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Polycomb Group (PcG) proteins are evolutionarily conserved epigenetic transcriptional regulators 

that maintain the transcriptional repression of silenced genes by maintaining heritable chromatin 

states. PcG proteins first discovered as repressors of Hox genes in Drosophila, later were shown 

to regulate a wide range of genes. In mammals, PcG proteins are involved in maintaining 

pluripotent state of stem cells and controlling cell differentiation. Misexpression of PcG protein 

leads to cancers like lymphoma and melanoma. PcG proteins maintain rather than initiate 

transcriptional repression, once PcG – mediated repression is established it can be maintained 

through an unlimited number of cycles. Most studies of PcG proteins are in vitro or focus on 

maintenance phase of repression. Little is known about the molecular mechanisms by which PcG 

proteins are initially recruited to target genes. The challenge of obtaining a homogenous population 

of cells in a certain developmental stage in which a target gene is uniformly repressed by PcG 

proteins, creates a major difficulty in studying recruitment of PcG proteins in vivo.  To solve this 

problem, our lab previously generated a genetic system in which giant (gt), a PcG target gene, is 

ubiquitously repressed. In embryos produced by bcd osk tsl homozygous mother, maternal 

Hunchback (Hb) is ubiquitously expressed due to lack of osk. There is no zygotic Hb due to lack 

of bcd and tsl. gt remained repressed after maternal Hb is completely degraded at nuclear cycle 
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14, at the same time PcG proteins take over repression. Time course chromatin 

immunoprecipitation (ChIP) assay has previously been done on bcd osk tsl system to determine 

proteins distribution when PcG proteins take over repression. To study contributions of various 

proteins involved in recruitment, we knocked down each protein by RNAi in bcd osk tsl 

background followed by ChIP assays on embryos of different stages. The goal of my research is 

to define the roles of individual PcG proteins (as complexes) as well as participated transcription 

factors in facilitating de novo establishment of PcG silencing. 
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Introduction 

PcG proteins are conserved epigenetic regulators. PcG proteins maintain target genes  

transcriptional state through numerous cycles by altering chromatin structure. PcG  

proteins function as protein complexes. The most studied PcG protein complexes are  

Pho-RC, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex  

2 (PRC2). PRC2 is mostly conserved in both Drosophila and mammals while PRC1  

subunits have many variant homologs in mammals (Schwartz and Pirrotta 2013).  

 

Polycomb Proteins Complexes  

 

 

Figure 1 Graph showing components of PcG proteins (Schwartz and Pirrotta 2013)  
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Pho-RC  

Pho-RC is the only complex that includes DNA binding protein but no chromatin alteration 

activity, therefore likely Pho-RC plays the important role of recruiting the rest of PcG proteins and 

take over repression. Pho-RC has subunits Pho and Sfmbt (Brown et al 1998, Brown et al 2003, 

Grimm et al 2009). Pho specifically binds to PRE (Polycomb response element) and recruit other 

PcG proteins. In Drosophila, PcG proteins are recruited to PRE, a specific cis-regulatory DNA 

elements (Blackledge, Rose and Klose 2015Pho binding sites are found in many PREs although 

Pho mutants only show mild homeotic phenotype compared to other PcG mutants (Brown et al 

2003). Pho is needed but not sufficient for establishing PcG proteins binding on target genes (Wang 

et al 2004, Poux et al 2001). Pho is the only DNA binding protein in core complexes, it’s 

considered the base of PcG proteins recruitment, however there are evidence show this is not 

always the case. Sfmbt has a SPM domain and four MBT domains which link it to a PcG protein 

Scm (Usui 2000). In vitro, Sfmbt and Scm interact with each other through their SPM domain and 

their interaction is sufficient to recruit Ph (Grimm et al 2009). Sfmbt may also involve in assisting 

PRC1 and/or PRC2 binding to target gene (Frey et al 2016, Wang et al 2010).  Pho-RC, which 

contains Pho and Sfmbt, is considered the base of PcG proteins recruitment, but it may not always 

be the case. 
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PRC2  

Polycomb repressive complex 2 is one of the most extensively studied complex. It contains 

subunits E(z), Su(z)12, Esc and P55 and it’s mainly known for adding methylation to histone as 

repressive mark, followed by spreading methylation to nearby region.  

 

All PRC2 subunits express maternally and lacking either maternal E(z) or Esc results in embryonic 

lethality (Struhl 1981, Jones and Gelbart 1990, Simon et al 1995). Su(z)12 interacts with E(z) 

through its VEFS-box domain (O’meara and Simon 2012). Nurf55/P55, also a chromatin assembly 

factor (Caf1) in Drosophila, has been shown to interact with Su(z)12 and together stabilize PRC2 

binding on target gene (Martinez-Balbas et al 1998, Schmitges et al 2011). SET domain of E(z) 

has catalytic activity of mono-, di-, tri-methylate lysine 27 at histone 3, however E(z) cannot 

mediate H3K27me3 by itself. In reconstituted nucleosome assay, E(z) needs to be assembled into 

a complex with Su(z)12 and P55 to bind to nucleosomes and the complex needs Esc to mediate 

H3K27me3 (Nekrasov et al 2005). Esc has WD40 repeat which preferentially bind to H3K27me3 

(Margueron et al 2009). Its N-terminal allows E(z) to interact with H3 and eventually establish 

H3K27me3 (Tie et al 2007).  

 

Pcl is a substochiometric subunit of PRC2. Pcl germline mosaic stained with Abd-B antibody 

shows tissue specific phenotype which is a weaker phenotype than other PcG proteins (Soto et al 

1995). E(z) can be co-purified with Pcl but Pcl is unable to be co-purified with E(z) (Nekrasov et 

al 2007). This is consistent with what previously has been shown that E(z) is dramatically 

decreased when Pcl is knocked down in wing discs while Pcl can still be present on PRE without 

E(z) (Urmi et al 2008).  Pcl enhances PRC2 HMT activity both in vitro and in vivo (Nekrasov et 
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al 2007). Canonical PRC2 has been extensively studied for its function in mediating H3K27me3, 

however accessory protein of PRC2 seem to also play a role in mediating tri-methylating 

chromatin. 

