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The restricted mean survival time (RMST) is a clinically meaningful summary mea-

sure in studies with survival outcomes. Statistical methods have been developed for

regression analysis of RMST to investigate impacts of covariates on RMST, which is a

useful alternative to the Cox regression analysis. However, existing methods for regres-

sion modeling of RMST are not applicable to left-truncated right-censored data that arise

frequently in prevalent cohort studies, for which the sampling bias due to left truncation

and informative censoring induced by the prevalent sampling scheme must be properly

addressed. Meanwhile, statistical methods have been developed for regression modeling

of the cumulative incidence function for left-truncated right-censored competing risks data.

Nevertheless, existing methods typically involve complicated weighted estimating equations

or nonparametric conditional likelihood function and often require a restrictive assumption

that censoring and/or truncation times are independent of failure time. Andersen et al.

introduced an approach of using pseudo observations (POs) in regression analysis of

right-censored data [4, 5]. In this dissertation, we develop statistical methods for regression

modeling of complex survival data based on POs.

In Chapter 1, we propose to directly model RMST as a function of baseline covariates

based on POs for left-truncated right-censored data under general censoring mechanisms.

We adjust for the potential covariate-dependent censoring or dependent censoring by the
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inverse probability of censoring weighting method. We establish large sample properties of

the proposed estimators and assess their finite sample performances by simulation studies

under various scenarios. We apply the proposed methods to a prevalent cohort of women

diagnosed with stage IV breast cancer identified from Surveillance, Epidemiology, and End

Results-Medicare linked database.

In Chapter 2, we extend the PO approach to left-truncated right-censored competing

risks data and propose to directly model the cumulative incidence as a function of baseline

covariates based on POs, under general truncation and censoring mechanisms. We

adjust for potential covariate-dependent truncation and/or covariate-dependent censoring

by incorporating covariate-adjusted weights into the inverse probability weighted estimator

of the cumulative incidence function. We derive large sample properties of the proposed

estimators under reasonable model assumptions and regularity conditions and assess

their finite sample performances by simulation studies under various scenarios. We apply

the proposed methods to a cohort study on HIV disease progression and a cohort study

on pregnancy exposed to coumarin derivatives for illustration.
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CHAPTER 1

REGRESSION MODELING OF RESTRICTED MEAN SURVIVAL TIME

1.1. Introduction

The restricted mean survival time (RMST) is a clinically relevant summary measure

in studies with survival outcomes. Unlike the uncensored data, the mean survival time

may not be estimable due to censoring. As an alternative measure to the mean survival

time or median survival time, the RMST defined as the expected survival time up to a

fixed time point τ has been suggested [4, 9, 65]: µ (τ) = E (T ∧ τ) =
∫ τ

0
S (t) dt, which is

the area under the survival curve over a specified time interval [0, τ ]. The RMST can be

consistently estimated even when the largest observed time is censored as long as τ is

no larger than the largest failure time. The difference or ratio of RMST characterizes the

absolute magnitude of risk or benefit in survival and is a useful alternative measure to

the hazard ratio from the Cox regression analysis. Although the Cox proportional hazards

model is commonly used for exploring the relationship between survival and covariates,

the validity of the proportional hazards assumption is often questionable and can be

hard to be checked analytically for certain types of survival data, such as left-truncated

right-censored data. In contrast, RMST is an easily interpretable measure of average

survival time over a fixed followed-up time period and does not have any assumption

requirement. Therefore, analysis based on RMST is more desirable in clinical settings,

especially when the proportional hazards assumption is violated. Existing methods for

estimating RMST include the indirect and direct estimations. The indirect methods estimate

RMST through the Cox proportional hazards model [9, 28, 63, 67]. Such indirect RMST
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estimation is inconvenient and requires the proportional hazards assumption to some

extent. Hence, directly modeling RMST itself is more appealing. For right-censored data,

Andersen et al. [4] proposed a regression analysis of RMST given baseline covariates

using pseudo-observations (POs). Tian et al. [53] modeled the relationship between RMST

and baseline covariates through a link function under covariate-independent censoring.

Wang and Schaubel [58] developed generalized estimating equation methods to model

RMST as a function of baseline covariates under general censoring mechanisms.

Left-truncated right-censored data are frequently encountered in prevalent cohort

studies, in which diseased patients who have not yet experienced the disease-related

failure event (e.g., death) are sampled and prospectively followed for the subsequent failure

event [57]. One motivational example of such data is from a prevalent cohort of late-stage

breast cancer patients identified from Surveillance, Epidemiology, and End Results (SEER)-

Medicare linked database. The study cohort consists of patients diagnosed with Stage IV

breast cancer before the sampling time and are still alive at the sampling time, and the goal

is to investigate the impact of covariates on RMST among patients with Stage IV breast

cancer. In addition to right censoring, survival data from a prevalent cohort are subject

to left truncation because patients who died before the sampling time are not included

in the study cohort. Statistical methods must account for the sampling bias due to left

truncation and informative censoring induced by the prevalent sampling scheme. Although

much research has been conducted into both regression analysis of left-truncated right-

censored data [2, 24, 32, 66] and direct regression analysis of RMST for right-censored

data [4, 53, 58], relatively little work is available on direct regression modeling of RMST

for left-truncated right-censored data. To our knowledge, only one paper by Lee et al. [33]

studied direct regression analysis of RMST for length-biased right-censored data, a special

type of left-truncated right-censored data that assumes a constant disease incidence rate.

That paper was mostly concerned with covariate-independent censoring and constructed

unbiased estimating equations to obtain consistent estimators of covariate effects on

RMST. In observational cohort studies, covariate-dependent censoring or dependent

2



censoring occurs frequently when the censoring time and failure time are correlated

through common baseline covariates or possibly time-varying covariates, respectively. For

example, in AIDS studies, patients who have low CD4 counts (an indicator of immune

function in patients living with HIV) are more likely to drop out of the study, resulting

in overestimation of the overall survival if covariate-independent censoring is assumed.

Methods for regression modeling of RMST need to take into account covariate-dependent

censoring and dependent censoring. The inverse probability of censoring weighting (IPCW)

method, discussed by Robins and Rotnitzky [49], Robins [47], and Robins and Finkelstein

[48] among others, can be used to correct for the bias due to covariate-dependent censoring

and dependent censoring. For right-censored data, Xiang and Murray [61] developed a

model for the log of RMST given baseline covariates by using POs that account for

dependent censoring. In this paper, we will consider general censoring mechanisms in

regression modeling of RMST for left truncated right-censored data.

POs are jackknife estimates that represent the contribution of each subject to the

estimator of the parameter of interest [5]. POs are usually used to study the bias and

precision of the parameter estimator. Andersen et al. introduced an approach of using

POs in the regression analysis of right-censored data [4, 5]. The PO approach has also

been used in regression modeling of competing risks data [30, 31] and the Cox regression

analysis of left-truncated right-censored data [20]. In this paper, we propose to extend

the PO approach in Andersen et al. [4] to left truncated right-censored data and directly

model RMST as a function of baseline covariates based on POs under general censoring

mechanisms. The PO approach has the advantage of handling complex issues related

to left truncation and right censoring in the first step of generating POs and then using

POs as responses in a generalized linear model for uncensored data. The remainder of

this paper is organized as follows. In Section 1.2, we introduce the left-truncated right-

censored data structure with notations and describe the regression model of RMST. In

Section 1.3, we first present the proposed method for regression modeling of RMST

given covariates using POs under covariate-independent censoring. Then, we relax the

3



covariate-independent censoring assumption to incorporate covariate-dependent censoring

and dependent censoring. We investigate the finite sample performances of proposed

estimators by simulation studies under various scenarios in Section 2.3. As an illustration,

we apply the proposed methods to a prevalent cohort of women diagnosed with late-stage

breast cancer identified from SEER-Medicare linked database in Section 2.5. We provide

concluding remarks in Section 2.6. Technical details can be found in the Appendix.

1.2. Data, Notations, and Regression Model

In a prevalent cohort study, patients with a certain disease are sampled or enrolled

and then followed prospectively till the occurrence of a failure event or censoring. We

are interested in studying the underlying relationship between the RMST and baseline

covariates through regression modeling based on the PO approach. Let T̃ be the time

from the disease onset to the failure event (unbiased failure time). Let Ã be the time from

disease onset to study enrollment. Under the prevalent sampling, the failure time T̃ is

not randomly sampled from the target population because patients who experienced the

failure event prior to the enrollment are not included. Hence, patients in the prevalent

cohort all have Ã < T̃ . Let T be the sampled failure time from the disease onset (biased

failure time) and A be the corresponding truncation time. For the sampled patients, let

V be the time from enrollment to the failure event, and we have T = A + V , where V

is subject to right censoring. Let C be the residual censoring time from enrollment. Let

Y = min(T,A+C) be the follow-up time till failure event or censoring and δ = I(V < C) be

the failure indicator. Let X be a p× 1 vector of baseline covariates. The observed data are

(Yi, Ai, δi,Xi), i = 1, 2, ..., n. Let τ be a pre-specified time point of interest from the disease

onset and T̃τ = min(T̃ , τ) be the restricted survival time for a fixed τ . The RMST is then

defined as µ(τ) = E[T̃τ ]. Throughout this paper, we use these notations and assume that T̃

and Ã are conditionally independent given covariates X, which is a standard assumption

for left-truncated right-censored data. Note that the biased failure time T is correlated
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with censoring time from the disease onset A+ C through a common variable A, which

is referred to as informative censoring induced from prevalent sampling. Our goal is to

directly model the relationship between RMST and covariates through a generalized linear

model:

g[µ(τ | Z)] = Z>βτ , (1.1)

where g(·) is a differentiable, strictly increasing link function, Z = (1,X>)>, and βτ is a

(p+ 1)× 1 coefficient vector specific to τ . Examples of common link functions include the

linear link g(m) = m and log link g(m) = log(m). The linear link function leads to a simple

linear regression of RMST, where the covariate effects can be interpreted as differences in

the RMST. However, since the linear model may produce negative responses that are not

meaningful for RMST, the log-linear model under the log link function would be a natural

alternative, where the covariate effects can be interpreted as ratios in the RMST [22].

1.3. Regression Modeling of RMST based on Pseudo-Observations

POs for regression analysis of RMST can be defined by using a consistent estimator µ̂(τ)

for the parameter of interest µ(τ) [4]. For conventional right-censored data, a consistent

estimator of µ(τ) is µ̂(τ) = Ê[T̃τ ] =
∫ τ

0
Ŝ(t)dt, where Ŝ(t) is the Kaplan-Meier estimator for

the survival function P (T̃ > t). Then, the ith PO is computed as

µ̂i(τ) = nµ̂(τ)− (n− 1)µ̂−i(τ), (1.2)

where µ̂−i(τ) is the jackknife leave-one-out estimator for µ(τ) based on data leaving out

subject i. The rationale behind the PO approach is that any estimator of µ(τ) = E[T̃τ ] is

also implicitly an estimator of EZ
[
E(T̃τ | Z)

]
, where the inner expectation is the quantity

of interest in the regression model (1.1) and the outermost expectation is taken with

respect to the empirical distribution of Z. Let µ̃(τ) = 1
n

∑n
i=1E(T̃τ | Zi) be a consistent
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estimator of EZ
[
E(T̃τ | Z)

]
. Then, the corresponding ith PO is nµ̃(τ)− (n− 1)µ̃−1(τ) =

n
[

1
n

∑n
i=1E(T̃τ | Zi)

]
−(n−1)

[
1

n−1

∑n
j=1,j 6=iE(T̃τ | Zj)

]
= E(T̃τ | Zi), which is the quantity

of interest in regression modeling. As described in Anderson et al. [4], since both µ̂(τ) and

µ̃(τ) are consistent estimators for µ(τ) and they will be approximately equal when n is large,

µ̂(τ) that is estimable from censored survival data can be used to replace µ̃(τ), and formula

(1.2) can be used to generate POs that have the same conditional mean of interest for

regression modeling as the original individual level data. In other words, models based on

POs generated by (1.2) will have regression parameters similar to a model fit to the values

of T̃τ if all these values were uncensored. Thus, the POs, PO = {µ̂1(τ), µ̂2(τ), ..., µ̂n(τ)}

obtained from (1.2) can be used as responses of the regression model (2.1) to estimate βτ

under a generalized estimating equation framework [4]. Graw et al. [21] and Overgaard

et al. [40, 41] provide the formal theoretical justification of PO approach and asymptotic

properties of parameter estimators. We extend the method in Anderson et al. [4] to left-

truncated right-censored data where only the biased failure times are observable, and

propose a modified PO approach to estimate and analyze RMST.

First, we consider covariate-independent censoring, that is, the residual censoring C

is independent of (A, V ). The Kaplan-Meier estimator would result in overestimation of

the survival function for left-truncated right-censored data [60], and thus, overestimation

of the RMST. The survival function S(t) for such data can be consistently estimated by a

product-limit estimator ŜPL(t) with risk set R(t) = {i : Ai ≤ t ≤ Yi} [54], and

ŜPL(t) =
∏

j:t(j)≤t

[
1− dj

rj

]
,

where {t(1), ..., t(K)} denotes the set of K distinct ordered failure times from uncensored

Yi in the sample, dj =
∑n

i=1 I
{
Yi = t(j), δi = 1

}
is the number of failures at tj, and rj =∑n

i=1 I
{
Ai < t(j) ≤ Yi

}
is the number of subjects “at risk” right before the jth failure time.

The risk set R(t) at any time t consists of subjects who have entered the study and have

not failed or been censored by that time. Note that the difference between the Kaplan-Meier
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estimator for right-censored data and the product-limit estimator ŜPL(t) is the definition

of risk set. For left-truncated right-censored data, ŜPL(t) is similar to the Kaplan-Meier

estimator, after replacing the risk set RKM(t) = {i : t ≤ Yi} with R(t) = {i : Ai ≤ t ≤ Yi}.

The product-limit estimator ŜPL(t) is the nonparametric maximum likelihood estimator

of S(t) [56]. A consistent estimator µ̂(τ) can be obtained by integrating the product-limit

estimator of the survival function over the time interval [0, τ ], µ̂(τ) =
∫ τ

0
ŜPL(t)dt, and is

used to construct POs, PO = {µ̂1(τ), µ̂2(τ), ..., µ̂n(τ)}, based on (1.2). The POs are then

used as responses in the generalized linear model (2.1) with a suitable link function to

estimate regression parameters βτ and predict µ(τ | Zi). The regression coefficients, βτ ,

can be estimated by the generalized estimating equations

U (βτ ) =
n∑
i=1

Ui (βτ ) =
n∑
i=1

{
∂

∂β
g−1

(
Z>i βτ

)}
V−1
i

{
µ̂i(τ)− g−1

(
Z>i βτ

)}
= 0, (1.3)

where Vi is a working variance of µ̂i(τ) [34, 62] with a simple choice of Vi = 1. Anderson et

al. [6] showed that the estimates obtained from generalized estimating equations using

POs are consistent for right-censored data. Since the nonparametric estimator µ̂(τ) based

on the product-limit estimator is consistent for left-truncated right-censored data, we can

also use (1.3) to obtain consistent estimates of the regression coefficients in model (2.1).

