due to the fact that the data are not
persistently exciting. Indeed, in [23], the notion of informativity
of data was introduced to cover situations in which a given set
of data gives rise to a whole family of system models that are
compatible with the data. In other words, situations in which it
is impossible to distinguish between models on the basis of the
given data. A set of data is called informative for a given system
property if the property holds for all systems compatible with the
data. In [23], the notion of informativity was also developed in
the context of controller design. In particular, conditions for the
informativity of data for the following control problems were
given as: state feedback stabilization, deadbeat control, linear
quadratic optimal control, and stabilization by dynamic output
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feedback. Also, formulas (in terms of the data) were given to
compute suitable controllers.

The aim of this article is to extend the framework of informa-
tivity to the classical algebraic regulator problem (see e.g., [9],
[12], [13], and [15], and the textbooks [19] and [21]). This is the
problem of finding a feedback controller (called a regulator)
that makes the output of the controlled system track some
a priori given reference signal, regardless of the disturbance
input entering the system, and the initial state. In the context of
the algebraic regulator problem, the relevant reference signals
and disturbances (such as step functions, ramps, or sinusoids) are
signals that are generated as solutions of suitable autonomous
linear systems. Given such reference signal and class of dis-
turbance signals, one first constructs a suitable generating au-
tonomous system (called the exosystem). Next, this exosystem
is interconnected to the control system (called the endosystem),
and a new output is defined as the difference between the original
system output and the reference signal. A regulator should, then,
be designed to make the output of the interconnection converge
to zero for all disturbances and initial states.

In this article, the “true” endosystem is assumed to be un-
known, and therefore no mathematical model is available. In-
stead, we have collected data on the input, endosystem state, and
exosystem state in the form of samples on a finite time-interval.
The exosystem is assumed to be known, because this system
models the reference signals and possible disturbance inputs.
Also, the matrices in the output equations are assumed to be
known, because these specify the design specification (namely
the output that should converge to zero) on the controlled system.
A given set of data will, then, be called informative for regulator
design if the data contain sufficient information to design a single
regulator for the entire family of systems that are compatible
with this set of data. We will establish necessary and sufficient
conditions for a given set of data to be informative for regulator
design. In particular, it will be shown how to replace the char-
acteristic regulator equations by their data-driven counterparts,
and to compute suitable regulators.

We note that the data-driven regulator design was studied
before in [10] and [6], albeit from a rather different perspective.
We also mention alternative methods that deal with tracking
objectives, such as iterative feedback tuning and virtual refer-
ence feedback tuning, as developed in [14] and [5], respectively.
These methods do, however, not address the classical regulator
problem, and are, thus, quite different from the work that will
be presented in this article.

The main contributions of this article are the following.
1) We give a definition of the problem of data-driven tracking and

regulation using the concept of informativity.

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Groningen. Downloaded on December 14,2022 at 13:45:26 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9463-8651
https://orcid.org/0000-0002-2561-2682
https://orcid.org/0000-0002-2407-8166
mailto:h.l.trentelman@rug.nl
mailto:h.j.van.waarde@rug.nl
mailto:m.k.camlibel@rug.nl


6228 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 11, NOVEMBER 2022

2) We give necessary and sufficient conditions for data to be informa-
tive for regulator design, i.e., for the existence of a single regulator
for all systems compatible with the given data.

3) We establish formulas for computing these regulators, entirely in
terms of the data.

It should be noted that these regulators may be called robust,
in the sense that a single regulator works for the whole set of
systems that are compatible with the given data, see also [10].

The outline of this article is as follows. In Section II, we
illustrate the data-driven problem of tracking and regulation
using an extended example. Subsequently, we put the problem
in a general framework, and define the concept of informativity
for regulator design. In Section III, we review some classical
basic material on the regulator problem. Then, in Section IV,
we formulate our main result, giving necessary and sufficient
conditions for the informativity for regulator design, and for-
mulas to compute regulators. The main result is illustrated by
means of two extended examples. Finally, Section V concludes
this article.

II. DATA-DRIVEN TRACKING AND REGULATION

We will first illustrate the problem to be considered in this
article by means of an extended example.