 

PRC1  

There are two mechanisms, canonical and non-canonical, by which PRC1 is thought regulate gene 

expression. Canonical PRC1 is known to compact chromatin to maintain repression of target gene. 

It has been proposed PRC1 and SWI/SNF compete for nucleosome in vitro since nucleosomal 

template is unable to be remodel by SWI/SNF but ability to remodel is not blocked (Shao et al 

1999). PRC1 also block RNA polymerase II preinitiation complex assembly (Lehmann et al 2012). 

Non-canonical PRC1 mediate H2A ubiquitination (King et al 2002), and it’s called dRAF in 

Drosophila. dRAF has E3 ligase activity for ubiquitylating histone H2A. It mono- ubiquitinates 

H2AK118 in Drosophila and H2AK119 in mammals. It contains dRing/Sce, Psc and dKDM2. 

dRing is responsible for H2AK118ub in dRAF (Lagarou et al 2008). There is no evidence dRAF 

is present on gt, so non-canonical PRC1 is not a focus in this thesis. 

 

Canonical PRC1 has no known enzymatic activity and contains four core subunits, Pc, Ph, 

dRing/Sce, Psc.  Chromodomain of Pc can bind to H3K27me3, and its C-terminus is able to bind 

to nucleosome cores (Breiling et al 1999, Min et al 2003). dRing is a Ring finger protein and it 

doesn’t have enzymatic activity in canonical PRC1 (Fristch et al 2003, Lagarou et al 2008). dRing 

itself can’t compact nucleosome in vitro (King et al 2002) but it is needed for PcG mediated 

repression (Fristch et al 2003). Ph itself is sufficient to compact nucleosome in vitro, however Ph 

is not required for PRC1 to compact chromatin in vivo (King et al 2002, Francis et al 2004). Ph 



 

4 
 

contains a SPM domain which is conserved with Sfmbt and Scm, a substoichiometric subunit of 

PRC1. It has been proposed Sfmbt interacts with Scm, Scm interacts with Ph all through SPM 

domain and results in recruitment of PRC1. PRC2 is not mentioned in this model (Frey et al 2016). 

It has also been shown both in vitro and in vivo, knocking down Scm results in reduced level of 

PRC1 and PRC2 (Wang et al 2010). Subunit Psc is related to Su(z)2, which is not included in PcG. 

psc and su(z)2 are adjacent in Drosophila genome (ModENCODE). Even though Su(z)2 is not a 

PcG protein, it shows synergetic interaction with Scm and mutating both psc and su(z)2 enhances 

Psc mutant phenotype (Soto et al 1995). Psc is also sufficient to compact chromatin by itself in 

vitro. C- terminal region of Psc is responsible for inhibition of chromatin remodeling and 

transcription (King et al 2005). Psc and Su(z)2 are partially redundant in embryo and can fully 

substitute for each other in larvae (Beuchle et al 2001, Soto et al 1995).  Canonical PRC1 

recognizes repressive covalent histone modification like H3K27me3, compact chromatin and 

maintain repressive state of target gene, however individual role of each PRC1 component is not 

clear. 

 

Mammalian PcG proteins complexes  

Mammalian PcG proteins involve in embryonic development as well as cancers. PcG proteins play 

a role in controlling cell differentiation and maintaining embryonic stem cells pluripotency in 

mammal (Boyer et al 2006, Schwartz and Pirrotta 2013). PcG proteins are also responsible for 

maintaining x chromosome inactivation in females (Tie et al 2003). In various types of cancers, 

PcG proteins have been found mis-regulated and that results in abnormal silencing pattern in genes, 

especially tumor suppressor genes. (Kogo et al 2011, Bracken and Helin 2009).   
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Some subunits in mammalian PRC1 and PRC2 are structurally and functionally conserved with 

Drosophila PcG proteins. However, Ying-Yang-1 (YY1) which is the homolog of Pho in 

Drosophila, may not act the same as Pho in Drosophila. 

 

Pho  

Pho’s mammalian homolog is YY1, which has a zinc finger domain. Pho, as a subunit of PhoRC 

complex recruits PcG proteins by binding to PRE, however there is no known PRE in mammals. 

There is evidence that CpG island in mammals may play a similar role as PREs in Drosophila 

(Bauer et al 2016). However, YY1’s zinc finger domain is not necessary for PcG repression, REPO 

domain in YY1 is, even though mechanism is unknown (Wilkinson et al 2006).  

 

PRC2  

PRC2, one of the key complexes in PcG proteins, is mostly conserved in organisms. It’s the only 

PcG proteins complex that find in unicellular eukaryotes (Margueron and Reinburg 2011). In 

mammals, PRC2 has four core subunits, Ezh1/2, Suz12, Eed and RbAp46/48. RbAp46/48 is 

homolog of Nurf55 in Drosophila. Eed is homolog of Esc and mutating Eed can result in loss of 

methyltransferase activity (Margueron et al 2009). Ezh1 and Ezh2 are not interchangeable and 

Ezh2 is a homolog of E(z) in Drosophila. Ezh1 presents in both dividing and differentiated cells 

while Ezh2 only presents in dividing cells. It’s also been shown that Ezh1 has much lower 

H3K27me3 activity than Ezh2 (Margueron et al 2008, Shen et al 2008) and Ezh1 associates with 

H3K4me3 (Mousavi et al 2012).  PRC2 also associates with its substoichiometric subunits. 

mammalian homologs of Pcl have PHD fingers which interact with PRC2. PHF19 has a TUDOR 

domain which specifically binds to H3K36me3 in mammal but not in Drosophila. PHF19 recruits 
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demethylase KDM5a which can remove methylation on H3K36. H3K36me3 has been shown to 

prevent PRC2 from methylating H3K27, removing H3K36me3 will facilitate binding of PRC2 to 

target genes. This mechanism only affects a small number of PcG target genes and it’s not clear 

how it targets this group of genes. (Abed 2012).   