Let β̂τ be the solution to (B.1) and βτ0 be the true value of βτ . The asymptotic properties of

β̂τ are summarized in Theorem 1 with the proof and regularity conditions provided in the

Appendix.
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Theorem 1. Under some regularity conditions, β̂τ is consistent to βτ0, and
√
n
(
β̂τ − βτ0

)
is asymptotically normal with mean zero and a covariance matrix that can be consistently

estimated using a standard ‘sandwich’ estimator, which takes the form

Σ̂ = I
(
β̂τ

)−1

v̂ar {U (βτ )} I
(
β̂τ

)−1

,

where

I
(
β̂τ

)
=
∑
i

∂g
−1
(
Z>i β̂τ

)
∂β̂τ


>

V−1
i

∂g
−1
(
Z>i β̂τ

)
∂β̂τ

 ,

v̂ar {U (βτ )} =
∑
i

Ui

(
β̂τ

)
Ui

(
β̂τ

)T

.

Second, covariate-independent censoring may be implausible in practice and covariate-

dependent censoring often occurs in observational cohort studies, where the censoring

time and failure time are only conditionally independent given baseline covariates. Fur-

thermore, the censoring time may be correlated with the failure time through a mutual

association with possibly time-varying covariates, which is referred to as dependent cen-

soring. We relax the covariate-independent censoring assumption and model RMST under

more general censoring mechanisms. The product-limit estimator is a consistent estimator

of the survival function for left-truncated right-censored data under covariate-independent

censoring. It is crucial to account for covariate-dependent censoring or dependent cen-

soring to consistently estimate the survival function. The IPCW approach can be used

to adjust for covariate-dependent censoring or dependent censoring by assigning extra

weight to subjects who are not censored or who are observed [47–49, 59]. Each subject

is assigned a weight inversely proportional to the estimated probability of remaining un-

censored until time t given covariates. The Cox proportional hazards model for censoring

is frequently used to model the relationship between censoring time and covariates and

estimate such probability. For simplicity of discussion, we assume that the residual cen-

soring C is conditionally independent of (A, V ), given baseline covariates X, although the
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covariate-dependent censoring assumption can be easily relaxed to dependent censoring

by incorporating time-varying covariates M(t) into the Cox model [48]. The Cox model for

the residual censoring time C given covariates X is:

λC (t|X) = λC0(t) exp {α>X},

where λC0 is the baseline hazard function for censoring and α is the vector of model

parameters. Let α̂ be the partial likelihood estimate of α and ρ(j)’s denote the distinct

ordered residual censoring times. A consistent estimator of the conditional probability that

subject i remains uncensored through time t given X is provided by:

K̂i(t) =
∏

{j:ρ(j)<t,δj=0}

[
1− λ̂C0

(
ρ(j)

)
exp {α̂>Xi}

]
,

where

λ̂C0

(
ρ(j)

)
=

(1− δj)∑n
i=1 exp {α̂>Xi}I

(
ρ(j) ≤ Yi

)
is the Cox estimator of the baseline hazard function for censoring, λC0, with I

(
ρ(j) ≤ Yi

)
being the at-risk indicator and δ being the failure indicator [48]. The subject-specific IPCW

weight is Ŵi(t) = 1/K̂i(t). The contribution of subject i at risk at any time t(j) is weighted

by the subject-specific weight Ŵi(t(j)). The IPCW version of the product-limit estimator for

S(t) for left-truncated right-censored data is then given by

ŜIPCW (t) =


1 if t < t1∏

j:t(j)≤t

[
1−

∑n
i=1 I{Yi=t(j), δi=1}Ŵi(t(j))∑n

i=1 I{(Ai,Yi)∈R(t(j))}Ŵi(t(j))

]
if t ≥ t1.

In the presence of covariate-dependent censoring, we can use ŜIPCW (t) to consistently

estimate the survival function S(t) and further to obtain estimated RMST and corresponding

POs. Then, the POs can be used in the generalized linear model (1.1) to estimate βτ ,
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similar to the case under covariate-independent censoring. For right-censored data, Robins

and Finkelstein [48] provided proof of the consistency of ŜIPCW (t) for S(t) under dependent

censoring. The consistency of the IPCW estimator also holds for the left-truncated right-

censored data when the risk set is properly adjusted. Therefore, the resulting estimator of

βτ is consistent and asymptotically normal, which can be proved similarly to Theorem 2

under covariate-independent censoring.

1.4. Simulations

We conduct a series of simulations to assess the performance of the proposed methods

for left-truncated right-censored data, under various scenarios. The failure time data are

generated both under proportional hazards and under non-proportional hazards. For each

scenario, the simulation was repeated 1000 times with a sample size of n = 350 or 500.

1.4.1. Simulations under Left Truncation and Covariate-Independent Censoring

First, we evaluate the performance of the proposed method under proportional hazards

and covariate-independent censoring. We randomly assign each subject to two groups, A

and B, with equal probability. Group A is treated as the reference. The assumed model for

RMST is µτ (x1) = E
[
T̃τ | X1 = x1

]
= βτ0 + βτ1x1 with the linear link function. The failure

time T̃ follows the Cox proportional hazards model and is generated from a distribution

with hazard function λ(t|X1 = x1) = exp(γx1), where γ = 0.5. The covariate X1 is binary

and equals to 1 for subjects in group B and equals to 0 for subjects in group A. The residual

censoring time C is generated from an exponential distribution with parameter λC , allowing

for various levels of censoring (i.e., censoring rates of 30% and 45%). The truncation time

Ã follows a Weibull distribution with scale parameter λl and shape parameter αl, where

λl is such that the truncation rate is 30% when αl = 1. Regression parameters in the

RMST model are estimated at two values of τ = (0.69, 1.39), which are approximately
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the 60th and 80th percentiles of the failure time T̃ , respectively. The upper panel of

Table 1.1 summarizes the simulation results. Next, we investigate how the proposed

method performs under non-proportional hazards and covariate-independent censoring.

Let Z = (1, X1)>. The failure time is generated from a distribution with hazard function

λ (t | Z = z) = exp
{
−
(
z>γ

)
+ z>ζ log (8t)

}
, where γ = (0.5, 1)> and ζ = (1,−0.3)>.

Apparently, the proportional hazards assumption is not valid because the hazard ratio of

the two groups varies over time. The rest of the data generating and estimation procedures

are similar to the case under the proportional hazards. The values of τ are set to be

0.69 and 1.39, which are approximately the 50th and 80th percentiles of the failure time,

respectively. The lower panel of Table 1.1 summarizes the simulation results. Moreover, we

carry out simulations with the log link function and the details of simulations are described

in the Appendix with results summarized in Supplementary Table A.1.

From Table 1.1, the estimation procedure performs well with generally very small

relative biases and the estimated model-based standard errors (SEs) computed as the

GEE sandwich estimator being close to the empirical standard deviations (SDs) in all

scenarios. Increasing the censoring rate from 30% to 45% does not affect the relative bias

much but tends to increase SEs and SDs slightly. Additionally, the estimated SEs and SDs

decrease as the sample size increases. The coverage probabilities are generally close

to the nominal level of 95%, with some slight undercoverage in estimating the intercept,

β0. Nevertheless, the estimation of the regression coefficient, which is often the main

focus, is reliable. It is noted that relative biases are larger in the non-proportional hazards

scenario than those in the proportional hazards scenario, however, SDs and SEs under

non-proportional hazards are considerably smaller than those under proportional hazards.

Overall, there is no obvious directional trend when comparing the mean squared errors

under non-proportional hazards and under proportional hazards, and coverage probabilities

under these two scenarios are comparable. The results in Table A.1 also suggest a good

performance of the proposed method under various scenarios with the log link function.
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In both Table 1.1 and Table A.1, the relative bias of parameter estimate increases as

τ increases. Such effect is more pronounced for the estimation of intercept and the bias

can be relatively large in some cases. For example, the relative bias for β0 is as large as

0.069 at τ = 1.39 in the lower panel of Table 1.1. This is possibly caused by the presence

of the extremely small negative-valued POs that behave as outliers in the subsequent GEE

analysis. Similar problems were observed in the simulations for regression analysis of

RMST with right-censored data using POs in Anderson et al. [4] where the bias increases

considerably as τ increases, especially under a high censoring rate and in the simulations

for estimating regression parameters in the Cox model with left-truncated right-censored

data using POs in Grand et al. [20] The bias observed at larger τ may be due to the

low precision of the product-limit estimator at the tail part of the survival function and is

enhanced for the RMST estimator by the integration. Another important explanation is

that under left truncation, there can be very few subjects at risk at the beginning so that

the information in the data is too sparse. Grand et al. [20] suggested select a set of time

points where the information is less sparse to improve the estimation procedure. Here, we

use a “conditional survival function” approach to address this issue. This approach is to

only include subjects whose failure times are greater than k, where k is the failure time

corresponding to the cutoff value of the POs that separates out the outliers. Therefore,

this approach is essentially modeling the RMST based on the conditional survival function

given surviving beyond k, i.e., E
(
T̃τ | T̃τ > k

)
=
∫ τ
k
P
(
T̃ > t | T̃ > k

)
dt. The extremely

small negative POs are identified by using a cutoff value obtained by subtracting 2 times

interquartile range from the first quartile. Supplementary Table A.3 in the Appendix includes

the estimation results at τ = 1.39 by using the “conditional survival function” approach

with linear and log link functions. It shows that the estimation performance is improved

remarkably comparing to those in the lower panel of Table 1.1 and the lower panel of

Table A.1, respectively. The absolute value of relative bias after using the “conditional

survival function” approach is no more than 0.012 across different simulation settings. In

addition, the coverage probability is closer to the nominal level of 95% after the adjustment,
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especially for β0.

1.4.2. Simulations under Left Truncation and Covariate-Dependent Censoring

We conduct the following two simulation studies to evaluate the proposed methods

under covariate-dependent censoring and compare the parameter estimates obtained

by using the traditional PO approach and the IPCW-adjusted PO approach. We first

generate the survival data under a proportional hazards model. We randomly assign each

subject to three groups, A, B, and C, with unequal proportions of 40%, 30%, and 30%.

Group A is treated as the reference. We set the two covariates X1 and X2 as dummy

variables indicating groups B and C, respectively. The assumed model of RMST is µτ (x) =

E
[
T̃τ |X = x

]
= βτ0 + βτ1x1 + βτ2x2. The failure time is generated from a distribution

with hazard function λ(t|X) = exp(γX), where γ = (0.5, 1)> and X = (X1, X2)
>. The

residual censoring time is generated from an exponential distribution with parameter

λC = λC0exp(4X1 + 5X2), which depends on the two covariates. Varying λC0 allows for

various levels of censoring (i.e., censoring rates of 30% and 45%). The truncation variable

follows the same Weibull distribution as in Section 2.3.1, with a truncation rate of 30%. After

the data are generated, we compute the IPCW-adjusted POs for the RMST at two values

of τ = (0.69, 1.39), which are approximately the 65th and 85th percentiles of the failure

time, respectively. Table 2.5 summarizes the simulation results. Next, we generate the

survival data under non-proportional hazards. The assumed model for RMST is µτ (x) =

E
[
T̃τ |X = x

]
= βτ0 + βτ1x1 + βτ2x2. Let Z = (1, X1, X2)>. The failure time is generated

from a distribution with hazard function λ (t | Z = z) = exp
{
−
(
z>γ

)
+ z>ζ log(8t)

}
, where

γ = (0.5, 1, 1)> and ζ = (1,−0.3, 0)>. The residual censoring time is generated from an

exponential distribution with parameter λC = λC0exp (X1 + 2X2), where λC0 is such that

the censoring rate is 30% or 45%. The truncation variable remains the same with a

truncation rate of 30%. As previous, the values of τ are set to be 0.69 and 1.39, which

are approximately the 45th and 80th percentiles of the failure time, respectively. Table
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2.1 summarizes the simulation results. Likewise, we conduct simulations with the log

link function and under covariate-dependent censoring. The details are provided in the

Appendix with results summarized in Supplementary Table B.2.

Tables 1.2 and 1.3 show that the IPCW-adjusted PO approach can substantially reduce

the bias after accounting for covariate-dependent censoring, especially when the censoring

rate is high or when the RMST is computed at a larger τ . For example, in Table 1.2, under

the scenario of n = 500, censoring rate of 45% and τ = 1.39, the relative bias is reduced

from 0.169 to 0.104 for the estimate of the intercept β0, from 0.176 to 0.073 for the estimate

of β1, and from 0.206 to 0.132 for the estimate of β2. Overall, the estimated standard

errors (SEs) are close to the empirical standard deviations (SDs) in all scenarios. As the

sample size increases from 350 to 500, SEs and SDs decrease. Moreover, the coverage

probabilities under the IPCW-adjusted PO approach are closer to the nominal level of

95%, with some undercoverage in the estimation of the intercept, β0. The estimation

of the regression coefficients is generally reliable. Similarly, Table A.2 shows that the

IPCW-adjusted PO approach greatly improves the estimation under various scenarios

with the log link function. The substantial bias reduction by using the IPCW-adjusted

PO approach suggests that when the censoring mechanism is more complicated than

covariate-independent censoring (e.g., covariate-dependent censoring), which is often the

case in many applications, the proposed method with IPCW adjustment outperforms the

unadjusted PO approach. Although the IPCW-adjusted PO approach substantially reduces

the bias, the bias is still relatively large at τ = 1.39 in Tables 1.3 and A.2, especially for

the intercept β0, similar to that observed in the lower panels of Tables 1.1 and A.1. This

is probably due to the low precision of RMST estimator at the tail and the sparse data

information at early event times under left truncation.
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1.5. Application

The Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database is

a population-based cancer registry that provides data for prevalent cohorts, which include

patients who have already been diagnosed with cancers. We identified a prevalent cohort

from the SEER-Medicare linked database that consists of patients diagnosed with stage

IV breast cancer from 2002 to 2006 and survived beyond 2006 with a last follow-up date

of December 31, 2010 [66]. This prevalent cohort included 933 patients with complete

information on receptors for either estrogen (ER) or progesterone (PR) in the tumor, receipt

of chemotherapy, age at diagnosis, vital status, and death/last contact dates. The truncation

time was the time from the breast cancer diagnosis to study enrollment, and the failure

time was the overall survival after the breast cancer diagnosis. We apply the proposed

method to directly model RMST and investigate the impact of chemotherapy, ER/PR status,

and age at diagnosis on RMST among patients with stage IV breast cancer.

Among the 933 patients, 707 (75.8%) experienced failure events and 226 (24.2%) were

censored by the end of the study, 465 (49.8%) received chemotherapy, and 791 (84.8%)

patients were ER/PR positive. Figure 1.1 presents the survival function estimated by the

product-limit estimator for left-truncated right-censored data as well as the corresponding

nonparametric RMST estimator by integrating the survival curve at varying values of τ ,

among patients with and without chemotherapy. Figure 1.2 presents the estimated survival

curve and RMST curve by ER/PR status. In summary, these figures show that the receipt of

chemotherapy and positive ER/PR status tend to result in a longer RMST. Since there is no

formal analytical tool for testing the proportional hazards assumption for left-truncated right-

censored data in literature, the validity of the proportional hazards assumption cannot be

rigorously checked and the analysis based on direct modeling of RMST is more applicable.

Moreover, a preliminary Cox regression analysis of residual censoring time suggests that

the residual censoring time is independent of covariates, and thus, the proposed method
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that assumes covariate-independent censoring is used in the analysis.

Figure 1.1: Product-limit estimator of survival function (left panel) and the nonparametric
RMST estimator (right panel) by receipt of chemotherapy (chemo=1, receiving chemother-
apy; chemo=0, not receiving chemotherapy).