Example 1: Consider the scalar linear time-invariant discrete-
time system

x(t+ 1) = asx(t) + bsu(t) + d(t) (1)

where x is the state, u the control input, and d a disturbance
input. The values of as and bs in this system representation are
unknown. We assume that the disturbance can be any constant
signal of finite amplitude. Suppose that we want the statex(t) to
track the given reference signal r(t) = cos π

2 t, for any constant
disturbance input, regardless of the initial state of the system.
We want to design a control law for (1) that achieves this
specification. We assume that r, x, and d are available for
feedback and allow control laws of the form

u(t) = k1r(t) + k2r(t+ 1) + k3d(t) + k4x(t). (2)

Interconnecting (1) and (2) results in the controlled system

x(t+ 1) = (as + bsk4)x(t) + (bsk3 + 1)d(t)

+ bsk1r(t) + bsk2r(t+ 1)

where the gainski should be designed such thatx(t)− r(t) → 0
as t → ∞ for any constant disturbance input d and initial state
x(0). It is also required that the controlled system is internally
stable, in the sense that as + bsk4 is stable.1

The values of as and bs that represent the true system are
unknown, but in the data-driven context, it is assumed that we
do have access to certain data. In particular, it is assumed that
we have finite sequences of samples of x(t), u(t), and d(t) on
a given time interval {0, 1, . . . , τ}, given by

U− :=
[
u(0) u(1) · · · u(τ − 1)

]
(3a)

X :=
[
x(0) x(1) · · · x(τ)

]
(3b)

1We say that a matrix is stable if all its eigenvalues are contained in the open
unit disk.

D− :=
[
d(0) d(1) · · · d(τ − 1)

]
(3c)

where, in this particular example, by assumption d(t) = d(0)
for t = 1, 2, . . . τ − 1. Define

X+ :=
[
x(1) x(2) · · · x(τ)

]
X− :=

[
x(0) x(1) · · · x(τ − 1)

]
.

It is assumed that these data are generated by the true system,
so we must have X+ = asX− + bsU− +D−. For this example,
the problem of data-driven control design is now to use the data
(3) to determine whether a suitable controller (2) exists, and to
compute the associated gains k1, k2, k3 and k4 using only these
data.

Note that, as we discussed before, both the reference signal
and the disturbance signals are generated by the autonomous
linear system⎡

⎣r1(t+ 1)
r2(t+ 1)
d(t+ 1)

⎤
⎦ =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦
⎡
⎣r1(t)r2(t)

d(t)

⎤
⎦ (4)

with initial state r1(0) = 1 and r2(0) = 0, and d(0) arbitrary.
Indeed, it can be seen that the reference signal r(t) = cos π

2 t is
equal to r1(t). In addition, the solutions d(t) are all constant
signals of finite amplitude. The autonomous system (4) is called
the exosystem.

The interconnection of the (unknown) to be a controlled
system (1) (called the endosystem) with the exosystem (4) is
represented by⎡
⎢⎢⎣
r1(t+ 1)
r2(t+ 1)
d(t+ 1)
x(t+ 1)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 1 as

⎤
⎥⎥⎦
⎡
⎢⎢⎣
r1(t)
r2(t)
d(t)
x(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
0
0
0
bs

⎤
⎥⎥⎦u(t).

(5)
In this representation, the part corresponding to the exosystem
is known, but the part corresponding to the endosystem (specif-
ically: as and bs) is unknown. We now also specify a (known)
output equation

z(t) =
[
1 0 0 −1

]
⎡
⎢⎢⎣
r1(t)
r2(t)
d(t)
x(t)

⎤
⎥⎥⎦ .

Then, the problem of our example can be rephrased as: design
a full state feedback control law

u(t) = k1r1(t) + k2r2(t) + k3d(t) + k4x(t)

for the system (5) such that in the controlled system, we have
z(t) → 0 as t → ∞ for the initial states r1(0) = 1, r2(0) = 0,
and d(0) arbitrary, while internal stability is achieved in the
sense that as + bsk4 is a stable matrix. In order to allow tracking
of signals from the richer class of all reference signals of the form
r(t) = A cos(12πt+ ω) (A and ω are determined by the initial
states r1(0) = 1 and r2(0)), we may slightly relax the problem
formulation and require z(t) → 0 as t → ∞ for all initial states
r1(0), r2(0) and d(0).
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After having introduced our problem set up by means of the
above-mentioned example, we will now formulate it in a general
framework.