 

PRC1  

PRC1 has more variation in mammals compares to Drosophila. In mammals, canonical PRC1 

contains subunits Ring 1A/B as homolog of dRing, CBX as homolog of Pc, BMI and PCGF family 

as homolog of Psc/Su(Z)2, Ph as homolog of Ph. Mammalian homolog variants function in 

combinatorial fashion thus there are different versions of both canonical and non-canonical PRC1, 

and they have distinct functions (Gao et al 2012).  

 

One of the most related non-canonical PRC1, also called BCOR, is the homolog complex of dRAF 

in Drosophila. Ring1B has E3 ligase activity. In some cases, it has been suggested that PRC1-

mediated-H2AK118ub is sufficient to recruit PRC2 and establish silencing in both Drosophila and 

mammals. However, it has also been shown that E3 ligase activity is not essential in mouse ESC 

(Illingworth et al 2015).   

 

Recruitment of Polycomb Group Proteins  

Recruitment of Polycomb Group Proteins in Drosophila   

In Drosophila, PcG proteins are recruited to a DNA motif called PRE (Polycomb Respons 

Element). It’s not clear how PcG proteins recognize PRE as deleting core  PREs won’t completely 

deplete PcG activity (Kassis and Brown 2013). A hierarchical model is proposed in Drosophila 
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that PhoRC recruits PRC2, PRC2 establishes H3K27me3, followed by recruitment of PRC1 

(Wang et al 2004).  

 

It is demonstrated that PcG proteins have highest affinity binding on PRE. PRE is a regulatory 

DNA sequence that is enough to maintain PcG protein target genes boundaries and it is not location 

or gene specific (Brown et al 1998, Muller and Kassis 2006). A PcG protein target gene can have 

multiple PREs, for example, engrailed has two PREs, gt has two PREs. Reports show PREs are 

redundant (Devido et al 2008, Ghotbi 2020). PREs can be a few kb apart from each other (Kassis 

and Brown 2013) and yet they function together in PcG mediated repression. A few reports 

proposed that cohesin brings two PREs closer to each other, eventually form a loop by recruiting 

PcG proteins and result in compacting chromatin (Dorsett and Kassis 2014, Cheutin and Cavalli 

2014). Cohesin initially discovered as a factor stabilizing sister chromatid, later confirmed a role 

in facilitating enhancer-promoter communication. Cohesin generally found in transcription start 

sites and enhancers pausing RNA pol II allowing rapid transcription activation. Increase cohesin 

binding counteract PcG silencing whereas decrease cohesin enhances PcG silencing (Schwartz et 

al 2008). PRC1 has been found co-localize with both H3K27me3 and H3K4me3. In imaginal discs, 

cohesin has been found colocalized with PRC1 on where invected and engrailed are active while 

H3K27me3 and PRC1 are colocalized on where they are repressed (Schaaf et al 2013). In cultural 

cells depletion of cohesin can lower PRC1 binding at H3K4me3 and simultaneously increased 

binding at H3K27me3, so a theory is proposed that cohesin involves in interacting with PRC1 to 

pause RNA pol II and PcG proteins controls the switch of gene rapid activation (Schaaf et al 2013, 

Dorsett and Kassis 2014).   
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Sfmbt and Pho form Pho-RC complex. Sfmbt has the same domain as other two PcG proteins Scm 

and Ph. Ph is a subunit of canonical PRC1 and Scm is considered as substoichiometric subunit of 

PRC1. Mutating SPM domain in Scm results in reduced binding of PRC1 and PRC2 also ectopic 

expression of ubx in wing imaginal discs, it suggests Scm plays a role in recruiting PRC1 and/or 

PRC2 and helps maintaining repression. Pho-RC complex is co-purified with PRC1 including 

Scm, crystal of Sfmbt and Scm dimer is obtained, thus show Sfmbt and Scm has physical 

interaction. There’s no direct evidence that Ph interacts with Scm in vivo. (Wang et al 2010, Frey 

et al 2016).   

 

In wing discs, knock down Pho results in absent of PRC2 and PRC1 and knock down PRC2 results 

in absent of PRC1. Based on results of knocking down Pho and PRC2 in wing discs, a classic 

hierarchical model is proposed that Pho binds to PRE with Sfmbt, then recruits PRC2. PRC1 

recognizes and binds to PRC2 mediated H3K27me3 which leads to PcG mediated silencing 

established (Wang et al 2004).   

 

Recruitment of Polycomb Group Proteins in Mammal  

Hiearchical model has been used to explain recruitment in mammal (blackledge, Rose and Klose 

2015), but PRC2 and PRC1 doesn’t always colocalize with each other. PRC1 has many subunits 

variants that don’t have the same responsibility (Gao et al 2012). That suggest mechanisms 

recruiting PRC1 and PRC2 independently exist.  

 

Do date, no sequences have been found in mammals that function in the way PRE does in 

Drosophila. However, PcG proteins especially PRC2 enriched in CpG island, and artificial DNA 
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sequence enriched with CG is sufficient to recruit PRC2, thus suggest CpG island plays a role in 

recruiting PRC2 (Mendenhall et al 2010, Riising et al 2014). Kdm2b has zinc finger domain CxxC 

specifically recognizes un-methylated CpG dinucleotides, Kdm2b is a subunit of BCOR and 

knocking down Kdm2b results in upregulating of several target genes, suggest Kdm2b may 

involve in recruiting PRC1 to CpG island through H2AK119ub. Lacking Kdm2b impairs 

H2AK119ub as well as decreases level of PRC2 binding and H3K27me3 on certain target genes 

but both H2AK119ub and H3K27me3 are not eliminated suggest there are other mechanisms 

involved (Blackledge et al 2014, Farcas et al 2015).   

