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Abstract

The establishment and development of a non-collapsing technique have recently

received a great deal of attention in geometric analysis. The area of study con-

ducted in my thesis is motivated by this technique which is based on the ap-

plication of the maximum principle to a two-point function that is defined on

manifolds or relies on some global information of partial differential equations

PDEs. This approach has been utilized in various settings to acquire some useful

knowledge on the behaviour of geometric structures and properties of embedded

hypersurfaces.

Our first purpose of study concerns the uniqueness of a class of embedded

Weingarten hypersurfaces in the higher dimensional sphere Sn+1. In particular,

we consider a more general class of embedded Weingarten hypersurfaces with two

distinct principal curvatures into Sn+1. Also, we assume that these hypersurfaces

satisfying a PDE of the principal curvatures with assumptions on the number

of multiplicities of these curvatures. As a result, we deduce that these principal

curvatures are both constant and consequently our hypersurfaces are congruent

to a Clifford torus. One of the key ingredients of this work is based on the smart

deployment of the maximum principle argument to a function of two variables

that is defined on our hypersurfaces.

The second main object of study is the mean convex mean curvature flow

in Minkowski space Ln,1. Of particular interest is the study of mean convex

embedded spacelike hypersurfaces evolving by the mean curvature flow into Ln,1.

In particular, we deduce a non-collapsing estimate by employing the parabolic

version of Omori-Yau maximum principle to a bounded function that is defined

on these spacelike hypersurfaces. More precisely, we compare the radius of the

largest hyperbola which touches the spacelike hypersurface at a given point to

the curvature at that point.
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Chapter 1

Introduction

1.1 Previous work

The establishment and development of a non-collapsing technique have recently

received a great deal of attention in geometric analysis. One of the main and chal-

lenging ingredients in such technique is the application of the maximum principle

to a function which involves the geometry at several points. The most common

version of this principle deals with a scalar function defined on a manifold, how-

ever, some remarkable versions have recently appeared in various settings. Of

particular interest is the application of the maximum principle to a function that

is defined at two points on manifolds or a function that relies on some global

information of solutions of partial differential equations such as heat equations.

This effective approach is used to acquire useful knowledge on the behaviour of

geometric structures and properties of embedded surfaces in ambient spaces.

The study of hypersurfaces in a space form Qn+1(c) of constant sectional cur-

vature c is an extensive field of research emerging from the classical differential

geometry of curves and surfaces. It has contributed to the development of dif-

ferential geometry and partial differential equations. One of the main directions

in this discipline is the study of geometric properties of minimal and constant

mean curvature (CMC) hypersurfaces and other prescribed curvature problems

in space forms: the Euclidean space Rn+1 if c = 0, the sphere Sn+1 if c > 0 and

the hyperbolic space Hn+1 if c < 0. More precisely, the classification of these

immersed or embedded hypersurfaces into space forms has been an active field

for mathematicians.

The application of non-collapsing machinery for hypersurfaces with prescribed

curvatures has significantly contributed in the development of some geometric

1



2 CHAPTER 1. INTRODUCTION

problems. Starting from the work of S. N. Kruzhkov [68] in 1967 where gra-

dient estimates were deduced for a function defined as the difference between

the solutions at two points for some parabolic partial differential equations in

one-dimensional space by using the maximum principle and a suitable barrier

argument. In 1998, G. Huisken [57] applied a refinement of these methods in

his work on embedded solutions of the curve shortening flow proving the em-

beddedness is preserved and providing another proof for Grayson’s theorem [49].

Precisely, he considered a one-parameter family of embedded curves and a two-

point function which compares the arc length and the ambient distance between

any pair of points, and deduced that these curves contract to a round point.

The theory of minimal surfaces, surfaces of least area or more generally sur-

faces with vanishing mean curvature, is one of the substantial topics across major

disciplines of mathematics such as calculus of variations and geometric measure

theory. The investigation of these surfaces in the 3-sphere S3 in particular has

led to considerable interest, and offers some features which are not present for

surfaces in Euclidean space. For example, there are no closed minimal surfaces in

R3, whereas there exist closed minimal surfaces in S3 such as the equator and the

Clifford torus. These are also important because the cones over such minimal sur-

faces in the sphere are minimal cones which are important in the understanding

of singularities.

Questions regarding the uniqueness of minimal surfaces in S3 have attracted

mathematicians over the centuries. In 1966, F. J. Almgren [9] showed that the

only immersed minimal surface in the 3-sphere with genus g = 0 is the equator.

In 1970, H. B. Lawson [71] showed that there is at least one compact embedded

minimal surface in S3 with genus g, for any g ∈ Z+. Moreover, he provided the

proof of the existence of at least two minimal surfaces in the case g > 1 for

which g is not a prime number. In the same year, he also made an outstanding

conjecture [72]. He conjectured that in the case g = 1, the only embedded

minimal surface in S3 (up to ambient isometries) is the Clifford torus. In 2012,

S. Brendle [23] was able to provide a positive and crucial answer for the conjecture

of Lawson that is mentioned above. A powerful tool that was used in the proof

of Lawsons’s conjecture is the non-collapsing technique, in which the maximum

principle argument was applied to an appropriate two-point function. Brendle’s

proof of Lawson’s conjecture is provided in section 4.1.

Analogous questions in higher dimensions have also been paid considerable

attention. Of particular interest are immersed or embedded hypersurfaces with

prescribed curvatures in the (n + 1)-dimensional sphere Sn+1. Note that the
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results of the two-dimensional case cannot be expected to hold with the same

assumptions in higher dimensions, since there are examples of embedded CMC

hypersurfaces arising from the theory of isoparametric hypersurfaces [78] which

are not products of spheres. The special role of the two-dimensional setting in

Brendle’s proof arises in the argument that the largest principal curvature is non-

vanishing, which uses the holomorphicity of a Hopf differential which is special

to the two-dimensional case.

There are some crucial works on this area with respect to the norm of the

second fundamental form. Precisely, assume that Σ is an n-dimensional minimal

hypersurface immersed into the sphere Sn+1 ⊂ Rn+2 and |A|2 is the squared norm

of the second fundamental form of Σ. In the pioneering work of J. Simons [96],

it was derived that if |A|2 ≤ n on Σ, then either |A|2 = 0, that is Σ is totally

geodesic, or |A|2 = n. Moreover, S. S. Chern, M. do Carmo and S. Kobayashi

[33] and H. Lawson [70] determined all minimal hypersurfaces of Sn+1 satisfying

|A|2 = n. In particular, they locally showed that |A|2 = n if and only if Σ is a

Clifford torus, a direct product of spheres.

Other significant studies on embedded hypersurfaces with assumptions on the

number of distinct principal curvatures and Hm in Sn+1 where Hm refers to the

m-th elementary symmetric function of the principal curvatures have tackled by

mathematicians. T. Otsuki in his work ([83], [84]) proved that every compact

embedded minimal hypersurface Σn of Sn+1 of two distinct principal curvatures

with multiplicities m ≥ 2 and k = n − m respectively at each point is locally

congruent to the Clifford torus Sm
(√

m
n

)
×Sn−m

(√
n−m
n

)
. Besides, he showed that

there exist infinitely many immersed minimal hypersurfaces when the multiplicity

of one of the two principal curvatures is one by solving an ordinary differential

equation of second order. Following the work of Otsuki, H. Li and G. Wei [74]

extended these hypersurfaces of two distinct principal curvatures to the case

where the m-th mean curvature Hm vanishes. More precisely, they deduced that

these minimal hypersurfaces are congruent to totally geodesic spheres and Clifford

tori.

A recent beautiful work on the uniqueness for a class of Weingarten hyper-

surfaces in the (n + 1)-sphere was tackled using the non-collapsing technique.

B. Andrews, Z. Huang and H. Li [17] considered a special class of embedded

Weingarten hypersurfaces in Sn+1 with some assumptions. They assumed that

these hypersurfaces satisfying a linear relation between their distinct principal

curvatures with imposing a condition on the number of these curvatures. As a

result, they showed that these distinct principal curvatures are constant and thus
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these hypersurfaces should be congruent to a Clifford torus. Similar to Brendle’s

proof of Lawson’s conjecture [23], the authors in [17] rely on the non-collapsing

machinery to show this result, see section 4.3. In fact, this work provided a simple

proof to the above results ([83], [84] and [74]). For more work on this direction

of research (see [37], [21], [48], [95], [100], [106] and [85]).

The study of CMC surfaces in spaces R3, S3 and H3 is a classical subject

in differential geometry. In 1853, J. H. Jellet [61] showed that CMC spheres

that are star-shaped about some point in R3 are round. Also, H. Hopf raised a

long-standing question on whether a compact CMC surface in R3 is necessarily a

standard sphere or not. In the mid of twenty century, H. Hopf [54] proved that

any CMC sphere in such ambient space must be totally umbilical by constructing

the Hopf holomorphic differential for these surfaces. A. D. Alexandrov [6] showed

that a CMC surface with the property of embeddedness in R3, a hemisphere S3
+

or H3 must be a round sphere. Also, the above result of Hopf was extended to the

ambient spaces S3 and H3 by S. S. Chern [32]. In 1984, H. C. Wente [102] was the

first to construct compact CMC surfaces of genus one in R3, thereby answering

Hopf’s question in the negative.

Note that the above technique provided by H. Hopf [54] was extended and

applied in different contexts. For instance, E. Calabi applied this approach of

H. Hopf for immersed minimal 2-dimensional spheres into the n-dimensional

sphere [28] and S. .S. Chern [31] extended this to some more general ambient

manifolds. Moreover, this method was used by U. Abresch and H. Rosenberg to

study CMC spheres in homogeneous product spaces under some assumptions and

derive that such surfaces are rotational (see [3] and [4]). The reader may refer

to [62], [103], [99] and [60] for further information on the classification of these

surfaces in R3 and to [7] and [32] for CMC surfaces in S3.

Shortly after the discovery of non-spherical CMC surfaces by Wente, many

results were obtained on the structure and properties of Wente tori. U. Abresch

[1] provided the classification of all CMC tori with planar curvature lines in R3

by solving an appropriate system of ordinary differential equations. Moreover,

U. Pinkall and I. Sterling [88] classified generally all CMC tori in R3 by using

a simple and implicit theorem. By considering this work, A. I. Bobenko [22]

constructed CMC tori in R3, S3 and H3. Beside the paper of O. M. Perdomo

[86], B. Andrews and H. Li [20] provided recently a complete classification of all

embedded CMC tori in S3. In particular they showed that all embedded CMC

tori in S3 are rotationally symmetric, confirming a conjecture of U. Pinkall and

I. Sterling [88]. The proof of this beautiful result is based on an extension of
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Brendle’s argument for the proof of Lawson’s conjecture for minimal surfaces [23]

to the case of embedded CMC tori in S3, see section 4.2.

In addition to classifying embedded minimal and CMC hypersurfaces in Qn+p(c),

the study of hypersurfaces deforming by a normal velocity that is prescribed by

their curvature has been a subject of increasing attention in differential equations

and geometry. If the speed is monotone as a function of the principal curvatures,

then these processes are described by fully nonlinear parabolic partial differen-

tial equations. These processes are also referred to as curvature flows. In ideal

situations such flows converge to limiting states which are hypersurfaces of pre-

scribed curvature, so these curvature flows are potentially useful both in studying

prescribed curvature hypersurfaces and also in understanding the topology of hy-

persurfaces with given restrictions on curvature. Unfortunately, singularities can

occur in some situations. A current active area of research is to understand the

possible formation of singularity in various settings, see [55], [56], [59], [36], [41]

and [94].

One of the most remarkable extrinsic geometric flows is the mean curvature

flow (MCF). The global behaviour of smooth, compact, convex hypersurfaces

evolving by the MCF in Euclidean spaces has been studied by many authors. In

1984, G. Huisken [55] showed that if the initial hypersurface is convex in Rn+1

where n ≥ 2, then there exists a unique solution to such flow. Also, he proved that

the solution shrinks to a single point in finite time in such a way that, by using

a proper rescaling about the final point, the resulting family of hypersurfaces

converges smoothly to a round sphere. Furthermore, Gage and Hamilton [43]

derived the analogous result for closed, embedded, curves in R2. In other words,

they proved that every embedded, planar convex curve shrinks to a round point

under the curve shortening flow (CSF), which is the one-dimensional case of the

MCF.

The non-collapsing technique is an argument based on applying a maximum

principle to a function depending on two points in a hypersurface, to prove a geo-

metric non-collapsing property (precisely, comparing the radius of the largest ball

which touches the hypersurface at a given point to the local geometry (curvature)

at that point. This kind of estimate first arose in the context of mean curvature

flow: The 2009 paper by Weimin Sheng and Xujia Wang [94] introduced a useful

concept of non-collapsing for mean curvature flows, as the condition that every

point of the evolving hypersurface is touched by a ball of radius bounded below

by a multiple of the reciprocal of the mean curvature at that point. By a detailed

analysis of the singularities and behaviour of the mean curvature flow they proved
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that any compact mean-convex initial hypersurface gives rise to a mean curvature

flow which is non-collapsed in this sense. Similar estimates, thought not phrased

in precisely this way, were also proved by White [104, 105]. In 2012, B. Andrews

[12] showed that such a non-collapsing estimate can be proved directly using the

two-point maximum principle (refer also to section 3.2 for more details).

Shortly after this work, S. Brendle adapted and refined the two-point maxi-

mum principle argument in the context of embedded minimal tori, and showed

that it is possible to compare the size of the touching ball to the maximum prin-

cipal curvature at each point. This was the basis of his proof of the Lawson

conjecture mentioned above. Brendle’s method was extended to the case of em-

bedded constant mean curvature (CMC) tori in S3 by B. Andrews and H. Li [20],

confirming the Pinkall-Sterling conjecture.

The non-collapsing argument has subsequently been extended and applied in

various contexts such as fully nonlinear curvature flows (analogues of the mean

curvature flow where the speed depends on a nonlinear function of the principal

curvatures). The result in [12] was extended by B. Andrews, M. Langford and

J. McCoy [19] to fully non-linear curvature flow where the speed function of

the principal curvatures is homogeneous of degree one and convex or concave.

In this study, the authors proved that the boundary curvature of the smallest

exterior (largest interior) sphere which touches the hypersurface at each point is

a supersolution (subsolution) of the linearized curvature flow if the speed function

is convex (concave), see section 3.3. Further study was provided by B. Andrews,

X. Han, H. Li and Y. Wei [16] showing that the previous result of the non-

collapsing estimate can be extended to the ambient spaces Sn+1 and Hn+1, and

by B. Andrews and M. Langford [18] to allow touching balls on both sides of the

evolving hypersurface for some classes of fully nonlinear flows.

1.2 Results and outline of the thesis

The main results and the structure of the thesis are illustrated in this section.

The research work conducted throughout the thesis is motivated by the tech-

nique of non-collapsing that was used in the work of B. Andrews [12] for compact,

embedded and mean convex hypersurfaces moving under the MCF in Rn+1 where

the maximum principle argument was applied to a two point function, implying

a non-collapsing inequality. This technique in the previous work [12] was modi-

fied by S. Brendle in his work on the uniqueness conjecture of Lawson [23] to be
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applicable to the case of minimal surfaces.

Since then, various results have been proved based on developing this argu-

ment in different constructions such as the proof of the Pinkall-Sterling conjecture

[20] on constant mean curvature hypersurfaces in the sphere. Also, the extension

of the non-collapsing machinery to a special class of embedded hypersurfaces in

Sn+1 satisfying a linear relation between their distinct principal curvatures was

tackled by B. Andrews, Z. Huang and H. Li [17] yielding the uniqueness result

that such hypersurfaces are congruent to the Clifford torus. These results have

motivated the research undertaken in this thesis.

The first main result of the thesis is an extension of work [17] on the uniqueness

of a class of Weingarten hypersurfaces in Sn+1. In particular, we consider a

larger class of embedded Weingarten hypersurfaces Σn with two distinct principal

curvatures λ and µ at each point in Sn+1. We assume that this hypersurface

satisfies the following form of PDE:

G(λ, µ) = λ+ µ− Φ(λ− µ), λ > µ

where G(λ, µ) is a symmetric function of principal curvatures. Also, further

assumptions on G(λ, µ) are imposed as follows:

• ∂G
∂λ

, ∂G
∂µ

, ∂G
∂λ
λ and ∂G

∂µ
µ are positive.

• The set {(λ, µ) : G(λ, µ) ≥ 0} is convex.

• The following inequality

−∂
2G

∂λ2

(
∂G

∂µ

)2

+2
∂2G

∂λ∂µ

∂G

∂λ

∂G

∂µ
− ∂

2G

∂µ2

(
∂G

∂λ

)2

≤ 2

λ− µ
∂G

∂λ

∂G

∂µ

(
∂G

∂λ
+
∂G

∂µ

)
holds, where G(λ, µ) = 0

Precisely, we prove the following theorem:

Theorem 1.1. Let F : Σ→ Sn+1 be a compact embedded hypersurface with prin-

cipal curvatures λ and µ, where λ > µ. Assume that these principal curvatures

λ and µ have multiplicities m and n-m respectively and satisfy the above linear

relation G(λ, µ). Also, suppose that Φ(t) is a function satisfying the conditions:

0 ≤ tΦ′(t) < min{Φ(t), t} and 0 ≤ tΦ′′(t) < 1− Φ′(t)2, where t = λ− µ. Then λ

and µ are constant and Σ is congruent to the Clifford torus.

The proof of such result involves the application of the maximum principle

to a two-point function that is defined on our class of embedded Weingarten
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hypersurfaces of Sn+1. More precisely, we define a quantity that characterises the

curvature of the largest ball in the enclosed region which touches the hypersurface

at a given point x and is denoted by k̄(x). Then, we show that this inscribed

ball curvature k̄(x) satisfies a natural differential inequality in a viscosity sense

by applying the maximum principle argument to this function.

In order to clarify the proof of this theorem, we begin by illustrating some

geometric concepts of embedded Weingarten hypersurafces of Sn+1 assuming a

condition on the number of multiplicities of the principal curvatures. Also, un-

der these assumptions we show that this class of hypersurafces is rotationally

symmetric. In the second section, we derive the analogous identity of Simon for

the maximum principal curvature λ of our class of hypersurfaces in the proposed

setting. In the next section, we deduce that the inscribed ball curvature k̄(x)

satisfies a differential inequality in the viscosity sense using the maximum prin-

ciple argument. In the final section, we arrive to the equality λ = k̄ everywhere

on Σ by combining the previous two results. Hence, such equality enables us to

deduce that the principal curvatures are constant and then yields to the result of

our theorem. This is the structure of chapter 5.

The second main area of study concerns the flow of mean convex spacelike

hypersurfaces evolving by their mean curvature in Minkowski space Ln,1, partic-

ularly, the work of Andrews [12] (see section 3.2) is extended to mean convex

embedded spacelike hypersurfaces evolving by the MCF of Ln,1. More precisely,

we derive a non-collapsing estimate by employing the Omori-Yau maximum prin-

cipal to a quantity that relies on two points of these spacelike hypersurfaces. The

proof of such result involves comparing the radius of the largest hyperbola which

touches the spacelike hypersurface at a given point to the curvature at that point.

To clarify, we assume that F : Σn × [0, T ) → Ln,1 is an embedding of mean

convex spacelike hypersurface into Ln,1 and satisifes the MCF that is given by

∂F (x, t)

∂t
= −H(x, t)ν(x, t),

for x ∈ Σ, t ∈ [0, T ) and where H and ν refer to the mean curvature and

future-directed unit normal vector field on spacelike hypersurfaces, respectively.

The mean convexity condition indicates that the mean curvature of spacelike

hypersurfaces is positive everywhere. By utilizing the machinery of non-collapsing

for these embedded spacelike hypersurfaces, we deduce that the interior curvature

of the touching hyperbola satisfies a differential inequality in the viscosity sense.

Hence, the second main theorem of the thesis is given by the following:
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Theorem 1.2. Let Σn be a mean convex spacelike hypersurface, and F : Σn ×
[0, T ) → Ln,1 a family of smooth embeddings deforming by the MCF in Ln,1.

Then, the interior curvature function Z is a viscosity subsolution of the equation

∂Z

∂t
= ∆Z − |A|2Z.

The fundamental content of our proof is based on a non-collapsing technique

where the Omori-Yau maximum principle is applied in this situation.

In order to explain our second result, we first introduce some notions of Semi-

Riemannian manifolds and the geometry of spacelike hypersurfaces in Ln,1. Then,

we deduce the evolution equations of some related geometric quantities such as

the metric, the second fundamental form, the Weingarten map and the mean

curvature. Also, we represent the generalized Omori-Yau maximum principle

in the next section. In the final and main section of this result, we provide

the proof of a non-collapsing estimate for our evolving spacelike hypersurfaces

by applying the Omori-Yau maximum principle to the boundary curvature of the

touching hyperbola defined on these spacelike hypersurfaces. This is the structure

of chapter 6.

The content of this thesis is structured as follows: some preliminaries and

conceptual principals are introduced in chapter 2. These include the geometry of

hypersurfaces in the Euclidean space, curvature functions and the mean curvature

flow MCF. Also, we represent one of the basic applications of the maximum

principle argument to some parabolic equations in the one-dimensional space and

on manifolds.

In chapter 3, we present some existing results for several extrinsic geometric

flows in Rn+1 employing the non-collapsing technique. We first illustrate the

proof of some basic properties on the CSF involving the avoidance principle, the

preservation of embeddedness and Huisken’s estimate [55]. Then, we include the

proof of a sharp estimate that was deduced by B. Andrews [12] for embedded mean

convex hypersurfaces moving under the MCF in Rn+1. In the final section of such

chapter, we represent the extension of such work [12] to fully non linear curvature

flow where the speed function of the principal curvatures is homogeneous of degree

one, convex or concave by B. Andrews, M. Langford and J. McCoy [19].

In chapter 4, we illustrate some classification results on hypersurfaces of pre-

scribed curvatures in the unit sphere. We first describe Brendle’s proof [23] of

Lawson’s conjecture [72] that the only embedded minimal tori in S3 is the Clif-

ford torus. We then represent the proof of B. Andrews and H. Li [20] on the

classification of constant mean curvature tori in S3 in which they showed that
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theses surfaces should be a surface of rotation. We also involve an interesting

application of the non-collapsing method for a special class of embedded Wein-

garten hypersurfaces with two distinct principal curvatures satisfying a linear

partial differential equation in Sn+1 in the last section of this chapter. This study

was tackled by B. Andrews, Z. Huang and H. Li [17] and they derived that such

hypersurfaces are congruent to a Clifford torus under some conditions on multi-

plicities of their principal curvatures. The authors in the previous results [23],

[20] and [17] also extended the previous argument of non-collapsing technique

that was used in [12] [23].

The chapters 5 and 6 contain the first and second main results of the thesis

that are mentioned above, respectively.



Chapter 2

Preliminaries and background

In order to clarify the notation and background results used in the thesis, some

preliminaries and conceptual principles are introduced in this chapter. In the

first section, we recall some basic notation and formulas of the geometry of hy-

persurfaces in the Euclidean space. These include defining some terminology: the

tensor bundles, first and second fundamental forms, connections and curvature

tensors. Also, some important identities are introduced such as the Gauss and

Codazzi relations and Simons’ type identities. Since we study the behaviour of

embedded hypersurfaces with prescribed curvatures, it is useful to introduce cur-

vature functions. In particular, we consider embedded hypersurfaces Σn moving

under a speed function S that is given by symmetric functions f in section 2.2.

Also, some basic results of f and properties of both S and f are illustrated in

this section.

Moreover, we consider an extrinsic geometric flow, the mean curvature flow

(MCF), in the next section 2.3. More precisely, we introduce some basic concepts

of this flow including evolution equations for geometric quantities under the MCF.

Since the maximum principle is a significant tool that will be applied throughout

the thesis, we illustrate its application to tensor inequalities in section 2.4.

In the final section, we present one of the main applications of the maximum

principle argument to some parabolic equations, precisely heat equations, in one-

dimensional space and on manifolds.

2.1 Geometric preliminaries

The theory of submanifolds has been extensively studied since the appearance of

differential geometry of curves and surfaces, in the late 17th century. The study

11
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of this discipline has significantly contributed to the development of differential

geometry (see [81] and [38]). In order to have a good understanding of some

results that are related to such area in this thesis, it will be useful to recall

some general notions and concepts of the geometry of hypersurfaces, which are

submanifolds with codimension 1 in the Euclidean space Rn+1.

The main purpose of this section is to introduce the necessary background on

immersed hypersurfaces in the Euclidean space Rn+1. In particular, this section

includes a discussion of geometric structures on manifolds such as tangent bun-

dles, tensor bundles, metrics, connections and curvature tensors which are used in

our later computations. Besides, the specific application of these concepts in the

setting of hypersurfaces in Rn+1 is described, as well as the additional structure

such as normal vectors and second fundamental form which arise in the hyper-

surface setting. Moreover, some crucial identities are included such as the Gauss

Identity, which relates the curvature tensor to the second fundamental form, and

the Codazzi equations. We conclude this section with the proof of a useful gen-

eralisation of an identity of Simons [96] that is used frequently in computations

throughout the thesis.

2.1.1 Manifolds

Our terminology and conventions for manifolds will be consistent with that in

the books by Lee [73] and Do Carmo [38]. In particular the manifolds Mn we

consider are Hausdorff, paracompact topological spaces equipped with an atlas

of homeomorphic charts ϕα : Uα ⊂ M → Vα ⊂ Rn such that {Uα} is an open

cover of M and for which the transition maps ϕβ ◦ ϕ−1
α are smooth. Functions

on M are smooth when their composition with the inverse of a chart is smooth,

and maps between manifolds are smooth when their composition with charts is

a smooth map between Euclidean spaces.

A tangent vector v to M at a point x are differential operators which act

R-linearly on germs of smooth functions defined near x:

v(af + bg) = av(f) + bv(g)

for all smooth f, g defined near x and a, b ∈ R. This is required to be consistent

with the Leibniz rule:

v(fg) = f(x)v(g) + g(x)v(f).

Such a differential operator is always realised by partial differentiation in some

direction in a chart for M about x. The tangent space TxM is the vector space



2.1. GEOMETRIC PRELIMINARIES 13

of such tangents, with vector space structure given by addition and scalar mul-

tiplication of operators, and also consistent with the operations on vectors in Rn

in any chart. In particular, given a chart ϕ near x a basis for TxM is provided

by the partial derivatives ∂i which act according to

∂if =
∂

∂xi
(
f ◦ ϕ−1

) ∣∣
ϕ(x)

.

Any smooth curve γ : I ⊂ R → Σ has at each point a tangent vector

γ′(s) ∈ Tγ(s)Σ, defined by its action as a differential operator on functions f

according to

(γ′(s))f =
d

dσ
f(γ(σ))

∣∣
σ=s

. (2.1)

The tangent bundle TM is the smooth manifold of dimension 2n consisting of

all tangent vectors to points of M . Given an atlas of charts ϕα : Uα → Vα for M ,

local charts for TM are defined by sending a tangent vector v =
∑n

i=1 v
i∂i ∈ TxM

with x ∈ Uα to the point (ϕ(x), (v1, · · · , vn)) ∈ Vα × Rn.

A vector field on Σ is a smooth map X from Σ to TΣ which associates to each

x ∈ Σ a tangent vector in TxΣ. Equivalently, X is differential operator on smooth

functions which is R-linear and satisfies the Leibniz rule X(fg) = fX(g)+gX(f).

The space of vector fields is denoted by X (M), or Γ(TM) (the space of sections

of TM , see below). The Lie bracket [X, Y ] of two vector fields X, Y ∈ Γ(TΣ)

is the vector field which acts on a smooth function f as the commutator of the

differential operators corresponding to the two vector fields, so that [X.Y ]f =

X(Y f)− Y (Xf).

2.1.2 Bundles, metrics and connections

We start by briefly reviewing some basic terminology about tensors and ten-

sor products, as well as vector bundles and their associated tensor bundles and

tensor fields, as well as the metrics and connections which are induced by this

construction. More details can be found in [67, 66] and [73].

Let Σ be a finite-dimensional smooth manifold. A vector bundle V of rank k

over Σ is a smooth manifold of dimension n+k equipped with a smooth submer-

sion π : V → Σ and smooth local trivialisations, which are diffeomorphisms Ψα

from π−1(Uα) to Uα×Rk which agree with π on the first component, and such that

Ψβ ◦Ψ−1
α restricts to a linear isomorphism of {x}×Rk for each x ∈ Uα ∩Uβ. The

local trivialisations provide a vector space structure on each fibre Vx := π−1(x).

A smooth section of V is a smooth map ξ from Σ to V with π ◦ ξ equal to the
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identity map, so that ξ(x) ∈ Vx for each x ∈ Σ. Any section ξ can be written

locally over the base Uα as a C∞-linear combination
∑k

i=1 ξ(x)ψα(x) of the basis

of smooth local sections given by ψα(x) := Ψ−1
α (x, ei), i = 1, · · · , k. Conversely,

any collection of sections {ψα} of V over a subset U of Σ which form a basis for

the fibre Vx at each point x ∈ U defines a local trivialisation of V over π−1(V )

via the map ξ =
∑

α ξ
αψα 7→ (π(ξ), ξ1, · · · , ξk).

We note some important constructions of bundles:

If V is a vector bundle over Σ, the dual bundle V ∗ is the bundle {(x, ω) : x ∈
Σ, ω ∈ (Vx)

∗}, equipped with local trivialisations {ψ∗α} defined by the pointwise

dual basis of the basis of local trivialisations {ψα} for V : That is, ψ∗α(x) is the

linear functional on Vx defined by (ψ∗α(x))(ψβ(x)) = δαβ.