The regression model of RMST at τ = 2, 5, and 8 years post-diagnosis are considered,

which are reasonable time points for this study of stage IV breast cancer. We use both

the linear and log link functions for the regression model and include two binary variables

for the receipt of chemotherapy and ER/PR status and one continuous variable for age at

diagnosis as covariates. Table 1.4 summaries the regression analysis results. Overall, the

covariate effects demonstrate similar trends between the two link functions. In the model

with the linear link, the receipt of chemotherapy and positive ER/PR status are significantly

associated with a longer average post-diagnosis survival time for all the values of τ . Older

age at diagnosis tends to be associated with a shorter survival time and such association

becomes significant at a later time point (τ = 8 years). In the model with the log link function,

chemotherapy is marginally associated with an increase of the average post-diagnosis

survival time, positive ER/PR status is significantly associated with an increase of the
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survival time, and older age at diagnosis is significantly associated with a decrease of

the survival time during the next 8 years post-diagnosis. Specifically, it is estimated that

Figure 1.2: Product-limit estimator of survival function (left panel) and the nonparametric
RMST estimator (right panel) for patients by ER/PR status (ER/PR=1, positive; ER/PR=0,
negative).

the receipt of chemotherapy is associated with an increase of the survival time by 0.92

years (95% CI: 0.22-1.61) on average during the next 5 years post-diagnosis, using the

linear link, and chemotherapy is associated with an increase of the survival time by a factor

of 1.31 (95% CI: 0.96-1.79), using the log link. The positive ER/PR status is estimated

to be associated with an increase of the average survival time by 1.78 years (95% CI:

0.84-2.72) during the next 5 years post-diagnosis using the linear link and is associated

with an increase of the survival time by a factor of 2.04 (95% CI: 1.21-3.44), using the log

link. During the next 5 years post-diagnosis, it is estimated that every one year increase

in the age at diagnosis is associated with a decrease of the survival time by 0.05 years

(95% CI: 0.00, 0.10) on average with the linear link and is associated with a decrease

of the survival time by a factor of 0.98 (95% CI: 0.96, 1.00) with the log link. Additionally,
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we can estimate the average post-diagnosis survival time based on these models. For

patient without chemotherapy, having negative ER/PR status, and with an age at diagnosis

of 50, the average post-diagnosis survival time out of the next 5 years is estimated to be

approximately 1.42 years (17.0 months) and 1.62 years (19.5 months), using the linear link

and the log link, respectively. For another patient receiving chemotherapy, having positive

ER/PR status, and with the same age at diagnosis, the average post-diagnosis survival

time out of the next 5 years is estimated as 4.11 years (49.3 months) and 4.33 years (52.0

months), using the linear link and the log link, respectively.

To compare the estimation results between the two link functions visually, Figure 1.3

presents the estimated RMST curve at τ = 5 years against the age at diagnosis, by

using the two link functions. For both link functions, RMST decreases as age at diagnosis

increases. It is also observed that the discrepancy of the estimated RMST between the

two link functions is overall small. Figure 1.4 presents the estimated RMST curves by

the combination of receipt of chemotherapy, ER/PR status, and age at diagnosis, using

the nonparametric method, multivariable regression model of RMST with the linear link,

multivariable regression model of RMST with the log link, and by integrating the survival

curve estimated from the multivariable Cox model. To facilitate the comparison with the

nonparametric method, age at diagnosis is dichotomized into a binary covariate (< 70

and ≥ 70) in the multivariable models. Left truncation is adjusted in all the methods. The

number of patients without chemotherapy and with negative ER/PR status is very small:

only 4 patients with age at diagnosis < 70 and 24 patients with age at diagnosis ≥ 70.

The nonparametric method would not be reliable in these cases, and thus, they are not

included in Figure 1.4 for the comparison. Figure 1.4 shows that the direct modeling of

RMST with the linear link and log link functions gives similar results in general. When the

number of patients is relatively large, RMST estimated by the direct regression model is in

better agreement with the nonparametric estimate, comparing with RMST estimated by the

Cox model. Between the two link functions, although the linear link may be more appealing

due to its straightforward interpretation, it does not always lead to estimated RMST values
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within an admissible range (0, τ ] [58], as shown in Figure 1.3 where negative values of

estimated RMST appear as age at diagnosis increases, for patients without chemotherapy

and with negative ER/PR status. This suggests that the regression model with the log link

function may be a better fit for the observed data in this study.

Figure 1.3: Estimated RMST during the next five years post diagnosis (τ = 5 years) against
the age at diagnosis using two link functions. ‘Ref’ represents the reference patients without
chemotherapy and negative ER/PR status, and ‘chemo&ER/PR’ represents patients with
chemotherapy and positive ER/PR status.

1.6. Discussion

The RMST is an appealing summary measure for survival data due to its simple and

clinically meaningful interpretation, therefore, the analysis of RMST has attracted a growing

research interest. However, little work is available on regression analysis of RMST for

left-truncated right-censored data. As discussed in Lee et al. [33], the generalization of

existing methods based on weighted estimating equations to left-truncated right-censored

data is more challenging and complex. The estimation of weight functions would involve
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Figure 1.4: Estimated RMST by the combination of receipt of chemotherapy, ER/PR status,
and age at diagnosis, using the nonparametric method, multivariable regression model
of RMST with the linear link, multivariable regression model of RMST with the log link,
and integrated multivariable Cox model survival curve. n is the number of patients in each
combination.
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estimating the survival function of failure time, distribution of truncation time, and survival

function of residual censoring time. The PO approach has been used in regression analysis

of RMST for right-censored data and competing risks data, but it has not been extended

to the analysis of RMST under left truncation and right censoring, probably because left

truncation and induced informative censoring further complicate such analysis. In this

paper, we fill the methodological gap by proposing direct regression modeling of RMST

under left truncation and general censoring mechanisms and using the PO approach to

develop estimation equations for model parameters. The proposed methods have several

attractive features. First, we directly model RMST as function of baseline covariates

through a generalized linear model with a link function, rather than imposing any restrictive

structural assumption such as the proportional hazards. This provides a flexible and

robust way to investigate the association between RMST and covariates and to predict

patient’s expected survival time in the next τ years. Second, by using the PO approach,

left truncation and right censoring are handled in the first step of generating the POs, and

standard statistical programs/software can be used in the subsequent GEE analysis once

the POs are obtained. Thus, the proposed methods can be readily implemented in practice.

Third, we consider various censoring mechanisms and use the IPCW method to properly

adjust for potential covariate-dependent censoring or dependent censoring. Lastly, we

establish the asymptotic properties of proposed estimators, whereas important theoretical

justification is often lacking in many existing work using the POs [4, 20, 61].

For the method under covariate-dependent censoring or dependent censoring, the

Cox proportional hazards model is used as a working model for the residual censoring

time while other semiparametric models, such as generalized transformation models or

accelerated failure time model, may be used to compute the censoring distribution given

covariates and subject-specific weight function. Extreme weights may present when using

IPCW and such a problem can be handled by weight truncation [29], as pointed out by a

reviewer. The bias of a parameter estimate will increase and its variance will decrease, as

the weights are progressively truncated [10]. The range of weights in our simulations is (1,
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45.0) under proportional hazards and (1,40.5) under non-proportional hazards. Although

we didn’t encounter highly extreme values of weights, we have conducted additional

simulations with weights truncated at the 1st and 99th percentiles and evaluated the

bias-variance tradeoff. The result shows a modest decrease in variance estimates and

a relatively large increase in relative bias. For example, under proportional hazards and

covariate-dependent censoring with a censoring rate of 45%, the relative bias changes from

-0.020 to -0.122, SD changes from 0.177 to 0.150, and SE changes from 0.168 to 0.134,

for the estimation of β2 at τ = 1.39 under the linear link. The small improvement in variance

reduction due to weight truncation appears to be out-weighted by the relatively large bias

induced. Nevertheless, with extreme weights, we recommend using weight truncation and

exploring the bias-variance tradeoff. The values of τ are typically pre-specified based on

the clinical relevance. In the simulations, considerable bias is observed in estimating the

intercept in some cases, likely due to the presence of extremely small negative-valued POs

that behave as outliers in the subsequent GEE analysis. Similar problems were observed

in the simulations in Anderson et al. [4] and Grand et al. [20] The bias problem may be due

to the low precision of product-limit estimator at the tail. Moreover, there can be very few

subjects at risk at the beginning under left truncation. The sparse information at early event

times could cause problems in estimating the survival function, which further affects the

estimation of RMST by the integration. Specifically, having fewer subjects at the beginning

would result in a big drop of the complete-sample estimates of the survival function ŜPL(t)

at early event times. Each corresponding leave-one-out estimate, Ŝ−1
PL(t), on the other hand,

is much larger than ŜPL(t) by excluding the subject with small risk set right before his/her

event time. These contrasts generate negative POs of RMST with potentially large absolute

values, leading to bigger bias in regression parameter estimates. We use a “conditional

survival function” approach to adjust for such bias and our simulation results show that this

approach can substantially reduce the bias.
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In the data application, regression models with linear link and log link functions are

considered and compared with the nonparametric method for estimating RMST by graphical

displays. Other link functions, such as the logistic link, may be considered. The choice of

link function would depend on the scientific question of interest and actual data in a specific

application. For example, the linear link or log link may be selected if the difference or ratio

of RMST is of interest, respectively. Besides the comparison with nonparametric method,

we can also use the Akaike’s information criterion, the Bayesian information criterion, and

cumulative sum of residuals [35] to assess the performances of models with different link

functions. In particular, POs are defined for each subject and can therefore be used to

construct cumulative sum of residuals analogous to that in a general linear model [35]. For

right-censored data, Perme and Anderson [42] proposed methods for checking hazard

regression models using POs, where pseudo-residuals are defined and used for checking

the goodness-of-fit of a chosen model. Model diagnostics is crucial in survival analysis

and applications. It is our intention in future research to develop rigorous residual-based

goodness-of-fit tests for selecting an appropriate link function in regression modeling of

RMST for left-truncated right-censored data. The proposed methods are also applicable to

regression analysis of RMST for other types of complex survival data, where few alternative

methods are available. For example, for regression modeling of the survival function or

RMST with clustered survival data, we can compute leave-one-out POs and then use them

as outcomes in generalized estimating equations to obtain consistent estimators of model

parameters. The GEE sandwich variance estimator can be used to properly adjust for

the within cluster correlation. Logan et al. proposed a method for modeling the marginal

cumulative incidence function for clustered competing risks data using the PO approach

[36]. In future research, we plan to extend the proposed methods to clustered survival

data, such as clustered left-truncated right-censored data, clustered competing risks data

under left truncation, and recurrent event data. Moreover, causal inference methods such

as the propensity score method could be incorporated into the proposed methods to adjust

for confounding. Left truncation and right censoring are handled in generating the POs
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and then the POs can be used as a replacement for the possibly incompletely observed

outcomes when applying standard causal inference methods, such as the propensity score

method. Anderson et al. proposed to use POs for estimating the average causal effect with

right-censored data [3]. Incorporating casual inference methods (e.g., inverse probability

of treatment weighting with propensity scores) into regression modeling of RMST with

left-truncated right-censored data based on POs is another interesting direction for our

future research.
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Table 1.1: Simulation results under covariate-independent censoring and with linear link
function.

Proportional Hazards

30% Censoring Rate 45% Censoring Rate
n τ True RB1 SD2 SE3 CP4 MSE5 RB SD SE CP MSE

350 0.69 β0 0.500 -0.004 0.041 0.033 0.900 0.001 -0.008 0.048 0.034 0.893 0.001
β1 -0.087 -0.023 0.067 0.057 0.956 0.003 -0.034 0.077 0.059 0.950 0.003

1.39 β0 0.750 -0.005 0.074 0.056 0.917 0.003 -0.017 0.119 0.058 0.920 0.004
β1 -0.205 0.005 0.116 0.092 0.954 0.008 -0.015 0.127 0.099 0.960 0.010

500 0.69 β0 0.500 -0.008 0.040 0.028 0.927 0.001 -0.008 0.039 0.028 0.922 0.001
β1 -0.087 -0.011 0.072 0.049 0.960 0.002 -0.003 0.065 0.050 0.958 0.003

1.39 β0 0.750 -0.005 0.056 0.045 0.927 0.002 -0.011 0.071 0.047 0.912 0.002
β1 -0.205 0.029 0.094 0.079 0.954 0.006 0.020 0.106 0.082 0.959 0.007

Non-proportional Hazards

30% Censoring Rate 45% Censoring Rate
n τ True RB SD SE CP MSE RB SD SE CP MSE

350 0.69 β0 0.497 -0.022 0.028 0.030 0.974 0.001 -0.022 0.030 0.031 0.967 0.001
β1 0.126 0.024 0.032 0.034 0.979 0.001 0.032 0.037 0.036 0.971 0.001

1.39 β0 0.568 -0.065 0.043 0.048 0.945 0.004 -0.063 0.045 0.051 0.956 0.004
β1 0.437 0.021 0.060 0.060 0.950 0.004 0.016 0.064 0.064 0.953 0.004

500 0.69 β0 0.497 -0.022 0.024 0.025 0.957 0.001 -0.022 0.024 0.026 0.970 0.001
β1 0.126 0.024 0.028 0.029 0.970 0.001 0.024 0.028 0.030 0.965 0.001

1.39 β0 0.568 -0.063 0.035 0.041 0.918 0.003 -0.069 0.038 0.043 0.903 0.003
β1 0.437 0.021 0.048 0.050 0.954 0.003 0.021 0.052 0.053 0.947 0.003

1 RB is the relative bias, defined as bias/true.
2 SD is the empirical standard deviation of 1000 parameter estimates.
3 SE is the average of estimated standard errors across 1000 iterations.
4 CP is the empirical coverage probability.
5 MSE is the mean squared error, defined as bias2 + SE2.
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Table 1.2: Simulation results under proportional hazards and covariate-dependent cen-
soring, and with linear link function. Estimates obtained by using the traditional pseudo-
observation (PO) approach and the inverse probability of censoring weighting (IPCW)-
adjusted PO approach are compared.