 

It has been suggested lnc RNA can recruit PcG proteins to specific loci, the most studied case is 

the relationship between PcG proteins and xist. The chromatin remodeling protein ATRX induces 

conformational changes within the Xist RNA and recruit PRC2 (Sarma et al 2014). It has been 

proposed either A- repeats of Xist RNA or a 4- kb region downstream of Xist exon 1 (XN region) 

mediates recruitment of PRC2. Recently a study not only show that XN region is the one that 

recruits PRC2, also show that the recruitment is initiated by PRC1 mediated H2AK119ub 

(Almeida et al 2017). HOTAIR lnc RNA transcribed from the HOXC locus on human chromosome 

12. It’s been reported that increased HOTAIR expression leads to increase binding of PRC2 and 

H3K27me3 signal and PRC2 needs HOTAIR in cancer progression (Gupta et al 2010). On the 

other hand, it has also been proposed that PRC2 binds to nascent RNA and PRC2 activity is 

inhibited (Kaneko et al 2014).   
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Regulation of giant (gt)  

gt is a zygotic gap gene that regulates segmentation in Drosophila development. E(z), a subunit of 

PRC2, is needed to maintain gt expression pattern in early embryogenesis, thus, identified gt as 

PcG proteins target gene (Pelegri and Lehmann 1994).   

 

gt is first detected in nuclear cycle 12. gt initially express in two broad stripes, one anterior 

activated by bicoid (bcd), one posterior activated by maternal caudal (cad) (Kraut and Levine 1991, 

Rivera-Pomar et al 1995). During nuclear cycle 14, posterior stripe becomes narrower and shift to 

anteriorly, the anterior domain splits into two bands, expression in the most ventral part of anterior 

stripe is lost simultaneously. By the end of nuclear cycle 14, a third anterior stripe appears (Kraut 

and Levine 1991). Four enhancers that are responsible for controlling gt expression have been 

mapped. gt (-1) enhancer controls both anterior and posterior stripes. gt (-3) enhancer produces the 

posterior stripes while gt (-10) produces two anterior stripes. the stripe that is closest to anterior 

pole of the embryo is controlled by gt (-6) enhancer (Schroeder 2004). 

  

Bcd and Cad are gt activators, Bcd activates anterior stripe and Cad activates posterior  

stripes at nuclear cycle12. gt also regulates itself but it seems to play a minor role in  

Figure 2 Diagram and embryo staining of gt enhancer specific expression (Schroeder et al 2004) 
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setting its expression boundaries. Maternal Hb represses gt expression, when nanos (nos) is 

mutated, gt is ubiquitously repressed by uniformly expressed Hb in embryo (Pelegri and Lehmann 

1994). Knirpes (Kni) is repressor of anterior stripe of gt expression while tailless (tll) represses the 

posterior stripe. Krupple (Kr) is repressor of both anterior and posterior stripe of gt (Stanojevic et 

al 1991). High concentration of Hb blocks expression of kni, kr and gt, however lower 

concentration of Hb activates kr and even lower concentration of it will activate kni (Struhl 1992).   

 

bcd osk tsl genetic system  

 

Due to the difficulties of in vivo study for PcG proteins, most studies are done in vitro. Most of the 

in vivo studies use imaginal discs in which is the maintenance phase of PcG mediated  

repression. A system in where PcG target gene is ubiquitously repressed is needed to  

study initiation of PcG silencing. Previous graduate student generated bcd osk tsl genetic system 

to study of de novo PcG protein recruitment. Hb express both maternally and zygotically. In 

wildtype, maternal hb mRNA is ubiquitously distribute in early embryos, but Hb protein form a 

gradient from anterior to posterior due to translation inhibited by nos in the posterior end. Zygotic 

Hb is activated by bcd and tsl. In bcd osk tsl system, bcd, osk and tsl are mutated on the third 

chromosome. nanos is unable to localize Hb in the posterior end due to mutated osk, thus maternal 

Hb translation is not inhibited and express uniformly in embryo. Maternal Hb express ubiquitously 

result in gt expression is repressed ubiquitously in embryo. Lacking bcd and tsl results in no 

activation of zygotic Hb. Previous results have shown gt remain repressed after maternal Hb is 

fully degraded in nuclear cycle 14 and no zygotic Hb present to maintain gt repression. 
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Temperature sensitive E(z) allele is used to confirm gt maintain repressed after nuclear cycle 13 is 

due to PcG proteins.  
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A. Specific Aims:  

PcG proteins are conserved epigenetic regulators and their misregulation can lead to various 

kinds of cancer, however how PcG proteins initially recruited target genes is not clear, nor 

what role each protein plays in recruitment. It is beneficial in drug development to better 

understand mechanisms of PcG protein recruitment. In Drosophila PcG proteins are recruited 

to a DNA motif, called polycomb response elements (PRE). Many/Numerous related studies 

are done in cultural cells or in imaginal discs in which is the maintenance phase of PcG proteins 

mediated repression. There is no known study about how PcG – mediated silencing is 

established because a system where a PcG proteins target gene is ubiquitously repressed by 

PcG proteins is needed to study initiation of PcG – mediated repression in vivo. To solve this 

problem, our lab previously generated a bcd osk tsl genetic system in which PcG target gene 

gt is ubiquitously repressed in early embryos. Previous work in the lab have discriminated the 

temporal order and distribution of PcG protein complexes binding to gt in blastoderm stage 

embryos, the goal of my research is to determine the contribution of individual proteins or 

complexes to PcG recruitment.  
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Specific Aim 1: Determine contributions of PRE binding proteins in de novo recruitment of 

PcG proteins   

Pho-RC 

Pho-RC contains subunits Pho and Sfmbt. Contributions of Pho and Sfmbt will be determined 

separately. Pho is the only PRE as well as DNA binding protein in PcG core complexes and has 

been shown to play an important role in recruiting PcG proteins, however it’s not known if Pho 

can bind to PRE independent of Sfmbt. Sfmbt might be assisting PRC1 and/or PRC2 binding to gt 

by interacting with Scm.  

Pho and Sfmbt may not need to be in the same complex to stably bind to target gene and 

subsequently recruit other PcG proteins. I will test the hypothesis that knockdown of either Pho or 

Sfmbt will result in PRC2 and PRC1 not be recruited to target gene gt. 

Experimental Design: To test this hypothesis a UAS-Galr4 system paired with RNAi will be used 

knock down Pho and Sfmbt individually in bcd osk tsl embryo. ChIP will be done using embryos 

from developmental stage NC13-14b to examine PcG proteins binding across various 

developmental stages.  