Consider an endosystem represented by

x2(t+ 1) = A2 sx(t) +B2 su(t) +A3x1(t). (6)

Here,x2 is then2-dimensional state,u them-dimensional input,
and x1 the n1-dimensional state of the exosystem

x1(t+ 1) = A1x1(t). (7)

that generates all possible reference signals and disturbance
inputs. The matrices A2s and B2s are unknown, but the matrix
A1 is known. Also A3 is a known matrix that represents how the
endosystem interconnects with the exosystem. The output to be
regulated is specified by

z(t) = D1x1(t) +D2x2(t) + Eu(t) (8)

where the matrices D1, D2, and E are known. By interconnect-
ing the endosystem with the state feedback controller

u(t) = K1x1(t) +K2x2(t) (9)

we obtain the controlled system[
x1(t+ 1)
x2(t+ 1)

]
=

[
A1 0

A3 +B2K1 A2 s +B2 sK2

] [
x1(t)
x2(t)

]

z(t) = (D1 + EK1)x1(t) + (D2 + EK2)x2(t).

If z(t) → 0 as t → ∞ for all initial states x1(0) and x2(0),
we say that the controlled system is output regulated. If A2 s +
B2 sK2 is a stable matrix, we call the controlled system endo-
stable. If the control law (9) makes the controlled system both
output regulated and endo-stable, we call it a regulator.

As illustrated in the above-mentioned example, we assume
that we do not know the true endosystem (6), and therefore,
the design of a regulator can only be based on available data.
In the general framework, these are finite sequences of samples
of x1(t),x2(t), and u(t) on a given time interval {0, 1, . . . , τ}
given by

U− :=
[
u(0) u(1) · · · u(τ − 1)

]
X1− :=

[
x1(0) x1(1) · · · x1(τ − 1)

]
X2 :=

[
x2(0) x2(1) · · · x2(τ)

]
.

An endosystem with (unknown) system matrices (A2, B2) is
called compatible with these data if A2 and B2 satisfy the
equation

X2+ = A2X2− +A3X1− +B2U− (10)

where we denote

X2− :=
[
x2(0) x2(1) · · · x2(τ − 1)

]
X2+ :=

[
x2(1) x2(2) · · · x2(τ)

]
.

The set of all (A2, B2) that are compatible with the data is
denoted by ΣD, i.e.,

ΣD := {(A2, B2) | (10) holds} . (11)

We assume that the true endosystem (A2 s, B2 s) is inΣD, i.e., the
true system is compatible with the data. In general, the (10) does
not specify the true system uniquely, and many endosystems
(A2, B2) may be compatible with the same data.

Now we turn to controller design based on the data
(U−, X1−, X2). Note that, since on the basis of the given data,
we cannot distinguish between the true endosystem and any
other endosystem compatible with these data; a controller will
be a regulator for the true system only if it is a regulator for any
system with (A2, B2) in ΣD. If such regulator exists, we call the
data informative for regulator design.

Definition 2: We say that the data (U−, X1−, X2) are infor-
mative for regulator design if there exist K1 and K2 such that
the control law u(t) = K1x1(t) +K2x2(t) is a regulator for
any endosystem with (A2, B2) in ΣD.

The problem that will be considered in this article is to find
necessary and sufficient conditions on the data (U−, X1−, X2)
to be informative for the regulator design. Also, in case that
these conditions are satisfied, we will explain how to compute a
regulator using only these data. Before addressing this problem,
in the next section, we will review some basic material on the
regulator problem.

III. REGULATOR PROBLEM

In this section, we briefly review some basic material on
the regulator problem. Following [21], we distinguish between
analysis and design.

We first consider the analysis question under what conditions a
controlled system is endo-stable and output regulated. Consider
the autonomous linear system represented by

x1(t+ 1) = A1x1(t)

x2(t+ 1) = A2x2(t) +A3x1(t)

z(t) = D1x1(t) +D2x2(t). (12)

In accordance with the terminology introduced in Section II,
we call this system endo-stable if A2 is a stable matrix. We call
it output regulated if z(t) → 0 as t → ∞ for all initial states
x1(0) and x2(0). The following is the discrete-time version in
[21, Lemma 9.1]

Proposition 3: Assume that A1 is antistable2. Then, the sys-
tem (12) is endo-stable and output regulated if and only if A2 is
stable and there exists a matrix T satisfying the equations

TA1 −A2 T = A3, D1 +D2 T = 0. (13)

In this case, T is unique.
Next, we consider the design problem and review conditions

under which, for a given interconnection of an endosystem and
exosystem, there exists a regulator, i.e., a controller that makes
the controlled system endo-stable and output regulated. For
the endosystemx2(t+ 1) = A2x2(t) +B2u(t) +A3x1(t) to-
gether with the exosystem (7) and output (8), the following

2We say that a matrix is anti-stable if all its eigenvalues λ satisfy |λ| ≥ 1.
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is well known and can be proven easily by extending results
from [21] to the discrete-time case.