Given any bundles V of rank k and W of rank ` over Σ, the tensor product

bundle is the bundle of rank k` over Σ with fibre at x given by Vx ⊗Wx (the

reader may find it convenient to identify this with the space of real bilinear

forms acting on V ∗ × W ∗), with a smooth basis of local sections provided by

{ψα⊗ηβ : 1 ≤ α ≤ k, 1 ≤ β ≤ `} where {ψα : 1 ≤ α ≤ k} and {ηβ : 1 ≤ β ≤ `}
are bases of smooth local sections for V and W respectively.

If ψ : Σ→M is a smooth map between manifolds, and E is a vector bundle

of rank k over M , then the pullback bundle of E by F , denoted F ∗E, is the

vector bundle of rank k over Σ defined by F ∗E = {(x, v) : x ∈ Σ, v ∈ EF (x)},
and given a local trivialisation (y, v) ∈ Ey 7→ (y,Ψ(y, v) of E near F (x), the

map (x, v) 7→ (x,Ψ(F (x), v)) provides a local trivialisation of F ∗E near x. In

particular if {ψα}kα=1 is a basis of smooth local section of E near F (x), then

{ψα ◦ F}kα=1} is a basis of smooth local sections for F ∗E.

Assume that V and V ∗ are a vector bundle and its dual bundle respectively

over Σ. The tensor product of these bundles, denoted by V ∗ ⊗ V , is naturally

identified with the bundle of linear maps of V , and its fibers at a point x ∈ Σ

are given by Vx ⊗ V ∗x . This product bundle is isomorphic to its dual V ⊗ V ∗,

the space of linear endomorphisms of V ∗, under the correspondence given by

associating to each linear map L ∈ V ∗⊗V the adjoint map LT ∈ V ⊗V ∗ defined

by (LT (ω))(v) := ω(L(v)) for each v ∈ V and ω ∈ V ∗.

A metric g on a vector bundle V is defined by assigning to each fibre Vx

an inner product gx, which varies smoothly in the sense that g(ξ, η) is smooth

whenever ξ, η ∈ Γ(V ). The metric g is itself is a section of a bundle associated to

V , specifically the vector bundle V ∗ ⊗ V ∗, of bilinear forms on V . Such a metric
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on V induces an isomorphism ιg : V → V ∗ that is given by

(ιg(u))(v) = g(u, v),

for all u and v in Vx. Also, this metric can be extended to other tensor bundles.

For example, there exists a unique metric that is also denoted by g on V ∗ such

that ιg is an isometry:

g(ιg(u), ιg(v)) = g(u, v),

for all u, v ∈ Vx.
If V and W are tensor bundles equipped with metrics g and h, there is a unique

induced metric g ⊗ h on V ⊗W such that g ⊗ h(u⊗ v, w ⊗ z) = g(u,w)h(v, z).

One of the basic and crucial tools of differentiating over vector bundles is a

connection. A connection on V over Σ is a bilinear map∇ : Γ(TΣ)×Γ(V )→ Γ(V )

satisfying

∇X(fu) = f∇Xu+ (Xf)u,

for f ∈ C∞(Σ), X ∈ Γ(TΣ) and u ∈ Γ(V ). The notations ∇Xu and Xf refer

to the covariant derivative of u and the derivative of f respectively in the X-

direction. Given a metric g on V , a connection ∇ on V is said to be metric-

compatible (with g) if for any u, v ∈ Γ(V ) and X ∈ Γ(TΣ) we have

Xg(u, v) = g(∇Xu, v) + g(u,∇Xv).

If ∇ is a connection on V , then there is an induced connection on V ∗ (which

we also denote by ∇) defined by

(∇Xω)(ξ) = X(ω(ξ))− ω(∇Xξ).

If ∇ is compatible with ametric g on V , then the induced connection on V ∗ is

also compatible with the induced metric on V ∗.

If V and W are vector bundles equipped with connections, then there is a

unique induced connection on V ⊗W defined by

∇X(ξ ⊗ η) = (∇Xξ)⊗ η + ξ ⊗ (∇Xη).

An important special case of this arises when differentiating a tensor field T acting

on sections of vector bundles: In this case

(∇XT )(ξ1, . . . , ξk) = X(T (ξ1, . . . , ξk))−T (∇Xξ1, . . . , ξk)− . . .−T (ξ1, . . . ,∇Xξk).

(2.2)
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If V and W are equipped with metrics, and the connections are compatible, then

the induced metric on V ⊗W is also compatible with the induced metric.

If F ∗E is the pullback bundle over Σ of a vector bundle E over M by a smooth

map F : Σ→M , and ∇ is a connection on E, then there is a unique connection
F∇ on F ∗E defined by the requirement that F∇u(ξ ◦F ) = ∇F∗uξ for any section

ξ of E (so ξ ◦ F is a section of F ∗E).

Observe that the connection ∇ can be used to define a tensor R : Γ(TΣ) ×
Γ(TΣ)× Γ(V )→ Γ(V ) called the curvature tensor of ∇ and defined by

R(u, v, w) = ∇v∇uξ +∇u∇vξ +∇[u,v]ξ.

The curvature of bundles constructed via duality and tensor products can be

expressed simply in terms of the curvature on the original bundles: For example,

for a tensor T acting on k vector bundles with scalar values,

(R(X, Y )T )(ξ1, · · · , ξk) = −T (R(X, Y )ξ1, . . . , ξk)− . . .− T (ξ1, . . . , R(X, Y )ξk).

In the case k = 1 this provides an expression for the curvature of the dual

bundle. The curvature tensor can be seen as measuring the local obstruction to

the existence of parallel sections of the bundle V . It will be most important to

us in the context of the Riemannian manifolds of the next section.

2.1.3 Riemannian manifolds

A Riemannian manifold is a smooth manifold Σ equipped with a Riemannian

metric g (a metric on the tangent bundle TΣ). The metric g allows the definition

of the length of any smooth curve γ : I → Σ:

L[γ] =

∫
I

√
gγ(s)(γ′(s), γ′(s)) ds, (2.3)

where γ′(s) is the tangent vector defined by (2.1). This in turn allows the defini-

tion of the Riemannian distance on each connected component of Σ by

d(x, y) = inf{L[γ] : γ : [0, 1]→ Σ, γ(0) = x, γ(1) = y} (2.4)

A Riemannian manifold also comes equipped with a preferred choice of connection

on the tangent bundle, referred to as the Riemannian connection or Levi-Civita

connection. This is the unique connection on TΣ which is compatible with the

Riemannian metric g and is symmetric, in the sense that ∇XY −∇YX = [X, Y ]

for all X, Y ∈ Γ(TΣ).
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If γ : I → Σ is a smooth curve, then the tangent vector γ′ defines a section of

the pull-back bundle γ∗(TΣ) over the interval I. The curve γ is called a geodesic

if γ∇sγ
′ = 0 at every point of I. Given any point (x, v) ∈ TΣ there exists (for

sufficiently small parameters s) a unique geodesic γ with γ(0) = x and γ′(0) = v,

denoted by γ(s) = expx(sv). For fixed x ∈ Σ the map v ∈ TxΣ defines a local

diffeomorphism from a neighbourhood of 0 ∈ TxΣ to a neighbourhood of x in

Σ. The Gauss Lemma implies that a geodesic γ achieves the distance between

its endpoints provided that expx is a diffeomorphism on the ball of radius L[γ]

about the origin in Tγ(0)Σ.

The curvature of the Riemannian connection is called the Riemann curvature

tensor, and satisfies the symmetries

R(X, Y,W,Z) = −R(Y,X,W,Z) = R(Y,X,Z,W )

and

R(X, Y,W,Z) + (R(Y,W,X,Z) +R(W,X, Y, Z) = 0

for each X, Y,W,Z ∈ TxΣ, where R(X, Y,W,Z) := g(R(X, Y,W ), Z). It follows

also that the symmetry R(X, Y,W,Z) = R(W,Z,X, Y ) holds.

Given a pair of orthogonal unit vectors u and v in TxΣ, the sectional curvature

of the plane u ∧ v generated by u and v in TxΣ is defined by σ(u]wedgev) :=

R(u, v, u, v). This is independent of the choice of orthonormal basis.

For a fixed vector v ∈ TxΣ, the flag curvature in direction v is the bilinear

form on TxΣ defined by Rv(X, Y ) = R(u,X, u, Y ). The bilinear form Rv(X,X)

gives zero for X ∈ Rv, and returns |X|2 times the sectional curvature of the plane

spanned by v and X if X ⊥ v. The trace of Rv (equivalently, the sum of principal

curvatures of v∧ei over an orthonormal basis e1, · · · , en−1 for v⊥ ⊂ TxΣ) is called

the Ricci curvature in direction v. The polarisation of this in v defines a bilinear

form Rc on TxΣ defined by Rc(X, Y ) = gklRX,∂k,Y,∂l . The trace of the Ricci tensor

is called the scalar curvature R = gijgklRikjl = gijRij.

2.1.4 Hypersurfaces

In order to introduce some geometric structures of smooth hypersurfaces in Rn+1,

let F be an immersion of a smooth n-dimensional manifold Σ into Rn+1. The

pullback bundle F ∗TRn+1 is equipped with the metric and compatible connection

induced by the standard inner product 〈·, ·〉 and derivative D on Rn+1. The

derivative F∗ is a linear map from TxΣ to TF (x)Rn+1 = (F ∗TRn+1)x, and so

defines a section of T ∗Σ ⊗ F ∗TRn+1. The fibre F ∗TRn+1 decomposes into the
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orthogonal direct product of the image of F∗ (which is isomorphic to TΣ via F∗

since F∗ is injective) and the orthogonal complement NΣ, which we refer to as

the normal bundle of Σ. In the case of hypersurfaces NΣ is a vector bundle of

rank 1, and if Σ is embedded then NΣ is trivial, so that there is a globally defined

unit normal vector ν.

The restriction of the induced metric on F ∗TRn+1 induces a Riemannian

metric g (also called the first fundamental form of Σ) by restriction to F∗(TΣ):

Explicitly,

gx(u, v) = 〈F∗(u), F∗(v)〉 .

The induced connection FD on F ∗TRn+1 defines a connection ∇ (called the sub-

manifold connection on TΣ, and a bilinear form h called the second fundamental

form of Σ, by orthogonal projection onto the tangential and normal sub-spaces:

FDX(F∗Y ) = F∗(∇XY )− h(X, Y )ν. (2.5)

The submanifold connection is symmetric and compatible with the induced metric

g, and so coincides with the Levi-Civita connection of g. Similarly, D induces an

operator W ∈ Γ(T ∗Σ⊗ TΣ) by projection onto the tangential part:

FDXν = F∗(W(X)). (2.6)

The Weingarten map W and the second fundamental form h describe the

extrinsic curvature of the hypersurface. The relation between these is given by

by Weingarten relation:

h(u, v) = 〈W(u), v〉,

for all u, v ∈ TxΣ.

The eigenvalues of Wx, which are also the eigenvalues of h with respect to

g, are denoted by λi where i = 1, ..., n and called the principal curvatures. The

eigenvectors of Wx are called the principal directions of Σ at x. If the principal

curvatures are equal at a point x ∈ Σ, we say that x is an umbilic point of Σ. If all

points of Σ are umbilic, then we say that Σ is a totally umbilical hypersurface. For

example, the hyperplanes and hyperspheres are totally umbilical hypersurfaces

in Rn+1.

One of the fundamental examples of an embedded hypersurface is the n-sphere

Sn(r) with a radius r > 0, defined by

Sn(r) = {q ∈ Rn+1 : gRn+1(q, q) = r}.
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The hypersurface Sn is embedded in the Euclidean space Rn+1 by the inclusion

map ι, and the metric induced as above on TΣ is called the round metric on

Sn. In this example, the unit normal ν can be taken to be ν(x) = x
r
, and

so the Weingarten map is 1
r

times the identity map on TSn. By the Weingarten

relation, the second fundamental form h is 1
r

times the metric g, and the principal

curvatures are all equal to 1
r
.

The second fundamental form h and the curvature tensor R of the Riemannian

metric g induced on TΣ satisfy the following identities:

R(u, v, w, z) = h(v, w)h(u, z)− h(u,w)h(v, z), (2.7)

and

(∇h)(u, v, w) = (∇h)(v, w, u) = (∇h)(w, u, v), (2.8)

where ∇h is defined according to Equation (2.2):

(∇h)(u, v, w) = u (h(v, w))− h(∇uv, w)− h(v,∇uw).

The two crucial identities (2.7) and (2.8) are known as the Gauss and Codazzi

equations for Σ respectively and can be locally expressed as follows

Rijkl = hikhjl − hilhjk,

and

∇ihjk = ∇jhik,

respectively. Therefore, for the interchange of two covariant derivatives applied

to a vector u = ui∂i we have

∇i∇ju
m = ∇j∇iu

m +Rm
ijku

k

= ∇j∇iu
m + (hikhjl − hlkhij)glmuk.

Using the last relation and the Codazzi equation (2.8) yields the following well-

known Simons’ identity [96, 55]:

∆hij = ∇i∇jH +Hhikg
klhlj − |A|2hij. (2.9)

In local coordinates the structural equation (2.5) becomes

∂i∂jF = Γ k
ij ∂kF − hijν, (2.10)
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where the Christoffel symbols Γ k
ij are defined by ∇i∂j = Γ k

ij ∂k; and (2.6) be-

comes

∂iν = hijg
jk∂kF. (2.11)

Finally, considering the previous identities (2.10) and (2.11) enables us to de-

rive the following remarkable commutation identity which generalises the Simons’

Identity (2.9):

Proposition 2.1. Let u, v, w, z be tangent vectors in TpΣ at any p ∈ Σ and ν be

a unit normal vector. Then

∇u∇vh(w, z) = ∇w∇zh(u, v) + h(u, v)h2(w, z)− h(w, v)h2(u, z)

+ h(u, z)h2(v, w)− h(w, z)h2(u, v),

where h2(u, v) = h(u,W(v)) (or in coordinates h2
ij = hipg

pqhqj).

Proof. From the equations (2.10) and (2.11) and the symmetry of h, we have

∇u∇vh(w, z) = ∇u∇wh(v, z)

= ∇w∇uh(v, z) + (R(w, u)h)(v, z)

= ∇w∇uh(z, v)− h(R(w, u)v, z)− h(v,R(w, u)z)

= ∇w∇zh(u, v)− h(h(w, v)W(u)− h(u, v)W(w), z)

− h(h(w, z)W(u)− h(u, z)W(w))

= ∇w∇zh(u, v)− h(w, v)h2(u, z) + h(u, v)H2(w, z)

− h(w, z)h2(u, v) + h(u, z)h2(v, w).

2.2 Functions of eigenvalues

One of the main purposes of this thesis is to study immersed hypersurfaces Σn

with principal curvatures λi (i = 1, ..., n) satisfying at each point an equation

involving a function of the principal curvatures of the form

S = f(λ1, ..., λn),

where the function f is assumed to be symmetric and defined on the positive cone

Γ+ = {λ = (λ1, ..., λn) : λi > 0, i = 1, ..., n}.
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Therefore, it is useful to briefly mention some preliminary results on symmetric

functions f in this section. Moreover, we discuss some important properties of S
as a function of the components of the second fundamental form.

Let f : Γ+ ⊂ Rn → R be a smooth function defined on the positive cone

Γ+ which is symmetric, in the sense that f(λ1, ..., λn) = f(λσ(1), ..., λσ(n)) for any

permutation σ of the set {1, ..., n}. For more details on symmetric functions see

[11] and [69]. Denote by ∂f
∂λj

the derivative of f with respect to λj. The following

observation will be useful in our later computations:

Lemma 2.2. If f is convex (concave) on a symmetric convex cone Γ ⊂ Rn, then(
∂f

∂λi

∣∣∣
λ
− ∂f

∂λj

∣∣∣
λ

)
(λi − λj) ≥ 0 (≤ 0)

for any i 6= j and any λ = (λ1, · · · , λn) ∈ Γ.

Proof. Fix i 6= j and λ ∈ Γ, and let ξ = ei − ej, where {ei} is the standard

basis for Rn. Then Dξf = ∂f
∂λi
− ∂f

∂λj
. Let γ be the line segment defined by

γ(s) = λ + 1−s
2

(λj − λi)ξ where s ∈ [−1, 1], so that γi(s) = 1+s
2
λi + 1−s

2
λj,

γj(s) = 1−s
2
λi + 1+s

2
λj, and γk(s) = λk for k 6= i, j. We note that γ(1) = λ, and

that γ(−s) is obtained from γ(s) by applying the permutation which switches the

ith and jth components. The convexity and symmetry of Γ implies that γ(s) ∈ Γ

for each s ∈ [−1, 1]. The symmetry of f then implies that f(γ(s)) is an even

function of s which is convex (concave), so that the derivative is non-negative

(non-positive) for s ≥ 0, and in particular this is true for s = 1. This gives

(λi − λj)
2

(
∂f

∂λi

∣∣∣
λ
− ∂f

∂λj

∣∣∣
λ

)
=
λi − λj

2
Dξf(λ) =

d

ds
(f(γ(s)))

∣∣
s=1
≥ 0 (≤ 0),

and the claimed inequality follows.

An equivalent statement of Lemma 2.2 is as follows: If the eigenvalues λi are

arranged in increasing order, so that λ1 ≤ λ2 ≤ · · · ≤ λn, then the derivatives ∂f
∂λi

are in increasing order if f is convex:

∂f

∂λ1

∣∣∣
λ
≤ ∂f

∂λ2

∣∣∣
λ
≤ · · · ≤ ∂f

∂λn

∣∣∣
λ
.

The reverse inequalities hold in the case where f is concave.

We now consider the properties of a function of the eigenvalues when consid-

ered as a function of the components of the matrix. Denote the space of positive

definite symmetric matrices by S+ := {A ∈ Sym(n) : λ(A) ∈ Γ+}. Given a
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symmetric function f defined on Γ+ as above, let S : S+ → R be the real-valued

function that is defined by the following equation:

S(A) = f(λ(A)), (2.12)

where λ(A) is the n-tuple of eigenvalues of A. Note that λ(A) is well-defined

if we make the requirement that the eigenvalues are in increasing order. How-

ever the symmetry of f also means that changing the order of the eigenval-

ues does not change the value of S. If O is an orthogonal transformation,

then λ(OTAO) = λ(A), and therefore S(OTAO) = S(A). That is, S is an

O(n)-invariant function defined on S+. Conversely, an O(n)-invariant func-

tion S on S+ arises in this way from the symmetric function f defined by

f(λ1, · · · , λn) = S(diag(λ1, · · · , λn)), where diag(λ1, · · · , λn) is the diagonal ma-

trix with entries λ1, · · · , λn on the diagonal.

Lemma 2.3. For a symmetric function f and an O(n)-invariant function S
related by S(A) = f(λ(A)), f is C∞ if and only if S is C∞.

Proof. If f is symmetric and smooth on Γ+, then for any compact symmetric

K ⊂ Γ+ there exists a smooth extension f̂ of f |K to Rn. By averaging over the

orbit of the group of permutations we can ensure that f̂ is symmetric. A theorem

of Glaeser [47] implies that f̂ = g ◦ ρ, where g is smooth and ρ = (σ1, . . . , σn)

is the vector of elementary symmetric functions σk =
∑

1≤i1<···<ik≤n λi1λi2 · · ·λik .
Since the elementary symmetric functions Ek(A) of the eigenvalues of A are a

polynomial function of the components of A, it follows that S is smooth in the

components of A on λ−1(K) ⊂ S+. Since K is arbitrary, S is smooth on S+.

Conversely, If S is smooth and O(n)-invariant on S+, then for any compact

K ⊂ S+ there is a smooth O(n)-invariant extension Ŝ to Sym(n). A theo-

rem of Schwarz [93] implies that Ŝ = G(E1, · · · , En) for some smooth G on

Rn, since {E1, · · · , En} generate the algebra of O(n)-invariant polynomials on

Sym(n). Therefore on λ(K) we have f(λ) = G(σ1(λ), · · · , σn(λ)) is smooth.

Since K is arbitrary, f is smooth on Γ+.

In the situation of bundles over manifolds, it is necessary to consider a slightly

more general situation: For example for hypersurfaces, the principal curvatures

are determined not only by the second fundamental form A, but also by the metric

g, so we have a more general form S(A, g) = f(λ(A, g)). If f is symmetric under

permutation of the eigenvalues, then S invariant under the action of GL(n) on

Sym(n)×S+ defined by (L,A, g) 7→ (LTAL,LTgL) for any A ∈ Sym(n), g ∈ S+
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and L ∈ GL(n), since these transformations do not change the eigenvalues of A

with respect to g. The smoothness of S as a function of the components of A and g

can be deduced as follows: Given g ∈ S+, the Gram-Schmidt procedure produces

from the standard basis e1, · · · , en for Rn an orthonormal basis E1, · · · , En with

respect to g, and these clearly depend smoothly on the components of g. Let L be

the matrix with columns E1, · · · , En (equivalently, the linear map in GL(n) which

takes each ei to Ei). Then by construction LTgL = I, and we have S(A, g) =

S(LTAL, I). Therefore S is smooth in the components of A and g if and only if

S̃(M) = S(M, I) is smooth in the components of M . Since S̃ is O(n)-invariant,

S̃(M) is smooth in the components of M if and only if f(λ) := S̃(diam(λ)) is

smooth, by Lemma 2.3.

The above observation enables the construction from a smooth symmetric

function f on Γ+ ⊂ Rk of a smooth O(E)-invariant function S on the bundle

of positive definite symmetric 2-tensors on a metric vector bundle E of rank

k over M : If E1, · · · , Ek are a basis of smooth local sections for E, then for

A ∈ Sym+(E) we can define Aij = A(Ei, Ej) and gij = g(Ei, Ej), and then

set S(A) := Ŝ((Aij), (gij)). The GL(k)-invariance of Ŝ implies that S is well-

defined (independent of the choice of basis), and the smoothness follows from the

argument above.

For S smooth and any A ∈ S+, the first and second partial derivatives Ṡ+

and S̈+ of S at A are defined by

∂

∂η

∣∣∣∣
η=0

S(A+ ηB) = Ṡkl(A)Bkl,

and
∂2

∂η2

∣∣∣∣
η=0

S(A+ ηB) = S̈kl,rs(A)BklBrs,

respectively. Moreover, for abbreviation we consider the notation

∂f

∂λi
(λ) = ḟ i(λ),

and
∂2f

∂λi∂λj
(λ) = f̈ ij(λ).

Some well-known properties of f and S are given by the following lemma:

Lemma 2.4. Let f and S be defined as above.

• If f is smooth, then S is smooth.
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• If f is strictly increasing ḟ i > 0 for each i = 1, ..., n at every point in Γ,

then Ṡ(B) is positive definite.

• If f is concave or convex, then S is also concave or convex, that is

S̈kl,rs(A)BklBrs ≤ 0 or S̈kl,rs(A)BklBrs ≥ 0.

For the proof of this lemma (see [26] and [10]).

We now need to recall a crucial result of the differentiability properties of

S that is related to those of f . More precisely, a formula which involves the

derivatives of functions of symmetric matrices that are defined with respect to

their eigenvalues is given by the next theorem

Theorem 2.5. Let f and S be defined as above such that S(A) = f(λ(A)). Let A

be a diagonal matrix in S+ with distinct eigenvalues. Then the second derivative

of S at A = diag(λ1, · · · , λn) takes the form

S̈pq,rs(A)BpqBrs =
∑
p,q

f̈pqBppBqq + 2
∑
p>q

ḟp(λ)− ḟ q(λ)

λp − λq
(Bpq)

2. (2.13)

The proof of such theorem is straightforward using fundamental facts but

lengthy (refer to [11] and [44] for more details).

2.3 Mean curvature flow

The study of relations between local invariants (such as extrinsic and intrinsic

curvature) and global invariants (such as topology, diameter, volume, or eigenval-

ues of the Laplacian) of Riemannian manifolds has been an active field of research

in differential geometry. One of the recent active areas of investigation has in-

volved applying processes in which submanifolds move with a normal velocity

prescribed by their curvature. If the speed is monotone as a function of the prin-

cipal curvatures, then these processes are described by fully nonlinear parabolic

partial differential equations. These processes are also referred to as curvature

flows. In ideal situations such flows converge to limiting states which are hyper-

surfaces of prescribed curvature, so these curvature flows are potentially useful

both in studying prescribed curvature hypersurfaces and also in understanding

the topology of hypersurfaces with given restrictions on curvature. Unfortunately,

singularities can occur in some situations. A current active area of research is to
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understand the possible formation of singularity in various settings, see [55], [56],

[59], [36], [41] and [94].

In this section, we consider the mean curvature flow MCF which is one of the

most significant curvature flows. In particular, we introduce some basic facts and

remarks on the evolution of hypersurfaces in Euclidean space, including some

applications and examples of this flow. Also, other methods for the MCF are

illustrated, such as defining the evolving submanifolds locally as graphs, and

interpreting MCF as a gradient flow. The final part of this section includes the

evolution equations for some geometric quantities of these hypersurfaces.

The study of the MCF dates back to the work of J. Von Neumann on metal

surfaces in 1952 [98] where soap foams were discussed with interfaces having

constant mean curvature. Soon after this study Mullins [77] illustrated coarsing

in metals in 1956, however the mean curvature of the interface is not constant

in general. Therefore, the explicit formulation of the mean curvature equation

might first be considered by Mullins.

The applications of the MCF has been extensively considered in various dis-

ciplines of science such as geometry and physics. This flow and other related

geometric flows have been beautifully used to model phenomena in physics such

as phase boundaries, bubbles and grain growth and have also been applied in

engineering and image processing.

We now define the evolution of hypersurfaces in Euclidean spaces. Let Σ be

a smooth compact manifold of dimension n, and let F (·, t) : Σ × [0, T ) → Rn+1

be a time-dependent and smooth embedding where t ∈ [0, T ). We say that the

hypersurfaces F (Σ, t) = Σt evolve by mean curvature if

∂

∂t
F (x, t) = ~H(x, t) = −ν(x, t)H(x, t), (2.14)

for all x ∈ Σ and t ∈ [0, T ), where ~H(x, t) is the mean curvature vector, H is the

mean curvature, and ν(x, t) is the unit outward normal vector of Σt at the point

(x, t) (in the situation where Σt bounds a region).

Some explicit solutions of (2.14) are minimal hypersurfaces where ~H(x, t) = 0,

see [82], and the homothetically shrinking round spheres Snr of radius rt > 0 that

is represented by F (x, t) =
√
r2

0 − 2ntx where (x, t) ∈ Sn1 × [0, r2
0/2n) [55]. In

this thesis, we usually consider the mean curvature flow of hypersurfaces with

positive mean curvature, namely the mean convex flow, see chapter 3 and 6.

The mean curvature flow evolution equation is a geometric analogue of the

heat equation. It is called the curve shortening flow in the case n = 1 of curves
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in the plane. Points on hypersurfaces moving in the inward (outward)-pointing

normal direction are called mean convex (mean concave) points, respectively.

Note that hypersurfaces are evolved in time in order to decrease its volume. The

velocity function is represented by curvature and the hypersurface flows faster

when its curvature becomes larger and distinct at some finite time.

After a suitable time-dependent reparametrisation, the hypersufaces Σt can be

locally expressed as graphs over a region U ∈ Rn such that F (x, t) = (x, u(x, t)).

The evolution equation (2.14) takes the following form

∂

∂t
u(x, t) =

(
δij −

DiuDju

1 + |Du|2

)
DiDju.

From this we see that the mean curvature flow is equivalent to a quasilinear scalar

parabolic evolution equation for the graph function u.

Note that the mean curvature flow is equivalent to the gradient flow for the

area functional: This can be simply seen by differentiating the n-dimensional

surface area with respect to the time in order to obtain the first variation formula

as follows
d

dt
V ol(Σt) =

∫
Σt

〈∂tp, νH〉,

where p = F (x, t) is the position vector of Σt. From this formula, the gradient is

given by

∇V ol(Σt) = Hν.

Therefore the gradient flow (or steepest descent flow) for the volume functional

is given by

∂tp = −∇V ol(Σt) = −Hν.

which is the mean curvature flow. Thus, the evolution equation for the area

functional is given by

d

dt
V ol(Σt) = −

∫
〈νH, νH〉 = −

∫
Σt

H2.

We now want to represent the formulas of how geometric quantities of Σt

change since it is evolved by the MCF in the normal direction. In other words,

we will compute evolution equations for the metric gij, the normal vector ν, the

second fundamental form hij and the mean curvature H, for more information

see [55], [50] and [58].

Lemma 2.6. The metric gij of Σt satisfies the evolution equation

∂tgij = −2Hhij.
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Proof. By using the fact that ∂iF is tangential to Σt and hij = 〈∂iν, ∂jF 〉, we

obtain

∂tgij = ∂t
(
∂iF · ∂jF

)
= ∂i

(
−Hν

)
· ∂jF + ∂iF · ∂j

(
−Hν

)
= −H

(
∂iν · ∂jF

)
−H

(
∂Fi · ∂jν

)
= −2Hhij.

We also deduce the evolution equation of the unit normal vector ν to Σt as

follows:

Lemma 2.7. The evolution of the unit normal ν is given by

∂tν = ∇H.

Proof. By straightforward computations we have

∂tν =
(
∂tν · ∂iF

)
gij∂jF

= −
(
ν · ∂t∂iF

)
gij∂jF

=
(
ν · ∂i

(
Hν)

)
gij∂jF

= ∂iHg
ij∂jF

= ∇H.