 

Specific Aim 2: Determine contributions of transcription factors in de novo recruitment of 

PcG proteins   

Hunchback (Hb)  
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gt is transcriptionally activated ubiquitously by knocking down Hb in bcd osk tsl background, a 

repressor of Gt. PcG proteins only takes over repression but not initiating it. Transcriptionally 

active gt may inhibit PcG proteins recruitment of target genes.  

I will test the hypothesis that transcriptionally active gt will inhibit PcG protein binding on target 

genes 

Experimental Design: To test this hypothesis a UAS-Galr4 system paired with RNAi will be used 

knock down Hb in bcd osk tsl embryo. ChIP will be done using embryos from developmental stage 

NC10-14b to examine PcG proteins binding.  

Caudal (Cad)  

Cad is present on gt in bcd osk tsl embryos as an activator of gt. Without Cad in bcd osk tsl 

background, gt won’t be activated as Cad is the only activator in the genetic system. It’s possible 

after knocking down Cad, PcG proteins will be recruited sooner due to the removal of activator.  

Hypothesis: I will test the hypothesis that by silencing/knockdown of Cad, PcG proteins will be 

recruited to target genes earlier in development. 

Experimental Design: To test this hypothesis a UAS-Galr4 system paired with RNAi will be used 

knock down Cad in bcd osk tsl embryo. ChIP will be done using embryos from NC10-14b to 

examine PcG proteins binding.  
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B. Methods: 

Fly stocks 

All RNAi transgenic stocks as wells as Gal4 driver stock has been made into bcd osk tsl genetic 

background for the following ChIP experiments. 

 

Fly stocks for constructing bcd osk tsl genetic background 

We received a triple mutant stock (bcd6 osk6 tslPZREV32) from Leslie Stevens (Stevens et al. 

2003), which cannot homozygous due to accumulation of one or more recessive lethal mutations 

on the third chromosome.  The Bloomington stock BL-3252 (bcd7 osk6), was crossed to a tsl stock, 

BL-3289 (tsl4) stock to make an alternative triple mutant stock. That stock also had a recessive 

lethal mutation.  To make a viable trans-heterozygous stock, these two stocks were crossed to each 

other when needed.  We now have two balanced bcd osk tsl stocks that are crossed to produce bcd 

osk tsl females.For brevity, these will be referred to as bcd osk tsl embryos.  

 

Constructing RNAi transgenic fly stocks  

TRiP project from Harvard medical school developed VALIUM 20 and VALIUM 22 vectors that 

allow RNAi efficiently knockdown proteins in Drosophila germline. VALIUM 22 vector 

expresses better maternally than VALIUM20, however VALIUM20 allows embryo to go through 

early embryogenesis and in some cases, it’s needed for examining PcG protein recruitment in 

embryos. RSVP Plus is a website made by Harvard medical school. It’s available publicly for 

uploading RNAi validation results. 
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Pho and Sfmbt are the two proteins of interest in my specific aims. Available RNAi of Pho and 

Sfmbt from TRiP project has been shown to be effective to knock down proteins in somatic cells 

using VALIUM 20, however in my case, VALIUM 20 is not expressing well enough maternally 

to knockdown target proteins in desired developmental stages. By inserting inverted sequences of 

Pho and Sfmbt RNAi individually into VALIUM 22 vector using cloning protocol provided on 

TRiP website. Plasmids containing inverted sequences of Pho and Sfmbt RNAi is sequenced to 

confirm insert is complete and correct. Plasmids are then inserted into SD10 vector, a type of P-

ENTR vector, using Gateway cloning technology. Gateway cloning technology is based on site 

specific recombination properties of bacteriophage lambda. Plasmids are then injected into 

Drosophila embryos germlines and inserted into attp binding site in Drosophila.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 
 

Gal4 driver stock 

Gal4 driver stock used in this thesis is a maternal Gal4 driver obtained from Bloomington fly center 

(BL-7062). I have tested a stronger version of maternal Gal4 driver (BL-7063), but it’s not used 

in data presented. I have also remobilized BL-7062 to construct a stronger maternal Gal4 driver, 

but it’s not needed in data presented in this thesis. 

 

 

 

Figure 3 Cross scheme of remobilizing BL-7062 to construct a stronger Gal4 driver 
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Genetic cross of knocking down target protein using shRNA 

 

 

 

Chromatin Immunostaining assay and embryo collections 

Embryo collection and embryo developmental stages 

     6,000-10,000 flies were added to a medium sized cage and fruit juice agar plates covered with 

yeast paste were placed into the cage for egg lay at 25°C or 28°C. An hour pre-lay is done before 

any collection for the day.  

Embryos in both syncytial and cellular blastoderm stage are collected. Embryo developments are 

measured in nuclear cycles. Time course embryo collections are based on the timeline in the chart 

below.  

Plates are left in cage for a 30 mins egg lay. Plates were then carefully removed, covered in pair, 

and left at 25°C or 28°C to age between 80-170 mins depends on developmental stage.  

 

 

 

Figure 4 Cross scheme of knocking down target protein using RNAi 
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Embryo fixation 

Embryos are fixed in 1.75% to 2% formaldehyde for 15 mins based on Shelby Blythe’s protocol. 

Fix solution contains PBS with 0.5% Triton-X to allow formaldehyde permeable better into 

embryos, heptane allows separation of organic and aqueous phase of solution.  

 

Embryo sorting 

After embryo fixation, embryos were stored on ice in PBST containing 1x protease inhibitor 

cocktail until they are ready to be sorted with 10x brightfield objective of an inverted Primovert 

microscope. The embryos are placed in cell culture plate lid submerged in ice-cold PBST (0.5% 

Triton-X). Older embryos were individually removed using forceps.  The embryos were surveyed 

one more time at 20x objective in DIC setting, to ensure all embryos are at the correct stage.  Fresh 

PBST was added occasionally while sorting to ensure the embryos are hydrated.  The embryos 

were sorted while using stages established by Campos-Ortega and Hartenstein, 1985.  After 

sorting, embryos were weighed, flash frozen with liquid nitrogen, and stored at -80°C. Weights of 

embryos needed for each stage per ChIP is shown below.  