Unadjusted PO Method IPCW-adjusted PO Method
n cen% τ True RB SD SE CP MSE RB SD SE CP MSE

350 30% 0.69 β0 0.500 0.001 0.043 0.033 0.908 0.001 -0.008 0.037 0.030 0.910 0.001
β1 -0.087 0.023 0.083 0.064 0.950 0.004 -0.080 0.061 0.056 0.933 0.003
β2 -0.188 -0.059 0.086 0.077 0.931 0.006 0.048 0.086 0.074 0.959 0.006

1.39 β0 0.750 0.012 0.072 0.061 0.927 0.004 -0.019 0.064 0.052 0.926 0.003
β1 -0.205 -0.020 0.116 0.102 0.961 0.010 -0.083 0.108 0.093 0.945 0.009
β2 -0.391 -0.118 0.161 0.122 0.903 0.017 0.046 0.130 0.125 0.980 0.016

350 45% 0.69 β0 0.500 0.016 0.042 0.037 0.905 0.001 -0.006 0.048 0.034 0.900 0.001
β1 -0.087 0.011 0.076 0.065 0.958 0.004 0.023 0.090 0.068 0.957 0.005
β2 -0.188 -0.213 0.087 0.078 0.839 0.008 -0.027 0.110 0.087 0.942 0.008

1.39 β0 0.750 0.028 0.106 0.072 0.941 0.006 -0.004 0.074 0.058 0.914 0.003
β1 -0.205 -0.078 0.152 0.116 0.951 0.014 -0.001 0.136 0.115 0.957 0.013
β2 -0.391 -0.312 0.142 0.129 0.785 0.032 -0.020 0.177 0.168 0.929 0.028

500 30% 0.69 β0 0.500 -0.001 0.047 0.028 0.911 0.001 -0.012 0.039 0.027 0.926 0.001
β1 -0.087 -0.003 0.070 0.052 0.952 0.003 -0.069 0.068 0.052 0.935 0.003
β2 -0.188 -0.048 0.106 0.067 0.933 0.005 0.043 0.090 0.068 0.956 0.005

1.39 β0 0.750 0.015 0.060 0.049 0.914 0.003 -0.016 0.056 0.044 0.906 0.002
β1 -0.205 -0.024 0.091 0.084 0.956 0.007 -0.073 0.083 0.079 0.945 0.006
β2 -0.391 -0.113 0.123 0.102 0.891 0.012 0.054 0.103 0.105 0.965 0.011

500 45% 0.69 β0 0.500 0.014 0.045 0.032 0.909 0.001 0.002 0.038 0.028 0.916 0.001
β1 -0.087 0.023 0.086 0.058 0.950 0.003 0.003 0.059 0.053 0.955 0.003
β2 -0.188 -0.197 0.079 0.070 0.850 0.006 -0.021 0.086 0.071 0.950 0.005

1.39 β0 0.750 0.025 0.091 0.062 0.929 0.004 -0.005 0.061 0.047 0.911 0.002
β1 -0.205 -0.127 0.111 0.095 0.946 0.010 0.010 0.109 0.099 0.946 0.010
β2 -0.391 -0.315 0.136 0.112 0.712 0.028 -0.023 0.161 0.149 0.928 0.022
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Table 1.3: Simulation results under non-proportional hazards and covariate-dependent
censoring, and with linear link function. Estimates obtained by using the traditional pseudo-
observation (PO) approach and the inverse probability of censoring weighting (IPCW)-
adjusted PO approach are compared.

Unadjusted PO Method IPCW-adjusted PO Method
n cen% τ True RB SD SE CP MSE RB SD SE CP MSE

350 30% 0.69 β0 0.497 -0.038 0.035 0.036 0.962 0.002 -0.028 0.031 0.034 0.976 0.001
β1 0.126 0.103 0.041 0.042 0.955 0.002 0.056 0.038 0.040 0.967 0.002
β2 0.109 0.110 0.040 0.042 0.963 0.002 0.073 0.039 0.041 0.966 0.002

1.39 β0 0.568 -0.125 0.051 0.055 0.808 0.008 -0.086 0.047 0.054 0.922 0.005
β1 0.437 0.117 0.076 0.072 0.895 0.008 0.055 0.077 0.071 0.927 0.006
β2 0.310 0.165 0.075 0.071 0.887 0.008 0.135 0.074 0.074 0.921 0.007

350 45% 0.69 β0 0.497 -0.048 0.036 0.037 0.960 0.002 -0.038 0.033 0.036 0.971 0.002
β1 0.126 0.151 0.044 0.043 0.952 0.002 0.095 0.042 0.042 0.958 0.002
β2 0.109 0.119 0.043 0.043 0.961 0.002 0.101 0.041 0.043 0.960 0.002

1.39 β0 0.568 -0.171 0.054 0.059 0.665 0.013 -0.104 0.053 0.057 0.894 0.007
β1 0.437 0.185 0.076 0.077 0.829 0.012 0.073 0.078 0.076 0.937 0.007
β2 0.310 0.206 0.077 0.073 0.858 0.009 0.152 0.081 0.079 0.905 0.008

500 30% 0.69 β0 0.497 -0.034 0.030 0.029 0.954 0.001 -0.032 0.028 0.029 0.961 0.001
β1 0.126 0.087 0.036 0.035 0.963 0.001 0.063 0.036 0.035 0.961 0.001
β2 0.109 0.101 0.035 0.035 0.955 0.001 0.110 0.034 0.035 0.957 0.001

1.39 β0 0.568 -0.127 0.043 0.046 0.701 0.007 -0.090 0.042 0.045 0.856 0.005
β1 0.437 0.112 0.062 0.061 0.872 0.006 0.050 0.062 0.060 0.936 0.004
β2 0.310 0.181 0.062 0.059 0.837 0.007 0.139 0.061 0.061 0.906 0.005

500 45% 0.69 β0 0.497 -0.046 0.029 0.031 0.952 0.001 -0.018 -0.036 0.030 0.969 0.001
β1 0.126 0.135 0.036 0.036 0.957 0.002 0.087 0.033 0.035 0.964 0.001
β2 0.109 0.101 0.035 0.036 0.959 0.001 0.101 0.033 0.036 0.962 0.001

1.39 β0 0.568 -0.169 0.045 0.049 0.495 0.012 -0.104 0.042 0.049 0.858 0.006
β1 0.437 0.176 0.066 0.064 0.767 0.010 0.073 0.062 0.063 0.931 0.005
β2 0.310 0.206 0.064 0.060 0.800 0.008 0.132 0.065 0.067 0.912 0.006
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Table 1.4: Estimated covariate effects with 95% confidence intervals (CIs) and p-values
at various values of τ (years) for the prevalent cohort from the SEER-Medicare data. The
linear link function (estimates are additive effects on RMST) and the log link function
(estimates are multiplicative effects on RMST) are used.

Linear Link
Chemo ER/PR Age

τ β̂∗ CI† p‡ β̂ CI p β̂ CI p

2 0.49 (0.11, 0.87) 0.01 0.80 (0.29, 1.32) <0.01 -0.02 (-0.04, 0.01) 0.20

5 0.92 (0.22, 1.61) 0.01 1.78 (0.84, 2.72) <0.01 -0.05 (-0.10, 0.00) 0.05

8 1.13 (0.28, 1.97) 0.01 2.16 (1.02, 3.31) <0.01 -0.07 (-0.13, -0.01) 0.02

Log Link
Chemo ER/PR Age

τ eβ̂ CI p eβ̂ CI p eβ̂ CI p

2 1.31 (0.98, 1.75) 0.07 1.64 (1.09, 2.48) 0.02 0.99 (0.97, 1.01) 0.25

5 1.31 (0.96, 1.79) 0.09 2.04 (1.21, 3.44) 0.01 0.98 (0.96, 1.00) 0.07

8 1.32 (0.96, 1.82) 0.09 2.04 (1.20, 3.48) 0.01 0.98 (0.96, 1.00) 0.04

∗ regression parameter estimate.

† 95% confidence interval.

‡ p-value.
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CHAPTER 2

REGRESSION MODELING OF CUMULATIVE INCIDENCE FUNCTION FOR
COMPETING RISKS DATA

2.1. Introduction

In medical studies, competing risks data commonly arise when patients are subject to

failures from more than one causes or participants are at risk for multiple types of events;

therefore, we often can only observe the event that occurs first. For example, a diabetic

patient’s death due to diabetes will be unobservable if the patient dies of cardiovascular

disease, given the fact that diabetic patients are at a higher risk for cardiovascular disease

comparing to the normal population. Here, death due to cardiovascular disease is a

competing event that prevents the observation of the event of interest, death due to diabetes.

Ignoring the competing risk would lead to biased estimations of the incidence/risk of event

of interest and covariate effects on the incidence/risk. To examine covariate effects on a

specific cause of failure in competing risks data, two types of regression models are often

employed. One is to fit the Cox proportional hazards model for the cause-specific hazard

rate λj(s), where λj(s) is the cause-j hazard. The standard estimation procedure for the

Cox regression model can be used, with subjects failed from causes other than the cause of

interest being treated as censored. Another approach is to perform regression modeling of

the cumulative incidence function. The cumulative incidence function is a proper statistic for

competing risks data that shows the cumulative probabilities of occurrence of a particular

event over time while taking competing risks into account. As a function of cause-specific

hazard rates of all causes, the cumulative incidence function of cause j is defined as

Fj(t) =
∫ t

0
λj(s)S(s)ds, where S(s) is the overall survival function, the probability of not
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having failed from any cause at time s. Apparently, regression modeling targeting the cause-

specific hazard would produce highly nonlinear covariate effects on the corresponding

cumulative incidence function. Fine and Gray [13] introduced an approach of modeling the

subdistribution hazard, λ̃j(t) that is directly associated to the corresponding cumulative

incidence function through λ̃j(t) = − d
dt

log {1− Fj (t)}, and developed the estimation

procedure based on the inverse probability of censoring weighting, which weights subjects

who experienced a competing event according to their event times and an estimate of

the censoring distribution. Covariate effects based on the subdistribution hazards model

are interpretable with respect to the cumulative incidence function. One difference in the

estimation procedure between the cause-specific hazards model and the subdistribution

hazards model is the risk set. For the cause-specific hazards model, the size of the risk

set decreases every time when there is a failure of another cause, whereas subjects fail

from other causes remain in the risk set for the subdistribution hazards model.

In addition to the typical right-censoring, competing risks data are often observed

subject to left truncation in medical studies, where patients who have not yet experienced

any type of event are sampled and prospectively followed for the subsequent first-occurring

event. One example of left-truncated competing risks data is from a cohort study on preg-

nancy exposed to coumarin derivatives [38]. The study cohort consists of 1186 pregnant

women who contacted an information service several weeks after conception, and the

goal is to investigate the impact of coumarin exposure on the risk of spontaneous abortion

while pregnancy may end in induced abortion or live birth (competing risks). Time to

spontaneous abortion was left truncated by the first time of contacting the service, thus

pregnant women who had early spontaneous abortions were not included in the study.

Statistical analysis must appropriately account for both competing risks and left truncation.

Under the assumption that failure time is independent of truncation and censoring times,

several methods have been introduced for regression modeling of the cumulative incidence

function for left-truncated right-censored competing risks data. Geskus [16], Shen [51], and

Zhang et al. [64] extended Fine and Gray’s method [13] to left-truncated right-censored
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competing risks data and proposed estimation procedures by using alternative weighting

techniques. Recently, Bellach et al. [7] considered a general direct regression model for

the subdistribution hazard for situations when the proportional subdistribution hazards as-

sumption is violated, based on a conditional nonparametric maximum likelihood procedure.

In many observational studies, covariate-dependent truncation and/or covariant-dependent

censoring occurs frequently when truncation time and/or censoring time are correlated

with failure time through common baseline covariate. For instance, in the cohort study

on pregnancy exposed to coumarin derivatives, the dependence between left-truncation

time and event time was noted, because women who considered an induced abortion

were more likely to contact and seek advice from the information service center [52].

Furthermore, such dependence between truncation and event times was likely due to their

common correlations with the covariate of exposure to coumarin derivatives [39]. In AIDS

studies, patients who have low CD4 counts (an indicator of immune function in patients

living with HIV) are more likely to drop out of the study, resulting in covariate-dependent

censoring. For right-censored competing risks data, Binder et al. [8] proposed a modified

pseudo-observation (PO) approach to account for covariate-dependent censoring. For left-

truncated competing risks data, Stegherr et al. [52] investigated dependent left truncation

by using inverse probability of left-truncation weights obtained from the cause-specific Cox

proportional hazards model with truncation time as a covariate. This modeling approach,

however, imposed a restrictive assumption that truncation and failure times are correlated

through a proportional hazards model, which may be hard to satisfy in real applications.

For left-truncated right-censored competing risks data, Zhang et al. [64] handled covariate-

dependent truncation and covariate-dependent censoring in the Fine-Gray subdistribution

hazards model by utilizing stratified nonparametric weight or covariate-adjusted weight.

In this paper, we will consider general truncation and censoring mechanisms where cen-

soring and/or truncation time may depend on covariates in flexible regression modeling of

cumulative incidence function for left-truncated right-censored competing risks data.
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Andersen et al. [5], Klein and Andersen [31], and Klein [30] introduced an approach of

using POs in the regression modeling of competing risks data, where POs are jackknife

estimates that represent the contribution of each subject to the estimator of the parameter

of interest [5]. Graw et al. [21] provided the formal theoretical justification of PO approach in

regression modeling of right-censored competing risks data under covariate-independent

censoring. Graw et al. [20] studied the performance of POs in the Cox regression analysis

of left-truncated right-censored data. The advantage of PO approach is that it handles

complex competing risks data subject to left truncation and right censoring in the first

step of generating POs, and then the POs can be used as responses in a generalized

linear model for uncensored data and analyzed by standard statistical software. In this

paper, we propose to directly model the cumulative incidences as a function of baseline

covariates based on POs, for left-truncated right-censored competing risks data under

general truncation and censoring mechanisms. The remainder of this paper is organized

as follows. In Section 2.2, we introduce the left-truncated right-censored competing risks

data structure with notations and describe a general regression model of the cumulative

incidence function. In Section 2.3, we first present the proposed method for regression

modeling of cumulative incidence function given covariates using POs, under covariate-

independent truncation and covariate-independent censoring. We then relax the model

assumption to incorporate covariate-dependent censoring and/or covariate-dependent

truncation. We investigate the finite sample performances of proposed estimators by

simulation studies under various scenarios in Section 2.4. We illustrate the proposed

methods by applications to a cohort study on HIV disease progression and a cohort study

on pregnancy exposed to coumarin derivatives in Section 2.5. We provide concluding

remarks in Section 2.6. Technical details can be found in the Appendix.
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2.2. Data, Notations, and Regression Model

In a competing risks setting with left truncated right censored data, let ε = 1, 2, . . . , K

indicates the cause of failure for a total of K competing risks. Only the first cause of failure

is observable or is of interest. Let T be the failure time from the disease onset to the first-

occurring failure event. Let L be the left truncation time and C be the right censoring time.

Let X = min(T,C) be the follow-up time till failure event or censoring and δ = I(T 6 C) be

the failure indicator. Due to left truncation, X is observable only if L < T . Let Z be a p× 1

vector of baseline covariates. The observed data are (Xi, Li, δi, δiεi,Zi) , i = 1, 2, . . . , n.

Let Fj denote the cumulative incidence function for cause j, defined as Fj(t | Z) =

Pr (T 6 t, ε = j | Z), which is the conditional probability of failing from cause j at or before

time t given covariates. It can be expressed in terms of the cause-specific hazard and the

overall survival function as

Fj(t | Z) =

∫ t

0

λj(u | Z) Pr (T > u | Z) du =

∫ t

0

λj(u | Z)S (u | Z) du,

where λj (u | Z) = lim∆t→0 Pr (u 6 T < u+ ∆t, ε = j | T > u,Z) /∆t is the cause-specific

hazard for cause j at time u conditional on covariates and S (u | Z) =

exp
{
−
∫ u

0

∑K
j=1 λj(s | Z)ds

}
is the overall survival function. Our goal is to directly model

the relationship between the cumulative incidence function of cause j and covariates

through a generalized linear model:

g {Fj (t | Z)} = α (t) + ZTγ, (2.1)

where g(·) is a known differentiable link function, α (t) determines the baseline failure

probability when Z = 0, and γ is a p × 1 regression coefficient vector. Model (2.1) is

identical to the regression model of cumulative incidence function considered in Fine

[12], where an extension of a least-squares technique of Fine et al. [11] is used for
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estimation. Examples of common link functions include the logit link, g(b) = log {b/(1− b)},

complementary log-log link on b, g(b) = − log {− log (b)}, and complementary log-log link

on 1−b, g(b) = − log {− log (1− b)}. Specifically, the complementary log-log link on 1−Fj(t)

gives the Fine-Gray proportional subdistribution hazards model [13].