Proposition 4: Assume that A1 is antistable. There exists a
regulator of the form (9) if and only if (A2, B2) is stabilizable and
there exist matrices T and V satisfying the regulator equations

TA1 −A2 T −B2 V = A3, D1 +D2 T + EV = 0. (14)

In this case, a regulator is obtained as follows: choose any K2

such that A2 +B2K2 is stable, and define K1 := −K2 T + V .

IV. DATA-DRIVEN REGULATOR PROBLEM

Clearly, a necessary condition for the data (U−, X1−, X2) to
be informative for regulator design is that they are informative
for endo-stabilization.

Definition 5: We call the data (U−, X1−, X2) are informative
for endo-stabilization if there exists K2 such that A2 +B2K2

is a stable matrix for all (A2, B2) in ΣD.
In order to obtain necessary and sufficient conditions for

informativity for endo-stabilization, we formulate the following.
Proposition 6: Let τ be a positive integer. LetZ andX be real

n× τ matrices and letU be a realm× τ matrix. Consider the set
Σ(Z,X,U) := {(A,B) | Z = AX +BU}. Then, the following
hold.
1) There exists a matrix K such that A+BK is stable for all

(A,B) ∈ Σ(Z,X,U) if and only ifX has full row rank, and there ex-
ists a right inverseX† such thatZX† is stable. In that case, by taking
K := UX†, we haveA+BK is stable for all (A,B) ∈ Σ(Z,X,U).

2) For any K such that A+BK is stable for all (A,B) ∈ Σ(Z,X,U),
there exists a right inverse X† such that K = UX†, and, moreover,
A+BK = ZX† for all (A,B) ∈ Σ(Z,X,U).

Proof: The proof can be given by slightly adapting the proof
in[23, Th. 16]. �

This immediately gives the following conditions for informa-
tivity for endo-stabilization.

Lemma 7: The data (U−, X1−, X2) are informative for endo-
stabilization if and only ifX2− has full row rank, and there exists
a right inverse X†

2− of X2− such that (X2+ −A3X1−)X
†
2− is

stable. In that case, by taking K2 := U−X
†
2−, we have A2 +

B2K2 stable for all (A2, B2) ∈ ΣD.
The following theorem is the main result of this article. It gives

necessary and sufficient conditions on the data to be informative
for regulator design, and explains how suitable regulators are
computed using only these data.

Theorem 8: Assume that A1 is antistable and suppose, for
simplicity, that is diagonalizable. Then, the data (U−, X1−, X2)
are informative for regulator design if and only if at least one of
the following two conditions hold.3

1) X2− has full row rank, and there exists a right inverse X†
2− of X2−

such that (X2+ −A3X1−)X
†
2− is stable and D2 +EU−X

†
2− =

0. Moreover, imD1 ⊆ imE. In this case, a regulator is found as
follows: choose K1 such that D1 +EK1 = 0 and define K2 :=
U−X

†
2−.

2) X2− has full row rank and there exists a right inverse X†
2− of X2−

such that (X2+ −A3X1−)X
†
2− is stable. Moreover, there exists a

solution W to the linear equations

X2−WA1 − (X2+ −A3X1−)W = A3 (15a)

3We denote by imM the image of the matrix M .

D1 + (D2X2− +EU−)W = 0. (15b)

In this case, a regulator is found as follows: choose K1 := U−(I −
X†

2−X2−)W and K2 := U−X
†
2−.

Before turning to the proof, we will explain how to apply
this theorem. What we know about the system are the system
matrices A1, A3, D1, D2, and E and the data (U−, X1−, X2).
The aim is to use this knowledge to compute a single regulator
(K1,K2) that works for all endosystems (A2, B2) in the set ΣD

defined by (11).
In order to check the existence of such regulator, we verify the

two conditions 1) and 2) in Theorem 8. On the one hand, if neither
of the two conditions holds, then the data are not informative. On
the other hand, if condition 1) holds then a regulator (K1,K2)
is computed as follows:
1) find a right inverse X†

2− of X2− such that the matrix (X2+ −
A3X1−)X

†
2− is stable and D2 +EU−X

†
2− = 0,

2) compute K1 as a solution of D1 +EK1 = 0,
3) define K2 := U−X

†
2−.