Now we show that the evolution equation for hij is given by the following:

Theorem 2.8. The evolution equation for the second fundamental form is given

by

∂thij = ∆Σthij − 2Hhimg
lmhjl + |A|2hij. (2.15)

Proof. Using the definition of the second fundamental form and the Gauss-Weingarten

identities (2.7) and (2.8) we can compute

∂thij = −∂t
(
∂i∂jF · ν

)
=

(
∂i∂j(Hν) · ν

)
−
(
∂i∂jF · ∂kHgkl∂lF

)
= ∂i∂jH +H

(
∂i(hjlg

lm∂mF ) · ν
)

+
(
(hijν − Γ q

ij ∂qF ) · ∂kH∂lFgkl
)

= (∂i∂jH − Γ q
ij ∂qH)−Hhimgmlhlj

= ∇i∇jH −Hhimgmlhlj.
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Thus, we obtain (2.15) by substituting the identity (2.9).

As a consequence of (2.15), we derive the evolution equation for the mean

curvature as follows:
∂H

∂t
= ∆H + |A|2H. (2.16)

Note that these evolution equations are reconsidered in section 6.3 for embed-

ded spacelike hypersurfaces in the Minkowski space.

2.4 A maximum principle for tensors

There have been some substantial developments on the geometric analysis of par-

tial differential equations depending on the application of the maximum principle

argument. This principle allows us to obtain useful information about the proper-

ties of solutions of partial differential equations [25] and [13]. Also, it emerges in

various settings with different versions, the most common version of this principle

deals with a scalar function defined on a manifold. Recently, other sophisticated

versions have raised. In other words, the maximum principle can be used to

functions with several variables.

In this section we focus on the application of the maximum principle to two-

point functions. More precisely, we illustrate such argument for a tensor by

considering the following theorem:

Theorem 2.9. Let F : Σn × [0, T )→ Rn+1 be a one-parameter smooth family of

immersions of a compact hypersurface Σn into the Euclidean space. Assume that

f is a real-valued function that is locally bounded and S is a symmetric tensor

satisfying

∇tS
∣∣
(x,t)

(u, u) ≥ ∆S
∣∣
(x,t)

(u, u) + f(x, t)S
∣∣
(x,t)

(u, u),

where (x, t, u) ∈ TΣn × [0, T ). If S is initially greater than or equal 0, then the

same remains for all (x, t) ∈ Σn × [0, T ).

Proof. The aim here is to show that S
∣∣
(x,t)
≥ 0 for all (x, t) ∈ Σn × [0, τ ], where

τ ∈ (0, T ) is small with respect to a constant Cτ = maxΣn×[0,τ) |f |. For every

ε > 0, we assume that

Sε,τ = S + εe(Cτ+1)tg > 0, ∀(x, t) ∈ Σn × [0, τ ].

Suppose that this does not hold, that is, there exist t0 ∈ (0, τ ], x0 ∈ Σn and

a non-vanishing vector U0 ∈ Tx0Σn such that Sε,τ > 0 for all (x, t) ∈ Σn × [0, t0).
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However, we have Sε,τ (U0, U0) = 0 at (x0, t0). We can locally extend the vector U0

to a vector field around x0 in space by solving the following along radial geodesics

C with respect to gt0 passing through x0

∇C′U = 0.

Also, we extend such resulting vector by differentiating it with respect to time as

follows

∇tU = 0.

These imply to both ∇U |(x0,t0) = 0 and ∇tU |(x0,t0) = 0. We also assume that

∆U |(x0,t0) = 0. In order to explain this we consider an orthonormal frame {ei}ni=1

at x0 that is transported parallel along the geodesic C such that C ′i = ei along Ci
and C ′i(0) = ei. Hence,

∆U
∣∣
(x0,t0)

=
n∑
i=1

(
∇ei(∇eiU)−∇∇eieiU

)∣∣∣
(x0,t0)

= 0.

We now assume that

Sε,τ (U,U)
∣∣
(x,t)

= sε,τ (x, t),

for (x, t) in a neighbourhood of (x0, t0). Therefore, we obtain that sε,τ (x, t) ≥ 0

for (x, t) contained in Br(x0, t0) × (t0 − r2, t0] around (x0, t0) where Br(x0, t0) is

a ball centered at (x0, t0) with radius r. Also, we have sε,τ |(x0,t0) = 0 at (x0, t0).

These yield to the following inequality:

0 ≥ (∂t −∆)sε,τ |(x0,t0)

= (∇t −∆)Sε,τ |(x0,t0)(U0, U0)

≥ f(x0, t0)S(x0,t0)(U0, U0) + ε(Cτ + 1)e(Cτ+1)t0g(x0,t0)(U0, U0)

= −εf(x0, t0)e(Cτ+1)t0g(x0,t0)(U0, U0) + ε(Cτ + 1)e(Cτ+1)t0g(x0,t0)(U0, U0)

≥ εe(Cτ+1)t0g(x0,t0)(U0, U0) > 0,

which contradicts our assumption. This implies that Sε,τ > 0 in the interval

[0, τ ]. The assertion follows for the entire interval by repeating such result.

2.5 Modulus of continuity of heat equations on

manifolds

The application of the maximum principle to a function of two variables is an ex-

tremely useful tool which has been used in various settings of geometric analysis.
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In this section, we represent straightforward applications of this argument to the

classical heat equation and a more general type of parabolic equations. In par-

ticular, we illustrate how this technique can preserve the modulus of continuity

for solutions of some parabolic partial differential equations in one-dimensional

Euclidean space and on Riemannian manifolds. These works provide us with

useful information regarding sharp eigenvalue estimates, however, we are merely

interested of understanding the non-collapsing machinery in terms of such simple

versions in this section, see [13] and [15].

We begin by introducing the concept of the modulus of continuity for a func-

tion satisfying the one-dimensional heat equation. The modulus of continuity was

defined for a real-valued function in one dimensional space in 1910 by H. Lebesgue

in order to measure the continuity of this function at a point. Let w(s) be a func-

tion of a positive variable s, we say that w(s) is the modulus of continuity for a

smooth function f(x) if and only if the inequality |f(y)− f(x)| ≤ w(s) holds for

all x and y defined in the domain of f and s = |y − x|.
To simplify the computation of this section, we make a small change of the

above definition. Let w(s, t) be the modulus of continuity, we say that the function

f(x, t) admits w(s, t) for each time t if it satisfies the following inequality

|f(y, t)− f(x, t)| ≤ w

(
|y − x|

2
, t

)
,

for all x and y on the domain of f and for all t. Hence, the smallest modulus of

continuity is given by

wf (s, t) = sup

{
|f(y, t)− f(x, t)|

2
: s =

|y − x|
2

}
. (2.17)

Besides the above definition of the modulus of continuity, we show that the

modulus of continuity w(s, t) for solutions of the heat equation on the Euclidean

space of dimension one is preserved. We explain this by considering the following

straightforward and crucial lemma

Lemma 2.10. Let f(x) be an odd, non-decreasing and concave function on the

positive real line R+, then we obtain

wf (s) = f(s),

for all s > 0.

Proof. We consider that |f(y) − f(x)| = f(y) − f(x) and y > x since f is non-

decreasing . We assume that η(x) is an even function of the variable x that is
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defined as η(x) = f(x+ s)− f(x− s) where f is odd. We want to show that η(x)

has a maximum point along all points x and y satisfying s = |y−x|
2

at x = −s and

y = s. Also, suppose that x ≥ s > 0, then we can rewrite the points s and x− s
as follows

s =
x

x+ s
(0) +

s

x+ s
(x+ s),

and

x− s =
x− s
x+ s

(x+ s) +
2s

x+ s
(0),

respectively. Thus the function f with respect to these points satisfies the fol-

lowing inequalities:

f(s) ≥ s

x+ s
f(x+ s),

f(x− s) ≥ x− s
x+ s

f(x+ s),

where f vanishes at x = 0 and it is concave on the positive interval [0, x+ s].

Combining these inequalities yields to

f(x− s) + 2f(s) ≥ f(x+ s).

From the definition of η, we obtain

η(x)− η(0) ≤ 0.

We also have the same inequality in the case 0 < x < s where f is concave on the

positive interval [x− s, x+ s]. Hence |f(y)− f(x)| approaches its supremum for

all x and y at x = −s and y = s since the absolute maximum of η vanishes.

Remark that if the above function f(s) is evolved by the classical heat equation

∂f

∂t
=
∂2f

∂s2
, (2.18)

then all the properties of f are preserved for all t > 0. Thus, the equality

w(s, t) = f(s, t) still holds for all points s and t. In other words, the modulus of

continuity w(s, t) satisfies (2.18) in one spatial variable.

The behaviour of w(s, t) for solutions of one-dimensional heat equations for

later times can be illustrated by applying the argument of zero-counting. Unfor-

tunately, such argument could not be effectively extended to control the modulus

of continuity in higher dimensions. Therefore, the application of the maximum

principle can be considered to such situation in the higher dimensional setting

with some assumptions on the boundary like the Neumann boundary condition

or on the solution such as the periodicity condition [14].
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We now want to extend the above argument of the classical heat equation

in the Euclidean setting to other equations in compact Riemannian manifolds.

In particular, we consider a more general type of parabolic equations which is a

quasi-linear equation where the coefficients are based on the gradient. This equa-

tion may be expressed as isotropic flow where diffusion coefficients are preserved

under any rigid motions of space and vertical translation and the gradient vector

is fixed. This equation is formulated as follows

∂u

∂t
= L[u] :=

[
a1(|Du|) uiuj

|Du|2
+ a2(|Du|)

(
δij − uiuj

|Du|2

)]
. (2.19)

The positive functions a1 and a2 refer to the diffusion rate in the gradient and

orthogonal directions, respectively. Such quasilinear flow is characterized as the

following: If a1 = a2 = 1 then we have the classical heat equation and if a1 =

|Du|q−2 and a2 = (q− 2)|Du|q−2 then another class of heat equations is obtained

which is called the q-Laplacian heat equation. Also, the equation (2.19) is called

the flow of the graphical mean curvature when a1 = 1
1+|Du|2 and a2 = 1.

Let (M, g) be a compact Riemannian manifold of constant sectional curvature

κ and u be a smooth function on M. Assume that the Ricci curvature of M is

non-negative. Then, we have a similar form of the modulus of continuity (2.17)

for u that is given by

wu(s) = sup

{
u(y)− u(x)

2
: s =

d(x, y)

2

}
, ∀x, y ∈ Σ (2.20)

where d(x, y) = inf[L(C)] is the Riemannian distance function, where the infimum

is taken over all C : [0, 1]→M such that x = C(0) and y = C(1).

To clarify the argument of the next proposition, it will be useful to derive a

one-dimensional heat equation. More precisely, we illustrate the formulation of

the appropriate equation for which the modulus of continuity is satisfied in the

viscosity sense. In other words, we want to deduce solutions of (2.19) which is

defined on one-dimensional spaces in warped product spaces M̄κ with constant

sectional curvature κ.

Let F : Σ× [a, b]→ M̄ be an embedding of a totally geodesic hypersurface Σ

times the interval [a, b] into the warped product space given by the exponential

map F (z, s) = exp(sn(z)), where (z, s) ∈ Σ× [a, b] and n is a unit normal vector

to Σ. The induced Riemannian metric of M̄ is defined by ḡ = ds2 + ζ(s)2gΣ,

where gΣ is the Riemannian metric on Σ. We assume that the warping function

ζ(s) satisfies the differential equation ζ ′′ + κζ = 0 with conditions ζ(0) = 1

and ζ ′(0) = 0, amounting to the requirement that sectional curvatures of planes
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containing the ∂s direction are equal to κ and that the surface s = 0 is totally

geodesic.

Let u be a solution of (2.19) that depends only on the warping variable s and

on time. We can choose {ei}ni=1 to be an orthonormal basis for Tx,0M̄ , extended

by parallel transport along the s direction, and with en = ∂s. Then the second

covariant derivative of u is given by uij = u′sij + u′′sisj. Denoting Σs = F (Σ, s),

so that {ei}n−1
i=1 are tangent to Σs and en is equal to ∂s, we obtain uij = u′sij,

uin = 0 and unn = u′′. Note that the second covariant derivative sij along Σs

is the same as the second fundamental form of Σs which is equivalent to the

derivative of the metric with respect to s divided by two. Thus, sij = ζ′

ζ
gij and

we have

ut =

[
a1(|Du|) uiuj

|Du|2
+ a2(|Du|)

(
δij − uiuj

|Du|2

)]
uij

= a1(u′)u
′′

+ (n− 1)a2(u′)
ζ ′

ζ
u′.

We now describe the application of the maximum principle to (2.20) for arbi-

trary solutions of (2.19) [13]:

Proposition 2.11. Let u : Σ × [0, T ) → R be a solution of (2.19) on Σ with

diameter D and with the possibility that the boundary is non-empty and locally

convex with the Neumann boundary condition. Then the modulus of continuity

w : [0, D/2]× [0, T )→ R is a viscosity solution of the differential inequality

wt ≤ a1(w′)w
′′

+ (n− 1)a2(w′)
ζ ′

ζ
w′. (2.21)

Proof. We want to show that the modulus of continuity w(s, t) satisfies the given

differential inequality in the viscosity sense by using the maximum principle ar-

gument. Since the Riemannian distance function d(x, y) is generally Lipschitz

(that is, not necessarily smooth), we expect that w(s, t) is not smooth in gen-

eral. Therefore, we use instead the viscosity notion of solution, which means that

whenever we have a smooth function φ which lies above w near (s, t) and touches

w at the point (s0, t0) then the inequality holds for φ at (s0, t0). Let C be a

smooth path immersed into the Riemannian manifold Σ such that C(0) = x and

C(1) = y, then we have the following inequality

u(C(1), t)− u(C(0), t)− 2φ

(
L[C]

2
, t

)
≤ 0, (2.22)
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where t ≤ t0 and L[C]
2

close to (s0, t0). Since d(x,y)
2

= s and the last inequality

reaches its equality at (s0, t0), then there exist points x0 and y0 in Σ such that
d(x0,y0)

2
= s0 and the inequality can be rewritten as

u(y0, t0)− u(x0, t0)− 2φ

(
d(x0, y0)

2
, t0

)
= 0.

When C0 is a length-minimizing geodesic between x0 and y0, then we get

u(y0, t0)− u(x0, t0)− 2φ

(
L[C0]

2
, t0

)
= 0.

Let C : (r, s)→ Cr(s) be a smooth family of paths where the parameter r is the

variation through such family and these curves pass through C0. Therefore, we

can derive some inequalities by computing the first and second derivatives along

such curves Cr(s). In particular, we differentiate the length L[Cr] with respect to

this smooth variation at C0 as follows

∂

∂r
L[Cr]

∣∣∣∣
r=0

=

∫ 1

0

∂

∂r
|Cr|ds =

∫ 1

0

g(T,∇rCs)ds = g(T, Cr)
∣∣∣∣1
0

, (2.23)

where the unit vector T is tangential to C0. Hence, for an arbitrary variation of

curves of the inequality (2.22) at r = 0 we obtain

〈∇u(y0, t0)− φ′C ′0(1), Cr(1)〉 − 〈∇u(x0, t0)− φ′C ′0(0), Cr(0)〉 = 0, (2.24)

which implies to ∇u(y0, t0) = φ′C ′0(1) and ∇u(x0, t0) = φ′C ′0(0).

Also, we need to compute the second derivative along Cr as follows

∂2

∂r2
L[Cr]

∣∣∣
r=0

=
1

L

∫ 1

0

(∣∣(∇sCr)⊥
∣∣2 −R(Cs, Cr, Cs, Cr)

)
ds+ g(T,∇rCr)

∣∣∣1
0
. (2.25)

We now want to derive inequalities from this second variation identity by

choosing suitable variations. The deduced inequalities must have the condi-

tion that equality holds in one-dimensional situation illustrated above. Hence,

the inequality (2.22) becomes equal if the path C(s) is given by the immersion

F

(
z, L(2s−1)

2

)
where z and L are fixed. Therefore, we have to assume that the

smooth families of paths C(r, s) take the same form of F and to obtain the right

paths we consider the suitable coordinates that work along the length-minimizing

geodesic C0. Suppose that {ei} is chosen to be an orthonormal basis to the tan-

gent space at x0 with respect to the metric g, with en = T (0) of C0 at x0. Then,

using parallel transport along the geodesic C0 allows to have an orthonormal basis

ei(s) for each tangent space TC0(s)Σ with en(s) = T (s) for each s.
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We consider two directions of variation C(r, s) along the geodesic C0 in order

to obtain the appropriate inequalities from the second derivative. One direction

is to assume that C(r, s) = C0

(
r(2s−1)

L
+s
)

which means that the length is varying

(increasing) while z is not changed, then we have Cr(s) = C ′0 2s−1
L

. It is straightfor-

ward to get the first and second derivatives of the length by substituting ∂rL = 2

and ∂2
rL = 0 into (2.25). Thus we obtain the following inequality of second

derivative where Cr(1) = T (1) = en(1) and Cr(0) = −T (0) = −en(0)

unn(y0, t0)− unn(x0, t0)− 2φ
′′ ≤ 0. (2.26)

The second direction is perpendicular to the previous one such that keeping

now the length fixed and changing z which requires the variation Cr(s) to corre-

spond to a Jacobi field of the warped product spaces. Hence, it takes the form

Cr(s) = ζ(L(2s−1)/2)
ζ(L/2)

ei where i = 1, ..., n− 1. Therefore, the first derivative is given

by ∂rL = 0 and the second derivative becomes

∂2
rL = 2

ζ ′(L/2)

ζ(L/2)
−
∫ L/2

−L/2

ζ(x)2

ζ(L/2)2

(
R(ei, T, ei, T )− κ

)
dx,

where L(2s−1)
2

is replaced by the variable x and the integration by parts is used.

This direction of variation yields to the following second derivative inequality

uii

∣∣∣
(y0,t0)

− uii
∣∣∣
(x0,t0)

− φ′
(

2
ζ ′(L/2)

ζ(L/2)
−
∫ L/2

−L/2

ζ(x)2

ζ(L/2)2

(
R(ei, T, ei, T )− κ

)
dx

)
≤ 0,

such inequality can be rewritten, where i = 1, ..., n− 1, as follows

n−1∑
i

(
uii

∣∣∣
(y0,t0)

− uii
∣∣∣
(x0,t0)

)
− 2(n− 1)

ζ ′(L/2)

ζ(L/2)
φ
′

+φ
′
∫ L/2

−L/2

ζ(x)2

ζ(L/2)2

(
Ric(T, T )− (n− 1)κ

)
dx ≤ 0.

Since we assume that the Ricci curvature is non-negative, the last term of this

inequality is removed, that is

n−1∑
i

(
uii

∣∣∣
(y0,t0)

− uii
∣∣∣
(x0,t0)

)
− 2(n− 1)

ζ ′(L/2)

ζ(L/2)
φ
′ ≤ 0. (2.27)

By multiplying the inequalities (2.26) and (2.27) by a2(φ′) and a1(φ′) respectively

and combining them, we arrive to

L[u]
∣∣
(y0,t0)

− L[u]
∣∣
(x0,t0)

− 2a1(φ′)φ
′′ − 2(n− 1)a2(φ′)

ζ ′(L/2)

ζ(L/2)
φ
′ ≤ 0. (2.28)
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However, differentiating with respect to time implies

L[u]
∣∣
(y0,t0)

− L[u]
∣∣
(x0,t0)

− 2φt ≥ 0. (2.29)

The required inequality is deduced by adding the last two inequalities as follows

φt ≤ a1(φ′)φ
′′

+ (n− 1)a2(φ′)
ζ ′

ζ
φ′.

This confirms that the modulus of continuity w(s, t) satisfies (2.21) in the viscosity

sense.



Chapter 3

Noncollapsing for Extrinsic

Geometric Flows in Rn+1

The non-collapsing technique is a powerful tool that has been employed in var-

ious contexts with useful results in partial differential equations and differential

geometry. The application of this approach can be extended to embedded hy-

persurfaces evolving by some curvature flows such as the CSF, the MCF and

fully nonlinear curvature flows. In this chapter, we represent the proofs of several

results which are based on applying the maximum principle to a function depend-

ing on two points in a hypersurface in order to prove a geometric non-collapsing

property.

The first section illustrates the proofs of some basic properties on the CSF

involving the avoidance principle, the preservation of embeddedness and Huisken’s

estimate [57] of the ratio between the intrinsic and extrinsic distance along this

flow in the plane.

The second section contains the work of B. Andrews [12] of a sharp estimate

for embedded and mean convex hypersurfaces evolving by the MCF (2.14) in

Rn+1. More precisely, he compared the radius of the largest ball which touches

the hypersurface at a given point to the local geometry (curvature) at that point

to provide a self-contained proof of the non-collapsing estimate. In other words,

the author showed that every point of the evolving hypersurface is touched by a

ball of radius bounded below by a multiple of the reciprocal of the mean curvature

at that point.

The non-collapsing argument has subsequently been extended and applied to

fully nonlinear curvature flows (analogues of the mean curvature flow where the

speed depends on a nonlinear function of the principal curvatures). In section

37
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3, we represent the result of B. Andrews, M. Langford and J. McCoy [19] with

respect to this curvature flow where the speed function of the principal curvatures

is homogeneous of degree one and convex or concave. In particular, the authors

proved that the boundary curvature of the smallest exterior (largest interior)

sphere which touches the hypersurface at each point is a supersolution (subsolu-

tion) of the linearized curvature flow if the speed function is convex (concave).

Finally we just mention the extension of these results of [12] and [19] into the

sphere and the hyperbolic spaces by [16].

3.1 Huisken’s distance comparison estimate

The CSF is an extrinsic geometric flow which is identified as a geometric heat

equation acting on a curve over time. In particular, such flow moves each point of

an immersed curve inwards with a speed proportional to its curvature. This flow

has various applications in mathematics and physics. Also, several important

techniques in this context are involved such as the maximum principle, mono-

tonicity formulas and the Harnack inequality.

The main objective of this section is to provide the proof of Huisken’s estimate

[55] that is qualitatively equivalent to the preservation of embeddedness feature

for solutions of the CSF. More precisely, if the curve C0 deforming by the CSF is

embedded at t = 0, then the same holds for Ct for each t ≥ 0.

We start here by representing a basic and nice geometric principle which states

that any two disjoint solutions of the curve shortening flow at t = 0 in the plane

will remain disjoint for each t > 0 which is referred to as the avoidance principle

and given by the following:

Theorem 3.1. (The avoidance principle) Let Fi : Σ1
i × [0, T ) → R2 be a family

of embedded curves in the plane deforming by the CSF and satisfying

F1(Σ1
1, 0)

⋂
F2(Σ1

2, 0) = φ.

Then the same holds as the flow progresses in time.

Proof. Consider a two-point function d(x, y, t) : Σ1 × Σ2 × [0, T ) → R that is

defined on a product of two curves by

d(x, y, t) = |F2(y, t)− F1(x, t)|. (3.1)
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Note that such distance function is positive at the initial time t = 0 since the

curves are compact, that is

d0 + inf{d(x, y, 0) : (x, y) ∈ Σ1 × Σ2} > 0.

The main aim of the proof is to deduce that deη(1+t) > d0 for each η > 0 by

assuming this is not true and applying the maximum principle argument to d as

defined by (3.1).

Therefore, since the function inf{d(x, y, t)eη(1+t) : (x, y) ∈ Σ1×Σ2} is positive

at t = 0 and continuous in the time t, then we can find a positive first time

t0 ∈ (0, T ) such that

d0 = inf{d(x, y, t0)eη(1+t0) : (x, y) ∈ Σ1 × Σ2}.

Also there exists a point (x0, y0) ∈ Σ1 × Σ2 such that d0 = d(x0, y0, t0) since the

product of curves is compact. However, computing the first and second derivatives

of d at such point (x0, y0, t0) implies to a contradiction. Note that the inequality
∂
∂t

(
deη(1+t)

)
≤ 0 holds at (x0, y0, t0). Also, we have that the first derivatives of d

in the x and y directions on Σ1×Σ2 are zero and the matrix of second derivatives

is positive definite at this point.

In order to simplify these computation, it is useful to choose the arc length

to be a parameter of the curves Σi by the immersion Fi(·, t0). Also we consider

that w = F2−F1

d
which is the unit vector and d is defined above as the distance

function between F2(y, t) and F1(x, t). Also, we assume that T1 and T2 are the

unit vectors that are tangential to the parametrized curves F1(·, t0) and F2(·, t0)

at x0 and y0, respectively.

Sine the first spatial derivatives vanish at (x0, y0, t0), then we obtain

0 =
∂d

∂x

∣∣∣∣
(x0,y0,t0)

= −〈w, T1〉,

and

0 =
∂d

∂y

∣∣∣∣
(x0,y0,t0)

= 〈w, T2〉.

These identities tell us that T1 and T2 are orthogonal to the unit vector w. This

unit vector can be considered as the normal unit vector by changing the orien-

tation of the parametrization of curves if necessary. Hence, we have T1(x0, t0) =

T2(y0, t0).

In order to compute the second derivatives, recall that the derivatives of the

unit tangent vectors are given by ∂T1

∂x
= κ1N1 and ∂T2

∂x
= κ2N2 where κ1 and κ2
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are curvatures of the plane curves F1(x0, t0) and F2(y0, t0), respectively. Thus,

the second derivatives of d at any point (x, y, t) are given by

∂2d

∂x2
=
〈T1 − 〈w, T1〉w, T1〉

|F1 − F2|
− 〈w, κ1N1〉,

∂2d

∂y2
=
〈T2 − 〈w, T2〉w, T2〉

|F1 − F2|
− 〈w, κ2N2〉,

and
∂2d

∂x∂y
= −〈T1 − 〈w, T1〉w, T2〉

|F1 − F2|
.

Since we have w = N1 = N2 and T1 = T2 at (x0, y0, t0), then the last equations

are rewritten as
∂2d

∂x2
=

1

d
− κ1,

∂2d

∂y2
=

1

d
− κ2,

and
∂2d

∂x∂y
=

1

d
.

Since the matrix of the second derivatives is non-negative definite at such point,

we arrive at
∂2d

∂x2
+ 2

∂2d

∂x∂y
+
∂2d

∂y2
= κ2 − κ1 ≥ 0.

Differentiating deη(1+t) with respect to the time at (x0, y0, t0) implies that

0 ≥ ∂

∂t

(
deη(1+t)

)∣∣∣∣
(x0,y0,t0)

= eη(1+t)
(
dη + 〈w, κ2N2 − κ1N1〉

)
> 〈w, κ2N2 − κ1N1〉
= κ2 − κ1.

However, from the inequality of the second derivatives we also have κ2 − κ1 ≥ 0.

We then arrive to a contradiction to our assertion, and thus we deduce that the

inequality deη(1+t) > d0 holds. In other words, the distance between d and d0

is not decreasing in time and then there is no intersection between the curves

Σ1
1(x, t) and Σ1

2(y, t) moving by the curve shortening flow for each t ∈ [0, T ).

The above principle deals with two curves that are initially disjoint and they

continue to be disjoint under the evolution, while the next theorem is with respect
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to the preservation of embeddedness under the CSF. Precisely, we consider a curve

that is initially embedded, without self-intersection, and derive that such property

still holds for each t ∈ [0, t0] as the following:

Theorem 3.2. Assume that F : S1 × [0, t0) → R2 is a family of smooth curves

satisfying the CSF. If F (·, 0) is initially embedded, then the embedding property

is preserved under such flow.

Proof. Let d(x, y, t) and `(x, y, t) be the extrinsic and intrinsic distance functions

respectively between the points x and y in the curve S1. Assume that the function

d(x, y, t) is defined by

d = |F (y, t)− F (x, t)|.

We want here to apply the maximum principle argument to the function d in order

to deduce that F (·, t) is injective for every t ∈ [0, t0] since the curve is compact.

However, the obstacle is that the extrinsic distance vanishes when x = y, that

means when the points belong to the diagonal subset, and thus d will not be

uniformly positive on the remaining region.

To rule out this issue, we assume that the curvature κ(x) is bounded and then

this estimate enables us to apply the maximum principle to d on the complement

of a suitable neighbourhood of the diagonal subset, by first using the curvature

bound to control d on the boundary. The following lemma accomplishes what we

need by providing a lower bound for d at points which are sufficiently close to

each other, assuming a curvature bound:

Lemma 3.3. Let F : S1 → R2 be an immersion, and suppose the curvature κ(x)

is bounded in magnitude by a constant c for all x ∈ S1. Then, we obtain the

following estimate:

|F (y)− F (x)| ≥ 2

c
sin

(
c · `(x, y)

2

)
,

where x, y ∈ S1 and `(x, y, t) ≤ π
c
.

Proof. Assume that x and y lie on the curve S1 and satisfy `(x, y) ≤ π
c
. Let S1

be parametrized by an arc length s such that s(x) = − `
2

and s(x) = `
2
. If s is

bounded by − `
2
≤ s ≤ `

2
, then we have

|α(s)− α(0)| ≤
∫ s

0

|κ|ds ≤ c · s ≤ c
`

2
≤ π

2
.

.
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We now calculate the following:

|F (y)− F (x)| ≥ 〈F (y)− F (x), T (0)〉

=

∫ s(y)

s(x)

〈T (s), T (0)ds〉

=

∫ s(y)

s(x)

〈cos(|α(s)− α(0)|)ds〉

≥
∫ s(y)

s(x)

〈cos(c|s|)ds〉

=
2

c
sin

(
c · `(x, y)

2

)
.

where we used the fact that cosx is decreasing in x for 0 ≤ x ≤ π
2
. This completes

the proof of the lemma.