 

 

Chromatin immunoprecipitation 

Embryos are homogenized on ice in RIPA buffer that contains protease inhibitor and DTT. After 

separating lipid from homogenized embryos, chromatin is sonicated (15 secs on, 45 secs off, total 

4mins 30secs). Majority of fragments are between 200bp-1000bp. 

 



 

21 
 

Sonicated chromatin is preabsorbed with Salmon sperm DNA beads to lower background. Protein 

A magnatic beads are blocked with PBST solution containing 3% BSA, followed by incubating 

with individual antibodies and subsequently incubate with preabsorbed sonicated chromatin. 

 

Chromatin-beads complexes are being washed 5 times in this order below: 

Low salt wash buffer (containing 150mM NaCl)   x1 

High salt wash buffer (containing 500mM NaCl)  x1 

LiCl buffer                                                             x2 

TE buffer                                                               x1 

 

Chromatin-beads complexes are then eluted with 1%SDS elution buffer in 65°C and vortexing. 

Eluted chromatin is incubate in 65°C for at least 4hrs to reverse crosslink. DNA fragments in 

solution is purified with Ampure beads and finally store in PCR water. 

 

Quantitave PCR 

Quanta Biosciences SYBR green supermix was used for the reactions.  The concentration of 

primers (upper & lower) per reaction is 0.2 uM.  Immunoprecipitated DNA from 100 ug of 

embryos was used for each PCR reaction.  The PCR reactions were performed in triplicates unless 

otherwise indicated, for each sample.  The PCR was carried out in Qiagen Rotor gene.   

 

Normalization is done using delta delta ct method. All ct value normalized against PKA region ct 

value. 100% DNA input ct value is used to normalized across different PCRs for the same DNA. 
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Cuticle preparation 

 Embryos are washed off egg-laying plates, and dechorionated with 50% bleach.  To  

devitellinized, embryos are carried using spatula into 500 ul of methanol in a 1.5mL 

Eppendorf tube. 500 ul of heptane is added to the tube, then vortex for 30 seconds. Embryos 

without vitelline membrane will be sink to the bottom due to hydrophilic surface. Transfer embryos 

at bottom to a microscopic slide, excess liquid is dried up with kimwipes. After drying embryos 

drop (~80ul) of lactic acid mounting medium is added onto the slide. Cover embryos with a cover 

slip making sure little to no air bubble between cover slip and slide. The slide is incubated in a 

60°C oven overnight. Lactic acid in medium will digest embryos’ internal organs and slide will be 

ready to examine under microscope next day. Cuticle preparation is a crude and fast way to confirm 

protein knockdowns, as knocking out target proteins often lead to specific cuticle phenotype. 

 

Affinity purification of His6-tagged protein coupled to CNBr beads  

Preparing medium  

     1 g (3.5 ml medium) of sepharose (4B sepharose beads from GE Healthcare) was  

suspended in 1 mM HCl in a 15 ml tube (up to 5-10 mg of protein/1 ml of medium).   

After the beads swell, they are washed on sintered glass filter with the vacuum suction  

with an excess of 1mM HCl, and once with coupling buffer (0.1 M NaHCO3, 0.5 M NaCl  

pH 8.3).  
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Coupling Ligand   

      The beads were added to the ligand solution with an average of 10 mg of protein (5ml coupling: 

1g powder), and the mixture was rotated overnight at 4°C or 1 hr at room  

temperature.  The ligand- CNBr coupled beads are spun down at 2200 rpm for 5 min, and then the 

excess ligand was washed with 5x the medium volume with coupling buffer and spun down.  The 

ligand-CNBr coupled beads are then blocked with blocking solution (0.1M Tris-HCl, pH 8) for 2 

hours at room temperature, and then spun down.  The medium was washed 3x with the wash 

buffers, alternating between pH 2 (0.5 M NaCl, 0.1 M NaOAc) and pH 8 (0.5M NaCl, 0.1M Tris-

HCl), leaving the ligand-CNBr coupled beads in the pH 8 wash.  The medium was then stored at 

4°C in Tris-HCl pH 8, 0.5 M NaCl.  Aliquots of the supernatant were run on a gel before and after 

coupling to  

determine coupling efficiency.   

 

Affinity purification  

     His-tagged preabsoprtion beads are washed with PBTN (1x PBS, 0.3M NaCl, 0.1%  

Triton-X-100) and spun down.  The anti-serum was diluted 1:1 with PBTN and added to  

the preabsorption beads and mixed for 3-4 hours at room temperature.  The mixture was then 

poured into a column and the flow through is collected.  The previously prepared ligand-CNBr 

coupled beads is equilibrated with PBTN, mixed and spun down.  1.5- 2 ml of ligand-CNBr 

coupled beads are used of the 2 mg/ml CNBr-protein.  The preabsorbed antiserum is added to 

ligand-CNBr coupled beads, and incubated overnight at 4°C.  Then the antiserum and ligand-CNBr 

coupled beads are poured into a narrower column.  The beads are washed once they are packed 

with 10x the volume of originally added serum with PBTN. To elute antibody, 1ml of elution 
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buffer (0.2 M glycine, 0.8 M NaCl pH 2.5-2.75) is added over the beads without disturbing them.  

After the first ml was discarded, the eluant is collected one ml at a time.  The eluant was pooled 

eventually and pH was equilibrated with 50 ul of 2 M Tris-HCl pH 8 to 1 ml of eluant.  The eluant 

was then dialyzed in dialysis buffer (1x PBS, 0.02% NaN3) at 4°C overnight and was then divided 

into 100 ul aliquots and flash frozen.  The affinity purified antibody is tested with a western blot. 
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C. Results  

Drosophila embryonic develop stages 

Drosophila embryos takes 24hrs to hatch into larva. Embryonic development is separated into 16 

stages. In my project, I focus on first 3hr and 20mins in development. During that time, the embryo 

doesn’t have individual cells, but it does have a replicating nucleus that is migrating from inside 

of the embryo to the periphery. Based on the cycles of nucleus replicating, it’s divided into 14 

nucleus cycles. (Sullivan et al 2000) Nc10-12 is syncytial stage where nucleuses are inside the 

embryo but rapidly replicating. Nc13-14 is cellular blastoderm where nuclei are migrating from 

inside the embryo to periphery. Maternally express genes transition to zygotic genes from NC8-9 

to NC10-12. Between NC10-12 and NC13 is the transition o syncytial blastoderm to cellular 

blastoderm. 