If condition 2) holds, then a regulator is computed as follows:
1) find a right inverse X†

2− of X2− such that the matrix (X2+ −
A3X1−)X

†
2− is stable,

2) find a solution W of the data-driven regulator (15),
3) define K1 := U−(I −X†

2−X2−)W ,
4) define K2 := U−X

†
2−.

Proof: (⇒) We first prove sufficiency. Assume that the condi-
tion 1) holds. Since (X2+ −A3X1−)X

†
2− is stable, the data are

informative for endo-stabilization and by taking K2 := U−X
†
2−

we have A2 +B2K2 is stable for all (A2, B2) ∈ ΣD. Since A1

is assumed to be antistable, this implies that for all (A2, B2) ∈
ΣD there exists a unique solution T to the Sylvester equa-
tion TA1 − (A2 +B2K2)T = A3 +B2K1. By the fact that
D1 + EK1 = 0 and D2 + EK2 = 0, this solution T also sat-
isfies D1 + EK1 + (D2 + EK2)T = 0. Thus, for all (A2, B2)
∈ ΣD, there exists a matrix T that satisfies the equations (13).
It follows from Proposition 3 that for all (A2, B2) ∈ ΣD the
controlled system is endo-stable and output regulated.

Next, assume that condition 2) holds. By Lemma 7, the
data are informative for endo-stabilization and by taking K2 :=

U1X
†
−, we have A2 +B2K2 stable for all (A2, B2) ∈ ΣD. Let

W satisfy the (15). Define T := X2−W and V := U−W . Then,
the pair (T, V ) satisfies the regulator (14) for all (A2, B2) ∈ ΣD.
Then, by Proposition 4, for each such (A2, B2), a regula-
tor is given by the pair (K1,K2), with K1 = −K2 T + V =

−K2X2−W + U−W = U−(I −X†
2−X2−)W . This completes

the proof of the sufficiency part.
We will now turn to the necessity part. Assume that the data

are informative for regulator design. By Proposition 3, there exist
K1 and K2 and for any (A2, B2) ∈ ΣD a matrix T(A2,B2) such
that A2 +B2K2 is stable and

T(A2,B2)A1 − (A2 +B2K2)T(A2,B2) = A3 +B2K1

D1 + EK1 + (D2 + EK2)T(A2,B2) = 0.

We emphasize that T(A2,B2) may depend on the choice of
(A2, B2) ∈ ΣD. However, since A2 +B2K2 is stable for all
(A2, B2) ∈ ΣD, by Proposition 6, there exists a right inverse
X†

2− of X2− such that A2 +B2K2 = (X2+ −A3X1−)X
†
2− for

all (A2, B2) ∈ ΣD. The latter matrix is independent of (A2, B2).
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Call it M . Define

Σ0
D := {(A0, B0) |

[
A0 B0

] [X2−
U−

]
= 0}.

Note thatΣ0
D is the solution space of the homogeneous version of

the defining equation (10) forΣD [see (11)]. We now distinguish
two cases, namely (i) B0K1 = 0 for all (A0, B0) ∈ Σ0

D, and (ii)
B0K1 �= 0 for some (A0, B0) ∈ Σ0

D.
First consider case (i). Then, for all (A2, B2), (Ā2, B̄2) ∈ ΣD,

we have B2K1 = B̄2K1. Thus, there exists a common matrix T
that solves the equations

TA1 −MT = A3 +B2K1

D1 + EK1 + (D2 + EK2)T = 0

for all (A2, B2) ∈ ΣD. From this, we obtain

TA1 −
[
A2 B2

] [ T
K2 T +K1

]
= A3

for all (A2, B2) ∈ ΣD, and therefore

[
A0 B0

] [ T
K2 T +K1

]
= 0

for all (A0, B0) ∈ Σ0
D. This implies

im

[
T

K2 T +K1

]
⊆ im

[
X2−
U−

]
.

As a consequence, there exists a matrix W such that[
T

K2 T +K1

]
=

[
X2−
U−

]
W.