In order to apply the lemma we require a bound on the magnitude of curvature.

But this is guaranteed for any smooth solution on S1 × [0, t0 by compactness.

Now define the region O = {(x, y, t) ∈ S1×S1× [0, t0] : `(x, y, t) ≥ π
c
}. By the

previous lemma, the function d is bounded below by 2
c

on the boundary of this

domain where `(x, y, t) = π
c
. Therefore the maximum principle can be applied to

d on the set O to show that a new minimum of d with value less than 2
c

cannot

arise, since such a minimum must occur at a point in the spatial interior, and

then we have

∂d

∂t
=

(
∂2

∂s2
x

+
∂2

∂s2
y

+ 2Tx · Ty
∂2

∂sx∂sy

)
d

− 1

d

((
∂d

∂sx

)2

+

(
∂d

∂sy

)2

− 2Tx · Ty
∂d

∂sy

∂d

∂sx

)
.

By applying the maximum principle, we obtain

d(x, y, t) = min

{
inf{d(x, y, 0) : `(x, y, 0) ≥ π

c
}, 2

c

}
.

We obtain that inf{d(x, y, 0) : `(x, y, 0) ≥ π
c
} > 0 since F (., 0) is injective, and

this implies that F (., t) remains injective, and hence an embedding, as long as

the solution remains smooth.
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The above study of the preservation of embeddedness in the plane was beauti-

fully refined by G. Huisken [57] by comparing the extrinsic and intrinsic distance

along the curve shortening flow. More specifically, G. Huisken developed the

previous arguments by considering that d is bounded from below by the intrin-

sic distance ` and the total length L(t) instead of a bound on the curvature as

explained above. We will explain the argument below.

Let F : S1 × [0, T ) → R2 be solutions of the curve shortening flow. Assume

that the total length of the curve is denoted by L(t) for each t ∈ [0, T ) and the

arc length between F (x, t) and F (y, t) is denoted by `(x, y, t) that is referred to as

the intrinsic curvature where x, y ∈ S1. Also, the extrinsic curvature is denoted

by d(x, y, t) and defined as above. G. Huisken considered the following quantity:

Q(t) := sup
x 6=y

L(t)

πd(x, y, t)
sin

(
π`(x, y, t)

L(t)

)
,

where x, y in S1. Note that if the curve is the round circle, then Q(t) = 1 for

every x, y, while otherwise Q ≥ 1. Our aim now is to show the following estimate

that was derived by Huisken:

Theorem 3.4. (Huisken [57], 1984) Let F : S1 × [0, T ) → R2 be a family of

embedded curves in the plane evolving by CSF, then Q(t) is monotone decreasing

in time.

The proof of this theorem is based on the argument of the strict maximum

principle applied to a function of two variables (see [57] and [25]).

Proof. Assume that the statement is invalid. Then Q(t) is not monotone de-

creasing in time, so there exist t1 and t2 where t1 < t2 and a real number q

satisfying

Q(t1) < q,

and

Q(t2) > q,

where q > π.

Defining the function Z(x, y, t) on S1 × S1 × [0, T ) by the following:

Zq(x, y, t) = qd(x, y, t)− L(t) sin
π`t(x, y)

L(t)
.

We can find a time t̄ ∈ (t1, t2) and also there exist two distinct points x̄, ȳ ∈ S1

for which the function Zq vanishes, and for all x, y ∈ S1 and t ∈ (t1, t̄] we have

Z(x, y, t) ≥ 0.
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Let x and y be chosen as local parameters around the points x̄ and ȳ, respec-

tively, which we can take to be arc length parameters for the embedding at time

t̄. Also, we choose the orientations in such a way that ∂x` = −1 and ∂y` = 1 at

(x̄, ȳ, t̄). Note that ∂F
∂x

(x̄, t̄) and ∂F
∂y

(ȳ, t̄) are the unit tangent vectors.

We now begin by computing the first spatial derivatives at (x̄, ȳ, t̄): We have

0 =
∂Zq
∂x

∣∣∣∣
(x̄,ȳ,t̄)

= q
〈F (x̄, t̄)− F (ȳ, t̄), ∂F

∂x
(x̄, t̄)〉

d
+ π cos

π`t̄(x̄, ȳ)

L(t)
,

and

0 =
∂Zq
∂y

∣∣∣∣
(x̄,ȳ,t̄)

= −q
〈F (x̄, t̄)− F (ȳ, t̄), ∂F

∂y
(ȳ, t̄)〉

d
− π cos

π`t̄(x̄, ȳ)

L(t)
.

Since the last two identities vanish at (x̄, ȳ, t̄), then by adding them we obtain

〈F (x̄, t̄)− F (ȳ, t̄),
∂F

∂x
(x̄, t̄)〉 = 〈F (x̄, t̄)− F (ȳ, t̄),

∂F

∂y
(ȳ, t̄)〉.

This identity tells us that the tangent vector ∂F
∂y

(ȳ, t̄) can be expressed in terms

of ∂F
∂x

(x̄, t̄) by using the reflection principle across the line that is orthogonal to

F (x̄, t̄)− F (ȳ, t̄).

We then compute the second derivatives with respect to the x-direction at

(x̄, ȳ, t̄) as follows

∂2Zq
∂x2

∣∣∣∣
(x̄,ȳ,t̄)

=
q

d

(
1− 〈w, ∂F

∂x
(x̄, t̄)〉2

)
− qκ(x̄)〈w,N(x̄)〉+

π

L(t̄)
sin

π`t̄(x̄, ȳ)

L(t̄)
,

while in the y-direction, we get

∂2Zq
∂y2

∣∣∣∣
(x̄,ȳ,t̄)

=
q

d

(
1− 〈w, ∂F

∂y
(ȳ, t̄)〉2

)
− qκ(ȳ)〈w,N(ȳ)〉+

π

L(t̄)
sin

π`t̄(x̄, ȳ)

L(t̄)
,

and also we obtain

∂2Zq
∂x∂y

∣∣∣∣
(x̄,ȳ,t̄)

= −q
d
〈∂F
∂x

(x̄, t̄),
∂F

∂y
(ȳ, t̄)〉−〈∂F

∂x
(x̄, t̄), w〉〈w, ∂F

∂y
(ȳ, t̄)〉− π

L(t̄)
sin

π`t̄(x̄, ȳ)

L(t̄)
.

Note that ∂2F
∂x2 = N(x̄, t̄)κ(x̄, t̄) and ∂2F

∂y2 = N(ȳ, t̄)κ(ȳ, t̄). Combining the last

three equations implies(
∂2Zq
∂x2

+
∂2Zq
∂y2

− 2
∂2Zq
∂x∂y

)∣∣∣∣
(x̄,ȳ,t̄)

= −qκ(x̄, t̄)〈w,N(x̄, t̄)〉

+ qκ(ȳ, t̄)〈w,N(ȳ, t̄)〉

+
4π

L(t̄)
sin

π`t̄(x̄, ȳ)

L(t̄)
.
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We finally need to calculate the time derivative of Zq as follows:

∂Zq
∂t

∣∣∣∣
(x̄,ȳ,t̄)

= −q〈w, κ(x̄, t̄)N(x̄, t̄)− κ(ȳ, t̄)N(ȳ, t̄)〉

+

(
1

π
sin

π`t̄(x̄, ȳ)

L(t̄)
− `t̄(x̄, ȳ)

L(t̄)
cos

π`t̄(x̄, ȳ)

L(t̄)

)∫
S1

κ2

+ cos
π`t̄(x̄, ȳ)

L(t̄)

∫ ȳ

x̄

κ2.

Recall that the curvature of the curve F (S1, t̄) is not constant as the function

Z vanishes at (x̄, ȳ, t̄) and q > π. Hence, the integrals can be estimated by

applying the Cauchy-Schwarz inequality and the Gauss-Bonnet theorem since

their coefficients are positive. Thus, we obtain∫
S1

κ2 >
1

L(t̄)

(∫
S1

κ

)2

=
4π2

L(t̄)
, (3.2)

and ∫ ȳ

x̄

κ2 ≥ 1

`t̄(x̄, ȳ)

(∫ ȳ

x̄

κ

)2

=
4ξ2

`t̄(x̄, ȳ)
, (3.3)

where ξ satisfies

cos ξ = 〈w, ∂F
∂x

(x̄, t̄)〉 =
π

q
cos

π`t̄(x̄, ȳ)

L(t̄)
.

Therefore, by substituting (3.2) and (3.3) into the time derivative of Zq above

and then combining them we conclude that

0 ≥
(
∂Zq
∂t
− ∂2Zq

∂x2
− ∂2Zq

∂y2
+ 2

∂2Zq
∂x∂y

)∣∣∣∣
(x̄,ȳ,t̄)

>
4π

`t̄(x̄, ȳ)

(
ξ2 −

π2`2
t̄ (x̄, ȳ)

L2(t̄)

)
cos

π`t̄(x̄, ȳ)

L(t̄)
> 0.

Since we have q > π, then cos ξ ≤ cos π`t̄(x̄,ȳ)
L(t̄)

. Hence, we arrive at a contradiction

since ξ ≥ π`t̄(x̄,ȳ)
L(t̄)

.

We conclude this section by pointing out that the previous argument of

Huisken plays an important role to prove the most famous result regarding the

CSF, Grayson’s theorem [49]. This theorem states that if the initial curve is

embedded, then the evolving curve shrinks to a point, becoming circular in the

process. In particular, the solution continues to exist as long as the length remains

positive as follows:
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Theorem 3.5 (G. Huisken [55], 1984; Gage-Hamilton [43], 1986). Let F : S1 ×
[0, T )→ R2 be an embedded solution of the curve shortening flow which is defined

on a maximal time interval. Then, as t approaches the singular time T , the curves

F (·, t) shrink to a point, and converge to a circle after suitable rescaling.

In fact, Huisken’s estimate is not enough by itself to deduce that the solution

continues to exist while the length remains positive, but this can be deduced from

Huisken’s estimate by combining it with a blow-up argument and a classification

of type I and type II blowup limits: Huisken’s estimate rules out the latter, while

the former are known to be shrinking circles by the monotonicity formula and a

classification of self-similar solutions by Abresch and Langer [2].

3.2 Non-collapsing of mean convex MCF

This section contains the direct proof of B. Andrews’s result [12] on a non-

collapsing estimate for compact, embedded and mean convex hypersurfaces evolv-

ing by the MCF (2.14) in Rn+1 using the argument of the two-point maximum

principle. This estimate is a qualitative manifestation of the fact that embedded-

ness is preserved under the MCF.

This estimate was also provided in the work of Weimin Sheng and Xujia Wang

[94] on singularities which arise at the first time of the mean convex flow in the

Euclidean space by using a detailed analysis of the singularities and behaviour

of the MCF. In particular, they provided a description of the suitable limits

of the rescaled flows over a singularity for which the compactness theorem and

contradiction argument were applied.

Similar estimates, though not phrased in precisely this way, were also deduced

by B. White [104, 105] in his work on the structure of singularities. One of

the significant consequences of this study is that the estimate on the inscribed

radius can be derived. The author used some techniques from the perspective

of geometric measure theory involving a detailed analysis of some properties for

solutions of the mean convex flow.

On the other hand, B. Andrews [12] provided a self-contained technique to

prove this theorem which is based on the application of the maximum principle

argument to a two-point function. In this part, we concentrate on presenting this

approach.

The main theorem of this section is stated as follows:
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Theorem 3.6. (B. Andrews [12] and W. Sheng, X-J. Wang [94]) Assume that

Σn is a connected and compact hypersurface and let F : Σn × [0, T ) → Rn+1

be a one-parameter family of smooth, embedded and mean convex hypersurfaces

moving under the MCF (2.9). If the inscribed radius of the initial hypersurface is

bounded from below by ε
H

where ε is a positive constant, then this remains valid

for all positive times in [0, T ).

Before beginning the proof, we need to define an appropriate function of two

variables defined on the hypersurface for which the maximum principle argument

can be applied. Assume that F : Σ× [0, T )→ Rn+1 is a compact, embedded and

mean convex hypersurface that satisfies the mean curvature flow in the Euclidean

space. Let U be the enclosed region such that the unit normal vector ν is chosen

to be outward pointing of U . For a point F (x, t) where x ∈ Σ, there is a touched

ball Br(c) where r > 0 and c = F (x, t)− rν(x, t) are the radius and the center of

the ball, respectively. Assume that Br(c) is inside the region U which is equivalent

to the following statement:

Br(c) ⊂ Σ ⇐⇒ |F (y, t)− c|2 ≥ r2, ∀y ∈ Σ ;

⇐⇒ |F (y, t)− F (x, t) + rν(x, t)|2 ≥ r2, ∀y ∈ Σ;

⇐⇒ |F (y, t)− F (x, t)|2 + 2r〈F (y, t)− F (x, t), ν(x, t)〉 ≥ 0, ∀y ∈ Σ;

⇐⇒ 2〈F (x, t)− F (y, t), ν(x, t)〉
|F (y, t)− F (x, t)|2

≤ 1

r
, ∀y ∈ Σ.

Assume that

k(x, y, t) =
2〈F (x, t)− F (y, t), ν(x, t)〉
|F (y, t)− F (x, t)|2

, ∀y ∈ Σ

and the boundary curvature of the largest ball enclosed in U at F (x, t) is given

by

k̄(x, t) = sup{k(x, y, t) : y ∈ Σ\{x}}. (3.4)

where k̄(x, t) refers also to the inscribed ball curvature.

The main idea of the proof is the application of the maximum principle to

the function k̄(x, t). More precisely, we show that k̄(x, t) satisfies the following

natural differential inequality in a viscosity sense

∂k̄

∂t
≤ ∆k̄ + |A|2k̄. (3.5)

Such equation is called the linearized mean curvature flow.
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Proof. In order to prove that k̄ is a subsolution of the linearized mean curvature

flow in the viscosity sense, we assume that ρ(x, t) is a smooth function that is

defined on a neighbourhood of an arbitrary point (x0, t0) ∈ Σ × [0, t0] and lies

above k̄(x, t) such that ρ = k̄ at (x0, t0) where t ≤ t0. From the definition of k,

we also have k(x, y, t) ≤ ρ(x, t) for all (x, y, t) ∈ Σ× Σ× [0, t0].

There are two directions to be considered. The first simple direction just

includes the evolution equation of the second fundamental form h. In this case

we assume that the supremum is not reached, then there should be a sequence of

points y approaching to x0 where the inscribed ball curvature k̄ and the maximum

principal curvature λmax are equal at (x0, t0). Moreover, for any smooth unit

vector field defined around (x0, t0), we have ρ(x, t) ≥ k̄ ≥ h(x,t)(e, e) such that

the equality holds at (x0, t0). These implying to the following inequality:(
∂

∂t
−∆

)
ρ|(x0,t0) ≤

(
∂

∂t
−∆

)
h(e, e)|(x0,t0). (3.6)

where e is the direction of the largest principal curvature at (x0, t0). By using the

parallel transport from the point (x0, t0) for the vector e and the mean curvature

flow, we arrive to(
∂

∂t
−∆

)
h(e, e)|(x0,t0) = −|A|2λmax = −|A|2ρ. (3.7)

Hence, in this case k̄ satisfies the linearized mean curvature flow in the viscosity

sense.

The second situation is the assumption that the supremum can be reached at

some point, meaning that k̄(x0, t0) = k(x0, y0, t0) where x0 6= y0, then we have

ρ(x, t) ≥ k̄(x, t) ≥ k(x, y, t) with equality at (x0, y0, t0). Define the two-point

function Z(x, y, t) on Σ× Σ× [0, T ) by

Z(x, y, t) =
2〈F (x, t)− F (y, t), ν(x, t)〉
|F (y, t)− F (x, t)|2

− ρ(x, t) ≤ 0, (3.8)

for all x 6= y and t ≤ t0.

In order to obtain the first and second derivatives of Z, we choose xi and yi

to be local normal coordinates for Σ near x0 and y0, respectively. Let ∂xi and ∂yi
be orthonormal coordinates for Tx0Σ and Ty0Σ, respectively. For simplicity, some

abbreviations are considered such that d = |F (y, t) − F (x, t)|, the unit vector

w = F (y,t)−F (x,t)
d

, νx = ν(x, t), ∂ρ
∂xi

= ρi, ∂
x
i = ∂F

∂xi
and similarly ∂yi = ∂F

∂yi
. We now

start by computing the first spatial derivatives

(∂xi + ∂yi )Z =
2

d2

(
(∂xi − ∂

y
i ) · (νx + (Z + ρ)dw)− dw · (hx)pi ∂xp

)
− ∂iρ. (3.9)
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Since the first derivatives vanish at (x0, y0, t0), then we have

ρi =
2

d2

(
ρ∂xi · dw)− (hx)

p
i ∂

x
p · dw

)
=

2

d

(
ρδpi − (hx)

p
i

)
∂xp · w. (3.10)

The geometric interpretation for this situation is since the inscribed ball Br(c)

meets the hypersurface Σ at both F (x0, t0) and F (y0, t0) where these points lie

on the boundary of Br(c), then from the symmetry of the sphere we obtain that

the tangent spaces Tx0Σt0 and Ty0Σt0 are equivalent to the tangent spaces of the

boundary of Br(c) and related by the reflection function Rw in the hyperplane

orthogonal to w, that means Rw(v) = v−2(v·w)w. Hence, the normal coordinates

are chosen such that Rw(∂xi ) = ∂yi for each i.

The second derivatives are given as the following∑
(∂xi + ∂yi )2Z = − 2

d2

(
(νx + ρdw) · (Hxνx −Hyνy) +∇Hx · dw

+ 2
∑

(∂yi − ∂xi )
(
(hx)

q
i∂

x
q + ρidw

)
+
∑
|∂yi − ∂xi |2ρ+ |A|2dw · νx

)
− gij ∂2ρ

∂xi∂xj
.

The computation of the time derivative gives the inequality

Zt =
2

d2

(
(Hyνy −Hxνx) · (νx + ρdw)− dw · ∇Hx

)
− ρt ≥ 0 (3.11)

where the mean curvature flow ∂F
∂t

= −Hν and ∂tν = ∇H are considered. Finally,

by using the symmetry of Br(c) and the definition of Z at (x0, y0, t0), we have

∂yi = ∂xi − 2(∂xi ·w)w and νx + ρdw = νy such that 2d2ρ = −dw · νx and νx · νy =

1 − d2ρ2

2
. Also, by combining the second spatial and time derivatives that are

computed above, it follows that

ρt ≤ ∆ρ+ |A|2ρ+
8

d2

((
ρδqi − (hx)

q
i

)
∂xi · w∂xq · w − 4ρidw · ∂xi

)
= ∆ρ+ |A|2ρ− 2

(
(ρI − hx)−1

)ij
ρiρj,

where the identity of the first derivative (3.10) is used in the last negative term.

We arrive to the required inequality(3.6), proving that k̄ satisfies the following

inequality in the viscosity sense:

∂tk̄ ≤ ∆k̄ + |A|2k̄.
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According to [12], such result is analogous to curvature pinching Hg ≥ εh

at F (x, t). Moreover, if the mean convexity condition of the mean curvature is

cancelled, that means in the case of hypersurface initially star-shaped, then the

result remains valid. Also, it still works for the case of curve shortening flow

where a curve is convex. Furthermore, the non-collapsing method can also be

applied to the exterior case where the ball is touched the hypersurface at the

point F (x, t) from outside such that the radius is |ε|
H

. As a consequence, this gives

the lower curvature pinching.

The above argument of non-collapsing has subsequently been extended with

promising results in various contexts. In the next section, we describe the non-

collapsing technique which was extended by B. Andrews, M. Langford and J. Mc-

Coy [12] to embedded hypersurfaces evolving by fully nonlinear curvature flows

(analogues of the mean curvature flow where the speed depends on a nonlinear

function of the principal curvatures).

3.3 Fully non-linear curvature flows

In this section we describe an analogous result to the previous work (section 3.2)

of the non-collapsing estimate for compact, embedded and mean convex hyper-

surfaces deforming by the mean curvature flow in Rn+1. In particular, we consider

the study of B. Andrews, M. Langford and J. McCoy [19] on embedded hyper-

surfaces evolving by a more general class of fully nonlinear parabolic equations

in Rn+1. This class of curvature flows is formulated by

∂X

∂t
= −S · ν, (3.12)

where S is the speed function of the principal curvatures that is homogeneous of

degree one and ν is the unit normal vector, see section 2.2 for more information

of this type of flow.

The authors [19] showed that a function which represents the curvature of the

largest sphere inscribed in the region enclosed by the hypersurface and meeting

at each point on this hypersurface satisfies a natural differential inequality in

the viscosity sense. Precisely, they derived that if the curvature function S is

convex (concave), then the curvature of the exscribed (inscribed) sphere is a

supersolution (subsolution) to the equation of the linearized curvature flow.

The proof of such non-collapsing estimate for this class of curvature flows

is also based on employing the maximum principle argument to the two-point
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function defined on the evolving hypersurface. As it has been shown in the

previous section that the geometric structure for the inscribed sphere curvature

touching the hypersurface at a point (x, t) is equivalent to the non-collapsing

quantity

Z(x, y, t) =
2〈X(x, t)−X(y, t), ν(x, t)〉
‖X(x, t)−X(y, t)‖2

≤ f(x, t),

where f(x, t) is the reciprocal of the radius of the inscribed sphere at (x, t).

Also, the curvature of inscribed (exscribed) sphere is defined as the supremum

(infimum) of the function Z and denoted by Z (Z), respectively such that

Z = sup{Z(x, y, t) : y ∈ Σ, y 6= x},

and

Z = inf{Z(x, y, t) : y ∈ Σ, y 6= x}.

More precisely, they deduced the following theorem:

Theorem 3.7. (B. Andrews, and M. Langford, and J. McCoy [19]). Let F :

Σ × [0, T ) → Rn+1 be a family of smooth embedded hypersurfaces evolving by

nonlinear curvature flows (3.27). Assume that S is a concave function of the

principal curvatures, then Z is a subsolution of the linearized equation

∂Z

∂t
≤ Ṡkl∇k∇lZ + ṠklhpkhplZ (3.13)

in the viscosity sense. An analogous statement holds for Z in the case S is convex.

Now we illustrate the proof of this theorem according to [19]

Proof. Assume that we have a one-parameter family of smooth and embedded

hypersurfaces Σt moving under the nonlinear curvature flow (3.12). The idea is

to deduce that the curvature of the inscribed sphere Z is a viscosity subsolution

of the linearized flow (3.13).

In order to apply the maximum principle to Z(x, t), we should have an ap-

propriate compact region in which Z is defined. Hence, Z can be extended to a

manifold with boundary Σ̃ by using the tubular neighbourhood theorem on the

compact diagonal set D = {(x, x) : x ∈ Σ} and then blowing up along D such

that Σ̃ = {(Σ× Σ)\D} ∪ SΣ} where SΣ = {(x, u) ∈ TΣ : ‖u‖ = 1}.
Therefore, since Z is extended to Σ̃× [0, T ) for which (Σ×Σ)\D is compact,

then we define

Z(x, y, t) =
2〈X(x, t)−X(y, t), ν(x, t)〉
‖X(x, t)−X(y, t)‖2

,
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for (x, y) ∈ (Σ× Σ)\D and t ∈ [0, T ). Also, for (x, u) ∈ SΣ we have

Z(x, u, t) = h(x,t)(u, u),

where h(x,t) refers to the second fundamental form of Σ at (x, t). Note that since

Z is continuous on Σ̃, then the function Z attains its supremum Z and infimum

Z over Σ̃.

To show that Z is a viscosity subsolution of (3.13) where S is concave, we

define a smooth function ρ(x, t) that lies above Z(x, t) on a region over a point

(x0, t0) ∈ Σ × [0, T ) such that ρ = Z at (x0, t0) where t ≤ t0. Thus, we have

ρ(x, t) ≥ Z(x, t) ≥ Z(x, y, t) for all (x, t) close to (x0, t0) where t ≤ t0 with

ρ(x0, t0) = Z(x0, t0) and ρ(x, t) ≥ Z(x, t) ≥ Z(x, u, t) for all u ∈ SxΣ with also

equality holds for the first inequality at (x0, t0).

We have two possibilities: the first case is if the supremum is not attained at

the point (x0, t0), then there is a sequence of points close to x0 and a smooth unit

normal vector v defined over (x0, t0) such that v(x0, t0) = v0. This vector can be

extended in this region for x close to x0 and for t ≤ t0 close to t0 by using the

parallel transport from the point (x0, t0) along the geodesic and by the evolution

equation ∂v
∂t

= SW(v) such thatW is the Weingarten map. Such extension yields

that the first and second spatial derivatives of v(x0, t0) are equal to zero. In this

case, the evolution equation of the second fundamental form h at (x0, t0) implies

that

∂

∂t
h(v, v) = Ṡkl∇k∇l(h(v, v)) + S̈kl,pq∇vhkl∇vhpq + h(v, v)Ṡklhpkhpl. (3.14)

Note that ρ ≥ h(v, v) for points x near x0 and t ≤ t0 with equality at (x0, t0).

Hence, the inequalities ∇2ρ ≥ ∇2(h(v, v)) and ∂ρ
∂t
≤ ∂

∂t
(h(v, v)) hold at such

point (x0, t0). Also, since S is assumed to be concave, then its second derivative

is non-positive. These imply the required differential inequality for ρ(x0, t0), that

means
∂ρ

∂t
≤ Ṡkl∇k∇lρ+ ρṠklhpkhpl. (3.15)

The second possibility is assuming that the supremum is attained at (x0, y0)

where x0 6= y0 such that Z(x0, t0) = Z(x0, y0, t0) = ρ(x0, t0) and ρ(x, t) ≥
Z(x, t) ≥ Z(x, y, t) for all (x, t) close to (x0, t0) where t ≤ t0 and (x, y) ∈ Σ×Σ\D.

Therefore, the derivative in the time direction gives the inequality ∂
∂t

(ρ−Z) ≤ 0

at (x0, y0, t0). Also, the first derivatives of ρ−Z in the direction of x and y vanish

at (x0, y0, t0) while the second derivatives of ρ− Z are non-negative.

In order to compute the first and second spatial derivatives of ρ−Z, let xi and

yi be local normal coordinates near x0 and y0 for Σ respectively. Also, we assume
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that ∂xi and ∂yi are orthonormal coordinates for Tx0Σ and Ty0Σ, respectively.

For simplicity, we consider d = |X(y, t) − X(x, t)|, w = X(y,t)−X(x,t)
d

and write

νx = ν(x, t), ∂ρ
∂xi

= ρi, ∂
x
i = ∂X

∂xi
and similarly ∂yi = ∂X

∂yi
.

We now start by computing the first spatial derivatives in the y−direction

∂

∂yi
(ρ− Z) =

2

d2
〈∂yi , νx − Zdw〉, (3.16)

and differentiating in the x−direction gives

∂

∂xi
(ρ− Z) =

2

d
(Z〈∂xi , w〉 − (hx)

p
i 〈∂xp , w〉) +

∂ρ

∂xi
, (3.17)

recall that the last two equations vanish at (x0, y0, t0).

The second derivatives are computed as the following:

∂2

∂yi∂yj
(ρ− Z) =

2

d2

(
Z〈∂yi , ∂

y
j 〉+ 〈Zdw − νx, (hy)ijνy〉

)
=

2

d2
(Zδij − (hy)ij),

where we use here the fact that the first derivatives of Z in the y−direction

vanish. Also, we obtain

∂2

∂xi∂xj
(ρ− Z) =

2

d2
(Zδij − (hy)ij) + Z(hx)jpδ

pq(hx)qi −
2

d
∇p(hx)ijδ

pq〈w, ∂xq 〉

− Z2(hx)ij +
2

d

∂ρ

∂xj
〈w, ∂xi 〉+

2

d

∂ρ

∂xi
〈w, ∂xj 〉+

∂2ρ

∂xi∂xj
,

and

∂2

∂xj∂yi
(ρ− Z) =

2

d2

(
(hx)

p
j − Zδ

p
j 〈∂

y
i , ∂

x
p 〉
)
− 2

d

∂ρ

∂xj
〈w, ∂xi 〉.

The computation of the time derivative implies to the inequality

∂

∂t
(ρ− Z) =

∂ρ

∂t
+

2Sx
d2
− 2Sy

d2
〈νy, νx − Zdw〉 −

2

d
〈w,∇Xx〉 − Z2Xx

=
∂ρ

∂t
+

2S
d2
− 2Sy

d2
− 2

d
〈w,∇Sx〉 − Z2Xx.
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By combining the previous equations and inequalities, we arrive to the following

inequality

∂

∂t
(ρ− Z) ≤ Ṡ ijx

(
∂2

∂xi∂xj
+ 2

∂2

∂xi∂yj
+

∂2

∂yi∂yj

)
(ρ− Z)

= −∂ρ
∂t

+ Ṡijx ∇i∇jρ+ ρṠijx (hx)ipδ
pq(hx)qj

− 4Sx
d2

+
4

d2
Ṡijx (hx)iqδ

qp〈∂yj , ∂xp 〉

+
2Sy
d2
− 2

d2
Ṡijx (hy)ij +

4Z

d2
Ṡijx δij

− 4Z

d2
Ṡijx 〈∂

y
j , ∂

x
i 〉+

4

d
Ṡijx

∂ρ

∂xi
〈w, ∂xj − ∂

y
j 〉.

(3.18)

We can rewrite the two terms before the last term of such inequality (3.19)

as the following

4Z

d2
Ṡijx δij −

4Z

d2
Ṡijx 〈∂

y
j , ∂

x
i 〉 =

4Z

d2
Ṡijx
(
δij − 〈∂yj , ∂xi 〉

)
.