2.3. Regression Modeling of Cumulative Incidence Function based on Pseudo-
Observations

For right-censored competing risks data, under the assumption that censoring time

C is independent of failure time and cause (T, ε) (covariate-independent censoring), the

cumulative incidence function Fj (t) of cause j at t can be consistently non-parametrically

estimated by the Aalen-Johansen estimator [1]:

F̂j(t) =

∫ t

0

Ŝ (u−) dΛ̂j(u),

where Λ̂j(t) =
∫ t

0

∑n
i=1 dNij(u)/Y (u) is the Nelson-Aalen estimator for the integrated

cause-j specific hazard, Nij(u) = I (Xi 6 u, εi = j, δi = 1) indicates whether subject i has

experienced a cause-j event prior to time u, and Y (u) =
∑n

i=1 I (Xi > u) is the observed

number of subjects at risk at time u−, and Ŝ(t) is the Kaplan-Meier estimator of survival

from any failure. Klein and Andersen [31] proposed a PO approach for direct modeling

of covariate effects on the cumulative incidence function under covariate-independent

censoring. The PO for the cumulative incidence function of cause j for the ith subject at

time t is computed as:

F̂ij(t) = nF̂j(t)− (n− 1)F̂
(−i)
j (t), (2.2)

where F̂ (−i)
j (t) is the jackknife leave-one-out estimator for Fj(t) based on data leaving out

subject i. The POs, PO =
{
F̂1j(t), F̂2j(t), . . . , F̂nj(t)

}
obtained from (2.2) can then be used

as responses of the regression model (2.1) to estimate γ under a generalized estimating

equation (GEE) framework [31]. Graw et al. [21] provided the formal theoretical justification
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of PO approach and asymptotic properties of regression parameter estimators obtained

from GEE, for competing risks data under covariate-independent censoring. Binder et al.

[8] investigated the bias of using POs generated based on the Aalen-Johansen estimator

when censoring time depends on covariates and introduced modified PO values based

on alternative estimators to reduce the bias in the presence of covariate-dependent

censoring. We extend the methods in Klein and Andersen [31] and Binder et al. [8] to

left-truncated right-censored competing risks data and propose a modified PO approach

for regression modeling of cumulative incidence function under general truncation and

censoring mechanisms where censoring and/or truncation time may depend on covariates.

2.3.1. Covariate-Independent Truncation and Covariate-Independent Censoring

We consider covariate-independent truncation and covariate-independent censoring,

that is, (L,C) and (T, ε) are assumed to be independent. The cumulative incidence function

Fj(t) of cause j for left-truncated right-censored competing risks data can be consistently

estimated by the Aalen-Johansen type estimator after properly adjusting for the risk

set. Define the counting process NL
ij(u) = I {Li < Xi 6 u, εi = j, δi = 1} and Y L(u) =∑n

i=1 I {Li < u 6 Xi}. A consistent estimator of Fj(t) is

F̂AJ
j (t) =

∫ t

0

ŜPL
(
u−
)

dΛ̂L
j (u),

where Λ̂L
j (t) =

∫ t
0

∑n
i=1 dN

L
ij(u)/Y L(u) is the left-truncated version of Nelson-Aalen es-

timator and ŜPL(t) is the product-limit estimator of survival function for left-truncated

right-censored data, with risk set r(t) = {i : Li < t 6 Xi}, adjusting for left truncation

[25, 54]. Geskus [16] introduced an alternative representation for the cumulative incidence

function, an inverse probability weighted (IPW) estimator, denoted as F̂ IPW
j for cause

j. Let t(1) < · · · < t(i) < · · · < t(N) denote the ordered distinct observed event times,

c(1) < · · · < c(w) < · · · < c(W ) denote the ordered distinct observed censoring times, and

l(1) < · · · < l(m) < · · · < l(M) are the ordered distinct observed truncation times. Let d
{
t(i)
}
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be the number of observed events of any type at t(i), d
{
c(w)

}
be the number of censorings

at c(w), d
{
l(m)

}
be the number of truncation times at l(m), and R (t) be the observed number

at risk at time t. As a weighted empirical estimator of the cumulative incidence function,

F̂ IPW
j takes the form:

F̂j
IPW

(t) =
1

n̂

n∑
i=1

NL
ij (t)

ŜC (Xi−)× F̂L (Xi−)
,

where ŜC (Xi−) is the estimator of the survival function for censoring time C, F̂L (Xi−)

is the estimator of the cumulative distribution function (CDF) for truncation time L, and

n̂ =
∑N

i=1

[
d
{
t(i)
}/

F̂L
{
t(i)−

}]
+
∑W

w=1

[
d
{
c(w)

}/
F̂L
{
c(w)−

}]
. Reversing the role of T

and C yields the estimator of the survival function for C: ŜC(t) =
∏

c(w)6t

[
1− d{c(w)}

R{c(w)}

]
.

Since L is right truncated by X = min(T,C), the product-limit statistic for truncation time L

can be obtained through reversal of time such that −L is left truncated by −X: F̂L (t) =∏
−l(m)<−t

[
1− d{l(m)}

R{l(m)}

]
=
∏

l(m)>t

[
1− d{l(m)}

R{l(m)}

]
. Geskus [16] proved the equivalence of

F̂AJ
j (t) and F̂ IPW

j (t) under covariate-independent truncation and covariate-independent

censoring. Thus, either F̂AJ
j (t) or F̂ IPW

j (t) can be used to consistently estimate Fj(t)

and then construct POs. As noted in Geskus [16], only when L and C are independent,

ŜC is the estimator of the survival function for C and F̂L is the estimator of the CDF

for L. Nevertheless, the result that F̂j
IPW

and F̂j
AJ

are equivalent holds irrespective of

the relationship between L and C. For ease of discussion, we assume that L and C are

independent or conditionally independent given covariates Z in this paper, but the proposed

methods would generally work when L and C are dependent.

To construct POs, we start with selecting a grid of points τ1, τ2, . . . , τH . Suppose that

cause-1 event is the event of interest. Define θih = F1 (τh | Zi) as the conditional cumulative

incidence function that we are intended to model. Based on (2.2), the PO for the ith

subject at time τh is computed as: θ̂ih = nF̂1 (τh)− (n− 1) F̂
(−i)
1 (τh) , where F̂1 is either the

Aalen-Johansen estimator adjusting for left truncation or the IPW estimator by Geskus [16].
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Then, these POs are used as responses in the generalized linear model with a suitable

link function

g (θih) = α(τh) + ZT
i γ = ZT

ihβ, i = 1, . . . , n, h = 1, . . . , H.

Let θ̂i =
(
θ̂i1, θ̂i2, . . . , θ̂iH

)
and θi =

{
g−1

(
ZT
i1β
)
, g−1

(
ZT
i2β
)
, . . . , g−1

(
ZT
iHβ

)}
. The regres-

sion coefficients, β, can be estimated by the GEE:

U (β) =
n∑
i=1

Ui (β) =
n∑
i=1

{
∂θi
∂β

}T

V−1
i (β)

{
θ̂i − θi

}
= 0, (2.3)

where V i (β) is a working covariance matrix of θ̂i [34, 62]. Klein and Andersen [31] sug-

gested three possible choices for the working covariance matrix. The simplest choice

is the independent working covariance matrix. Another option is the ‘exact’ working co-

variance matrix with elements vihq = cov
(
θ̂ih, θ̂iq

)
= F1 (τh | Zi) × {1− F1 (τq | Zi)}, for

τh 6 τq, i = 1, . . . , n, and h, q = 1, . . . ,M. However, the exact working covariance ma-

trix results in complicated estimating equations as the matrix V i changes with each

iteration in the root finding process. An alternative is to use a common working covari-

ance matrix V to estimate V i, i.e. an empirical working covariance matrix defined by

V = (v̂hq) = 1
n

∑
i

(
θ̂ih − θ̄h

)(
θ̂iq − θ̄q

)
, where θ̄h = 1

n

∑
i θ̂ih. We will use the independent

working covariance matrix and the empirical working covariance matrix in simulations.

For right-censored competing risks data, Klein and Andersen [31] suggested that the

regression parameter estimates obtained from GEE using POs based on Aalen-Johansen

estimator are consistent, under covariate-independent censoring. Graw et al. [21] provided

theoretical justification of the asymptotic properties. Since the nonparametric estimator

F̂1(t) based on either the Aalen-Johansen estimator adjusting for left truncation or the IPW

estimator by Geskus [16] is consistent for left-truncated right-censored competing risks

data, similarly we can use (2.3) to obtain consistent estimates of regression parameters

in model (2.1). Let β̂ be the solution to (2.3) and β0 be the true value of β. The asymp-

totic properties of β̂ are summarized in Theorem 2 with a proof and regularity conditions
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provided in the Appendix.

Theorem 2. Under regularity conditions C1− C3 in the Appendix B, β̂ is consistent to β0,

and
√
n
(
β̂ − β0

)
is asymptotically normal with mean zero and a covariance matrix that

can be consistently estimated using a standard ‘sandwich’ estimator, which takes the form

Σ̂ = I
(
β̂
)−1

v̂ar
{
U
(
β̂
)}
I
(
β̂
)−1

,

where

I
(
β̂
)

=
∑
i

{
∂θi
∂β

}>
Vi (β)−1

{
∂θi
∂β

} ∣∣∣∣∣
β=β̂

,

v̂ar
{
U
(
β̂
)}

=
∑
i

Ui

(
β̂
)
Ui

(
β̂
)T

.

Moreover, Geskus [16] proposed to estimate regression parameters in the Fine-Gray

subdistribution hazards model for left-truncated right-censored competing risks data

through a “re-weighting approach”, where each subject ξ is assigned a weight ωξ
(
t(i)
)

that equals to 1 if the subject is at risk at t(i), equals to
ŜC(t(i)−)
ŜC(t(o)−)

F̂L(t(i)−)
F̂L(t(o)−)

if the subject had

a competing event observed at t(o) < t(i), and equals to 0 otherwise. These weights are

equal to the ones used in the Fine-Gray model without left truncation by setting F̂L ≡ 1. In

section 2.4, we conduct simulation studies to compare the performance of the proposed

PO approach and IPW regression estimator by Geskus [16], where the complementary

log-log link function on 1− Fj(t) is used in model (2.1).

2.3.2. Covariate-Independent Truncation and Covariate-Dependent Censoring

We relax the model assumption to consider the case that the truncation time is inde-

pendent of covariates but the censoring time depends on covariates, that is covariate-

independent truncation and covariate-dependent censoring. Covariate-dependent censor-

ing often occurs in observational studies where the censoring time and failure time are only

conditionally independent given covariates. Graw et al. [21] showed that the consistency
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of the solution to (2.3) relies on the covariate-independent censoring assumption. Thus,

it is crucial to account for covariate-dependent censoring to consistently estimate the

cumulative incidence function and obtain corresponding POs. Assuming L is independent

of (T, ε) and C is conditionally independent of (T, ε) given Z, it is natural to estimate the

cumulative incidence function by incorporating a covariate-adjusted weight for censoring

C, ŜC (Xi− | Z) into the IPW estimator in Section 2.3.1:

F̂j
IPW

(t) =
1

n̂

n∑
i=1

NL
ij (t)

ŜC (Xi− | Z)× F̂L (Xi−)
, (2.4)

where F̂L (Xi−) is a weight for truncation L, the nonparametric product-limit statistic as

previously described. We further assume that L and C are conditionally independent

given covariates Z, so that SC (t | Z) is the estimator of conditional survival function of

C given Z. Parametric regression model, or semiparametric regression models such as

the Cox proportional hazards model, generalized transformation models, and accelerated

failure time model, or local Kaplan-Meier estimator [56] can be adopted to estimate the

conditional survival function of censoring time given covariates. Without loss of generality,

we use the Cox model to characterize the relationship between censoring time and

covariates, and estimate the conditional survival probability for censoring, SC (t | Z) =

exp
{
−BC0 (t) exp

(
ηTZ

)}
, where BC0(t) is the cumulative baseline hazard for censoring

and η is the vector of model parameters, through ŜC (t | Zi) = exp
{
−B̂C0 (t) exp

(
η̂TZi

)}
,

where η̂ is the partial likelihood estimate of η, and B̂C0(t) =
∑n

i=1
I(Xi6t)(1−δi)∑n

i=1 exp(η̂TZi)I(Li<t6Xi)

is the Breslow estimator of the cumulative baseline hazard function for censoring BC0 (t),

with I (Li < t 6 Xi) being the at-risk indicator and δ being the failure indicator. Plugging

this Cox-model-based consistent estimator of conditional survival function for censoring

in (2.4), we can obtain an IPW estimator of the cumulative incidence function Fj(t) with

the covariate-adjusted censoring weight. The consistency of the IPW estimator F̂ IPW
j (t)

of Fj(t) under covariate-dependent censoring is summarized in Theorem 3 with a proof

provided in the Appendix.
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Theorem 3. The estimator F̂ IPW
j (t) is a consistent estimator of the true cumulative inci-

dence function Fj(t).

Then, POs can be constructed based on the consistent IPW estimator F̂ IPW
j (t). Specif-

ically, the jackknife leave-one-out estimator is computed by re-fitting the censoring model n

times, eliminating each subject in turn to get η̂(−i) and B̂(−i)
C0

(·). Lastly, the POs can be used

in the generalized linear model (2.1) to estimate γ, similar to the case under covariate-

independent truncation and covariate-independent censoring. The resulting estimators

are consistent and asymptotically normal, under the assumption that the model for the

censoring distribution is correctly specified and under the regularity conditions specified in

the proof of Theorem 2. The proof of the large sample properties follows the lines in the

proof of Theorem 2 and is omitted for brevity.