 

Bcd osk tsl genetic system 

By using bcd osk tsl mutant alleles, we constructed Drosophila with bcd osk tsl background. This 

genetic system allows gt to be repressed ubiquitously in syncytial embryonic stage while Hb is 

expressed ubiquitously. Due to the lack of Cad, zygotic Hb will be missing, however gt didn’t get 

reactivated, so we assumed Polycomb proteins take over repression in place of Hb. By using Ez 

mutant embryos and immunostaining, it’s been proven that Polycomb proteins indeed are the ones 

taking over repression. (Abed et al 2018) bcd osk tsl genetic system gave us a way to observe what 

are the individual roles of each Polycomb protein in taking over repression. To examine roles of 

different protein, I used UAS-Gal4 system and RNAi to knockdown each protein individually in 

bcd osk tsl genetic background.  
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I previously performed ChIP on embryos with bcd osk tsl background in collaboration with 

previous graduate students to look at where and when Polycomb group proteins bind on gt 

throughout developmental stages of interest. It established a baseline for the changes when 

individual protein is knockdown (Abed et al 2018). These results (figure 5 and figure 6) show that 

Hb and Cad are degraded after syncytial blastoderm stage as expected. Pho along with PhoRC 

weakly associate with gt in early stages but didn’t increase binding affinity until NC14. PRC2 

contains E(z) which mono, di and tri methylate H3K27. As we see in graph below, E(z) also weakly 

associated with gt in early stage but didn’t increase binding until NC14a and increase binding even 

more in NC14b, which is after PhoRC binding to target gene gt, and it’s consistent with the 

hierarchical model we had with PhoRC, PRC2 and PRC1 (Wang et al 2004). H3K27me3 shows 

up alongside PRC2 due to E(z) mono-, di- and tri-methylate H3K27. PRC1 didn’t show up until 

NC14b which is after PRC2 and it's also consistent with our hierarchical model (Wang et al 2004). 
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Figure 5 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC10-12, NC13, NC14a and NC14b. It shows binding of PhoRC, Mock, Hb 

and Cad. (Abed et al 2018) 
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Figure 6 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC10-12, NC13, NC14a and NC14b. It shows binding of PRC1, PRC2 and 

H3K27me3. (Abed et al 2018) 
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Results on Individual Protein Knockdown 

Pho 

Pho transgenic RNAi line is made in bcd osk tsl background. Pho is knockdown efficient using 

BL-7062 maternal Gal-4 driver in bcd osk tsl background (Figure 5) shRNA-Pho is crossed with 

BL-7062 maternal Gal-4 driver. Females that are heterozygous of shRNA and Gal-4 driver are 

back crossed to males that carry shRNA. The said embryos are collected in different stages, i.e., 

nc13, nc14a, nc14b.  

 

 

 

 

 

 

 

 

sfmbt 

sfmbt transgenic RNAi line is made in bcd osk tsl background. sfmbt is knockdown efficient using 

BL-7062 maternal Gal-4 driver in bcd osk tsl background.  

shRNA-sfmbt is crossed with BL-7062 maternal Gal-4 driver. Females that are heterozygous of 

shRNA and Gal-4 driver are back crossed to males that carry shRNA. The said embryos are 

collected in different stages, i.e., nc10-12, nc13, nc14a, nc14b.  

 

Figure 7 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC14b showing Pho has been sufficiently knocked down. 
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Figure 7 shows the result of knocking down Sfmbt in bcd osk tsl background in NC14b. BOT WT 

is wild type embryos in bcd osk tsl background, and results are comparable to experiment 

previously done in 2018 in Dr. Jones lab. Sfmbt KD in orange shows what happens when we knock 

down sfmbt in bcd osk tsl background. Sfmbt is greatly reduced compared to WT embryos. Along 

with sfmbt, Pho is also missing. Unsurprisingly Pcl, which is an accessory protein of PRC2, and 

E(z) are also missing, so are Pc and Ring in PRC1. This indicating PcG proteins failed establishing 

recruitment in the absent of Sfmbt. However, H3K27me3 still show up strongly and it’s 

comparable to its level in wild type embryos. PRC2 is the only methyltransferase in this case, so 

it’s possible PRC2 is recruited to gt in earlier stage through other recruiting mechanism, but it’s 

removed by NC14b.      

 

 

 

 

 

 

 

Figure 8 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC14b. It shows binding of Sfmbt is sufficiently knocked down as well as 

binding levels of other Polycomb group proteins and histone modification 
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Hunchback (Hb)  

hb transgenic RNAi line is made in bcd osk tsl background. Hb is knockdown efficient using BL-

7062 maternal Gal-4 driver in bcd osk tsl background in NC13. Shown as graph below 

 

 

 

 

 

 

 

 

shRNA-hb is crossed with BL-7062 maternal Gal-4 driver. Females that are heterozygous of 

shRNA and Gal-4 driver are back crossed to males that carry shRNA. The said embryos are 

collected in different stages, i.e., nc13, nc14a, nc14b.  

 

gt is transcriptionally active ubiquitously in syncytial blastoderm when Hb is knocked down.  

Figure 9 shows what happens to polycomb group proteins in NC 14a and NC14b when Hb is 

knocked down. Pho represents PhoRC, it shows a similar trend as wild type embryos, showing that 

PhoRC remain on gt whether it’s repressed or activated. E(z) and Pcl represents PRC2, and it 

shows E(z) and Pcl are positive on gt but level of binding didn’t increase in NC14b as it did in 

Figure 9 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC13 showing Hb has been sufficiently knocked down. 
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wild type. E(z) and Pcl might not be able to establish stable binding due to various reasons, one of 

them can be H3K27ac. H3K27ac as an active histone mark can be inhibiting PRC2 binding. Pc 

represents PRC1, which also lack of an increased level of binding in NC14b. PRC2 signal didn’t 

increase in NC14b even though it’s present on gt in NC14a, and PRC1 signal remain weak in 

NC14b is consistent with PcG protein take over but not initiate repression.  