Since S is homogeneous, Sx = Ṡ ijx (hx)ij, then we have

−4Sx
d2

+
4

d2
Ṡijx (hx)iqδ

qp〈∂yj , ∂xp 〉 = − 4

d2
Ṡijx (hx)iqδ

qp(δjp − 〈∂yj , ∂xp 〉.

Moreover, since S is concave, then we obtain that

Sy ≤ Ṡijx (hy)ij. (3.19)

Therefore, by substituting these identities, the last inequality (3.20) and the

vanishing of the identity (3.18) we arrive at

0 ≤ −∂ρ
∂t

+ Ṡijx ∇i∇jρ+ ρṠijx (hx)ipδ
pq(hx)qj

+
4

d2
Ṡijx (Zδip − (hx)qj)δ

pq
(
δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂

y
j − ∂xj 〉

)
.

(3.20)

We need now to check the sign of the term in the second line of (3.21). We

notice that the factors of Ṡijx (Zδip− (hx)qj)δ
pq are each non-negative definite and

commute. Hence, such matrix is positive definite and symmetric. Besides, the

next lemma shows that the term δqj−〈∂yj , ∂xq 〉+2〈w, ∂xq 〉〈w, ∂
y
j−∂xj 〉 is non-positive

as follows

Lemma 3.8. We have

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 ≤ 0
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Proof. We consider the computation at the minimum point (x0, y0, t0). Let {xi}
and {yi} be the local coordinates, we choose them so that ∂xi = ∂yi for i =

1, ..., n− 1. Hence ∂xn and ∂xn are coplanar with w. As a result, if p = q = n, then

we find that δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 does not vanish.

Therefore, the proof will be divided into two parts: 〈w, nx〉 ≤ 0 and 〈w, nx〉 ≥
0. If 〈w, nx〉 ≤ 0, then we may assume that 〈w, nx〉 = − sin θ, where θ ∈ [0, π

2
).

We can adjust the direction of ∂xn such that 〈w, ∂xn〉 = cos θ. Assume that we

have the conditions 〈∂xn, ∂yn〉 = − cos 2α and 〈∂yn, νx〉 = sin 2α where α ∈ [0, π
2
)

and the orientation of ∂yn are satisfied. By using the first derivative of (φ−Z) in

particular the equation (3.17) with respect to the direction yn and the definition

of Z, we obtain

∂

∂yn
(φ− Z) =

2

d2
〈∂yn, νx − Zdw〉

= 2〈∂yn, νx〉 − 2〈∂yn, Zdw〉
= 〈∂yn, νx〉 − 2〈∂yn, w〉〈w, νx〉
= sin 2α cos 2θ − sin 2θ cos 2α = 0

= sin(2α− 2θ) = 0,

thus θ = α and 〈∂yn, w〉 = − cosα. We substitute into the following

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 = 1 + cos(2α)− 2 cosα(cosα + cosα)

= 2 cos2 α− 4 cos2 α = −2 cos2 α ≤ 0.

In the case of 〈w, nx〉 ≥ 0, the proof is similar to the previous case. We define

θ ∈ [0, π
2
) such that 〈w, nx〉 = sin θ. We have 〈w, ∂xn〉 = − cos θ by directing

∂xn . Also, we can choose the the orientation of ∂yn and α ∈ [0, π
2
) to meet the

conditions 〈∂xn, ∂yn〉 = − cos 2α and 〈∂yn, νx〉 = sin 2α. We use again the equation

(3.17) and the definition of Z, we then have

〈∂yn, νx〉 = 2〈∂yn, w〉〈w, νx〉
sin(2α− 2θ) = 0,

this implies that θ = α and 〈∂yn, w〉 = cosα. Hence, the computation is given by
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the following

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 = 1 + cos(2α)− 2 cosα(− cosα− cosα)

= 2 cos2 α− 4 cos2 α = −2 cos2 α ≤ 0.

Therefore, we arrive at

∂ρ

∂t
≤ Ṡ ijx ∇i∇jρ+ ρṠ ijx (hx)ipg

pq
x (hx)qj. (3.21)

This implies that ρ satisfies the above natural differential inequality in the vis-

cosity sense.

Similarly, in the case where the function S is convex and all the inequalities

are reversed we deduce the following:

Corollary 3.9. Let X : Σ × [0, T ) → Rn+1 be a family of smooth embedded

hypersurfaces evolving by nonlinear curvature flows (3.12). Assume that S is

convex, then Z is a viscosity supersolution of the linearized equation

∂Z

∂t
= Ṡkl∇k∇lZ + ṠklhpkhplZ

This completes the proof of Theorem 3.6.

The non-collapsing estimates, that were derived in the previous results of

B. Andrews [12] and B. Andrews, M. Langford and J. McCoy [19] on hypersurfaces

evolving by mean convex and fully non-linear curvature flows in the Euclidean

space respectively, were generalized to the ambient spaces: the sphere Sn+1 and

the hyperbolic space Hn+1. In particular, B. Andrews and X. Han and H. Li

and Y. Wei [16] deduced the non-collapsing results for embedded hypersurfaces

evolving by curvature flows in Sn+1 and Hn+1. In the sphere case, they deduced

the following statement

Theorem 3.10. (B. Andrews and X. Han and H. Li and Y. Wei [16]) Let X :

Σn × [0, T ) → Sn+1 be a family of smooth embedded hypersurfaces moving under

the flow (3.27) where the function of the principal curvatures S is non-negative.

Also,

• If S is convex, then
Z

S
≥ 1

n
+ α1e

−2nt,

where α1 = inf{ZS −
1
n
} ≤ 0 at (x, 0) for every x ∈ Σ.
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• If S is concave, then
Z

S
≤ 1

n
+ α2e

−2nt,

where α2 = sup{ZS −
1
n
} ≥ 0 at (x, 0) for every x ∈ Σ.

While in the ambient space Hn+1, they derived a non-collapsing estimate only

for the MCF as follows:

Theorem 3.11. (B. Andrews and X. Han and H. Li and Y. Wei. [16]) Let

X(Σn) be an embedded solution of the MCF in Hn+1.

• If the initial hypersurface is mean-convex that is H > 0, then for (x, t) ∈
Σ× [0, T ) we have

Z

H
≤ 1

n
+ α3e

2nt,
Z

H
≥ 1

n
+ α4e

2nt

where α3 = sup{ Z
H
− 1

n
} and α4 = inf{ZS −

1
n
} at (x, 0).

• If the initial hypersurface satisfies H > n, then

Z

H
≤ 1

n
+ α5e

2nt,

where α5 = sup{ Z
H−n −

1
n
} at (x, 0).
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Chapter 4

Classification of Hypersurfaces

with Prescribed Curvatures in

the Sphere

The study of hypersurfaces of prescribed curvature in Riemannian manifolds such

as the unit sphere has been a field of extensive research. This has included work

on minimal and constant mean curvature hypersurfaces and also on hypersur-

faces with other curvature functions constant such as the elementary symmetric

functions of principal curvatures (see for example [83], [101], [7] and [45]). In this

chapter, we present a short survey of results relevant to the new work carried out

in the next chapter.

We begin the first section by describing a crucial result on the uniqueness

of surfaces of vanishing mean curvature with genus 1 in the three-dimensional

sphere: Brendle’s proof [23] of Lawson’s conjecture [72] that the only embedded

minimal torus in S3 is the Clifford torus (up to rigid motion). A key component of

the proof of this result is the application of the non-collapsing technique that was

developed by B. Andrews in his work on mean convex mean curvature flow [12],

which utilized a maximum principle argument to compare the boundary curvature

of the largest ball touching the hypersurface to the positive mean curvature at

each point, see section 3.2. In the case of minimal surfaces the mean curvature

vanishes, but Brendle succeeded in using the largest principal curvature instead

of the mean curvature in this setting.

In the second section, we present the proof of the Pinkall-Sterling conjecture

[88] about constant mean curvature tori in S3 that was affirmatively answered by

B. Andrews and H. Li [20]. Precisely, they classified embedded tori of constant

59
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mean curvature in S3, proving that these surfaces are surfaces of rotation. The

authors of the work [20] extended the non-collapsing technique used in [12] and

[23] to embedded tori of constant mean curvature in S3 by finding a suitable

replacement for the mean curvature or maximum principal curvature.

We consider in the last section of this chapter the work of B. Andrews,

Z. Huang and H. Li [17] regarding the uniqueness of a class of embedded Wein-

garten hypersurfaces satisfying a linear partial differential equation equation into

in the (n+ 1)-dimensional sphere. They assumed some conditions on multiplici-

ties of the principal curvatures. The non-collapsing method was applied to these

hypersurfaces to deduce that they must be congruent to a Clifford torus.

4.1 Uniqueness of minimal tori in the three-

sphere and Lawson’s conjecture

Complete minimal surfaces are nicely constructed in the Euclidean space R3 by

selecting an appropriate holomorphic 1-form and a meromorphic function for the

representation formula of Weierstrass. Unfortunately, this useful method is no

longer valid when the ambient space is the sphere S3. Therefore, the construction

and uniqueness of embedded minimal surfaces in the sphere have been challenging

questions. The only known examples of this kind of surface in S3 of genus 0

and 1 were the equator and the Clifford torus, respectively. However, other

constructions were given in the work of Lawson in 1970 [71] where he showed that

there exist infinitely many compact embedded minimal surfaces in S3, including

examples of every genus g. In the same year, he also made an outstanding

conjecture [72] that the only embedded minimal surface with g = 1 in the 3-sphere

is the Clifford torus. This conjecture was successfully confirmed by Brendle in

2012 [23]. The main goal of this section is to illustrate Brendle’s proof of Lawson’s

conjecture.

Before we explain Brendle’s work on the uniqueness conjecture of Lawson, we

will briefly mention some previous efforts towards the construction of compact

embedded minimal surfaces in S3. H. B. Lawson [71] showed that there is at

least one compact embedded minimal surface in S3 for each genus g ∈ Z+ and

at least two such surfaces if g > 1 and g is not a prime number. Additional and

different examples of these types of surfaces were obtained in 1988 by H. Karcher,

U. Pinkall and I. Sterling [64] with genus 3, 5, 6, 7, 11, 19, 73 and 601. Moreover,

Kapouleas and Yang [63] constructed another family of these surfaces of genus
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m2 + 1 for m sufficiently large. In 2015, J. Choe and M. Soret [34] showed the

existence of an infinite family of compact embedded minimal surfaces with genus

1 + 4m(m− 1) in S3.

The techniques that were applied in the previous results [71] and [64] for de-

veloping embedded minimal surfaces in S3 have some similarities. More precisely,

Lawson’s construction [71] is based on finding a minimal disk D in a simple

closed (Jordan) curve Γ consisting of geodesic segments forming some of the sides

of a tetrahedron, and then extending the surface by π-rotation about each of the

geodesic sements of Γ in order to obtain a compact embedded minimal surface.

The method that is used in [64] extends this idea by finding a minimal disk D

embedded in the fundamental cell T of a tesselation of the 3-sphere, in such a way

that D can be extended beyond the boundary of T by reflections to produce new

compact embedded minimal surfaces in S3. The arguments in [34] are somewhat

related, using a tesselation of the sphere by a family of intersecting Clifford tori

into pentahedral cells. The technique in [63] is different in nature and technique:

This uses uses a more technical doubling construction which involves first con-

structing an approximate minimal surface by joining the two boundary surfaces

of a fattened Clifford torus using many small catenoidal bridges, and then solving

the delicate perturbation problem required to find a minimal surface close to the

approximate one.

Questions regarding the uniqueness of immersed or embedded minimal sur-

faces of different genus in the sphere have been tackled by a number of mathe-

maticians over the last several decades. In 1966, F. J. Almgren [9] was the first

to prove that the totally geodesic 2-dimensional spheres are the only immersed

minimal surfaces in S3 with genus g = 0.

Theorem 4.1. (F. J. Almgren [9]) Let Σ be an immersed minimal surface of S3

and the genus of Σ is zero, then Σ is congruent to the equator.

In order to prove this assertion, the author applied the holomorphic differential

method that was established by H. Hopf [54].

Proof. Assume that F : S2 → S3 is a conformal, minimal and harmonic immer-

sion and let w = h( ∂
∂z
, ∂
∂z

)dz2 be the Hopf differential, where h is the second

fundamental form of Σ. Since the mean curvature vanishes, then we obtain that

w is holomorphic from the Codazzi equations. Moreover, from [92] Section VI, we

have w = 0 since S2 does not carry a non-zero holomorphic quadratic form. This

implies that the second fundamental form vanishes and hence Σ is congruent to

the equator.
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Another crucial uniqueness result for minimal surfaces in the three-dimensional

sphere states that the only embedded minimal surface with g = 1 in S3 is the

Clifford torus. This was conjectured by H. B. Lawson in 1970 [72] and positively

answered by S. Brendle in 2012 [23].

Theorem 4.2. (S. Brendle [23]). Let Σ be an embedded minimal surface with

g = 1 of S3, then Σ is congruent to the Clifford torus.

The proof of Lawson’s conjecture had been approached previously over several

decades resulting in a variety of incomplete answers. In 1990, Urbano [97] studied

these surfaces by considering their index. More precisely, he proved that if Morse

index of the minimal torus is less than or equal 5, then such surface must be

congruent to the Clifford torus. Furthermore, this conjecture of Lawson was

proved by Ros [90] with further assumptions that the torus is symmetric through

four pairwise orthogonal hyperplanes. More recently, Marques and Neves [76]

verified that the minimal surface of genus greater than or equal one and with

the smallest area 2π2 amongst other minimal surfaces in S3 is congruent to the

Clifford torus. The main ingredient of the proof of such work is the application

of the min-max theory for minimal surfaces, refer to the work of Pitts [89] and

also Colding and De Lellis [35] for more details on this approach.

The conjecture of Lawson was proved by S. Brendle [23]. The essential as-

sumption on the minimal surface in this conjecture is the embeddedness, other-

wise there exist infinitely many immersed minimal surfaces that are constructed

by applying methods of integrable systems. Another crucial condition is that Σ

has genus 1 which enables Brendle to apply the following result of Lawson:

Proposition 4.3. Let Σ be an immersed minimal surface in S3, If the genus of Σ

is 1, then the surface has no umbilical points. Equivalently the second fundamental

form does not vanish everywhere on Σ.

The proof of this proposition is straightforward by utilizing a simplified version

of the holomorphic Hopf differential.

Proof. Assume that Σ is an immersed minimal torus in S3, and let h be the sec-

ond fundamental form of Σ. By the uniformisation theorem there is a conformal

diffeomorphism from Σ to a flat torus C/Γ for some lattice Γ, and this induces a

globally defined complex vector field ∂
∂z

= ∂
∂x
− i ∂

∂y
on Σ. This enables the defi-

nition of a complex function defined by f = h( ∂
∂z
, ∂
∂z

) = (hxx− hyy)− 2ihxy. The

minimal surface equation, together with the conformality of the parametrisation
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and the Codazzi equations, imply that f is holomorphic, and therefore constant.

Thus, either the second fundamental form vanishes identically, or it is nowhere

zero. But the vanishing of the second fundamental form would imply that Σ is

totally geodesic, and hence an equatorial sphere, contradicting the assumption

that Σ has genus 1. Therefore, h is non-zero everywhere on Σ.

Besides the previous result of Lawson, another useful remark regarding the

geometric structure of the Clifford torus is relevant to argument which follows:

This torus has the property that the boundary curvature of largest ball coincides

with the maximum principal curvature. In particular, for each point x in the

Clifford torus, we can touch x by a ball with boundary curvature equal to the

largest principal curvature λmax(x). That is, we have k̄(x) = λmax(x), where k̄(x)

is the boundary curvature of the largest touching ball, defined analogously to the

function k̄ defined by Equation (3.4) in the non-collapsing argument for mean

curvature flow in section 3.2.

The above observations enabled Brendle to apply a refined version of the

non-collapsing argument to prove the Lawson conjecture. More precisely, Bren-

dle compared the size of balls touching minimal surfaces at every point to the

maximum principal curvature, instead of the mean curvature as used in Section

3.2, since the latter vanishes in the case of minimal surfaces. It is useful to note

that the intersection of S3 with balls belonging to the ambient space R4 produce

geodesic balls in S3, and the geodesic curvature of the boundary of such a ball

in S3 is the same as its curvature in R4. It follows that the formula (3.4) gives

precisely the same interpretation of k̄(x) as the geodesic curvature of the largest

sphere disjoint from Σ which touches at x, where we now interpret the position

vector F and the normal vector ν as vectors in the ambient space R4. As a con-

sequence of this modification, the machinery of the non-collapsing estimate can

be extended directly to the context of minimal tori in the sphere S3.

Now we are ready to present the proof of the main theorem 4.2, which is based

on the application of the maximum principle argument to the function k(x, y, t)

to deduce that k̄(x) = λmax(x) for each point x of Σ.

Proof. The first aim here is to extend Andrews’ work on the non-collapsing for

mean curvature flow in the Euclidean space [12] into the 3-dimensional sphere.

In other words, we want to derive a natural differential inequality of k̄(x) in the

viscosity sense in S3.

Proposition 4.4. Let F : Σ× [0, T )→ S3 be a family of embedded surfaces mov-
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ing under the mean curvature flow in the sphere. Then k̄ satisfies the inequality

∂tk̄ ≤ ∆k̄ + |A|2k̄ + 2Hx − 2k̄. (4.1)

in the viscosity sense.

Proof. Let F : Σ× [0, T ) → S3 be a family of embedded surfaces which satisfies

the mean curvature flow in the sphere. We assume that 〈·, ·〉 denotes the inner

product in R4. Also, we define the boundary curvature of the largest ball k̄(x, y, t)

enclosed in the region U and touching the surface F (Σ) at F (x, t) similarly as in

section (3.2) on mean convex mean curvature flow by the following:

k̄(x, t) = sup
y∈Σ\{x}

k(x, y, t) = sup
y∈Σ\{x}

{
2〈F (x, t)− F (y, t), ν(x, t)〉
‖F (x, t)− F (y, t)‖2

}
.

Such quantity refers to the interior ball curvature in the −ν(x, t) direction. Sim-

ilarly, the exterior ball curvature k(x, t) of F is given by

k(x, t) = inf
y∈Σ\{x}

k(x, y, t),

where k(x, y, t) is the boundary curvature of the smallest ball k̄(x, y, t) that con-

tains U and touches F (Σ) at F (x, t) in the opposite direction of ν(x, t).

In order to deduce that k̄(x, t) is a subsolution of a natural differential equation

in the viscosity sense, we assume that ρ(x, t) is a smooth function that is defined

on a neighbourhood of an arbitrary point (x0, t0) ∈ Σ×[0, t0] and lies above k̄(x, t)

such that ρ(x0, t0) = k̄(x0, t0) where t ≤ t0. This implies to k(x, y, t) ≤ ρ(x, t) for

all (x, y, t) ∈ Σ× Σ× [0, t0]. We choose xi and yi for i = 1, 2 to be local normal

coordinates for Σ near x0 and y0, respectively.

We now mostly follow the computation in the previous chapter, highlighting

the differences caused by the fact that the ambient space is the sphere instead of

the Euclidean space (see section 3.2, [12] and [16]) . Computing the first spatial

derivatives of k gives(
∂

∂xi
+

∂

∂yi

)
k =

2

d2

(〈
∂F

∂xi
− ∂F

∂yi
, νx + kd~w

〉
−
〈
d~w, (hx)

p
i

∂F

∂xp

〉)
.

Recall that d = ‖F (y, t) − F (x, t)‖ is the distance function, ~w = F (y,t)−F (x,t)
d

is

the unit vector and νx = ν(x, t) is the unit normal vector field. Also, remember

that h and λi refer to the second fundamental form and the principal curvature

of Σ for i = 1, 2. Since the last identity vanishes at (x0, y0, t0), then we have
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∂ρ

∂xi
=

∂k

∂xi
= −2

d

(
k − λi

)〈∂F
∂xi

, w

〉
, (4.2)

and
∂k

∂yi
= − 2

d2

〈
∂F

∂yi
, νx + kd~w

〉
= 0.

The calculation of the second derivatives of k at x0 in the sphere is as follows:

Lk =
∑
i

(
∂

∂xi
+

∂

∂yi

)2

k

=
2

d2

(
〈νx + kd~w,Hyνy −Hxνx + 2d~w〉 − d〈~w,∇Hx〉

+ 2
∑
i

〈
∂F

∂xi
− ∂F

∂yi
, (hx)

q
i

∂F

∂xq
+
∂k

∂xi
d~w

〉
−
∑
i

∥∥∥∥∂F∂yi − ∂F

∂xi

∥∥∥∥2

k + d〈~w, |A|2νx +HxF (x)〉
)
,

≥ 2

d2

(
〈νx + kd~w,Hyνy −Hxνx〉

)
− d〈~w,∇Hx〉

+
8

d2
(k − λi)

〈
~w,
∂F

∂xi

〉2

− |A|2k −Hx + 2k.

Note that the equation (4.2) and the definition of k(x, y) are used in the last

inequality. The computation of the time derivative implies

∂k

∂t
= − 2

d2

(
〈∇Hx +HxF (x), d~w〉+ 〈νx + kd~w,Hxνx −Hyνy〉

)
,

= − 2

d2

(
〈∇Hx, d~w〉+ 〈νx + kd~w,Hxνx −Hyνy〉

)
+Hx.

Whereas the evolution of the unit normal ν(x) in the sphere is given by

∂ν

∂t
= ∇Hx +HxF (x).

It follows that(
∂

∂t
− L

)
k ≤ |A|2k − 8

d2
(k − λi)

〈
~w,
∂F

∂xi

〉2

+ 2Hx − 2k

≤ |A|2ρ+ 2Hx − 2ρ.

This is precisely the statement we wanted to prove, that k̄ satisfies the inequality

(4.1) in the viscosity sense.
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To simplify the computation, it is possible to add the term −|∇k̄|2
k̄

to the last

inequality. Also, we have H = 0 since Σ is a minimal torus in S3. Therefore,

0 ≤ ∆k̄ + |A|2k̄ − 2k̄ − |∇k̄|
2

k̄
. (4.3)

In addition to such inequality, we need also to derive the following result which

is analogous to the Simons-type identity [96] (see also [79]):

Proposition 4.5. Let F : Σ → S3 be an embedded minimal torus in the three-

dimensional sphere. Then the maximum principle function λ1 is smooth and

strictly positive everywhere on Σ. Moreover, λ1 satisfies the following partial

differential equation:

∆λ1 + (|A|2 − 2)λ1 −
|∇λ1|2

λ1

= 0 (4.4)

Proof. From the definition of the mean curvature H, we have λ1 = |A|√
2
. Also, it

was proven by Hopf in his paper [54] that a minimal torus in S3 is impossible to

have umbilical points. Consequently, λ1 is smooth and strictly positive at each

point on the torus. We now directly compute to find ∆(|A|2)

∆(hijhij) = 2hij∆hij + 2∇khij∇khij,

thus, we get

∆(|A|2) = 2〈|A|,∆|A|〉+ 2|∇A|2.

By commuting ∇i∇jhkl −∇k∇lhij and then taking its trace over the compo-

nents k and l, we obtain the following simon’s identity [96] (see also [79]):

∆hij + (|A|2 − 2)hij = 0.

It follows from the last two equations that

∆(|A|2) + 2(|A|2 − 2)|A|2 − 2|∇A|2 = 0,

Since ∆(|A|2) = 2|A|(∆|A|) + |∇A|2 and |∇A|2 = 2|∇|A||2 from the Codazzi

equations, then the last equation becomes

∆(|A|) + (|A|2 − 2)|A| − |∇|A||
2

|A|
= 0.

The assertion follows since λ1 = |A|√
2
.
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Now by combining (4.3) and (4.4), we have the following inequality in the

viscosity sense

0 ≤ ∆ log

(
k̄

λ1

)
. (4.5)

This implies that k̄ = Cλ1 by the strong maximum principle. However, we have

k̄ = λ1 at every point on the surface that means C = 1. More precisely, we

show that k̄ = λ1 and we can similarly derive that k = λ2 for each point in the

embedded minimal torus, where λ2 denote the minimum principal curvatures.

Finally, to complete the proof we need to show that ∇h = 0. Let σ : R→ Σ

be a geodesic such that σ(0) = x0 and σ′(0) = e1. From the definition of k̄ and

since k̄ = λ1, we define the function f : R→ R by

f(s) = Z(σ(0), σ(s)) = λ1(1− 〈x0, σ(s)〉) + 〈ν(x0), σ(s)〉,

where f(s) is non-negative for all s. Therefore, by direct calculation we obtain

the following:

f ′(s) = −〈λ1(x0)x0 − ν(x0), σ′(s)〉,
f ′′(s) = 〈λ1(x0)x0 − ν(x0), σ(s)〉+ h(σ′(s), σ′(s))〈λ1(x0)x0 − ν(x0), ν(σ(s))〉,
f ′′′(s) = 〈λ1(x0)x0 − ν(x0), σ′(s)〉+ h(σ′(s), σ′(s))〈λ1(x0)x0 − ν(x0), Dσ′(s)ν〉

+DΣ
σ′(s)h)(σ′(s), σ′(s))〈λ1(x0)x0 − ν(x0), ν(σ(s))〉.

If t = 0, we have f(0) = f ′(0) = f ′′(0) = 0 and also f ′′′(0) = 0 since f(s) ≥ 0.

This gives (De1h)(e1, e1) = 0 everywhere on Σ since x0 is arbitrary. Similarly for

the exterior region, we obtain (De2h)(e2, e2) = 0 everywhere. Hence, we deduce

from the Codazzi equations that the second fundamental form is parallel that is

Dh = 0. Moreover, from the Gauss equation, the Ricci curvature of the surface

is constant and thus the induced metric is flat. It follows that F (Σ) is congruent

to the Clifford torus since Lawson showed that the only minimal torus in the

three-sphere with parallel Ricci curvature is the Clifford torus.

We have illustrated Brendle’s proof of the Lawson conjecture for the minimal

torus. However, what is the situation if the mean curvature does not vanish. The

explanation of constant mean curvature tori in S3 will be in the next section.
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4.2 The Pinkall-Sterling conjecture for CMC tori

in S3

In this section, the work of B. Andrews and H. Li [20] on embedded constant

mean curvature tori in the three-sphere is represented. In particular, they showed

that any embedded constant mean curvature torus in S3 must be rotationally

symmetric. The proof of such result mainly depends on improving the similar

argument of S. Brendle [23] on embedded minimal tori in S3 that is illustrated in

the previous section 4.1. Consequently, they provided a complete classification

of such rotationally symmetric surfaces in S3 together with Perdomo’s work [86].

It was recognized later that the proof of B. Andrews and H. Li [20] precisely

confirms the conjecture of U. Pinkall and I. Sterling [88]. The main ingredient

of this part is to describe the proof provided in [20] that any embedded constant

mean curvature torus in S3 is a surface of rotation.

The theory of constant mean curvature surfaces in space forms of constant

sectional curvatures R3, S3 and H3 is a crucial direction of study in differential

geometry. The basic examples of such surfaces in S3 are the totally umbilical two

dimensional spheres and the Clifford torus S1(r)×S1(
√

1− r2), where 0 < r < 1.

In 1981, S. S. Chern [32] generalized the result of H. Hopf [53] that any immersed

constant mean curvature surfaces with genus 0 in R3 is totally umbilical to the

ambient spaces S3 and H3.

Many results with regard to the construction of such surfaces have been sig-

nificantly investigated and contributed in the development of this field. In the

lecture notes of H. Hopf on differential geometry [54], the following fundamental

question was introduced: Is a compact surface with constant mean curvature im-

mersed into the Euclidean space must be the standard embedded sphere?. This

question was interestingly developed by H. C. Wente in [102] where he was the

first to produce comapct immersed constant mean curvature surfaces with genus

g = 1 in R3. Such Hopf’s conjecture was partially confirmed in the spaces R3,

S3
+ and H3 with imposing the condition of embeddedness by A. D. Alexandrov

[6]. Moreover, the existence of immersed constant mean curvature surfaces into

R3 with arbitrary genus g > 3 was shown by N. Kapouleas [62] in 1987.

Besides Wente’s tori, the problem of constructing all constant mean curva-

ture tori in R3, S3 and H3 is remarkably considered. Bobenko [22] provided other

examples of such surfaces in R3, S3 and H3 by integrating the Gauss-Weingarten

equations and deducing an explicit formula with the crucial property of period-
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icity. Moreover, U. Pinkall and I. Sterling [88] generally classified all constant

mean curvature tori in R3 using the system of ordinary differential equations to

study solutions of constant mean curvature tori. A conjecture that these surfaces

are rotationally symmetric in S3 was explicitly presented in the later work [88]

and positively confirmed by B. Andrews and H. Li [20].

Hence, such result along with Perdomo’s contribution [86] complete the classi-

fication of constant mean curvature tori in S3 which is illustrated in the following

theorem:

Theorem 4.6 (B. Andrews, H. Li [20], O. Perdomo [86]). Let Σ be an embedded

constant mean curvature torus in S3, then the following statements hold:

(a) Every Σ must be rotationally symmetric.

(b) If H values at 0 or ± 1√
3
, then every Σ with such H is congruent to the

Clifford torus.

(c) Every Σ with H has different values from 0 and ± 1√
3

is non-isoparametric.

In other words, Σ admits the group O(2) × Zm in its group of isometries

where m ≥ 2 is a maximal integer.

(d) There exists at most one such non-isoparametric surface for any integer

m ≥ 2 .