Clearly, W satisfies the (15), showing that condition 2) holds.
Next, consider case (ii). Let S be a real (n2 +m)× r matrix

such that4

ker

[
X2−
U−

]T
= imS.

Partition S =

[
S1

S2

]
. Then, (A0, B0) ∈ Σ0

D if and only if

A0 = NST
1 and B0 = NST

2 for some n2 × r matrix N . Note
that, by hypothesis, ST

2 K1 �= 0.
Let (A2, B2) ∈ ΣD. Recall that for any such (A2, B2), there

exists a unique T(A2,B2) such that

T(A2,B2)A1 −MT(A2,B2) = A3 +B2K1

D1 + EK1 + (D2 + EK2)T(A2,B2) = 0 (16)

Now let N be any real n2 × r matrix. Then also
(A2 +NST

1 , B2 +NST
2 ) ∈ ΣD. Define TN := T(A2,B2) −

T(A2+NST
1 ,B2+NST

2 ). Then, TN is the unique solution to

TNA1 −MTN = NST
2 K1 (17)

which in addition satisfies (D2 + EK2)TN = 0. Consider now
a spectral decompositionA1 = Q−1ΛQ, whereΛ is the diagonal

4We denote by kerM the kernel of the matrix M .

matrix Λ = diag(λ1, . . . λn1
) and

Q =

⎡
⎢⎢⎣
q1
...

qn1

⎤
⎥⎥⎦ , Q−1 =

[
q̂1 . . . q̂n1

]
.

Then, for fixed N , the unique solution TN to the Sylvester (17)
can be expressed as

TN =

n1∑
i=1

(λiI −M)−1NST
2 K1q̂iqi

(see [2]), which implies that TNQ−1 is equal to[
(λ1I −M)−1NST

2 K1q̂1 . . . (λn1
I −M)−1NST

2 K1q̂n1

]
.

Note that the matrices λiI −M are indeed invertible becauseM
is stable and the eigenvalues λi of A1 satisfy |λi| ≥ 1. Since, in
addition, (D2 + EK2)TN = 0, we see that for all i = 1, . . . , n1,
we have

(D2 + EK2)(λ1I −M)−1NST
2 K1q̂i = 0.

Since ST
2 K1 �= 0, there must exist an index i such that

ST
2 K1q̂i �= 0. For this i, let z be a real vector such that

zTST
2 K1q̂i �= 0. Now choose N := ejz

T , where ej denotes the
jth standard basis vector in Rn2 . By the previous discussion,
we obtain (D2 + EK2)(λ1I −M)−1ej = 0. Since this holds
for any j, we actually find (D2 + EK2)(λ1I −M)−1 = 0,
so D2 + EK2 = 0. Using (16), we must also conclude that
D1 + EK1 = 0, which implies that imD1 ⊆ imE. Since K2

is stabilizing, it must be of the form U−X
†
2− for some right in-

verse X†
2−. This implies that (X2+ −A3X1−)X

†
2− is stable and

D2 + EU−X
†
2− = 0, that is, condition 1) holds. This completes

the proof of Theorem 8. �
Remark 9: In order to avoid technicalities, in Theorem 8, we

have assumed that the matrixA1 is diagonalizable. The theorem,
however, also holds if we drop this assumption. We omit the
proof here.

Remark 10: According to Theorem 8, the data are informative
for regulator design if and only if at least one of the conditions
1) or 2) holds. Condition 2) is in terms of solvability of the
“data-driven regulator” (15a) and (15b). These equations hold
for all (A2, B2) compatible with the data. In the end, a matrix
T is defined as T := X2−W , and together with V := U−W ,
the classical regulator (14) is then satisfied for all (A2, B2)
compatible with the data. This is, then, “the classical design,”
and the difference x2(t)− Tx1(t) converges to 0 as t runs off
to infinity ([21], p. 199)

If Condition 2) does not hold, but instead Condition 1) holds,
then the only way to get output regulation is to make the entire
output z = (D1 + EK1)x1 + (D2 + EK2)x2 equal to 0 point-
wise. This is done by making D1 + EK1 = 0 (possible because
im D1 ⊆ im E) andD2 + EK2 = 0, whereK2 = U−X