2.3.3. Covariate-Dependent Truncation and Covariate-Dependent Censoring

We further consider the case that both truncation and censoring times are allowed to

depend on covariates, that is covariate-dependent truncation and covariate-dependent cen-

soring. Covariate-dependent truncation occurs when the truncation time and failure time are

only conditionally independent given covariates. Assuming that (L,C) and (T, ε) are condi-

tionally independent given Z, covariate-adjusted truncation and censoring weights can be

utilized to consistently estimate the cumulative incidence function. Similarly, we assume that

L and C are conditionally independent given Z. The covariate-adjusted weight for censoring

ŜC (Xi− | Z) can be consistently estimated by ŜC (t | Zi) = exp
{
−B̂C0 (t) exp

(
η̂TZi

)}
, as

described in Section 2.3.2. The covariate-adjusted weight for truncation, F̂L (Xi− | Zi), can

be obtained based on appropriate regression models of L on Z. Without loss of generality,

we use the Cox proportional hazards model to describe the relationship between truncation

time L and covariates Z: SL (t | Z) = exp
{
−BL0 (t) exp

(
φTZ

)}
, where BL0(t) is the cumu-

lative baseline hazard for truncation and φ is the vector of regression parameters. Note that

the left truncation time L is subject to right truncation by X = min(T,C). Existing methods
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for fitting the Cox model to right-truncated data include maximizing the likelihood with

respect to both baseline hazard and regression parameters [2, 14] and solving weighted

estimating equations where the weight is inversely proportional to the selection probability

that a subject is observed in the sample [37, 45]. Most of the methods require the indepen-

dence assumption between truncation and observed survival times, which does not hold

here as L is correlated with X through Z. Under covariate-dependent truncation, Rennert

and Xie [46] proposed an expectation-maximization (EM) algorithm for estimating the Cox

model for right-truncated data. By maximizing the log-likelihood of the observed survival

times conditional on the observed truncation times and covariates, the EM algorithm

provides a convenient estimation approach to obtain estimates of the baseline hazard and

regression coefficients. Rennert and Xie [46] also showed the consistency and asymptotic

normality of the proposed EM estimators. Therefore, under covariate-dependent truncation

and covariate-dependent censoring, the cumulative incidence function can be estimated

by:

F̂ IPW
j (t) =

1

n̂

n∑
i=1

NL
ij (t)

ŜC (Xi− | Zi)×
{

1− ŜL (Xi− | Zi)
} ,

where ŜL (Xi− | Zi) is the consistent estimator of the conditional survival function for

truncation time L, based on the Cox model estimation using the EM algorithm. Since

ŜC (Xi− | Zi) and ŜL (Xi− | Zi) consistently estimate SC (Xi− | Zi) and SL (Xi− | Zi), re-

spectively, F̂ IPW
j (t) is a consistent estimator of the true cumulative incidence function Fj(t),

following similar arguments in the proof of Theorem 3. To construct POs, the jackknife

leave-one-out estimator can be computed in the usual way, by re-fitting the truncation

model n times, eliminating each subject in turn to get φ̂(−i) and B̂
(−i)
L0

(·). However, this

approach is computationally intensive because it requires to fit the Cox model for truncation

as many times as there are subjects in the dataset, which is especially time consuming

when the EM algorithm is involved. One less computationally expensive approach sug-

gested by Binder et al. [8] is to keep the EM estimates of regression coefficients φ̂ from

the full dataset and only to estimate the cumulative baseline hazard n times by the Breslow
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estimator, leaving out subject i each time. The corresponding leave-i-out estimator for

the baseline hazard given φ̂ is: B̂(−i)
L0

(t) =
∑

ξ 6=i
I(lξ6t)∑

ξ 6=i exp(η̂TZi)I(lξ>t)
, with I (lξ > t) being the

at-risk indicator and lξ being the truncation time from the leave-i-out dataset. Then, the

leave-i-out estimator of the cumulative incidence function is:

1

n̂(−i)

∑
ξ 6=i

NL
rj (t)

exp
[
−B̂(−i)

C0
(Xξ−) exp {η̂(−i)TZξ}

]
×
[
1− exp

{
−B̂(−i)

L0
(Xξ−) exp

(
φ̂TZξ

)}] .
Lastly, the POs, defined as F̂ IPW

j (t)− F̂ IPW (−i)
j (t), can be used in the generalized linear

model (2.1) to estimate γ, similar to the cases in Section 2.3.1 and 2.3.2. Under the

assumption that the models for the censoring and truncation distributions are correctly

specified and under the usual regularity conditions, the resulting estimators are consistent

and asymptotically normal, which can be proved similarly to Theorem 2.

2.4. Simulations

We conduct a series of simulations to assess the performance of the proposed meth-

ods for left-truncated right-censored competing risks data, under various scenarios. The

competing risks failure time data are generated according to the proportional subdis-

tribution hazards model [13] with two covariates Z1 and Z2: Z1 is binary with equal

probability of being 0 and 1, and Z2 is continuous that follows a standard normal dis-

tribution. Our main interest is to model the cumulative incidence function for cause 1 event

given the two covariates. The underlying cumulative incidence functions are given by

F1 (t; z1, z2) = 1−{1−p (1− e−0.5t)}exp(β11z1+β12z2) and F2 (t; z1, z2) = (1− p)exp(β11z1+β12z2)×

{1− e−0.5t exp(β21z1+β22z2)}, where p, the probability of experiencing a cause 1 event when

both covariate values are zero, is set to be 0.7. The true covariates effects are set to

be (β11, β12) = (0.5, 0.5) and (β21, β22) = (−0.5, 0.5). Moreover, we carry out simulations

with covariates effects set to be (β11, β12) = (−1, 1) and (β21, β22) = (−1, 1), and results
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are summarized in tables in the Appendix. For each scenario, we compare parameter

estimates obtained by Geskus’s method [16], the PO approach based on Aalen-Johansen

estimator of cumulative incidence function (PO-AJ), and the PO approach based on IPW

estimator of cumulative incidence function (PO-IPW). Following the recommendation in

Klein and Andersen [31], we calculate POs at 6 grid points that are equally spaced on the

event scale (i.e., grid points are selected after 14, 28, 42, 56, 70, and 84% of the observed

event status information), and a complementary log-log link function on 1− Fj(t) is used.

The simulation is repeated 1000 times with a sample size of n = 350 or 500.

2.4.1. Simulations under Covariate-Independent Truncation and Covariate-Independent
Censoring

First, we evaluate the performance of the proposed method under covariate-independent

truncation and covariate-independent censoring. The truncation time follows a uniform

distribution on [0, UL], allowing for various levels of truncation (i.e., truncation rates of

30% and 50%). The censoring time follows a uniform distribution on [0.5, UC ], allowing for

various levels of censoring (i.e., censoring rates of 30% and 50%). As discussed in Section

2.3, left truncation is adjusted for in the Aalen-Johansen (AJ) and IPW estimators in the

PO approach. From Table 2.3, the PO approach performs well with comparable results by

using the AJ and IPW estimators. For the proposed PO-based estimators, the biases are

generally very small, and the estimated model-based standard errors (SEs) computed as

the GEE sandwich estimator are close to the empirical standard deviations (SDs) in all

scenarios. Increasing the censoring rate or the truncation rate from 30% to 50% does not

affect the bias much but tends to increase the estimated SEs and SDs. As the sample size

increases, the SEs and SDs decrease. Additionally, the coverage probabilities are overall

close to the nominal level of 95%, with some slight overcoverage. In contrast, the estimated

SEs of Geskus’s estimator are constantly smaller than the corresponding empirical SDs,

indicating that the estimated Greenwood SEs by Geskus’s method may underestimate the

variations of regression parameter estimates, and this may further lead to relatively large
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undercoverage. Results in the supplementary Table B.1 also suggest a good performance

of the proposed PO approach.

2.4.2. Simulations under Covariate-Independent Truncation and Covariate-Dependent
Censoring

Next, we evaluate the proposed method under covariate-independent truncation and

covariate-dependent censoring. The truncation time follows the same uniform distribution

as in Section 2.4.1, with a truncation rate of 30% or 50%. The censoring time now

is generated from an exponential distribution with parameter λC = λC0 exp(1.5Z1 + Z2)

that depends on the two covariates. λC0 is such that the censoring rate is 30% or 50%.

Covariate-dependent censoring is adjusted for in the PO-IPW. For the PO-IPW estimator,

after POs are obtained, we compute SEs under both the independence and the empirical

working covariance matrices in the subsequent GEE analysis [31]. Table 2.4 shows that

the PO-IPW can substantially reduce the bias after accounting for covariate-dependent

censoring, especially for the estimation of β11 that is heavily biased by Geskus’s method or

the PO-AJ only adjusting for covariate-independent censoring and truncation. For example,

in Table 2.4, under the scenario of n = 350, censoring rate of 30% and truncation rate

of 30%, the absolute value of bias is reduced from 0.089 (by GeskusâĂŹs method) and

0.063 (by PO-AJ) to 0.001 (by PO-IPW with the independent working covariance matrix)

in estimating β11 and from 0.040 and 0.037 to 0.025 in estimating β12. In addition to

large biases, the Greenwood variance estimator by Geskus’s method yields substantial

underestimation of the variations of regression parameter estimates, resulting in large

undercoverage. The GEE sandwich variance estimator by the PO-IPW, on the other hand,

provides satisfactory measure of the variations of estimates. The coverage probabilities

of PO-IPW estimator are much closer to the nominal level of 95%. The independence

and the empirical working covariance matrices give similar results, although the estimates

are slightly more variable under the empirical working covariance matrix. Results in the

supplementary table B.2 show a similar good performance of the PO-IPW.
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2.4.3. Simulations under Covariate-Dependent Truncation and Covariate-Dependent
Censoring

Lastly, we evaluate the performance of the proposed method under covariate-dependent

truncation and covariate-dependent censoring. The truncation time is generated from an

exponential distribution with hazard function λL = λL0 exp(0.5Z1 + 0.3Z2), where λL0 is set

to different values to vary the truncation rate (i.e., truncation rates of 30% and 50%). The

censoring time follows an exponential distribution with parameter λC = λC0 exp(1.5Z1 +Z2),

where λC0 is such that the censoring rate is 30% or 50%.

Table 2.5 shows that the PO-IPW reduces the bias remarkably after accounting for

covariate-dependent truncation and censoring. The Geskus’s method and PO-AJ result

in considerably larger bias, likely due to assuming that left truncation and right censoring

distributions are independent of covariates. For instance, in Table 2.5, under the scenario

of n = 500, censoring rate of 50% and truncation rate of 50%, the absolute value of the

bias is reduced from 0.164 (by Geskus’s method) and 0.168 (by PO-AJ) to 0.003 (by

PO-IPW with the independent working covariance matrix) in estimating of β11 and from

0.111 and 0.113 to 0.001 in estimating β12. The coverage probabilities by the PO-IPW

are generally much closer to the nominal level of 95%, comparing to Geskus’s method

or PO-AJ. The independence and the empirical working covariance matrices give similar

results. It is noticed that the estimated SEs and SDs by the PO-IPW can be relatively large,

especially under heavy censoring and truncation. This is because the IPW estimator of

the cumulative incidence function is affected by the variations in estimating truncation and

censoring distributions given covariates. This variability is carried on in constructing POs,

and thus the estimates of regression parameters become more variable. Such variation,

however, can be decreased with the increased sample size. Results in the supplementary

table B.3 also show a good performance of the PO-IPW.
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2.5. Application

We illustrate the proposed methods by two data applications: a cohort study on HIV

disease progression and a cohort study on pregnancy exposed to coumarin derivatives.

2.5.1. CCR5 Genotypes on HIV progression

We analyze the data from 329 homosexual men from the Amsterdam Cohort Studies

on HIV infection and AIDS [15]. This dataset was used as an example of left-truncated

right-censored competing risks data in Putter et al. [44] and in Geskus [17] and is publicly

available in the R package mstate. During the process of HIV infection, the syncytium-

inducing (SI) HIV phenotype often appears. The presence of the SI phenotype has been

associated with rapid disease progression in HIV infected individuals because the SI

variants are generally more cytopathic to T-cells and cause the infected T-cells to fuse to

healthy ones [18]. AIDS and SI are the two event types in this data, where they compete

to be the first to occur [17]. Clinical research has shown that a 32-bp deletion in the

C-C chemokine receptor 5 gene (CCR5-∆32) is associated with delayed HIV disease

progression [50]. As in Putter et al. [44], the primary goal is to investigate whether SI

appears more rapidly in patients with CCR5-∆32 deletion. We assess the effect of CCR5

on the risk of “SI appearance before AIDS”, where “AIDS before SI appearance” is a

competing event. In the dataset, the CCR5 genotype is classified as “WW” (W stands for

wild-type) for patients without the deletion and as “WM” for those who have the deletion

on one of the chromosomes (M stands for mutation). Patients with the deletion on both

chromosomes were not collected in the data [44]. The truncation time (in years) is from HIV

infection to study enrollment, and the failure times are from HIV infection to SI appearance

before AIDS and from HIV infection to AIDS before SI appearance. Right censoring is due

to the end of study. We directly model the effect of CCR5 on cumulative incidence of SI

appearance before AIDS and that on AIDS before SI appearance by the proposed method
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and compare it with Geskus’s method.
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Figure 2.1: Estimated cumulative incidences of AIDS (left) and SI appearance (right) for
wild-type (WW) and mutant (WM) CCR5 genotypes.

Among 324 patients with CCR5 genotype information, 259 (80%) had the wild-type

variant (WW) and 65 (20%) had the mutant variant (WM). A total of 113 (35%) of patients

experienced AIDS before SI appearance, 107(33%) experienced SI appearance before

AIDS diagnosis, and 104 (32%) were censored by the end of the study. Preliminary

Cox regression analyses of censoring and truncation given CCR5 genotype suggest

that both the censoring time and truncation time are independent of CCR5 genotype.

Thus, the proposed method that assumes covariate-independent truncation and covariate-

independent censoring is used in the analysis. Figure 2.1 presents the nonparametric

estimations of cumulative incidence functions by the CCR5 genotype for the time to AIDS

before SI appearance and the time to SI appearance before AIDS, respectively, by the

Aalen-Johansen estimator adjusting for left truncation. It is observed that the mutant

genotype has a significant protective effect on AIDS before SI appearance (P = 0.002). The
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effect of CCR5 on SI appearance before AIDS is not significant (P = 0.479). The cumulative

incidence of SI appearance before AIDS is lower for the mutant genotype initially. Then,

the two cumulative incidence curves overlapped after approximately 10 years and crossed

at approximately 12 years.

We use the complementary log-log link function on 1− Fj(t) for the regression models

of cumulative incidence functions, corresponding to the Fine-Gray subdistribution hazards

models, and include a binary variable of CCR5 as a covariate. Table 2.1 summarizes

the regression analysis results by the PO-AJ and PO-IPW. Overall, the PO-AJ and PO-

IPW give almost identical estimated covariate effects, probably because the adjusted

Aalen-Johansen estimator and IPW estimator are equivalent under covariate-independent

truncation and covariate-independent censoring [16]. These results suggest that the

mutant CCR5 genotype is significantly associated with a lower incidence of AIDS before SI

appearance, whereas the effect of CCR5 genotype on SI appearance before AIDS is not

significant. Specifically, by the PO-IPW, the estimated subdistribution hazard ratio (SubHR)

for AIDS before SI appearance is 0.3115 (P = 0.0023) comparing mutant CCR5 genotype

to wile-type genotype, which indicates that the mutant CCR5 genotype is associated with

an approximately 69% decrease in the expected subdistribution hazard of AIDS before SI

appearance.

Table 2.1: Estimated subdistribution hazard ratio for the mutant (WM) effect on AIDS and
syncytium-inducing (SI) appearance.

PO-AJ PO-IPW

Cause eβ̂ CI p eβ̂ CI p

AIDS 0.3117 (0.1474, 0.6590) 0.0022 0.3115 (0.1473, 0.6588) 0.0023

SI appearance 0.8246 (0.4834, 1.4065) 0.4790 0.8247 (0.4835, 1.4065) 0.4792

eβ̂ : estimated subdistribution hazard ratio.

CI: 95% confidence interval.

p: p-value.
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Geskus’s method gives a comparable result with slightly different magnitude of esti-

mated CCR5 effect on AIDS (SubHR = 0.3663, P = 0.0004), while the effect of mutant

CCR5 genotype on SI is reversed (SubHR = 1.0598, P = 0.7890) comparing to that by

the PO-AJ and PO-IPW, although the effect is far from significant by any of the methods.

Nevertheless, the protective trend of mutant CCR5 genotype on SI suggested by the PO-AJ

and PO-IPW is more consistent with the nonparametric cumulative incidence curves in

Figure 2.1.