(e) If m ≥ 2 and cot( π
m

) < H < m2−2

2
√
m

2−1
, then there exists a compact, embedded

and non isoparametric surface Σ which admits the group O(2)× Zm.

The results (b), (c) and (e) are deduced by O. Perdomo [86] where the proof in

the case of vanishing mean curvature is provided by S. Brendle [23] and explained

in the previous section. Moreover, the components (a) and (d) are contributed

by B. Andrews and H. Li [20] implying a complete classification of these tori

in S3. Recall that an embeddedness is a necessary requirement in this work

since A. I. Bobenko [22] constructed infinitely many immeresed constant mean

curvature tori in the three sphere which are non-rotationally symmetric.

The main focus in this section is to illustrate the proof of the component

(a) which is deduced in [20] by extending Brendle’s argument of non-collapsing

method to the constant mean curvature case. The argument has been explained in

the previous chapter with respect to the mean convex mean curvature flow which

was tackled by B. Andrews [16]. Also, it is mentioned above in S. Brendle’s
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paper [23] after some modification of such approach to be applicable to the case

of minimal surfaces.

It seems apparently improbable that such technique could be applied in this

case, since there exist some embedded constant mean curvature tori in S3 which

are not only product of circles. These constructions are classified as rotation-

ally symmetric surfaces. For instance, O. Perdomo [86] showed the existence of

embedded constant mean curvature tori with H /∈ {0, 1√
3
,− 1√

3
} which are non-

isoparametric. Fortunately, B. Andrews and H. Li [20] were able to extend the

non-collapsing argument to the case of embedded constant mean curvature tori

in S3.

The structure of the proof of item (a) in Theorem 4.6 will be divided into

two parts. The first main part is to show that the interior ball curvature κ̄ is

equal to λmax for every x ∈ Σ in S3. In the second part, we obtain that some

components of the derivative of the second fundamental form vanish. In other

words, we deduce that one of the principal curvatures of the surface are constant

which is sufficient to conclude that the surface is rotatioanlly symmetric. In other

words, Σ is invariant under the group of rotations fixing Π2 ∈ R4.

Proof. We begin by recalling some basic expressions and notions about the in-

terior balls touching Σ at a point x (see also section 3.2, [16] and [19] for more

details). Let F (Σ) be an embedded constant mean curvature torus in S3. Assume

that the region U ⊂ S3 is chosen to be enclosed by the embedding F such that the

unit normal vector ν points in the outward direction of U . For every point x ∈ Σ,

there is a touching ball B that is contained in U with the boundary curvature κ.

The corresponding interpretation of such geometric idea is that other points of

F are not contained in B which is precisely stated by the following inequality:

Z(κ, x, y) = κ(1− F (x) · F (y)) + 〈F (y), ν(x)〉 ≥ 0, (4.6)

where x, y ∈ Σ. Given x, the inequality Z ≥ 0 will be satisfied for all y for κ

sufficiently large, since we can always touch by a small enough ball at x. The

interior ball curvature κ̄(x) is defined to be the infimum of all κ > 0 for which

the inequality Z(κ, x, y) ≥ 0 holds for all y.

Note that the function Z(κ̄(x), x, y) is non-negative everywhere on the surface.

Hence, there exist two distinct points x0 and y0 for which Z vanishes. In other

words, Z has a minimum value and thus its first derivative vanishes as well and

the second derivatives of Z are non-negative at such point (x0, y0).

This construction of Z implies that the tangent spaces and the outward unit

normal vectors of Σ at x0 and y0 coincide with those tangent spaces and unit
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normal vectors of the boundary of the touching ball B respectively. Moreover,

since the ambient space is S3, then the reflection R~w maps the tangent space of

Σ at x0 to that at y0 and is given as follows:

R~w(ν(x0) = (ν(y0) = ν(x0)− 2~w · ν(x0)~w, (4.7)

and

R~w

(
∂F

∂xi
(x0)

)
=
∂F

∂yi
(y0). (4.8)

Assume that the boundary curvature of the largest touching ball at every

point of Σ is denoted by κ̄ and called the interior ball curvature. Note that the

inequality κ̄ ≥ λmax always holds for every x ∈ Σ since it is impossible to have

κ(x) < λmax(x).

We now illustrate the first main part of the proof which is proving that the

interior ball curvature κ̄ is equal to λmax for every x ∈ Σ in S3, similar to the

previous section.

Proposition 4.7. Let F (Σ) be an embedded constant mean curvature torus in

the three-dimensional sphere. Then we have

κ̄ = λmax,

at every point x of Σ.

In order to prove this proposition we consider the opposite and arrive to a

contradiction by applying the maximum principle argument.

Proof. We use similar notations to the proof of Theorem 4.2 in the previous

section. Let (x1, x2) and (y1, y2) be orthonormal coordinates around the points

x0 and y0, respectively. Since the second fundamental form h is diagonal such

that
∑2

i=1 hij = λiδ
j
i , then we have h11 = λ1 = λmax, h22 = λ2 = λmin and

h12 = 0 at x0 where λmax and λmin refer to the maximum and minimum principal

curvatures of Σ, respectively. By selecting a suitable direction of ν, we assume

that H is non-negative and defined by

H =
2∑
i=1

λi −
2∑
i=1

µi,

and also we have the following useful notation

|trA(x0)|2 = |A(x0)|2 − 2H2.
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If the mean curvature H vanishes, the result follows from Brendle’s proof of

Lawson’s conjecture [23]. Hence, the focus here is on the case H > 0. Assume

that κ̄ is greater than λmax at the point (x0, y0) and then differentiate the equation

(4.6) in the direction ∂
∂xi

+ ∂
∂yi

. We have(
∂

∂xi
+

∂

∂yi

)
Z =

d2

2
∇iκ+

〈
∂F

∂yi
− ∂F

∂xi
, νx + kd~w

〉
+

〈
d~w, (hx)

p
i

∂F

∂xp

〉
,

where ~w = F (y)−F (x)
d

is the unit vector and d = ‖F (y) − F (x)‖ is the distance

function. Since the first derivative of Z with respect to the xi-direction vanishes

at (x0, y0), we obtain the following identity:

∂Z

∂xi
=

2

d

(
κ− λi

)〈∂F
∂xi

, ~w

〉
, (4.9)

and also we have ∂κ
∂yi

= 0.

The calculation of the second derivatives of Z at (x0, y0) implies

∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z =
d2

2
∆κ+

∑
i

∥∥∥∥∂F∂yi − ∂F

∂xi

∥∥∥∥2

κ

− 2
∑
i

〈
∂F

∂xi
− ∂F

∂yi
, hqi

∂F

∂xq
+∇iκd~w

〉
+ 2〈νx + κd~w,Hyνy + F (y)−Hxνx − F (x)〉
+ d〈~w, 2∇Hx − |A|2νx −HxF (x)〉.

Note that the term 2∇Hx in the last line appears form the Codazzi equation such

that 2∇qHx = ∇qhii = ∇ih
q
i . Also, since the mean curvature is constant, then

∇H vanishes. Moreover, it follows from the reflection property of the tangent

spaces (4.7)-(4.8) and the first derivative (4.9) of Z with respect to xi that

∂F

∂xi
− ∂F

∂yi
= 2~w · ∂F

∂xi
~w =

∇iκ

κ− λi
d~w.

Using the identities (4.7), (4.8), d~w · ν(x) = −d2

2
κ and also d~w · F (x) = −d2

2
, we

obtain∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z =
d2

2

(
∆κ− 2

|∇2κ|2

κ− λi
+ (|A|2 − 2− 2Hκ)κ+ 2H

)
.

Consequently, by considering the following inequality

κ− λ2 = κ− (2H − λ1) = κ− 2H + λ1 ≤ 2(κ−H),
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where the definition of the mean curvature is used and then substituting this into

the last equation, we arrive to

∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z ≤ d2

2

(
∆κ− |∇

2κ|2

κ−H

)
+
(
(|A|2 − 2− 2Hκ)κ+ 2H

)
. (4.10)

Now we want to show that the maximum principal curvature λmax = λ1 is

equivalent to the interior ball curvature κ̄. Let α be any positive number and the

curvature of the touching ball κ is defined as

κ = αµ+H.

We emphasize that F (Σ) is embedded which implies that the interior ball cur-

vature κ̄ has an upper bound. Also, since the embedded surface is compact and

its principal curvature µ is strictly positive, then µ is bounded from below by a

positive value. Hence, we have

αµ+H > κ̄,

where α is sufficiently large and Z is positive.

Besides the inequality (4.10), we need to consider the following result which

is analogous to the Simons-type identity which is deduced in Proposition 4.3 of

the previous section (see also [96] and [79]):

Proposition 4.8. Let F : Σ → S3 be an embedded minimal torus in the three-

sphere. Then the function µ is smooth and strictly positive everywhere on Σ and

satisfies

∆µ− |∇µ|
2

µ
+ 2(µ2 +H2 − 1) = 0. (4.11)

Now we want to check the possible values of α. If γ(t) denotes a geodesic

passes through a point x in Σ, then we have

2

d2
〈d~w, ν(x)〉 = −hX(γ′, γ′) +O(t).

Thus, we obtain form the definition of Z

Z(κ, x, γ(t)) =
1

2

(
κ− hX(γ′, γ′)

)
t2 +O(t3).

The values of Z are negative when α < 1. More precisely, let γ′(0) = e1 where e1

is the direction of λmax that gives hX(γ′, γ′) = λ = H+µ. Thus, Z(κ, x, γ(t)) < 0

which contradicts the fact that Z is non-negative.
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On the other hand if α > 1, we obtain that Z(κ, x, γ(t)) ≥ 1
2

(
κ−1)µt2 +O(t3)

from any direction of the point x. This implies that Z takes positive values only

in a neighbourhood of the diagonal set x = y in Σ× Σ.

Now we consider ᾱ = inf{α > 0 : Z(κ, x, y) ≥ 0} for all x, y ∈ Σ. Therefore we

can infer that ᾱ takes the values 1 ≤ ᾱ <∞. Finally, we have two cases whether

ᾱ > 1 or ᾱ = 1. In the former case, we also arrive to a contradiction. More

specifically, the function Z(κ, x, y) in such case has positive values in a region

of the diagonal set {(x, x) : x ∈ Σ}. Thus, there exists a minimum and distinct

point (x0, y0) in Σ×Σ such that Z(x0, y0) = 0 and therefore the second derivatives

of Z at such point are non-negative. Recall that if κ > λi at (X0, y0), we deduce

here the inequality (4.10). Considering such inequality and using Proposition 4.8

gives the following:

0 ≥
∑
i

(
∂

∂xi
+

∂

∂yi

)2

Z ≤ −(α2 − 1)d2µ2H < 0,

which shows a contradiction.

The proof is completed by considering the later case ᾱ = 1. It confirms

straightforwardly the assertion that κ̄ = λ by just substituting in κ̄ ≤ ᾱµ+H = λ.

The second main part of the proof is the argument that Σ is rotationally

symmetric:

Theorem 4.9. Assume that F : Σ→ S3 is an embedded constant mean curvature

torus for which λmax = κ̄ at every point of Σ. Then Σ is rotationally symmetric

In order to ensure that the surface is rotationally symmetric, it is adequate to

deduce that the derivatives of the components of the second fundamental form

vanish and also there exists a plane Π2 ∈ R4 such that Σ is invariant under the

group of rotations fixing Π2.

Proof. As explained in the previous section, we first derive that (De1h)(e1, e1) =

0 and thus (De1h)(e2, e2) = 0 everywhere on Σ where e1 and e2 are smooth

eigenvector fields. Let σ(s) be a geodesic that passes through x0 ∈ Σ such that

σ(0) = x0 and σ′(0) = e1. Since we have κ̄ = λ at each point of Σ (Proposition

4.7), then the real function f : R→ R is given by

f(s) = Z(λ, σ(0), σ(s)) = λ(1− 〈x0, σ(s)〉) + 〈ν(x0), σ(s)〉,
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where f(s) is non-negative for all s and f(0) = 0. Differentiating f(s) implies

f ′(s) = −〈λ(x0)x0 − ν(x0), σ′(s)〉,

note that f ′ vanishes at s = 0. Calculating the second derivative of f(s) gives

f ′′(s) = 〈λ(x0)x0 − ν(x0), σ + h(σ′, σ′)ν(σ)〉,

and also computing f ′′′(s) as the following

f ′′′(s) = 〈λ(x0)x0 − ν(x0), σ′ + h(σ′, σ′)Dσ′ν + (Dσ′h)(σ′, σ′)ν〉.

We have f ′′ = f ′′′ = 0 at s = 0 since f(s) ≥ 0. This gives (De1h)(e1, e1) = 0

everywhere on Σ since x0 is arbitrary. In particular, e1λ = 0 and thus e1µ = 0

where H = λ− µ.

Let U be a neighbourhood of any point x on Σ, then we can choose a local

orthonormal frame {e0, e1, e1} where e0 is the unit normal vector of Σ. Assume

that its dual coframe is denoted by {ω1, ω2}. The Levi Civita connection forms

are given by

de1 = ω12e2, de2 = ω21e1,

where ω12 + ω21 = 0.

The first covariant derivative of the second fundamental form hij with respect

to ek where 1 ≤ i, j, k ≤ 2 is defined by

hijkωk = dhij + hkjωki + hikωkj.

We have that hij,k are symmetric from the Codazzi equations. Since the compo-

nents of hij are diagonal, then h11 = λ1 = λ = H +µ, h22 = λ2 = µ = H −µ and

h12 = 0. Considering that i = 1 and j = 2 in the last equation, we obtain

h122 = (h11 − h22)ω12(e2) = 2µω12(e2), (4.12)

and

h121 = 2µω12(e1). (4.13)

From the equations of Codazzi, (4.12) and (4.13) and since we have (∇e1h)(e1, e1) =

0 and H is constant, then

ω12(e2) = 0 2µω12(e1) = e2(λ) = e2(µ).

Hence, we deduce the following:

∇e1e1 = ω12(e1)e2 =
e2(µ)

2µ
e2, ∇e2e1 = ω12(e2) = 0, (4.14)
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and

∇e2e2 = ω21(e1)e1 = 0, ∇e1e2 = ω21(e1)e1 = −e2(µ)

2µ
e1. (4.15)

The last equation (4.15) implies that the lines in direction e2 are geodesics in Σ.

By using the Gauss equation

Rijkl = (hikhjl − hilhjk) + δikδjl − δilδjk,

and equations (4.14) and (4.15), we obtain

R1212 = λ1λ2 + 1

= 〈∇e1∇e2e2 −∇e2∇e1e2 −∇[e1,e2]e2〉

= e2

( 1

2µ
e2(µ)

)
−
( 1

2µ
e2(µ)

)2
.

Hence, we deduce the following equation

e2(e2(ψ))

ψ
− 1

ψ4
+H2 + 1 = 0, (4.16)

where ψ = 1√
µ
. Multiplying (4.16) by the term 2ψe2(ψ) gives

(e2(ψ))2 + ψ−2 + (H2 + 1)ψ2 = C0, (4.17)

where C0 is a constant.

Assume that Σ is embedded into the Euclidean space R4 and x is any arbitrary

position vector, then we have 〈ν(x), ν(x)〉 = 1, 〈x, ν(x)〉 = 0 and ∇̄vx = v where

∇̄ refers to the connection on R4. These provide us with the following:

∇̄e1e1 =
e2(µ)

2µ
e2 − (x+ λ1ν),

∇̄e2e2 = −(x+ λ2ν),

∇̄e2x = e2,

∇̄e2ν = λ2e2.

Moreover, let γ(u) be a geodesic that satisfies γ(0) = x0 ∈ Σ and γ′(0) = e2(x0).

The above equation (4.17) is now rewritten with respect to g(u) by taking g(u) =

ψ(γ(u)) as

(g′)2 + g−2 + (1 +H2)g2 + 2H = C1 (4.18)
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where C1 = C0 + 2H and C1 > 2(H +
√

1 +H2.

In order to solve Equation (4.18), the following non-negative polynomial is

considered

P (s) = (C1 − 2H)s2 − (1 +H2)s4 − 1,

which is defined on an interval (s0, s1) for s1 > s0 > 0 and the value of P (s) at

s0 and s1 vanishes. The zeros of P (s) are given by

s0 =

√
C1 − 2H − A

B
, s1 =

√
C1 − 2H + A

B
.

where A =
√
C2

1 − 4(HC1 + 1) and B = 2
√

1 +H2. Thus the solution of the

periodic function g(u) is given by

g(u) =

√
C1 − 2H + A sin(2

√
1 +H2u)

B

with a period T = π√
1+H2 .

It is straightforward to derive that the vectors ∇̄e1e1 and e1 are the basis of

the plane Π⊥ and therefore it is constant on Σ. By differentiating the basis in the

e1 and e2 directions and using the fact that the vectors e1√
µ

and e2 are commute

that is [ e1√
µ
, e2] = 0, then we obtain that Π⊥ is constant.

Assume that Σ is parametrized by s and u such that x0 = (0, 0). Since we

have [ e1√
µ
, e2] = 0, then E1 and E2 are also commute and hence we can consider

that ∂x
∂u

= e2 = E2 and ∂x
∂s

= e1√
µ

= E1. If we suppose that

r(u) =
g(u)√
C1

=
1√
µC1

,

then we obtain the following equations

r′′

r
+ λ1λ2 = 0, (r′)2 + r2(1 + λ2

1) = 1, (4.19)

where e1(µ) = 0 and r′

r
= − µ′

2µ
.

Since Π⊥ that is generated by ∇̄e1e1 and e1 is constant, then the plane Π

which is spanned by the basis p and q is also constant on Σ where p = λ1x−ν√
1+λ2

1

and q =
r(1+λ2

1)e2−r′(x+λν)√
1+λ2

1

. Consequently, we can write the orthonormal basis for

the space R4 as the following:
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v1 = e1,

v2 =
∇̄e1e1

|∇̄e1e1|
= −(r′e2 + λrν + rx),

v3 = p,

v4 = q,

where {v1, v2} and {v3, v4} are the orthonormal basis for Π⊥ and Π respectively.

The derivatives of these basis of R4 with respect to E1 and E2 give

E1v1 =
∇̄e1e1√

µ
=

v2

r
√
µ

=
√
C1v2. (4.20)

Since v1 and v2 are perpendicular and Π⊥ is preserved, then

E1v2 = −
√
C1v2. (4.21)

Moreover, we obtain

E1v3 = E1p

=
e1(λ1x− ν)√
µ(1 + λ2

1)

= 0,

where e1λ1 = 0. We also have E1v4 = E1q = 0 since Π is constant. The

computation in the E2 direction gives

E2v1 = ∇̄e2e1 = 0 E2v2 = 0. (4.22)

Furthermore, we obtain that E2v3 = σv4 and E2v4 = −σv3 where σ = 2µ
r(1+λ2

1)

Lemma 4.10. Assume that A(u) =
∫ u

0
σ(ζ)dζ and also v1 = a, v2 = b,v3 = c

and v4 = d at (0, 0). Then,

v1(s, u) = a cos(
√
C1S) + b sin(

√
C1S);

v2(s, u) = −a sin(
√
C1S) + b cos(

√
C1S);

v3(s, u) = c cos(A(u)) + d sin(A(u));

v4(s, u) = −c sin(A(u)) + d cos(A(u)).
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Proof. Since ∂v1

∂u
= ∂v2

∂u
= 0 and by using the identities (4.20) and (4.21), we have

∂v1

∂s
=
√
C1v2,

∂v2

∂s
= −

√
C1v1.

The similar approach follows for v3 and v3.

Finally, the equations of v1, ..., v4 imply to

x(s, u) = −rv2 +
λ√

1 + λ2
1

v3 −
r′√

1 + λ2
1

v4.

Assume that B(u) is given by

cosB(u) =
λ√

1 + λ2
1

√
1− r2

, sinB(u) =
r′√

1 + λ2
1

√
1− r2

Then, we have from Lemma 4.10

x(s, u) = r(u) sin(
√
C1s)a− r(u) cos(

√
C1s)b

+
√

1− r2(u) cos(A(u)−B(u))c +
√

1− r2(u) sin(A(u)−B(u))d.

Assuming that

a = v1(0, 0) = (0, 1, 0, 0)

b = v2(0, 0) = (−1, 0, 0, 0)

c = v3(0, 0) = (0, 0, cosB(0), sinB(0))

d = v4(0, 0) = (0, 0,− sinB(0), cosB(0)),

then we obtain

x(s, u) =

(
r(u) cos(

√
C1s), r(u) sin(

√
C1s),

√
1− r2(u) cos(η(u)),

√
1− r2(u) sin(η(u))

)
.

Note that η(u) = A(u)−B(u) +B(0), B(u) = arctan r′

λ
and η(0) = 0, thus

η′(u) = A′(u)−B′(u)

=
2µ

(1 + λ2)r
− 1

1 + ( r
′

λ
)2

(
r′′

λ
− r′λ′

λ2

)
=

λr

1− r2
.
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Therefore, we have η(u) =
∫ u

0
λ(ζ)r(ζ)
1−r2(ζ)

dζ. Writing v =
√
C1s for abbreviation and

expressing Σ as the following:

F (u, v) =

(
r(u) cos v, r(u) sin v,

√
1− r2(u) cos η(u),

√
1− r2(u) sin η(u)

)
,

where v ∈ [0, 2π) and 0 ≤ u < πm√
1+H2 such that m is a positive number.

Combining Proposition 4.7 and Theorem 4.9, the proof of the item (a) in

Theorem 4.6 is now completed.

Before beginning the next section, we make some remarks on the work of the

previous two sections 4.1 and 4.2: The result of [20] in this section is somewhat

similar to the one described in section 4.1 on Brendle’s proof [23] for the vanishing

mean curvature case. In [23], the balls are touched from above and below at each

point of the surface, implying that all derivatives of the second fundamental

form are zero, so the Theorem follows from Lawson’s rigidity result. However,

in [20] the non-collapsing argument can only be applied for balls touching on

one side of the surface, so that only some components of the derivative of second

fundamental form vanish. However, these are sufficient to deduce that the surface

is rotationally symmetric.

4.3 A Special class of Weingarten hypersurfaces

in Sn+1

The study of minimal hypersurfaces in higher dimensional space forms such as

Sn+1 turns to be a more interesting field of research in differential geometry. The

non-collapsing technique, which is used in various results such as the proof of the

Lawson conjecture [23] and also in the proof of the Pinkall and Sterling conjecture

[20] (see also the above sections 4.1 and 4.2), extended to be applicable to the

higher dimensional case. One of remarkable contributions in this area is the work

of B. Andrews, Z. Huang and H. Li [17] on a class of embedded hypersurfaces in

Sn+1 satisfying a linear equation of their distinct principal curvatures. A further

condition on the number of these curvatures is also imposed, implying that such

hypersurfaces are congruent to the Clifford torus. The main aim of this section

is to describe the key steps of the proof of this considerable result.
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It was shown by T. Otsuki in [83] and [84] that an embedded minimal hy-

persurface with different principal curvatures λ and µ is congruent to a Clifford

torus as the following:

Theorem 4.11. (T. Otsuki [83], [84]): Let F : Σ→ Sn+1 be a compact embedded

minimal hypersurface with principal curvatures λ 6= µ, then Σ is congruent to

Sm

(√
m

n

)
× Sn−m

(√
n−m
n

)
, 1 ≤ m ≤ n− 1.

Such result was extended by H. Li and G. Wei [74] to the case where the m-th

mean curvature Hm of Σ vanishes. In particular, they proved that any compact

embedded rotational hypersurfaces with Hm = 0 is congruent to round geodesic

spheres and the product

Sn−1

(√
n−m
n

)
× S 1

(√
m

n

)
, 1 ≤ m ≤ n = 1.

In 2013, B. Andrews, Z. Huang and H. Li [17] considered a class of embed-

ded Weingarten hypersurfaces satisfying a linear PDE equation into the (n+ 1)-

dimensional sphere. Moreover, They assumed some conditions on multiplicities

of their principal curvatures and deduced that such hypersurfaces is congruent to

a Clifford torus. More precisely, they showed the following:

Theorem 4.12. (B. Andrews, Z. Huang and H. Li [17]): Let F : Σ → Sn+1 be

a compact embedded hypersurface with distinct principal curvatures λ and µ such

that λ = −cµ for some c > 0. Assume also that λ and µ have multiplicities m

and n −m respectively where m = 1, ..., n − 1. Therefore, λ and µ are constant

and Σ is congruent to a Clifford torus

Sm

(√
1

c+ 1

)
× Sn−m

(√
c

c+ 1

)
.

This result is somewhat motivated by the above work of Otsuki ([83], [84])

and H. Li and G. Wei [74]. The proof of such result [17] is based on using

the maximum principle argument to a two-point function which is successfully

extended to this context. As a consequence, the authors in [17] provided simple

proofs of Otsuki’s result for minimal hypersurfaces [83, 84] and of the work of

H. Li and G. Wei [74] on hypersurfaces with vanishing m-th mean curvature.

Now we begin to describe the proof of the last theorem, more details are

provided in [17].
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Proof. We first consider the case that the multiplicity of λ is greater than 1 that

is m ≥ 2. From lemma 2.2 it is deduced that λ is constant and consequently

µ is also constant by using the assumption λ + cµ = 0. Since the covariant

derivatives of λ and µ vanish, then Σ is an isoparametric hypersurface. Due to

Cartan in his work on the classification of isoparametric hypersurfaces with two

distinct principal curvatures [29], it implies that Σ is congruent to the Riemannian

product as the following:

Corollary 4.13. Let m and n −m be the multiplicities of λ and µ respectively

such that m ≥ 2 and n−m ≥ 2, then we have

ei(λ) = ei(µ) = 0, i = 1, ..., n.

and consequently Σ is congruent to the Clifford torus

Sm

(√
1

1 + c

)
× Sn−m

(√
c

1 + c

)
, 2 ≤ m ≤ n− 2.

The second part of the proof concentrates on the case m = 1, in other words,

when one of the principal curvatures is simple. In particular, we want to prove

the following:

Theorem 4.14. Let Σ be a compact embedded hypersurface into Sn+1 where n > 2

with principal curvatures λ 6= µ with multiplicities 1 and n − 1 respectively such

that they are related by the equation

λ+ cµ = 0,

where c > 0. Hence, the functions λ and µ are constant and Σ is congruent to

the Clifford product

S1

(√
1

1 + c

)
× Sn1

(√
c

1 + c

)
.

Proof. We assume that Σ is a compact embedded hypersurface in Sn+1 with

distinct principal curvatures λ and µ with multiplicities 1 and n− 1 respectively

such that

λ1 = λ, λ2 = λ3 = ... = λn = µ

where these curvatures are related by the equation λ + cµ = 0. Let {ei : i =

1, ..., n} be a local orthonormal frame of Σ where the vector e1 is smooth and the

principal direction of λ. Assume that h and ∇ are the second fundamental form

and the Levi-Civita connection of Σ, respectively. The frame {ei} can be chosen
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such that hij is diagonal that is hij = λiδij. We also have that hij,k are totally

symmetric in i, j, k from the Codazzi equations.

In order to obtain some crucial information on the computation of the co-

variant derivatives of h and also of the second derivatives of one of the principal

curvature, we consider the following lemmas:

Lemma 4.15. consider the above assumptions, if i, j, k are distinct, then hij,k = 0

and we also obtain

h11,1 = e1(λ),

hii,1 = e1(µ), i ≥ 2,

hii,j = 0 i ≥ 1, j 6= 1.

(4.23)

Proof. From the definition of the covariant derivatives of hij, we have

hij,kθk = dhij + hijθk + hijθk = dhij + (λi − λj)θij.

If we assume that the components i, j, k are not equal, then hij,k vanish. In other

words, if i, j = 2, ..., n and i 6= j, then λi = λj = µ and thus

hij,kθk = dhij = 0.

where k ≥ 1.

We need now to compute hii,j and hii,i. In the case i = j, we have from the

above definition

hii,k = ek(λi),

for any k that is different from i, j. This implies to

h11,1 = e1(λ), h11,1 = ek(λ) = 0

hii,1 = e1(µ), hii,1 = ek(µ) = 0.

where i, k are greater than 1.

We now want to look at the second derivatives of the principal curvature µ:

Lemma 4.16. Let Σ be a complete hypersurface in Sn+1 with two distinct prin-

cipal curvatures λ and µ with multiplicities 1 and n− 1 respectively, then

∇2µ(e1, e1) =
e1µ(2e1µ− e1λ)

µ− λ
+ (1 + λµ)(µ− λ), (4.24)

∇2µ(ei, ei) =
(e1µ)2

µ− λ
, i ≥ 2. (4.25)
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Proof. By using the equations of Codazzi and Gauss we obtain

∇k∇lhij = ∇k∇ihlj

= ∇i∇khlj +Rp
kilhpj +Rp

kijhlp

= ∇i∇jhlk + hklh
2
ij − hilh2

kj + +gklhij − gilhkj
+ hkjh

2
il − hijh2

kl + gkjhil + gijhkl.

(4.26)

Assuming i = j = 1 and k = l = 2 in (4.26) implies

∇2∇2h11 = ∇1∇1h22 + (1 + λµ)(µ− λ). (4.27)

We need now to compute the terms ∇1∇1h22 and ∇2∇2h11 in the last equation

as follows:

∇1∇1h22 = e1(∇1h22)−∇∇1e1h22 − 2∇1h(e2,∇1e2)

= e1e1µ

= ∇2µ(e1, e1),

(4.28)

and

∇2∇2h11 = e2(∇2h11)−∇∇2e2h11 − 2∇2h(e1,∇2e1)

= −(∇2e2 · e1)∇1λ− 2(∇2e1 · e2)∇1µ

=
e1λe1µ

λ− µ
− 2(e1µ)2

λ− µ
,

(4.29)

note that ∇2h11 vanishes from the previous lemma.