†
2− also

makes the system endo-stable.
Note that Theorem 8 gives a characterization of all data

that are informative for regulator design, and gives a method
to design a suitable regulator. Nonetheless, the procedure to
compute this regulator is not entirely satisfactory. Indeed, in
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the case that condition 2) holds, it is not clear how to find a right
inverse of X2− such that (X2+ −A3X1−)X

†
2− is stable. In the

case of condition 1), the additional constraintD2 + EU−X
†
2− =

0 needs to be satisfied. In general, X2− has many right in-
verses, and (X2+ −A3X1−)X

†
2− can be stable, with or without

D2 + EU−X
†
2− = 0, depending on the choice of the particular

right inverse X†
2−. To deal with this problem and to solve the

problem of regulator design, we formulate the problem of finding
a suitable right inverse in terms of feasibility of linear matrix
inequalities (LMI’s).

Theorem 11: Let (U−, X1−, X2) be given data. Then the
following hold.
1) X2− has full row rank and has a right inverseX†

2− such that (X2+ −
A3X1−)X

†
2− is stable if and only if there exists a matrixΘ ∈ RT×n

such that

X2−Θ = (X2−Θ)	 (18)

and [
X2−Θ (X2+ −A3X1−)Θ

Θ	(X2+ −A3X1−)	 X2−Θ

]
> 0. (19)

2) X2− has full row rank and has a right inverseX†
2− such that (X2+ −

A3X1−)X
†
2− is stable with, in addition, D2 +EU−X

†
2− = 0 if

and only if there exists a solution Θ ∈ RT×n of (18) and (19) that
satisfies the linear equation

(D2X2− +EU−)Θ = 0.

In both cases, a suitable right inverse is given by X†
2− :=

Θ(X2−Θ)−1.
Proof: The proof can be given by adapting the proof in

[23, Th. 17]. �
Example 12: We will now apply Theorem 8 to Example 1.

Putting the example in our general framework, we have

x1 =

⎡
⎣r1r2

d

⎤
⎦ , x2 = x, A1 =

⎡
⎣ 0 1 0
−1 0 0
0 0 1

⎤
⎦

A3 =
[

0 0 1
]
, D1 =

[
1 0 0

]
, D2 = −1, E = 0.

Assume τ = 3, and the data on the disturbance input are
D− = [d(0) d(1) d(2) ] = [ 12

1
2

1
2 ]. Since the signal to be

tracked is cos 1
2πt, we must have r1(0) = 1 and r2(0) = 0, so

r1(t) = cos 1
2πt and r2(t) = cos 1

2π(t+ 1). This leads to

X1− =

⎡
⎣ r1(0) r1(1) r1(2)r2(0) r2(1) r2(2)

d(0) d(1) d(2)

⎤
⎦ =

⎡
⎣ 1 0 −1
0 −1 0
1
2

1
2

1
2

⎤
⎦ .

Assume that U− = [u(0) u(1) u(2) ] = [ 1 0 0 ] and X2 =

[x2(0) x2(1) x2(2) x2(3) ] = [ 0 3
2 2 5

2 ]. It can be checked that
condition 2) of Theorem 8 holds. Indeed, a solution W to the
linear (15) is given by

W =

⎡
⎣−1 1 −1

2
3 0 0
0 0 0

⎤
⎦ .

Furthermore, X†
2− = [− 1

2
2
3 0 ]T is a right inverse of X2−

and (X2+ −A3X1−)X
†
2− = 1

2 is stable. A regulator is then

given by K1 = U−(I −X†
2−X2−)W = [− 1

2 1 −1 ] and K2 :=

U−X
†
2− = − 1

2 .
It can be checked that the above-mentioned data are com-

patible with the true endosystem as = 1, bs = 1. In fact, in this
particular example, the true system is uniquely determined by
the data. Indeed, this follows from the fact that

X2+ =
[
as bs

] [X2−
U−

]
+D−

in which [
X2−
U−

] has full row rank. Thus, a regulator could

also have been computed directly from the regulator equa-
tions (14) after first identifying the true endosystem as = 1,
bs = 1. It can indeed be verified that T = [1 0 0 ] together with
V = [−1 1 −1 ] satisfy the regulator equations (14) for the true
endosystem. By choosing K2 = − 1

2 , this would, then, lead to
the same regulator as previously with K1 = −K2 T + V =
[− 1

2 1 −1 ].
We note that, in general, the true endosystem may not be

uniquely determined by the data. This is illustrated by the
following example.