 

 

 

 

 

Figure 10 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC14a and NC14b. It shows the binding levels of Polycomb group proteins. 
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Caudal (Cad)  

Maternal Cad is ubiquitously present in bcd osk tsl embryos as an activator of gt, without maternal 

Cad, gt will be repressed from the beginning. Cad as an activator might be inhibiting Polycomb 

Group proteins binding, removing Cad might allow PhoRC and subsequently other Polycomb 

group proteins to bind to target gene earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 ChIP has been done on Drosophila embryos with bcd osk tsl background on 

developmental stage NC13 showing Cad has been sufficiently knocked down. 
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D. Discussion 

Polycomb group proteins are conserved epigenetic regulators that do not initiate but rather take 

over repression. bcd osl tsl genetic system is constructed so gt is repressed ubiquitously in 

syncytial blastoderm by Hb and repression is taken over by PcG proteins in cellular blastoderm 

(Abed et al 2018).  

 

Chromatin immunoprecipitation shows that PhoRC binds to gt as early as NC10-12, but it 

doesn’t increase binding until NC14a. PRC2 signal is weak across all regions in NC10-13 and 

doesn’t increase until NC14a. PRC1 is negative until NC14b. Overall PcG proteins signals start 

increasing in NC14a. NC14a is the first nucleus cycle after Hb degrades and it's when Polycomb 

group proteins taking over repression, so NC14b maybe the beginning of PcG proteins 

recruitment. It’s not clear why PhoRC is present on gt as early as NC10-12, but signal is not 

increased until NC14a and b. One possibility is nucleus cycles before NC14a are short and rapid 

cycles. Rapid replicating nucleus maybe preventing more PhoRC binding on gt as well as 

recruiting the rest of PcG proteins (Abed et al 2018). It’s not clear what are the individual roles 

of each PcG protein complexes. It’s also not clear how active and repress state of target gene will 

affect de novo PcG proteins recruitment.  

 

To further examine the roles of individual protein in de novo recruitment of Polycomb group 

proteins, I use UAS-Gal4 system to knock down individual protein in bcd osk tsl background. I 

successfully constructed Drosophila stocks to knock down Pho, Sfmbt and Cad. Inverted 

sequences that transcribe into RNAi are designed by TRiP project from Harvard medical school. 

VALIUM22 and VALIUM20 are two vectors express maternally and are also designed by TRiP 
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project. VALIUM 22, which contains a p element promoter express better maternally and can 

result in a more robust knock down in embryo. Cad is knocked down using VALIUM20, but Hb, 

Pho and Sfmbt are knocked down using VALIUM22 vector. All target proteins are knocked 

down maternally and have been confirmed they are knocked down efficiently. Hb and Cad are 

knocked down efficiently using BL-7062 maternal Gal4 driver in 25c°. Embryos survive past 

NC14b, so PcG recruitment can be observed when Hb or Cad is missing. There are Pho and 

Sfmbt RNAi that have been shown to be effective, however these RNAi transgenic stocks are 

only available in VALIUM20 vector. These RNAi transgenic stocks have been tested with 

different maternal Gal4 drivers as wells as different temperatures. It’s confirmed that they can’t 

knock down Pho and Sfmbt effectively. VALIUM 22 is a vector that express better maternally, 

so I have inserted effective inverted sequence for Pho and Sfmbt RNAi into VALIUM22 vector 

and construct Drosophila stocks in bcd osk tsl background. Pho, Sfmbt are embryonic lethal if 

either of them was completely depleted maternally, so I used BL-7062, which is a weaker 

version of the two available maternal Gal4 driver to knock down Pho and Sfmbt individually. 

Pho is successfully knocked down at 25c°, and Sfmbt is successfully knocked down at 28c°. 

 

ChIP has been performed on embryos in bcd osk tsl background that are absent of Sfmbt in 

NC14b. It shows Pho is missing in the absence of Sfmbt, so are PRC2 and PRC1, however 

H3K27me3 is positive and signal level is comparable to WT embryos in bcd osk tsl background. 

It’s possible PRC2 is recruited through mechanism independent of PhoRC in earlier nucleus 

cycle and H3K27me3 is then established. However, PRC2 is not able to stay binding to gt due to 

the lack of PhoRC, so PRC2 signal is low in NC14b.  
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ChIP has been performed on embryos in bcd osk tsl background that are absent of Hb in NC14a 

and b. In NC14a, signals of Pho, E(z), Pcl and Pc in Hb knock down are comparable to the 

signals in WT embryos. PhoRC is recruited to gt, PRC2 signals are low but present on gt, and 

PRC1 is missing. In NC14b Pho signals increase as it does in WT background, but PRC2 signals 

remain low and so do PRC1 signals. This indicates PRC2 failed to establish stable binding on gt 

and PRC1 is not recruited to gt. Knocking down maternal Hb results in gt ubiquitously active in 

embryo. PcG proteins take over but not initiate repression is consistent with ChIP results in Hb 

knock down. 

 

Conclusion 

Knocking down individual proteins in bcd osk tsl background gives us a better understanding of 

de novo PcG proteins recruitment. Knocking down Hb results in ubiquitously active gt 

expression in embryos. ChIP results of Hb knock down is consistent with PcG proteins taking 

over but not initiating repression. Knocking down Sfmbt suggests PRC2 have been recruited to 

gt by mechanism independent of PhoRC, however PRC2 is removed before NC14b. It’s not clear 

why H3K27me3 is present in NC14b when PRC2 is not present on gt. Performing ChIP on 

Sfmbt knocked down embryos in earlier nucleus cycles in bcd osk tsl background will give a 

better insight into PRC2 recruitment when Sfmbt is missing. Other interesting targets for knock 

down experiments are E(z), Pcl and Pc. Depleting E(z) maternally is embryonic lethal, while 

depleting maternal Pcl and Pc have no obvious effect on embryo development. Different 

strengths of maternal Gal4 drivers may be needed to sufficiently knock down individual proteins. 

The remobilized maternal Gal4 driver may be useful in future knock down experiments.  
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