Substituting (4.28) and (4.29) into (4.27) gives the equality (4.24). In the

case i ≥ 2, we obtain the second equation (4.25):

∇2µ(ei, ei) = ei(∇iµ)−∇∇ieiµ =
(e1µ)2

µ− λ

where eiµ = 0. The proof is completed.

Let L be an elliptic differential operator of the form:

L =
n∑

i,j=1

aij(∇ei∇ej −∇eiej),

where the coefficients aij are diagonal and defined as

a = e1 ⊗ e1 +
c

n− 1

2∑
i=1

ei ⊗ ei,
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such that a11 = 1 and aii = c
n−1

for i ≥ 2. It was shown in [17] using the

last lemma that any connected complete hypersurface Σ in Sn+1 with distinct

principal curvatures λ and µ of multiplicity 1 and n−1 respectively is rotationally

symmetric.

One of the main parts of this proof is to derive an analogue of Simon’s identity

[96] for our hyprsurface which is given by the following:

Proposition 4.17. Let Σ be any connected complete hypersurface in Sn+1 with

two principal curvatures λ 6= µ of multiplicity 1 and n− 1, respectively. If λ and

µ satisfy λ = −cµ for some c > 0, then we have

Lλ =
2

1 + c

|∇λ|2

λ
+

1 + c

c
λ(c− λ2). (4.30)

Proof. From the definition of the elliptic operator, we have

Lµ = ∇2µ(e1, e1) +
2∑
i=1

c

n− 1
∇2µ(ei, ei).

Substituting the equations from lemma 4.7 in the last equation and using the

relation λ = −cµ and its derivative e1λ = −ce1µ imply to the required identity.

Another crucial part in the proof of the main theorem in this section is the

application of the non-collapsing method which is recently employed in [23], [12]

and [20]. In particular, the maximum principal argument is applied to a two-point

function. Let x be any point in σ and consider the arguments in [20] and [13] that

are explained in the previous sections, we obtain that the boundary curvature of

a ball B(C, r) ⊂ U centred at C with radius r, touching Σ at a point x is given

by the following inequality:

k(x, y) = 2
〈x− y, ν(x)〉
|x− y|2

≤ 1

r
, ∀y ∈ Σ. (4.31)

Let y0 be a point in Σ such that x 6= y0 and assume that the supremum of k(x, y)

is attained at y0, then we have

k̄(x, y) = sup{k(x, y0) : y0 6= x}.

Such quantity refers to the boundary curvature of the largest ball touching Σ at

points x and y0.

Now we want to show that the boundary curvature k̄ satisfies a differential

inequality in a viscosity sense.
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Proposition 4.18. Let Σ be a compact embedded hypersurface in Sn+1 with dis-

tinct principal curvatures λ and µ of multiplicity 1 and n−1, respectively. Assume

that λ and µ are related by the equation λ+cµ = 0 where c is any positive number.

Then the function k̄ satisfies

Lk̄ ≥ 2(e1k̄)2

k̄ − λ
+

1 + c

c
(c− λ2)k̄, (4.32)

in the viscosity sense on the set Σ̂ = {x : k̄(x) > λ(x)}.

Proof. We begin by illustrating some useful information about the geometry of

Σ. We know that Σ is invariant under the isometric action O(Π⊥) and a subspace

Π ∈ R2 is fixed. Thus, Σ can be given by the rotations O(Π⊥) on a curve C in S2

that arises from the intersection of Σ and a three-dimensional subspace Π̂ where

Π ⊂ Π̂. Note that for any point x in C, Π̂ is spanned by the tangent vector e1(x),

x and ν(x).

Let x0 be a fixed point in Σ̂ and assume that k(x, y) achieves its maximum at

(x0, y0) such that x0 6= y0. We obtain that x0 is in the subspace Π̂ since λ and k are

invariant under the group of rotations O(Π⊥) on Σ. As a result, e1(x0) and ν(x0)

are also belong to Π̂. With respect to the point y0, we note from the touching

ball B(C, r) of Σ at both x0 and y0 that C = x0 − r(x0)ν(x0) = y0 − r(y0)ν(y0).

Also, we know that k̄(x0) ≥ λ(y0) > µ(y0) and any point in Π is written as

q = µ(y0)y0 − ν(y0). These imply that y0 is in Π̂ and hence in the curve C.
Assume that ~w = y0−x0

|y0−x0| and d = |y0 − x0|, then k = 2
d2 〈d~w, ν〉. Let R~w

denote the reflection map of the tangent vectors at x0 across the hyperplane

perpendicular to ~w, so that R~w(u) = u − 2〈u, ~w〉~w. Since the center of the

touching ball B is given by C = x0 − rν(x0) = y0 − rν(y0) ∈ Π, then we have

ν(y0)− ν(x0) = k̄(x0)(y0 − x0),

and consequently R~w is defined as

R~w(ν(x0)) = ν(x0)− 2〈ν(x0), ~w〉~w = ν(x0) + k̄(x0)d~w = ν(y0).

In other words, R~w maps the tangent vectors at x0 isometrically to those at y0.

The main aim of the proof of such proposition is to show that for any smooth

function φ lies above k̄ and is defined on an open region Ω around x0 in Σ̂ satisfies

Lφ|x0 ≥
(

2(e1φ)2

φ− λ
+

1 + c

c
(c− λ2)φ

)∣∣∣
x0

.
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Choose {xi}ni=1 and {yi}ni=1 to be geodesic normal coordinates in the neigh-

bourhood of x0 and y0 respectively such that ∂xi = ∂
∂xi

and ∂yi = ∂
∂yi

refer to the

coordinates of tangent vectors at x0 and y0, respectively. From the assumption

φ(x) ≥ k̄(x) for all x ∈ Ω, we obtain φ(x) ≥ k(x, y) for all y. Note that the

equality holds at (x0, y0). The derivatives of the smooth functions φ and k in the

x- direction are the same, that is ∂φ
∂xi

= ∂k
∂xi

, and k in the y- direction vanishes
∂k
∂yi

= 0 at (x0, y0). We also have for any v ∈ Tx0Σ and w ∈ Ty0Σ

D2φ|x0(v, v) ≥ D2k|(x0,y0)((v, w), (v, w)).

This implies that

Lφ|x0 ≥
n∑

i,j=1

aij(∂xi + ∂yi )(∂xj + ∂yj )|(x0,y0). (4.33)

Now we compute the following at (x0, y0):

aij(∂xj + ∂yj )k =
2

d2
aij
(
(∂xj − ∂

y
j ) · νx − d~w · hpj∂xp + kd~w · (∂xj − ∂

y
j )
)

=
2

d2

(
(∂xj − ∂

y
j ) ·
(
νx + kd~w

)
− dhpj∂xp · ~w

)
.

The second derivatives are given by

n∑
i,j=1

aij(∂xi + ∂yi )(∂xj + ∂yj )k =
2

d2

n∑
i,j=1

aij
(
−∇phxijd~w · ∂xp − 2(hx)pj∂

x
p · (∂

y
i − ∂xi )

+ (hx)pjd~w · (hxpiνx + gpix)

+
(
(hy)pjνy + gijy − (hx)ijνx − gijx

)
· (νx + kd~w)

− k(∂xi − ∂
y
i ) · (∂xj − ∂

y
j ) + 2∂jk(∂xj − ∂

y
j ) · d~w

)
.

Since the first derivatives of φ and k with respect to x are equal, then we

have e1φ = e1k =
2(k−λ)∂x1 ·~w

d
and eik = 0 for i ≥ 2. We note that the first term

of the last equation disappears as aijhxij = aijhyij = 0, ∇aij is off-diagonal and

hij is diagonal in i and j. Recall that hx11 = λ(x), hy11 = λ(y), hxii = µ(x) and

hyii = µ(y) for i ≥ 2. Some identities are observed like −νx · ~w = kd
2

, ~w = −d
2

and

νx = νx + kd~w. We also have aijgij = 1 + c, aijhxjkg
klhxli = λ2 + cµ2 = 1+c

c
λ2.

Moreover, from the reflection map that defined above we obtain ∂yj = ∂xj −2~w·∂xj ~w
and consequently ∂y1 = ∂x1 − e1k

k−λd~w and ∂yj = ∂xj for i ≥ 2.
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By substituting these identities into the last equation, we arrives to the fol-

lowing required inequality

n∑
i,j=1

aij(∂xi + ∂yi )(∂xj + ∂yj )k = −1 + c

c
kλ2 + (1 + c)k + 2

(e1k)2

k − λ

=
1 + c

c
(c− λ2)φ+ +2

(e1φ)2

φ− λ
.

Assuming that ψ = k̄
λ
, it follows from (4.30) and (4.32) that ψ satisfies the

following natural differential inequality in the viscosity sense:

Lemma 4.19. If ψ = k̄
λ

, then ψ satisfies

Lψ ≥ 2(e1ψ)2

ψ − 1
+

2(ψ + 1)

λ(ψ − 1)
e1λe1ψ +

2ψ(cψ + 1)

λ2(1 + c)(ψ − 1)
(e1λ)2

in the viscosity sense on Ω = {x : k̄ > λ}.

Proof. Assume that ξ is a smooth function lies above ψ with equality at x0, thus

φ ≥ k̄ and the equality holds at x0 where φ = λξ. Hence, we have from the

inequality (4.32)

Lφ|x0 ≥
2(e1φ)2

φ− λ
− c+ 1

c
(λ2 − c)φ.

Substituting λξ instead of φ in the last inequality and then differentiating the

function ξ and using the identity (4.30) we obtain

Lξ|x0 ≥
2(e1ξ)

2

ξ − 1
+

2(ξ + 1)

λ(ξ − 1)
e1λe1ξ +

2ξ(cξ + 1)

λ2(1 + c)(ξ − 1)
(e1λ)2.

This implies that ψ = k̄
λ

is a viscosity solution of the last equation.

It is shown next that ψ = 1 and thus k̄ = λ everywhere on Σ by using the

contradiction and the maximum principle arguments.

Corollary 4.20. k̄ and λ are equal at every point of Σ.

Proof. We have k̄ ≥ λ everywhere on Σ. Assume the case k̄ ≥ λ holds at some

point in Ω, then ψ > 1 and equal 1 on the non-empty boundary of Ω. This

implies that ψ has a maximum point on such region. By using the last lemma
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and applying the maximum principle argument we obtain ψ > 1 and constant,

on the other hand ψ = 1 at the point of the largest maximum principle curvature

on Σ. Therefore, it is a contradiction and as a result k̄ = λ at every point of

Σ.

Finally we complete the proof by showing that e1λ = 0 everywhere on Σ by

using Similar arguments as in [23]. Let η be a curve in Σ such that η(0) = x0.

Since k̄ = λ for any x ∈ η, then k(x, η(t)) ≤ λ(x). Therefore,

f(t) = λ(x)|x− η(t)|2 − 2ν(x) · (x− η(t)),

where f(t) ≥ 0. The first derivative of f(t) gives

f ′(t) = 2(ν(x)− λ(x)(x− η(t)) · η′(t).

The second derivative implies

f ′′(t) = −2(ν(x)− λ(x)(x− η(t)) · (λη(t)νη(t) + η(t)) + 2λ(x)|η′(t)|2.

Note that f(t) = f ′(t) = f ′′(t) = 0 at t = 0, thus f ′′′(t) also vanishes at t = 0

and consequently we have

f ′′′(0) = −2e1λ(x) = 0.

Since Σ is a rotational hypersurface, then λ(x) is constant everywhere on Σ. By

the relation λ+cµ = 0, we obtain that µ is also constant and hence Σ is congruent

to the Clifford torus. This completes the proof.

We now arrive at the proof of Theorem 4.12 by combining the results of

Theorem 4.14 and Corollary 4.13.

The main tool in the previous results of this chapter is mainly based on utiliz-

ing the non-collapsing technique. Such technique can be extended and applied in

various contexts. One of the interesting applications of the non-collapsing method

is a more recent work of S. Brendle [24] on embedded Weingarten tori in S3. By

modifying such approach to a specific class of Weingarten surfaces in S3 satisfying

a linear equation of its principal curvatures under certain structure conditions,

Brendle showed that such surface is a surface of rotation. In particular, he proved

the following:
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Theorem 4.21. S. Brendle [24]] Let F: Σ→ S3 be an embedded surface of genus

1 and has two principal curvatures λ and µ such that λ + µ = Φ(λ − µ) where

λ ≥ µ. Assume that Φ(t) is an even function satisfying 0 ≤ tΦ′(t) < min{Φ(t), t}
and 0 ≤ tΦ′′(t) < 1 − Φ′(t)2, where t = λ − µ. Then F (Σ) must be a surface of

rotation.

Moreover, the proof of the Lawson’s conjecture can be modified and applied

in various contexts. In the next chapter, this method will be extended to a more

general class of Weingarten hypersurfaces in higher dimensions.



Chapter 5

Uniqueness of a Class of

Weingarten Hypersurfaces in

Spheres

In Section 4.3, we described the work of B. Andrews, Z. Huang and H. Li [17]

on the uniqueness of solutions of a particular family of Weingarten equations

for hypersurfaces of Sn+1. In this chapter, we present the first main result of

the thesis in which uniqueness results are proved for a much larger class of em-

bedded Weingarten hypersurfaces. We assume that this hypersurface satisfies a

partial differential equation (PDE) of distinct principal curvatures λ and µ with

multiplicities m and n −m, respectively. Moreover, we impose some additional

structure conditions on this PDE. As a result, we deduce that λ and µ are both

constant and consequently our hypersurface is congruent to a Clifford torus.

The proof of this result involves the application of the maximum principle to

a two-point function that is defined on our class of embedded Weingarten hy-

persurfaces of Sn+1. More precisely, we define a quantity that characterises the

curvature of the largest ball in the enclosed region which touches the hypersurface

at a given point. Then, we show that this inscribed ball curvature of these hy-

persurfaces satisfies a natural differential inequality in a viscosity sense, allowing

the application of maximum principles.

The method of non-collapsing is a powerful tool that is applied in various

contexts such as in [23], [20], [12] and [17], see also the previous chapters. In

particular, such approach is the key ingredient of both Brendle’s argument [23]

proving the Lawson conjecture on embedded minimal tori in S3, and of the work of

B. Andrews and H. Li [20] confirming the conjecture of U. Pinkall and I. Sterling

91
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[88] on embedded constant mean curvature (CMC) tori in S3. Another interesting

application of the non-collapsing method is the more recent work of S. Brendle

[24] on a specific class of embedded Weingarten tori in S3 that satisfies a lin-

ear equation of its principal curvatures under certain structure conditions, see

Theorem 4.21.

Our purpose in this chapter is to apply the non-collapsing technique to a

larger class of embedded Weingarten hypersurfaces Σn with two distinct principal

curvatures λ and µ at each point of Σn in Sn+1. In particular, we assume that

this hypersurface satisfying the following form of PDE:

G(λ, µ) = λ+ µ− Φ(λ− µ), λ > µ (5.1)

where G(λ, µ) is a symmetric function of the principal curvatures. Also, further

assumptions on G(λ, µ) are imposed as follows:

• ∂G
∂λ

, ∂G
∂µ

, ∂G
∂λ
λ and ∂G

∂µ
µ are positive when G(λ, µ) = 0.

• The set {(λ, µ) : G(λ, µ) ≥ 0} is convex.

• The following inequality

−∂
2G

∂λ2

(
∂G

∂µ

)2

+2
∂2G

∂λ∂µ

∂G

∂λ

∂G

∂µ
− ∂

2G

∂µ2

(
∂G

∂λ

)2

≤ 2

λ− µ
∂G

∂λ

∂G

∂µ

(
∂G

∂λ
+
∂G

∂µ

)
holds, when G(λ, µ) = 0.

Precisely, our aim is to prove the below theorem:

Theorem 5.1. Let F : Σ → Sn+1 be a compact embedded hypersurface with

principal curvatures λ and µ, where λ > µ. Assume that these principal cur-

vatures λ and µ have multiplicities m and n − m respectively and satisfy the

relation (5.1). Also, suppose that Φ(t) is a function satisfying the conditions:

0 ≤ tΦ′(t) < min{Φ(t), t} and 0 ≤ tΦ′′(t) < 1− Φ′(t)2, where t = λ− µ. Then λ

and µ are constant and Σ is congruent to the Clifford torus.

In order to clarify the proof of Theorem 5.1, we begin in Section 5.1 by illus-

trating some geometric concepts of embedded Weingarten hypersurfaces of Sn+1

assuming a condition on the multiplicity of the principal curvatures. Also, under

these assumptions we show that this class of hypersurfaces is rotationally sym-

metric. In Section 5.2, we derive an identity analogous to Simons’ identity for

the maximum principal curvature for our class of hypersurfaces in the proposed
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setting. In Section 5.3, we deduce that the boundary curvature of the largest

touching ball inscribed in the hypersurface satisfies a differential inequality in the

viscosity sense using the maximum principle argument. In the final section, we

deduce the equality of the maximum principal curvature and the inscribed ball

curvature everywhere on Σ by combining the previous two results. This equality

enables us to deduce that the principal curvatures are constant and then yields

the result of our theorem.

5.1 Weingarten hypersurfaces in Sn+1

In this section, we describe some basic concepts of the geometry of embedded

hypersurfaces satisfying an equation that relates their two distinct principal cur-

vatures in Sn+1. Let F : Σn → Sn+1 be an isometric immersion of n-dimensional

hypersurfaces Σ into Sn+1. We assume that Σ is a compact hypersurface and h is

its second fundamental form. Also, we suppose that Σ has two distinct principal

curvatures λ and µ with multiplicities m and n−m respectively such that

λ1 = ... = λm = λ, λm+1 = ... = λn = µ.

Moreover, we consider an arbitrary point x0 of Σ such that x0 ∈ U ⊂ Σ

where U is a neighbourhood of x0. Let the tangent space of the hypersurface at

x0 be denoted by Tx0(Σ) which is a subspace of the tangent space Tx0Sn+1 of the

ambient space Sn+1 at the same point. Note that the vectors in Tx0Sn+1 that are

orthogonal to Tx0Σ with respect to the Riemannian metric g are defined as the

normal space Nx0Σ.

The following convention on the range of indices is used throughout this chap-

ter

1 ≤ a, b, c, ... ≤ n+ 1, 1 ≤ i, j, k, ... ≤ n.

Let {ea} be a local orthonormal frame field around any point x0 in U such that

{ei} ∈ Tx0(U ) and en+1 = ν ∈ Nx0(Σ), where ν is a positively oriented unit

normal vector. Assume that {ωa} is the corresponding dual coframe of {ea}
on Sn+1. Associated with such frame, there are 1-forms {ωab} representing the

connection on Sn+1.

The structure equations of Sn+1 are determined as follows:

dωa = ωab ∧ ωb, ωab = −ωba,

and

dωab = ωac ∧ ωcb +
1

2
Qabcdωc ∧ ωd,
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where Qabcd refers to the components of the curvature tensor of Sn+1. If {θa}
and {θab} are the restriction of {ωa} and {ωab} to Σ respectively, then we have

θn+1 = 0 and its exterior derivative is given by

dθn+1 = −θn+1i ∧ θi = 0.

From Cartan’s lemma, we obtain the following:

θn+1i = hijθj,

where the second fundamental form hij is a symmetric bilinear form with compo-

nents i and j. Since it is symmetric, then we can write hij = hji. We also assume

that hij is diagonal by choosing the orthonormal frame {ei} such that hij = λiδij.

The covariant derivative of hij in the direction of ek is defined as

hij,kθk = dhij + hkjθki + hikθkj. (5.2)

Also, the Codazzi equation is given by

hij,k = hik,j.

Therefore, hij,k is totally symmetric in i, j and k.

We now deduce the structure equations of Σ from the previous structure

equations of Sn+1 as follows:

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0,

and

dωij =
n∑
k=1

ωik ∧ ωkj +
1

2

n∑
k,l=1

Rijklωk ∧ ωl,

where Rijkl refers to the components of curvature tensor of Σ. Thus, the Gauss

equation is defined by

Rijkl = δikδjl − δilδjk + (hikhjl − hilhjk), (5.3)

that is also given by

Riqjq = (λiλq + 1)(δij − δiqδjq).

In this chapter, we define an elliptic operator L by

L = aij(∂xi + ∂yi )(∂xj + ∂yj ),
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where

aij =


β1 = ∂G

∂λ
, i = j = 1

0, i 6= j

β2 = ∂G
∂µ
, i = j > 1.

Note that ∂xi and ∂xj are the partial derivatives in the direction of ei and ej at

the point x respectively. Similarly, ∂yi and ∂yj are the partial derivatives in the

direction of ei and ej respectively but at the point y.

In order to prove Theorem 5.1 we first consider the case m ≥ 2. In this case

we show that the derivative of λ in the direction of ei vanishes for all i = 1, ...,m

as follows:

Lemma 5.2. Let {ei} be a local orthonormal frame and assume that the multi-

plicity of λ is greater than one, then we have

ei(λ) = 0, ∀i = 1, ...,m.

Proof. From the definition (5.2) of the covariant derivative of hij, and the Codazzi

equation, we get

hij,kθk = dhij − (λj − λi)θij.

If we consider that i 6= j and λi = λj, then hij = 0 (since hij is diagonal)

and hence hij,k = 0. However, if i = j, we get hii,kθk = dhii which implies that

hii,k = ek(λi). In the last case, we take m = 2, ..., n and i, j = 1, ...,m such that

i 6= j, then we have

λi = λj = λ, ei(λj) = hjj,i = hij,j = 0.

This implies ei(λ) = 0 for i = 1, ...,m as required.

It follows from the previous lemma and the relation (5.1) that eiµ = 0 for all

i = 1, ..., n where the multiplicity of µ is greater than 1. Note that λ = −cµ is a

special class of the relation (5.1). Hence, since Σ is an isoparametric hypersurface

with λ and µ are constant, then Σ is congruent to the Clifford torus as follows:

Corollary 5.3. Let Σ be a compact embedded hypersurface into Sn+1 with two

distinct principal curvatures λ and µ of multiplicities m and n−m greater than

two respectively. Consider that λ and µ satisfy the equation (5.1). Therefore

eiλ = eiµ = 0, i = 1, ...,m,

and Σ is congruent to the Clifford torus.
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From now we will focus on the case where the multiplicity of one of principal

curvatures is one. We assume that Σ is an n-dimensional hypersurface that is

embedded in Sn+1 with λ 6= µ of multiplicity 1 and n− 1 respectively satisfying

the relation (5.1). In order to find the derivatives of λ and µ in the e1-direction,

it is useful to consider the below lemma about the covariant derivatives of the

second fundamental form h.

Lemma 5.4. Let {ei} be a local orthonormal frame where hij are diagonal, then

hijk are symmetric in i, j, k and

h11,1 = λ,1, hii,1 = µ,1, i > 1.

Also hij,k = 0, for i, j, k are distinct and hii,j = 0, for i ≥ 1, j 6= 1.

Proof. The proof of this lemma relies on the covariant derivative of the second

fundamental form (5.2) and the Codazzi equation. In particular, we know from

the Codazzi equation that hij,k is totally symmetric, that is hij,k = hik,j. Using

the identity (5.2), we obtain

hij,kθk = dhij + (λi − λj)θij.

Assume that i, j, k are distinct, then λi = λj = µ and the last equality becomes

hij,k = dhij. Since hij is diagonal, then hij = 0 and therefore hij,k = 0 for any k.

In order to find hii,k, take i = j, then we have

hii,k = ek(λi).

Hence, we get

h11,j = ej(λ) = 0 hii,j = ej(µ) = 0

h11,1 = e1(λ) hii,1 = e1(µ),

where i, j are greater than 1.

We want now to show that the hypersurface Σ we are considering in this

chapter is rotationally symmetric.

Proposition 5.5 (B. Andrews, Z. Huang and H. Li [17]). Let F : Σn → Sn+1 be

a connected complete hypersurface with two distinct principal curvatures λ and µ

of multiplicity 1 and n − 1 respectively. Hence, Σ is a rotation hypersurface. In

other words, Σ is invariant under the group of rotations fixing a two-dimensional

subspace of Rn+2.
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Proof. We first need to obtain the first and second derivatives of µ with respect

to ei. We start by using the covariant derivative of the second fundamental form

(5.2):

ek(h(ei, ej)) = ∇khij + h(∇kei, ej) + h(ei,∇kej).

As we assume that hij = λiδij and use the identity g(∇kei, ej) = −g(ei,∇kej),

then we have for i 6= j

0 = ∇khij + λj∇kei · ej + λiei · ∇kej,

which is equivalent to

∇khij = ∇kei · ej(λi − λj).

Taking i = 1 and j, k ≥ 2 implies

∇1hjk
(λi − λj)

= ∇ke1 · ej.

Such identity becomes
∇1µ

(λ− µ)
= ∇ke1 · ej,

where j = k. However, if j 6= k, then ∇1hjk = 0.

We want now to deduce an equation for the second derivative of µ, analogous

to Simons’ identity for minimal hypersurfaces [96]. It follows from the Gauss and

Codazzi equations that

∇i∇jhkl = ∇i∇khjl

= ∇k∇ihjl +Rq
ikjhql +Rq

iklhjq

= ∇k∇lhij + hijh
2
kl − hjkh2

il + hilh
2
jk − hklh2

ij

+gijhkl − gjkhil + gilhjk − gklhij.

Assuming that i = j = 2 and k = l = 1, then we obtain the following commutator

identity

∇2∇2h11 = ∇1∇1h22 + (λµ+ 1)(λ− µ).

By computing ∇1∇1h22, we have

∇1∇1h22 = ∇1(∇1h22)−∇∇1e1h22 − 2∇1h(e2,∇1e2)

= ∇2µ(e1, e1),
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and ∇2∇2h11, we get

∇2∇2h11 = ∇2(∇2h11)−∇∇2e2h11 − 2∇2h(e1,∇2e1)

= −e1λ(∇2e2.e1)− 2e1µ(∇2e1.e2)

=
e1λe1µ

λ− µ
− 2

(e1µ)2

λ− µ
.

Substituting the last two equations into the above commutator identity gives the

second derivative of µ with respect to e1

∇2µ(e1, e1) =
e1µ(e1λ− 2e1µ)

λ− µ
− (λ− µ)(1 + λµ). (5.4)

Moreover, the second derivative of µ with respect to ei is given by

∇2µ(ei, ei) = ei(∇iµ)−∇∇ieiµ = −(e1µ)2

λ− µ
, (5.5)

where eiµ = 0 (i ≥ 2) from lemma (5.2).

We next consider a plane Π at each point of Σ which is defined as the span

of vectors p and q where

p = µx− ν q = (e1µ)x− (λ− µ)e1.

Computing the first derivatives of both p and q in the direction of e1 implying to

e1p = q,

and

e1q = λ(µ− λ)p+
e1λ− 2e1µ

λ− µ
q

+
(
∇2µ(e1, e1)− e1µ(e1λ− 2e1µ)

λ− µ
+ (λ− µ)(1 + λµ)

)
x.

While, in the ei-direction (i = 2, ..., n) we get

eip = eiq = 0.

Note that the last term of the above derivative e1q vanishes from the deduced

identity (5.4), this implies that the derivatives of p and q belong to Π. We also

have that Π is constant since Σ is connected.
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Finally, let the tangent space to Sn−1 is expressed by the group of rotations

O(Π⊥) at each point x of Σ. Since O(Π⊥) is orthogonal to x, p and q, then this

group of action is also orthogonal to x, ν and e1 and implying to the coincidence of

the tangent space with the span of e1, ..., en−1. Hence, the orbit of action O(Π⊥)

is tangent to Σ at each point x and Σ is invariant under such group. Therefore,

Σ is a rotation hypersurface.

5.2 Simons’ identity for the maximum principal

curvature

In this section, a Simons-type identity [96] is deduced for our defined class of

hypersurfaces. More precisely, our object here is to show the following result:

Proposition 5.6. Let Σ be a compact hypersurface that is embedded in Sn+1 with

two distinct principal curvatures λ and µ of multiplicities 1 and n−1 respectively

and satisfies the relation (5.1). Then we have

Lλ = −

(
2

(β1 − β2)β2
1

(2λ− Φ)β2
2

− 4
Φ′′

β2
2

)
(e1λ)2 − β2

((
Φ− λ

)(
λ(Φ− 2λ) + 1

)
− λ
)
,

where β1 = 1 − Φ′, β2 = 1 + Φ′ and the function Φ is restricted by the above

assumptions.

Proof. Let Σ be a compact embedded hypersurface in Sn+1 with second funda-

mental form h and two distinct principal curvatures λ and µ. Choose the set

{ei : i = 1, ..., n} to be an orthonormal frame for TU , where U is a neighbour-

hood of any point x on Σ.

Differentiating the equation (5.1) gives

n∑
i=1

∇iµ = −β1

β2

n∑
i=1

∇iλ, (5.6)

where β1 = 1−Φ′ and β2 = 1 + Φ′. The second derivative of the identity (5.1) is

given by

β2∇i∇iµ+ β1∇i∇iλ− Φ′′|λ−µ(∇iλ−∇iµ)2 = 0. (5.7)

Now, we use the following equation that relates the second covariant deriva-

tives of h to the Hessian of the function λk which is

n∑
i,k=1

∇i∇iλk = ∇i∇ihkk − (−1)k
2

λ1 − λ2

(∇ih12)2. (5.8)
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In the case k = 1 where λ1 = λ, we obtain

∇i∇iλ = ∇i∇ih11 +
2

λ1 − λ2

(∇ih12)2,

while if k > 1 such that λk = µ, we have

∇i∇iµ = ∇i∇ihkk − (−1)k
2

λ1 − λ2

(∇ih12)2.