Example 13: Consider the two-dimensional (2-D) endosys-
tem

x2(t+ 1) = A2 sx2(t) +B2 su(t) +

[
0
1

]
d(t)

where A2 s and B2 s are unknown 2× 2 and 2× 1 matrices,
respectively. Let x2 = [x21 x22 ]T . The disturbance input d is
assumed to be a constant signal with finite amplitude, so is gen-
erated by d(t+ 1) = d(t). We want to design a regulator so that
2x21 +

1
2x22 tracks a given reference signal. In this example, the

reference signals r are assumed to be generated by a given au-
tonomous linear system with state-space dimension, say, n1. Its
representation will be irrelevant here. The total exosystem will
then have state space dimension n1 + 1, and our output equation
is given by z(t) = D1x1(t) +D2x2(t) + Eu(t), with D1 a

1× (n1 + 1) matrix such that D1x1 = −r and D2 =
[
2 1

2

]
.

We take E = 2. Also note that A3 =

[
01×n1

0

01×n1
1

]
. Here, 01×n1

denotes 1× n1 zero matrix. Suppose that τ = 2 and assume we
have the following data:

U− =
[
−1 −1

]
, D− =

[
1 1

]
, X2 =

[
1 1

2 − 1
4

0 2 5
2

]
.

These data can be seen to be generated by the true endosystem

A2 s =

[
2 1

8

4 5
4

]
, B2 s =

[
3
2

3

]
. We now check the Condition 1)

of Theorem 8. First note that, indeed, imD1 ⊆ imE. Also,

X2− is nonsingular and (X2+ −A3X1−)X−1
2− =

[
1
2 − 1

4

1 1
2

]
.

This matrix has eigenvalues 1
2 ± 1

2 i, so is stable. Finally, D2 +

EU−X−1
2− = 0. According to Theorem 8, a regulator for all
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endosystems compatible with the given data is given by

K2 = U1X
−1
2− =

[
−1 − 1

4

]
, K1 = −1

2
D1. (20)

It can be verified that the set of endosystems compatible with
our data is equal to the affine set

ΣD =

{([
a 1

4a− 3
8

b 1
4b+

1
4

]
,

[
a− 1

2

b− 1

])
| a, b ∈ R

}
.

The controller given by (20) is a regulator for all these endosys-
tems.

Remark 14: It is also possible to consider the situation that, in
addition to A2 and B2, also the matrix A3 (representing how the
exosignal x1 enters the endosystem) is unknown. In that case,
the set all endosystems compatible with the data (U−, X2, X−)
is defined as follows:

ΣD = {(A2, B2, A3) | X2+ = A2X2− +B2U− +A3X1−}.
The data are then called informative for regulator design if there
exists a single regulator u = K1x1 +K2x2 for all endosystems
in ΣD. The analogue of Theorem 8 for this situation is as
follows. Both in Conditions 1) and 2), an additional condition
X1−X

†
2− = 0 should be imposed on a suitable right inverse of

X2−. In addition, in Condition 2), the old data-driven regulator
(15) should be replaced by

X2−WA1 −X2+W = 0 (21a)

X1−W = I (21b)

D1 + (D2X2− + EU−)W = 0. (21c)

Note that, as expected, A3 no longer appears in the equations
(it is unknown). In both cases, the formulas for K1 and K2 are
the same as in Theorem 8. Due to space limitations, the proof is
omitted.

V. CONCLUSION

We have introduced the notion of data informativity in the
context of the classical algebraic regulator problem. Our main
results are necessary and sufficient conditions for a given set
of data to be informative for regulator design, and formulas to
compute regulators using only this set of data. We have recasted
the computation of suitable regulators in terms of feasibility
of LMI’s. Our results have been illustrated by means of two
extended examples. In this article, only static state feedback
regulators have been considered. As an open problem for fu-
ture research, we mention the extension to dynamic output
feedback regulators. Results obtained in [23] on the problem
of stabilization by dynamic output feedback (both in terms of
input-state-output data and input–output data) are expected to
be relevant here. Another possible venue for future research
is to consider the situation that, in addition to A2, A3, and
B2, the matrix A3 is unknown. Finally, it would be inter-
esting to include noise in the problem formulation, and to
consider the situation in which, in addition to the modeled
disturbances, bounded noise may enter the unknown endosystem
(see also [22]).
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