2.5.2. Pregnancy Exposed to Coumarin Derivatives

We use the data from a prospective cohort study on pregnancy exposed to coumarin

derivatives, collected by a Germany Teratology Information Service (TIS), and the data are

publicly available in the R package etm. Coumarin derivatives are used to inhibit formation of

blood clots, and TIS provides risk assessment and treatment recommendations to pregnant

women and their health-care providers [38]. There are three competing risks in the data:

induced abortion, spontaneous abortion, and live birth. Typically, women contact TIS when

the pregnancy is recognized and a drug risk assessment is needed, which is usually several

weeks after conception, and thus, the data are left truncated by the first time of contacting

TIS and those who had early abortion were excluded from the study. Moreover, Stegherr et

al. [52] noted a potential dependence between left-truncation time and event time because

women who considered an induced abortion were more likely to contact and seek advice

from TIS. Ning et al. [39] developed a formal conditional independence test of failure and

truncation times and applied the test to this data. They found that the dependence between

truncation and event times was likely due to their common correlations with the exposure

to coumarin derivatives, and the truncation and event times were independent conditional

on the medication intake. Therefore, the proposed method that accounts for covariate-

dependent truncation would be more appropriate. We analyzed the data to investigate

effects of exposure to coumarin derivatives on induced abortion and spontaneous abortion,
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respectively, by directly modeling coumarin on cumulative incidences using the proposed

method.

Since the pregnancy outcome data are available for all the woman, there is no right

censoring. As in Stegherr et al. [52], we added a small uniform random noise to break ties

because the original time scale in the data is gestational age (in weeks). Among 1186

pregnant women who contacted TIS during their pregnancies, 173 (15%) were exposed to

coumarin derivatives and 1013 (85%) were not. A total of 58 (5%) of women had an induced

abortion, 112 (9%) of women had a spontaneous abortion, and 1016 (86%) experienced

a live birth. Figure 2.2 presents the nonparametric estimations of cumulative incidence

functions by the coumarin exposure for the time to an induced abortion and the time to a

spontaneous abortion, respectively, based on the IPW estimator adjusting for dependent

truncation.
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Figure 2.2: Estimated cumulative incidences of induced abortion (left) and spontaneous
abortion (right) for controlled and exposed patients.
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It shows that the cumulative incidences of induced abortion (P < 0.001) and sponta-

neous abortion (P < 0.001) are significantly higher for coumarin exposed women. The high

incidence of induced abortion for exposed women mostly occurred during the first 12 weeks

(first trimester), and the coumarin exposure appears to have a stronger impact induced

abortion comparing to that on the spontaneous abortion. We use the complementary log-

log link function on 1− Fj(t) in the regression models of cumulative incidence functions for

induced abortion and spontaneous abortion and include a binary variable of coumarin ex-

posure as a covariate. Table 2.2 summarizes the regression analysis results by the PO-AJ

and PO-IPW, in which dependent truncation is adjusted for by the PO-IPW but not PO-AJ.

The results based on the PO-IPW suggest that the exposure to coumarin derivatives is sig-

nificantly associated with higher incidences of induced abortion and spontaneous abortion.

Specifically, by the PO-IPW, the estimated subdistribution hazard ratio for induced abortion

is 9.3375 (P < 0.0001) comparing the coumarin exposed women to unexposed women,

which indicates that coumarin derivatives intake is associated with an approximately 8

times increase in the expected subdistribution hazard of induced abortion. The estimated

subdistribution hazard ratio for spontaneous abortion is 2.7649 (P < 0.0001) comparing

the exposed women to unexposed ones, indicating that exposing to coumarin derivatives is

associated with an approximately 1.8 times increase in the expected subdistribution hazard

of spontaneous abortion. The PO-AJ that assuming covariate-independent truncation

appears to overestimate coumarin effects on both induced abortion and spontaneous

abortion.

Table 2.2: Estimated hazard ratio for the coumarin derivatives effect on pregnancies with
different competing risks.

PO-AJ PO-IPW

Cause eβ̂ CI p eβ̂ CI p

Induced abortion 9.7761 (5.1473, 18.5673) <0.0001 9.3375 (5.0786, 17.1681) <0.0001

Spontaneous abortion 3.0930 (1.6201, 5.9049) <0.0001 2.7649 (1.4211, 5.3795) <0.0001
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2.6. Discussion

Much research has been conducted into regression modeling of cumulative incidence

function for left-truncated right-censored competing risks data. However, existing work

either extend the inverse probability of censoring-based method in Fine and Gray [13] to

left-truncated data by constructing complicated weighted estimating equations, or involve

sophisticated nonparametric conditional likelihood function. Moreover, many of these

methods require the assumption that censoring and/or truncation times are independent of

failure time. Alternatively, the PO approach has been employed in regression modeling

of cumulative incidence function for right-censored competing risks data under covariate-

independent censoring [31] or covariate-dependent censoring [8]. Yet this approach has

not been extended to regression analysis of cumulative incidence function for left-truncated

right-censored competing risks data, probably due to the additional analytical complexity

posed by left truncation in the presence of competing risks In this paper, we address

the methodological challenges by proposing direct regression modeling of cumulative

incidence function based on POs, under general censoring and truncation mechanisms.

The appealing features of the proposed methods include: first, we provide a flexible and

robust way to investigate the association between cumulative incidence function and

covariates for left-truncated right-censored competing risks data through a generalized

linear model with a link function. Fine-Gray subdistribution hazards model is a special case

with the complementary log-log link on 1− Fj(t), but the proposed methods do not require

the proportional subdistribution hazards assumption; second, the proposed methods

handle the complex issues of potentially covariate-dependent left truncation and right

censoring in competing risks setting in the first step of computing the POs, and allow one

to apply GEE techniques with standard statistical software to obtain regression parameter

estimates and corresponding standard errors in the subsequent analysis; third, we take

into account various truncation and censoring mechanisms by modeling the conditional

truncation and censoring distributions given covariates and incorporating appropriate
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weights into the IPW estimator of cumulative incidence function; fourth, besides covariate

effect estimates, the proposed methods also provide estimates of baseline cumulative

incidence functions at the grid points; lastly, existing methods for regression analysis of

competing risks data based on POs often lack rigorous theoretical justification [8, 31]. We

fill the gap in literature and establish the asymptotic properties of proposed PO-based

estimators for regression modeling of left-truncated right-censored competing risks data,

under reasonable assumptions and regularity conditions.

Under covariate-independent truncation and covariate-independent censoring, Geskus

[16] proved the equivalence of the adjusted Aalen-Johansen estimator and IPW estimator.

Such equivalence is also shown by the results of our simulation studies and data application.

Under covariate-dependent censoring and/or covariate-dependent truncation, the Cox

proportional hazards model is used as a working model for censoring and/or truncation

distributions given covariates to compute covariate-adjusted weights for replacing the

product-limit statistics in the IPW estimator, although other parametric or semiparametric

models (e.g., generalized transformation models, accelerated failure time model) may

be used. The Cox model of the censoring time is straightforward by reversing the role

of failure time and censoring time; however, modeling the truncation time is much more

challenging due to right truncation. When data are left truncated, the standard Cox’s

regression method can be readily modified by only including subjects who have entered the

study because T > t is a subset of T > L when t > L. However, this relationship does not

hold for right-truncated data where sampling is restricted to subjects whose failure times

are less than or equal to the right truncation times. Thus, specialized methods are required

for analysis of right-truncated data [37]. We adopted the EM algorithm in Rennert and Xie

[46] for estimation in the Cox model of the truncation time, under covariate-dependent right

truncation. Under covariate-dependent censoring and/or covariate-dependent truncation,

the proposed methods rely on correct specifications of models for censoring and truncation

distributions given covariates. When the information concerning true models for censoring

and truncation is absent, a sensitivity analysis would provide important insight in the validity

53



of the corresponding model assumptions and robustness of the proposed methods.

The choice of grid points depends on the pattern of the observed data. Klein and

Andersen [31] recommended that between 5 and 10 grid points are sufficient to provide

reliable estimation of the regression parameters. We select six grid points that are equally

spaced on the event scale to compute POs in simulation studies and data applications.

The simulations suggest a satisfactory performance with small biases, when POs are

computed at these grid points. While the data reduction induced by using a limited number

of grid points may cause a loss of efficiency of the proposed estimators [8], as shown by

the relatively larger empirical standard deviations and estimated model-based standard

errors produced by the PO-AJ and PO-IPW. The proposed methods accommodate various

link functions, regression models, and working covariance matrices. As an illustration, in

simulations and data applications, the regression models with a complementary log-log

link function on 1 − Fj(t) are considered and compared with the GeskusâĂŹs method

for the Fine-Gray model with independent left-truncated right-censored competing risks

data. Other link functions, such as logit link function and complementary log-log link

function on Fj(t) can be used. The choice of a link function depends on the actual data

and scientific relevance in a specific application. Methods based on pseudo-residuals

have been proposed for graphical goodness-of-fit assessment of regression models for

right-censored data [43]. Future research is intended to develop rigorous residual-based

goodness-of-fit tests for selecting an appropriate link function in regression modeling

of cumulative incidence function for left-truncated right-censored competing risks data.

The independence and empirical working covariance matrices give similar results in

the simulation studies; thus, we would generally recommend the simple independence

working covariance matrix in the current setting. The proposed methods can be extended

to regression analyses of other types of complex survival data, such as clustered left-

truncated right-censored data, clustered left-truncated right-censored competing risks data,

and recurrent event data. Logan et al. [36] proposed to model the marginal cumulative

incidence function for clustered right-censored competing risks data based on POs. For
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clustered left-truncated right-censored competing risks data, we could first generate POs

while accounting for left truncation and right censoring in the presence of competing risks,

and then use them as responses in generalized estimation equations, where the within

cluster correlation is adjusted by the sandwich variance estimator.
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APPENDIX A

APPENDIX of CHAPTER 1

In this Appendix, Appendix A.1 provides a proof and regularity conditions of Theorem 1

and Appendix A.2 presents additional simulations under various settings in Chapter 1.

A.1. Proof of Theorem 1
The following regularity conditions are introduced to establish the asymptotic properties

of β̂τ :

C1: For a prespecified time τ , P (A+ C ≥ τ) > 0.

C2: The baseline covariates X are bounded almost surely.

C3: The matrix I (βτ0) is positive definite.

In order to use the general theorem for GEE [34] to develop the asymptotic properties of β̂τ ,

the equation (B.1) needs to be unbiased at the true parameter value βτ0, E [U (βτ0)] = 0,

in addition to the above regularity conditions. This requires the following “asymptotic

unbiasedness” of the POs [21]:

E [µ̂i (τ) | Zi] = g−1
(
Z>i βτ

)
+ op(1).

It holds without the remainder term if all failure times are uncensored and untruncated

because the POs, µ̂i (τ) (i = 1, ..., n), are exactly equal to T̃i ∧ τ when the data are

complete. In the presence of left truncation and right censoring, we show the “asymptotic

unbiasedness” of the POs and asymptotic properties of β̂τ , using techniques similar to

those in Graw et al [21].
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Proof. Let P denote the probability law of the vector of observed data Yi and Pn(·) =

n−1
∑

i=1 I (Yi ∈ ·) , i = 1, ..., n denote the empirical law corresponding to the sample of

left-truncated right-censored observations Y1, ...Yn. Further denote by P (i)
n the empirical

distribution of the reduced sample Y1, ..., Yi−1, Yi+1, ..., Yn. The RMST functional φ operates

on a set P of probability measures for Yi that includes P and the empirical measures

[19, 27]. It is defined such that φ(P ) = µ(τ) is the parameter of interest and φ(Pn) = µ̂(τ)

the RMST estimate corresponding to the observed data Y1, ..., Yn. Thus, the POs can be

expressed as µ̂i(τ) = nφ(Pn) − (n − 1)φ(P
(i)
n ). We use the von Mises expansion on a

smooth statistical functional φ [19]:

φ (Pn) = φ(P ) + n−1

n∑
k=1

φ̇ (Yk) +
1

2
n−2

n∑
k=1

n∑
j=1

φ̈ (Yk, Yj) + OP

(
n−

3
2

)
, (A.1)

where φ̇ and φ̈ are the first and second order influence functions [23] of the functional

φ. The first order influence function is centered, E{φ̇(Yi)} = 0 [26]. The second order

influence function is symmetric, φ̈(Yi, Yj) = φ̈(Yj, Yi), and should satisfy for every t [55]

E
{
φ̈ (Yi, t)

}
=

∫
φ̈(y, t)dP (y) = 0. (A.2)

From the equation (A.1), we have:

nφ (Pn)− (n− 1)φ
(
P (i)
n

)
= φ(P ) + φ̇ (Yi) +

1

n− 1

n∑
k=1

φ̈ (Yk, Yi) + oP (1),

as shown in Graw et al. [21] By the law of large numbers, 1
n−1

∑n
k=1 φ̈ (Yk, Yi) converges

to E
{
φ̈ (Yi, t)

}
, which equals to 0 by the equation (A.2). Thus, for the smooth statistical

functional φ with a second order von Mises expansion as in (A.1) such that the equation

(A.2) holds, the POs can be represented by:

nφ (Pn)− (n− 1)φ
(
P (i)
n

)
= φ(P ) + φ̇ (Yi) + oP (1).
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For left-truncated right-censored data, the RMST estimate obtained by integrating out

the product-limit estimator of the survival function is consistent, under the assumption

that the residual censoring time C is independent of (T̃ , A,X). James [27] discussed the

property of the second order influence function of the Kaplan-Meier functional and by similar

arguments, we can show that the RMST functional φ also has the second order von Mises

expansion as in (A.1). Essentially, we have shown that, under the regularity conditions

and covariate-independent censoring assumption, the POs of RMST for left-truncated

right-censored data can be represented as

µ̂i(τ) = φ̇ (Yi) + µ(τ) + oP (1) (A.3)

This leads to important properties of POs as follows:

1. µ̂i(τ) (i = 1, ..., n) can be approximated by independent and identically distributed

variables.

2. E[µ̂i(τ)] = µ(τ) + oP (1), for all i = 1, ..., n.

Since any estimator of µ(τ) = E[T̃τ ] is also implicitly an estimator of EZ
[
E(T̃τ | Z)

]
,

similarly, we have

E[µ̂i(τ) | Zi] = µ(τ | Zi) + oP (1), for all i = 1, ..., n.

Therefore, U (βτ0) is an asymptotically unbiased estimation equation. Based on the equa-

tion (A.3), U (βτ ) can be approximated by a sum of independent and identical distributed

random variables. Following the arguments in Graw et al. [21] and by Liang and Zeger [34],

β̂τ is consistent to βτ0, and
√
n
(
β̂τ − βτ0

)
is asymptotically normal with mean zero and

a covariance matrix that can be estimated using a standard ‘sandwich’ estimator, which

takes the form

Σ̂ = I
(
β̂τ

)−1

v̂ar {U (βτ )} I
(
β̂τ

)−1

,
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with

I
(
β̂τ

)
=
∑
i

∂g
−1
(
Z>i β̂τ

)
∂β̂τ


>

V−1
i

∂g
−1
(
Z>i β̂τ

)
∂β̂τ

 ,

v̂ar {U (βτ )} =
∑
i

Ui

(
β̂τ

)
Ui

(
β̂τ

)T

.
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A.2. Additional Simulations and Supplementary Tables

We conduct additional simulations to assess the performance of the proposed methods

for RMST model with the log link function. We randomly assign each subject to two groups,

A and B, with equal probability. Group A is treated as the reference. The covariate X1 is

binary and equals to 1 for subjects in group B and equals to 0 for subjects in group A.

The assumed model for RMST is log {µτ (x1)} = log
{

E
[
T̃τ | X1 = x1

]}
= βτ0 + βτ1x1 with

the log link function. The failure time data are generated both under proportional hazards

and under non-proportional hazards. For each scenario, the simulation was repeated

1000 times. First, we evaluate the performance of the proposed method under covariate-

independent censoring and with the log link function. The data generating process is

similar to the case with the linear link in Section 2.3.1. Table B.1 summarizes the simulation

results. Second, we evaluate the proposed methods under covariate-dependent censoring

and with the log link function. Under proportional hazards, the failure time T̃ is generated

from a distribution with hazard function λ (t | X1 = x1) = exp (γx1) , where γ = 0.5. The

residual censoring time is generated from an exponential distribution with parameter

λC = λC0exp(4X1). Varying λC0 allows for various levels of censoring (i.e., censoring rates

of 30% and 45%). Under non-proportional hazards, the failure time is generated from

a distribution with hazard function λ (t | Z = z) = exp
{
−
(
z>γ

)
+ z>ζ log(8t)

}
, where

Z = (1, X1)>, γ = (0.5, 1)> and ζ = (1,−0.3)>. The residual censoring time is generated

from an exponential distribution with parameter λC = λC0exp (X1), where λC0 is such

that the censoring rate is 30% or 45%. The truncation variable follows the same Weibull

distribution as in Section 2.3.1, with a truncation rate of 30%. Table B.2 summarizes the

simulation results.

Table B.3 presents the simulation results where the “conditional survival function”

approach is used to adjust for the bias observed at a larger τ = 1.39.
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Table A.1: Simulation results under covariate-independent censoring and with log link
function.

Proportional Hazards

30% Censoring Rate 45% Censoring Rate
n τ True RB SD SE CP MSE RB SD SE CP MSE

350 0.69 β0 -0.693 0.015 0.089 0.068 0.900 0.005 0.009 0.085 0.068 0.904 0.005
β1 -0.191 -0.015 0.147 0.144 0.967 0.021 0.019 0.154 0.144 0.957 0.021

1.39 β0 -0.288 0.059 0.102 0.079 0.928 0.007 0.042 0.099 0.078 0.917 0.006
β1 -0.320 0.021 0.213 0.184 0.967 0.034 0.031 0.207 0.201 0.963 0.040

500 0.69 β0 -0.693 0.012 0.074 0.058 0.921 0.003 0.010 0.074 0.058 0.916 0.003
β1 -0.191 0.042 0.162 0.136 0.962 0.019 -0.001 0.120 0.120 0.964 0.014

1.39 β0 -0.288 0.043 0.082 0.066 0.924 0.005 0.045 0.082 0.065 0.928 0.004
β1 -0.320 0.034 0.168 0.146 0.964 0.021 0.013 0.161 0.146 0.955 0.021

Non-proportional Hazards

30% Censoring Rate 45% Censoring Rate
n τ True RB SD SE CP MSE RB SD SE CP MSE

350 0.69 β0 -0.700 0.032 0.059 0.062 0.965 0.004 0.033 0.062 0.064 0.969 0.005
β1 0.225 0.040 0.064 0.068 0.972 0.005 0.040 0.070 0.071 0.956 0.005

1.39 β0 -0.566 0.122 0.081 0.095 0.982 0.014 0.120 0.083 0.098 0.979 0.014
β1 0.571 0.075 0.092 0.103 0.984 0.012 0.071 0.093 0.106 0.980 0.013

500 0.69 β0 -0.700 0.037 0.052 0.053 0.974 0.003 0.033 0.054 0.055 0.975 0.004
β1 0.225 0.059 0.057 0.059 0.975 0.004 0.048 0.060 0.060 0.974 0.004

1.39 β0 -0.566 0.125 0.067 0.079 0.950 0.011 0.131 0.095 0.088 0.950 0.013
β1 0.571 0.074 0.074 0.085 0.969 0.009 0.078 0.104 0.094 0.969 0.011
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Table A.2: Simulation results under covariate-dependent censoring and with log link
function (n = 500). Estimates obtained by using the traditional pseudo-observation (PO)
approach and the inverse probability of censoring weighting (IPCW)-adjusted PO approach
are compared.

Proportional Hazards

Unadjusted PO Method IPCW-adjusted PO Method
cen% τ True RB SD SE CP MSE RB SD SE CP MSE

30% 0.69 β0 -0.693 -0.004 0.069 0.059 0.907 0.003 0.012 0.073 0.059 0.900 0.004
β1 -0.191 -0.022 0.128 0.120 0.957 0.014 -0.003 0.118 0.123 0.963 0.015

1.39 β0 -0.288 -0.022 0.081 0.070 0.916 0.005 0.014 0.077 0.064 0.903 0.004
β1 -0.320 -0.113 0.161 0.144 0.928 0.022 0.023 0.139 0.146 0.957 0.021

45% 0.69 β0 -0.693 -0.014 0.076 0.065 0.909 0.004 -0.012 0.063 0.059 0.891 0.004
β1 -0.191 -0.139 0.129 0.121 0.932 0.015 0.001 0.118 0.122 0.959 0.015

1.39 β0 -0.288 -0.056 0.083 0.081 0.932 0.007 -0.022 0.092 0.071 0.889 0.005
β1 -0.320 -0.331 0.144 0.146 0.811 0.033 0.003 0.192 0.201 0.946 0.040

Non-proportional Hazards

Unadjusted PO Method IPCW-adjusted PO Method
cen% τ True RB SD SE CP MSE RB SD SE CP MSE

30% 0.69 β0 -0.700 0.042 0.052 0.053 0.967 0.004 0.033 0.051 0.052 0.958 0.003
β1 0.225 0.053 0.056 0.058 0.968 0.004 0.034 0.058 0.057 0.955 0.003

1.39 β0 -0.566 0.185 0.069 0.079 0.839 0.017 0.148 0.067 0.078 0.942 0.013
β1 0.571 0.108 0.078 0.085 0.944 0.011 0.084 0.074 0.085 0.976 0.010

45% 0.69 β0 -0.700 0.046 0.051 0.054 0.969 0.004 0.042 0.050 0.054 0.982 0.004
β1 0.225 0.045 0.057 0.059 0.976 0.004 0.057 0.056 0.059 0.974 0.004

1.39 β0 -0.566 0.233 0.076 0.084 0.751 0.024 0.158 0.068 0.083 0.925 0.015
β1 0.571 0.128 0.087 0.090 0.922 0.013 0.081 0.078 0.090 0.974 0.010
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Table A.3: Simulation results under non-proportional hazards and covariate-independent
censoring, with adjustment by the “conditional survival function” approach.

Linear Link

30% Censoring Rate 45% Censoring Rate
n τ True RB SD SE CP MSE RB SD SE CP MSE

350 1.39 β0 0.568 0.003 0.036 0.039 0.960 0.002 0.004 0.039 0.042 0.957 0.002
β1 0.437 0.007 0.048 0.050 0.967 0.003 0.008 0.051 0.053 0.961 0.003

500 1.39 β0 0.568 0.007 0.033 0.032 0.945 0.001 0.006 0.034 0.035 0.961 0.001
β1 0.437 <0.001 0.042 0.041 0.942 0.002 0.001 0.043 0.045 0.956 0.002

Log Link

30% Censoring Rate 45% Censoring Rate
n τ True RB SD SE CP MSE RB SD SE CP MSE

350 1.39 β0 -0.566 -0.003 0.067 0.068 0.958 0.005 -0.012 0.070 0.074 0.956 0.006
β1 0.571 0.003 0.072 0.075 0.960 0.006 -0.004 0.077 0.081 0.966 0.007

500 1.39 β0 -0.566 -0.007 0.054 0.057 0.957 0.003 -0.002 0.059 0.062 0.959 0.004
β1 0.571 -0.001 0.058 0.063 0.969 0.004 0.004 0.062 0.068 0.965 0.005
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APPENDIX B

APPENDIX of CHAPTER 2

In this Appendix, Appendix B.1 provides a proof and regularity conditions of Theorem 2,

Appendix B.2 provides a proof and regularity conditions of Theorem 3, and Appendix B.3

presents additional simulation results under various settings in Chapter 2.

B.1. Proof of Theorem 2
The following regularity conditions are introduced to establish the asymptotic properties

of β̂:

C1: Pr (C > t) > 0 (Positivity).

C2: The baseline covariates Z are bounded almost surely.

C3: The matrix I (β0) is positive definite.

In addition to the above regularity conditions, the equation (2.3) needs to be unbiased at

the true parameter value β0, E [U (β0)] = 0, to be able to use the general theorem for GEE

[34] to develop the asymptotic properties of β̂, which requires the following “asymptotic

unbiasedness” of the POs [21]:

E
[
F̂ij (t) | Zi

]
= g−1

(
Z>i β

)
+ oP (1).

It holds without the remainder term if all failure times are uncensored and untruncated

because the POs, F̂ij(t) (i = 1, . . . n), are exactly equal to I (Ti 6 t, εi = j) when the

data are complete. In the presence of left truncation and right censoring, we show the
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“asymptotic unbiasedness” of the POs and asymptotic properties of β̂, using techniques

similar to those in [21].

Proof. Let P denote the probability law of the vector of observed data Xi and Pn(·) =

n−1
∑

i=1 I (Xi ∈ ·) , i = 1, ..., n denote the empirical law corresponding to the sample of

left-truncated right-censored observations X1, ...Xn. Further, let P (−i)
n denote the empirical

distribution of the reduced sample X1, ..., Xi−1, Xi+1, ..., Xn. The IPW functional Ωj: P → F

operates on a set P of probability measures for Xi that includes P and the empirical

measures [19, 27] and maps into the set F of all sub-distribution functions. It is defined

such that Ωj(P ) = Fj is the parameter of interest and Ωj(Pn) = F̂ IPW
j is the IPW estimate

corresponding to the observed data X1, ..., Xn. Thus, the POs can be expressed as

F̂ij = nΩj(Pn) − (n − 1)Ωj(P
(−i)
n ). Von Mises expansion is used on a smooth statistical

functional Ω [19]:

Ω (Pn) = Ω(P ) + n−1

n∑
k=1

Ω̇ (Xk) +
1

2
n−2

n∑
k=1

n∑
ζ=1

Ω̈ (Xk, Xζ) + OP

(
n−

3
2

)
, (B.1)

where Ω̇ and Ω̈ are the first and second order influence functions [23] of the functional

Ω. The first order influence function is centered, E{Ω̇(Xi)} = 0 [26]. The second order

influence function is symmetric, Ω̈(Xi, Xk) = Ω̈(Xk, Xi), and should satisfy for every y [55]

E
{

Ω̈ (Xk, y)
}

=

∫
Ω̈(x, y)dP (x) = 0. (B.2)

As shown in [21], from the equation (B.1), we have:

nΩ (Pn)− (n− 1)Ω
(
P (−i)
n

)
= Ω(P ) + Ω̇ (Xi) +

1

n− 1

n∑
k=1

Ω̈ (Xk, Xi) + oP (1).

By the law of large numbers, 1
n−1

∑n
k=1 Ω̈ (Xk, Xi) converges to E

{
Ω̈ (Xk, y)

}
, which

equals to 0 by the equation (B.2). Thus, for the smooth statistical functional Ω with a

second order von Mises expansion as in (B.1) such that the equation (B.2) holds, the POs
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can be represented by:

nΩ (Pn)− (n− 1)Ω
(
P (−i)
n

)
= Ω(P ) + Ω̇ (Xi) + oP (1).

For left-truncated right-censored data, the IPW estimate is equivalent to the Aalen-

Johansen estimate and is n
1
2 -consistent, under the assumptions that (L,C) and (T, ε)

are independent and that L and C are independent [16]. [27] discussed the property of

the second order influence function of the product-limit Kaplan-Meier estimator functional

and by similar arguments, we can show the IPW functional Ωj also has the second order

von Mises expansion as in (B.1). Essentially, we have shown that, under the regularity

conditions and the assumptions of independence of (L,C) and (T, ε) and independence of

L and C, the POs of IPW estimate for left-truncated right-censored data can be represented

as

F̂ij(t) = Ω̇j (Xi) + Fj(t) + oP (1) (B.3)

This leads to important properties of POs as follows:

1. F̂ij(t) (i = 1, ..., n) can be approximated by independent and identically distributed

variables.

2. E[F̂ij(t)] = Fj(t) + oP (1), for all i = 1, ..., n.

Since any estimator of Fj (t) = E {I (T 6 t, ε = j)} is also implicitly an estimator of

EZ [E {I (T 6 t, ε = j) |Z}], similarly, we have

E[F̂ij(t) | Zi] = Fj(t | Zi) + oP (1), for all i = 1, ..., n.

Therefore, U (β0) is an asymptotically unbiased estimation equation. Based on equation

(B.3), U (β) can be approximated by a sum of independent and identical distributed

random variables. Following the arguments in [21] and by [34], β̂ is consistent to β0, and
√
n
(
β̂ − β0

)
is asymptotically normal with mean zero and a covariance matrix that can be
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estimated using a standard ‘sandwich’ estimator, which takes the form

Σ̂ = I
(
β̂
)−1

v̂ar
{
U
(
β̂
)}
I
(
β̂
)−1

,

where

I
(
β̂
)

=
∑
i

{
∂θi
∂β

}>
Vi (β)−1

{
∂θi
∂β

} ∣∣∣∣∣
β=β̂

,

v̂ar
{
U
(
β̂
)}

=
∑
i

Ui

(
β̂
)
Ui

(
β̂
)T

.

B.2. Proof of Theorem 3
Regularity conditions C1 - C2 are assumed to show F̂ IPW

j (t) is a consistent estimator

of the true CIF Fj(t):

Proof. The counting process is defined as: NL
ij(t) = I {Li < Xi 6 t, εi = j, δi = 1}, where

X = min(T,C) and δ = I(T 6 C). Assuming that L is independent of (T, ε), C is condition-

ally independent of (T, ε) given Z, and L is independent of C, we have

E
{
NL
ij(t) | T = t,Z = z

}
= E {I {Li < Xi 6 t, εi = j, δi = 1} | T = t,Z = z}

= Pr (δ = 1 | T = t,Z = z)× Pr (T 6 t, ε = j | Z = z)×

Pr (L < t | Z = z) .

In the above expression, Pr (δ = 1 | T = t,Z = z) = Pr (C > T | T = t,Z = z) =

Pr (C > t | Z = z) = SC(t− | z), Pr (T 6 t, ε = j | Z = z) = Fj (t | z), and Pr (L < t) =

FL(t−). Thus,

E
{
NL
ij(t) | T = t,Z = z

}
= SC(t− | z)× Fj (t | z)× FL(t−) (B.4)

since ŜC (t | Z) is a consistent estimator of SC (t | Z) and F̂L (t) is a consistent estimator of
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FL, together with equation (B.4), for any t, the limit of estimator F̂j
IPW

(t) is

lim
n→∞

F̂ IPW
j (t) = lim

n→∞

1

n̂

n∑
i=1

NL
ij(t)

ŜC (Xi− | Z)× F̂L (Xi−)

= EZ

{∫ t

0

SC(u− | Z)FL(u−)

SC(u− | Z)FL(u−)
Fj( du | Z)

}
= EZ {Fj(t | Z)}

= Fj(t)

Hence, we have proved that as n → ∞, Fj (t | Z) converges in probability to the true

cumulative incidence function Fj(t) uniformly for any t. In other words, F̂j
IPW

(t) is a

consistent estimator of Fj(t).

B.3. Supplementary Table
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