Substituting the last two equations into (5.7) yields

β2∇i∇ihkk+β1∇i∇ih11 +2
β1 − β2

(λ− µ)
(∇ih12)2−Φ′′|λ−µ

n∑
i=1

(∇iλ−∇iµ)2 = 0. (5.9)

The next step is to use the following commutator identity

n∑
i,k=1

(∇i∇ihkk −∇k∇khii) = (λ2
k − 1)λi − λk(λ2

i − 1),

Taking k = 1, we have

∇i∇ih11 −∇1∇1hii = (λ2
1 − 1)λi − λ1(λ2

i − 1),

and k ≥ 2 implies

∇i∇ihkk −∇k∇khii = (λ2
k − 1)λi − λk(λ2

i − 1).

Also, substituting the last two equations into (5.9) gives

β2∇k∇khii + β1∇1∇1hii

+ β2(µ2 − 1)λi − β2µ(λ2
i − 1) + β1(λ2 − 1)λi − β1λ(λ2

i − 1)

+ 2
β1 − β2

λ− µ
(∇ih12)2 − Φ′′|λ−µ(∇iλ−∇iµ)2 = 0.

Now we use again the relation (5.8) and obtain the following

β2∇k∇kλi + β1∇1∇1λi

+ β2(µ2 − 1)λi − β2µ(λ2
i − 1) + β1(λ2 − 1)λi − β1λ(λ2

i − 1)

+ 2
(−1)i

λ− µ
(
β1(∇1h12)2 + β2(∇kh12)2

)
+ 2

β1 − β2

λ− µ
(∇ih12)2 − Φ′′|λ−µ(∇iλ−∇iµ)2 = 0.
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We know from Lemma 5.4 that ∇1h12 = 0 and ∇kh12 = ∇1µ where k ≥ 2.

Moreover, we replace the terms β2

∑n
k=2∇2

k,kλ+β1∇2
1,1λ by Lλ and choose i = 1.

Hence, we arrive to

Lλ− 2
β2

λ− µ
(e1µ)2 − Φ′′(e1λ− e1µ)2 − β2(λ− µ)(µλ+ 1) = 0.

Finally, substituting the identities (5.1) and (5.6) into the last equality, we

deduce that

Lλ−

(
2β2

1β2

(2λ− Φ)β2
2

+
(β1 + β2)2

β2
2

Φ′′

)
(e1λ)2−β2

(
2λ−Φ

)(
Φλ−λ2 +1

)
= 0. (5.10)

This equality confirms our proposition.

5.3 Interior ball curvature and non-collapsing

technique

This section involves the application of non-collapsing argument for the class of

Weingarten hypersurfaces we are considering above in this chapter satisfying the

curvature relation (5.1). More precisely, we derive a function that characterises

the curvature of the largest ball in the enclosed region which touches the hyper-

surface at a given point. Then, we show that this inscribed ball curvature of

these hypersurfaces satisfies a natural differential inequality in a viscosity sense

by applying the maximum principle argument.

For convenience, we begin by illustrating the geometric picture of this function

that refers to the interior ball curvature. Let F : Σ → Sn+1 be a compact

embedded hypersurface which has two distinct principal curvatures λ and µ of

multiplicities 1 and n − 1, respectively. Assume that Σ satisfies the relation

λ + µ = Φ(λ − µ). Let U be the enclosed region by Σ in Sn+1 and choose the

direction of the unit normal vector ν of Σ pointing out of U in such a way that

λ > 0 > µ everywhere. For any two distinct points x, y ∈ Σ, there exists a ball

Br(c) of center c = x− rν(x) and radius r with the boundary curvature Γ in the



102 CHAPTER 5. WEINGARTEN HYPERSURFACES IN SPHERES

region U which touches Σ at x. This is equivalent to the following:

B = Br(c) ⊂ Σ ⇐⇒ U ⊂ (Br(c))
c,

⇐⇒ |y − c|2 ≥ r2, ∀y ∈ Σ, r > 0;

⇐⇒ |y − x+ rν(x)|2 ≥ r2;

⇐⇒ |y − x|2 + 2r〈y − x, ν(x)〉+ |rν(x)|2 ≥ r2;

⇐⇒ |y − x|2 + 2r〈y − x, ν(x)〉 ≥ 0;

⇐⇒ 2〈x− y, ν(x)〉
|y − x|2

≤ 1

r
;

⇐⇒ k(x, y) =
2〈x− y, ν(x)〉
|y − x|2

≤ Γ, ∀y ∈ Σ;

where ν is the unit normal vector at x. The largest ball in U that touches Σ

at x has boundary curvature that is denoted by k̄(x). In other words, if the

supremum is attained at some point y0 such that y0 6= x, then there exists a ball

B of boundary curvature k̄(x) contained in Σ that touches at x and y0, where

the center c = x − k̄−1(x)ν(x) and r is the radius of B. Hence, we define the

inscribed ball curvature k̄(x) by

k̄(x) = sup

{
2〈x− y, ν(x)〉
|y − x|2

: y 6= x

}
.

We now want to show that such interior ball curvature k̄ is a viscosity solution

of a differential inequality as follows:

Proposition 5.7. Let F : Σn → Sn+1 be an embedded hypersurface with two

distinct principal curvatures λ > µ of multiplicity 1 and n-1 respectively, satisfying

the relation (5.1). Define the set Σ̃ = {x : k̄(x) > λ(x)}. Then k̄ satisfies

Lk̄ − 2β1

(k̄ − λ)
(e1k̄)2 −

(
β1(1− λ2) + β2(1− (Φ− λ)2)

)
k̄ > 0,

over Σ̃ in a viscosity sense.

Proof. It is useful to start the proof by clarifying the geometry of our setting.

Assume that x0 ∈ Σ̃ and k(x, y) attains its maximum at y0 that is k(x0, y0) =

k̄(x0) such that x0 6= y0. Since Σ lies outside the ball of radius r = 1
k̄

and center

c = x− rν, then both x0 and y0 lie on the boundary of such ball. Hence, we have

c = x0 − k̄(x0)−1ν(x0) = y0 − k̄(x0)−1ν(y0) and thus we obtain the identity

ν(y0) = ν(x0) + k̄(x0)(y0 − x0).
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Also, note that the tangent spaces of the hypersurface at x0 and y0 agree with

the tangent spaces of the boundary sphere.

Since the sphere is symmetric, then the tangent spaces at x0 and y0 are related

by a reflection map. In particular, let ~w = y0−x0

‖y0−x0‖ be the unit vector from x0 to

y0 and d = ‖y0− x0‖, then Tx0Σ and Ty0Σ are related by the reflection R~w in the

hyperplane that is orthogonal to ~w:

R~w(ν) = ν − 2(~w, ν)~w.

In other words, such reflection function takes tangent vectors at x0 to tangent

vectors at y0 and the normal vector ν(x0) to the normal vector ν(y0).

In order to show that k̄ satisfies the differential inequality in the viscosity

sense, we consider a smooth function φ defined on a neighbourhood Ω of x0 in

Σ̃, where φ(x) ≥ k̄(x) for x close to x0 and equality holds at x0. Thus, from the

definition of k̄ we also have φ(x) ≥ k(x, y) for all (x, y) ∈ Σ with x near x0. We

now want to prove that φ satisfies the following differential inequality

Lφ|x0
> 2β1

(e1φ)2

(φ− λ)
+
(
β1(1− λ2) + β2(1− (Φ− λ)2)

)
φ.

Let {xi}ni=1 and {yi}ni=1 be geodesic normal coordinates for Σ around x0 and

y0 respectively. Since x0 6= y0 such that φ(x0) = k(x0, y0) and

φ(x) ≥ k̄(x) ≥ k(x, y),

for all x ∈ Ω, the first derivatives must satisfy ∂φ
∂xi

> ∂k
∂xi

(with equality holding

at (x0, y0)) and ∂k
∂yi

= 0. Moreover, the second derivatives are given by

∆φ|x0
(u, u) > ∆k|(x0,y0)((u, v), (u, v)),

where u and v are tangent vectors of Σ at x0 and y0, respectively. Therefore, we

obtain

Lφ|x0
> Lk(x, y)|(x0,y0). (5.11)

In this step, our aim is to compute the term Lk at (x0, y0) that is given by

Lk = aij(∂xi + ∂yi )(∂xj + ∂yj )k,

which we write as follows (see Section 5.1 for the definition of the operator L):

Lk|(x0,y0) =
n∑
i=1

aii(∂xi + ∂yi )2k(x, y)|(x0,y0).
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The first derivative of k can be computed as the following:

(∂xi + ∂yi )k|(x0,y0) = (∂xi + ∂xi )

(
2〈x− y, ν(x)〉
|y − x|2

)
=

2

d2

(
(∂xi − ∂xi ) · νx − (y − x)[(hx)pi ∂

x
p − k(∂xi − ∂

y
i )]

)
=

2

d2

(
(∂xi + ∂xi ) · (νx + kd~w)− d(hx)pi ∂

x
p · ~w

)
.

Note that the derivatives of k in the direction of x with respect to e1 is given by

e1φ = e1k =
2(k − λ)∂x1 · ~w

d
,

and with respect to ei is eik = 0 where i ≥ 2, while the derivatives of k in the

direction of y vanish.

We now differentiate the first derivatives of k again and multiply by aii and

then take the sum of i in order to obtain the second derivative inequality as

follows:

Lk =
n∑
i=1

aii(∂xi + ∂yi )2k

=
2

d2
aii
(

(−∇p(hii)d~w · ∂xp )− 2(hx)pi ∂
x
p (∂yi − ∂xi )

+(hx)pi d~w(hxpivx + gxpi)

+(vx + kd~w) · (−hxiivx − gxii + hyiivy + gyii)

−k(∂xi + ∂yi )2 + 2∂ik(∂xi + ∂yi ) · d~w
)
.

We have the following useful identities:

aijgij = β1 + β2,

aijhxikg
klhxlj = λ2β1 + µ2β2,

a11hx1kg
klhxl1 = λ2β1,

aiihxikg
klhxli = µ2β2.

Substituting the previous identities into Lk gives

Lk = 2β1
(e1k)2

(k − λ)
− k[β1(λ2 − 1) + β2(µ2 − 1)]. (5.12)
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We now substitute the last equation (5.12) into (5.11) to obtain the following

inequality:

Lφ|x0
> 2β1

(e1φ)2

(φ− λ)
+ [β1(1− λ2) + β2(1− (Φ− λ)2)

]
φ.

Thus, we arrive to the required inequality:

Lk̄|x0
> 2β1

(e1k̄)2

(k̄ − λ)
− k̄
(
β1(λ2 − 1) + β2((Φ− λ)2 − 1)

)
. (5.13)

This completes the proof.

5.4 Equality of maximum principal curvature

and inscribed ball curvature

In this final section, we complete the proof of the Theorem 5.1 by considering

Corollary 5.3 and providing the proof of following theorem:

Theorem 5.8. Let Σ be a compact embedded hypersurface into Sn+1 with two

principal curvatures λ 6= µ of multiplicities 1 and n − 1 respectively satisfying

the relation (5.1). Assume that the functions Φ and Φ′ satisfy the conditions of

Theorem 5.1. Then the principal curvatures are constant and thus Σ is congruent

to the Clifford torus.

Proof. In order to show this theorem, we first want to show the next result that

arises from combining Propositions 5.6 and 5.7 as follows:

Lemma 5.9. If f = κ̄
λ

, then we deduce that f satisfies the following inequality

Lf − 2β1

f − 1
(e1f)2 − 2(1− f) + 4β1f

λ(f − 1)
e1f · e1λ

+

(
2β2

1β2f

β2
2(2λ− Φ)λ

− 2β1f
2

(f − 1)λ2
+

4fΦ′′

β2
2λ

)
(e1λ)2

−(1− λ2)f

λ

(
β2(Φ− λ) + β1λ

)
≥ 0.

in the viscosity sense on the set V = {f ≥ 1} in Σ.
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Proof. Consider the function f = κ̄
λ

and assume that ψ is a smooth function such

that ψ ≥ f and the equality holds at some point x0. By Proposition 5.7, we have

Lφ− 2β1
(e1φ)2

(φ− λ)
−
(
β1(1− λ2) + β2

(
1− (Φ− λ)2

))
φ
∣∣∣
x0

≥ 0.

Since φ ≥ k̄ with equality at x0, then we have φ = λψ. Differentiating this

equation implies to

e1φ = (e1ψ)λ+ (e1λ)ψ.

Also, we obtain

Lφ = (Lψ)λ+ 2e1ψe1λ+ (Lλ)ψ.

Substituting these equations into the previous inequality gives

Lψ − 2β1

ψ − 1
(e1ψ)2 − 2(1− ψ) + 4β1ψ

λ(ψ − 1)
e1ψ · e1λ

+

(
2β2

1β2ψ

β2
2(2λ− Φ)λ

− 2β1ψ
2

(ψ − 1)λ2
+

4ψΦ′′

β2
2λ

)
(e1λ)2

−(1− λ2)ψ

λ

(
β2(Φ− λ) + β1λ

)∣∣∣
x0

≥ 0.

By combining the first and second terms of the coefficient of (e1λ)2, we deduce

the following:

Lψ − 2β1

ψ − 1
(e1ψ)2 − 2(1− ψ) + 4β1ψ

λ(ψ − 1)
e1ψ · e1λ

+

(
4ψΦ′′

β2
2λ
− 2β1β2ψ

ψ
(
β2(2λ− Φ)− λ

)
+ β1λ

β2
2(2λ− Φ)λ2(ψ − 1)

)
(e1λ)2

−(1− λ2)ψ

λ

(
β2(Φ− λ) + β1λ

)∣∣∣
x0

≥ 0.

In order to estimate the coefficient of (e1λ)2, we use the inequality (2λ −
Φ)Φ′′ ≤ β1β2 and thus arrive at

4ψΦ′′

β2
2λ
− 2β1β2ψ

ψ
(
β2(2λ− Φ)− λ

)
+ β1λ

β2
2(2λ− Φ)λ2(ψ − 1)

≤
2(β1 + β2)β1β2ψλ(ψ − 1)− 2β1β2ψ

(
ψ
(
β2(2λ− Φ)− λ

)
+ β1λ

)
β2

2(2λ− Φ)λ2(ψ − 1)

=
−2β1β2ψ

β2
2(2λ− Φ)λ2(ψ − 1)

(
(1 + β1)(2− ψ)λ− β2ψµ

)
≤ 0.
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Hence, we obtain

Lψ − 2β1

ψ − 1
(e1ψ)2 − 2(1− ψ) + 4β1ψ

λ(ψ − 1)
e1ψ · e1λ

−
2β1β2ψ

(
(1 + β1)(2− ψ)λ− β2ψµ

)
β2

2(2λ− Φ)λ2(ψ − 1)
(e1λ)2

−(1− λ2)ψ

λ

(
β2(Φ− λ) + β1λ

)∣∣∣
x0

≥ 0.

This confirms the lemma.

Besides the above lemma, we need to show the following:

Corollary 5.10. The equality of k̄ and λ holds everywhere on Σ.

Proof. To prove that k̄ = λ everywhere on Σ we use a contradiction argument.

The boundary curvature of the largest ball k̄ and the maximum principal curva-

ture λ satisfy the inequality k̄ ≥ λ everywhere on Σ . Assume that we have a

point such that k̄ > λ. Therefore, f = k̄
λ
> 1 on the open set V and f = 1 on the

boundary of V if it is non-empty. On the other hand, we have that f is a constant

larger than one by considering Lemma 5.9 and the strong maximum principle ar-

gument for viscosity solutions of uniformly elliptic equations [27]. However, since

k̄ = λ at the point of the largest maximum principle curvature on the hypersur-

face, then we have f = 1, This contradicts our assumption and hence k̄ = λ for

all points in Σ.

We now want to prove that λ is constant by applying Brendle’s argument [23].

We assume that α(s) is a geodesic with a parameter s on Σ such that α(0) = xo

and α′(0) = e1 for any point x0 ∈ Σ. Since k̄ = λ, then we have the inequality

k(x0, α(s)) ≤ λ(x). This can be written as

k(x0, α(s)) = Z(s) = λ(x0)|x0 − α(s)|2 − 2ν(x0) · (x0 − α(s)) ≥ 0,

where Z(s) is a non-negative function and Z(0) = 0.

We then compute the first derivative of Z

Z ′(s) = 2(−λ(x0)(x0 − α(s)) + ν(x0)) · α′(s),

we also have Z ′(0) = 0. Differentiating again yields

Z ′′(s) = −2(λα(s)να(s) + α(s)) · (−λ(x0)(x0 − α(s)) + 2λ(x0)|α′(s)|2.
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We then obtain that Z ′′(0) vanishes. Finally, we have Z ′′′(0) = 0 since Z(s) is

non-negative. Therefore, we deduce that −2e1λ(x0) = 0. As we choose x0 to be

an arbitrary point in α and since Σ is a rotation hypersurface (Proposition 5.5),

then λ is constant. Consequently, µ is also constant by using the relation (5.1).

We conclude that Σ is congruent to the Clifford torus.



Chapter 6

Non-collapsing of Spacelike MCF

in Minkowski Space

The study of behavior and properties of embedded spacelike hypersurfaces into

a Lorentzian manifold has attracted considerable interest among various aspects

in mathematics and physics in recent years, see [46], [40], [39], [42], and [75]. It

has been shown that distinct problems of the relativity theory are significantly

connected to Lorentz-Minkowski space. From the physics perspective, Einstein’s

theory of general relativity is formulated in the setting of a 4-dimensional smooth

manifold equipped with a Lorentzian metric.

In this chapter, we present the second main objective of the thesis con-

cerning the flow of spacelike hypersurfaces evolving by their mean curvature in

Lorentzian-Minkowski space Ln,1. In particular, we extend the above result of

B. Andrews [12] for compact embedded mean convex hypersurfaces in Rn+1 (see

section 3.2) to embedded mean convex spacelike hypersurfaces evolving by the

MCF in Ln,1. Specifically, we derive a non-collapsing estimate for our spacelike

hypersurfaces by utilizing the generalized Omori-Yau maximum principle. More

precisely, we deduce that the function given by the curvature of the largest future-

pointing hyperboloid that touches our spacelike hypersurface at a given point is

a viscosity subsolution of a differential equation corresponding to the linearisa-

tion of the mean curvature flow, analogous to the situation of Euclidean mean

curvature flow.

The main result of this chapter is given by the following theorem:

Theorem 6.1. Let F : Σn × [0, T ) → Ln,1 be a family of smooth spacelike em-

beddings with bounded principal curvatures deforming by the MCF in Ln,1. Then,

the future hyperboloid curvature function Z (defined for (x, t) ∈ Σ × [0, T ) to

109
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be equal to the least curvature among all future timelike spheres in the future of

Σt = F (Σ, t) which touch Σt at F (x, t)) is a viscosity subsolution of the equation

∂Z

∂t
= ∆Z − |A|2Z. (6.1)

Furthermore, if F is a mean-convex solution of MCF, and Z(x, 0) ≤ H(x, 0) for

all x ∈ Σ, then Z(x, t) ≤ H(x, t) for all (x, t) ∈ Σ× [0, T ).

Recall that the MCF for a spacelike hypersurface is formulated as follows:

∂F (x, t)

∂t
= H(x, t)ν(x, t),

for all (x, t) ∈ Σn × [0, T ). Note that H and ν refer to the mean curvature and

future-directed unit normal vector field on spacelike hypersurfaces, respectively.

Also, the mean convexity condition indicates that the mean curvature is positive

everywhere on these spacelike hypersurfaces. The definitions will be explained in

the following sections.

This chapter is structured as follows: In the first section, we briefly introduce

some notions of Semi-Riemannian manifolds. Then, we illustrate the geometry

of spacelike hypersurfaces in Ln,1 including the metric, the second fundamental

form, and some basic and useful relations of this setting in section 6.2. Moreover,

the evolution equations of geometric quantities such as the metric, the second

fundamental form, the Weingarten map, and the mean curvature are obtained

in the next section 6.3. Also, we represent the generalized Omori-Yau maximum

principle in section 6.4. In the final and main section of this chapter, we provide

the proof of a non-collapsing estimate for our evolving spacelike hypersurfaces by

applying the Omori-Yau maximum principle to the boundary curvature of the

touching hyperbola defined on these spacelike hypersurfaces.

6.1 Semi-Riemannian manifolds

We briefly introduce some basic concepts of the geometry of semi-Riemannian

manifolds [81] in this section. In particular, we describe some notions of these

manifolds with respect to their metrics. We describe the classification of tangent

vectors according to the sign of their inner product. Finally, we mention some

basic examples of semi-Riemannian manifolds including Minkowski space Ln,1.

Let N be a smooth (n + 1)-dimensional manifold. A smooth symmetric co-

variant 2-tensor gN is called a pseudo-Riemannian metric if it is non-degenerate



6.1. SEMI-RIEMANNIAN MANIFOLDS 111

at each point q ∈ N , so that there is no non-zero vector u ∈ TqN for which

gN (u, v) = 0 for every v ∈ TqN .

The pair (N n+1, gN ) is called a pseudo-Riemannian or semi-Riemannian man-

ifold. This is a generalisation of the concept of Riemannian manifold where the

positive-definite condition of gN is eased. Precisely, let ι be the signature of gN

(the maximal dimension of a subspace on which gN is negative definite), taking

value between 0 and (n+1), the dimension of N . Then, (N , gN ) is a Riemannian

manifold if ι vanishes, that is, each gN is positive-definite on TqN . On the other

hand, (N , gN ) is called a Lorentzian manifold when ι = 1 and n ≥ 1.

Let q be any point in the semi-Riemannian manifold (N n+1, gN ). Then we

can choose local coordinates {xi}n+1
i=1 for N near q. Then we can locally write the

corresponding components of the metric as

gij = gN (∂i, ∂j),

where ∂i = ∂
∂xi

, ∂j = ∂
∂xj

and 1 ≤ i, j ≤ n + 1. Consider that u =
∑

ui∂i and

v =
∑

vj∂j are vector fields in TqN , then the metric tensor gN takes the form

gN (u,v) = 〈u,v〉 =
∑

giju
ivj,

also it is written as

gN = gijdx
i ⊗ dxj.

Since gN is a smooth symmetric non-degenerate metric, then we have a smooth

non-degenerate inverse metric gij such that gikgkj = δij, where gij is also symmet-

ric that is gij = gji.

The causal characters for any tangent vector u can be defined with respect to

the values of its scalar product. We say that u is spacelike if it satisfies 〈u,u〉 > 0

or u = 0, lightlike or null if 〈u,u〉 = 0 where u 6= 0 and timelike if 〈u,u〉 < 0

(see figure 6.1).

Let Rn+1
ι be the semi-Euclidean manifold furnished with the semi-Euclidean

metric gEucl where ι is the index of Rn+1 such that 0 ≤ ι ≤ n+ 1. For each point

q ∈ Rn+1
ι and u, v ∈ TRn+1, the metric gEucl is given by

gEucl(u, v) = 〈uq, vq〉 =
n+1−ι∑
i=1

uivi −
n+1∑

j=n+2−ι

ujvj.

One of the fundamental examples of (Rn+1
ι , gEucl) is the Euclidean space Rn+1

that is equipped by a Euclidean metric as follows:

geucl(u, v) =
n+1∑
i=1

uivi,
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where ι = 0.

The second main example of interest in this chapter is the Minkowski space

Ln,1 = Rn
1 with a metric

gMink(u, v) =
n∑
i=1

uivi − un+1vn+1,

where ι = 1 and n ≥ 1. In this case we can further classify timelike vectors into

future and past according to the sign of their last component.

Other well known examples of Riemannian manifolds are the sphere Sn+1 and

the Hyperbolic space Hn+1, whereas the de Sitter space dSn+1 and Anti de Sitter

space AdSn+1 are model spaces of Lorentzian manifolds [81].

The de Sitter space is the spacelike unit sphere dSn+1 = {x ∈ Ln+1,1 =

Rn+2
1 : |x|2 = 1}, with the induced Lorentzian metric which has signature (n, 1).

The Anti de Sitter space is (locally isometric to) the timelike unit sphere {x ∈
Rn+2

2 : |x|2 = −1} in the Euclidean space with signature (n, 2), and so again has

signature (n, 1).

6.2 Spacelike hypersurfaces in Ln,1

This section contains some basic notions and definitions of the geometry of space-

like hypersurfaces in Minkowski space Ln,1. Also, useful formulae of these hyper-

surfaces such as the structure equations of the ambient space Ln,1 and spacelike

hypersurfaces, the Gauss equation and the Weingarten relation will be included.

We conclude this section by presenting the derivative of the Weingarten map and

also the covariant derivatives and Laplacian of the second fundamental form of our

hypersurfaces. The reader may refer to [40], [42], and [107] for more information

on these materials.

We start by assuming that Σ is a spacelike hypersurface, which is a smooth

manifold of dimension n which embedded in Ln,1 by a spacelike embedding F :

That is, F : Σ → Ln,1 is an embedding such that DF |x(v) is spacelike for every

x ∈ Σ and v ∈ TxΣ. Equivalently, the induced metric g on Σ is Riemannian. For

each point in Σ, there exists a unique past-directed timelike unit normal vector

ν, so that 〈ν, ν〉 = −1.

Note that a spacelike hypersurfaces can be described as a graph, by taking

the (n + 1) component to be given by a function f of the first n components.

The spacelike condition then amounts to the requirement that ‖Df‖ < 1. One

of the basic examples of these hypersurfaces of Ln,1 is the hyberboloid model of
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Figure 6.1: Minkowski space

the hyperbolic space Hn where Hn is the upper (future) sheet of the two-sheeted

hyberboloid and is also called the future timelike unit sphere, given by

Hn = {u|〈u, u〉 = −1, un+1 > 0}.

We now illustrate the local geometry of spacelike hypersurfaces of Ln,1 by using

the method of moving frames. Let e1, ..., en+1 be a local orthogonal moving frame

of Ln,1 around any point q ∈ Σ such that the vectors e1, ..., en are tangent to Σ and

en+1 is the past-directed unit normal vector. Let ω1, ..., ωn+1 be the dual coframe,

and ωαβ the connection forms. Then the metric of Ln,1 is ds2 =
∑n+1

α=1 εαω
2
α where

ε1 = ... = εn = 1 and εn+1 = −1.

We consider throughout this chapter the summation convention on the range

of indices 1 ≤ α, β, ... ≤ n + 1 and 1 ≤ i, j, ... ≤ n. The structure equations of

Ln,1 are formulated as follows:

deα = −
∑
β

εβωαβeβ,

dωα = −
∑
β

εβωαβ ∧ ωβ, ωαβ = −ωβα,

dωαβ = −
∑
γ

εγωαγ ∧ ωγβ.
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Restricted to the spacelike hypersurface Σ, we choose a local frame to be

e1, ..., en where ν = en+1. The induced Riemannian metric is defined by ds2 =∑
ω2
i , then we have ωn+1 = 0 and hence

0 = dωn+1 = −
∑
i

ωn+1i ∧ ωi.

Also, by Cartan’s lemma we deduce the following

ωn+1i =
∑
j

hijωj,

where h is the second fundamental form of Σ and it is symmetric in the com-

ponents i, j. If the trace of h vanishes identically, then Σ is called a maximal

spacelike hypersurface. Also, Σ is said to be totally geodesic if h vanishes.

Therefore, the structure equations for Σ are given by

dωi = −
∑

ωij ∧ ωj, ωij = −ωji,

dωij = −ωik ∧ ωkj +
1

2
Rijklωk ∧ ωl,

where Rijkl refers to the Gauss equation that is expressed by

Rijkl = −(hikhjl − hilhjk).

Note that the Gauss equation in the context of Ln,1 differs from the Euclidean

Gauss equation since the sign of the curvature term is changed. Recall also that

the curvature forms of the Lorentz-Minkowski space are zero.

We now dicuss some useful equations that will be frequently used in our

computations in this chapter. The second fundamental form on Σ can be written

as

hij = 〈∂i∂jF, ν〉,

where ∂i and ∂j refer to the partial derivatives in the direction of ei and ej

respectively. Also, the mean curvature H of Σ is given by H = 1
n

∑
hii and the

Codazzi identity is satisfied, that is hijk = hikj. Moreover, the following useful

equation is called the Weingarten relation

∂i∂jF = −hijν + Γij
k∂kF. (6.2)

Differentiating the unit normal vector field ν of Σ (the Weingarten map) yields

the following lemma:
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Lemma 6.2. The normal vector ν of Σ satisfies

∂iν = −hki ∂kF. (6.3)

Proof. Since ∂jF · ν = 0 and ν · ν = −1, then a straightforward computation

using the previous relation 6.2 implies to

0 = ∂i∂jF · ν + ∂jF · ∂iν

=

(
− hijν + Γkij∂kF

)
· ν + ∂jF · ∂iν

= hij + ∂jF · ∂iν.

Thus, ∂iν = −hki ∂kF .

Also, the covariant derivative of the second fundamental form hij is given by

hijkωk = dhij − hkjωki − hikωkj.

Finally, the second fundamental form satisfies an indentity analogous to the Si-

mons’ identity (2.9) in the Euclidean setting:

∆hij = ∇i∇jH + hij|A|2 −Hhikhkj. (6.4)

6.3 Evolution of geometric quantities

In this section, the evolution equations for some geometric quantities are derived

for spacelike hypersurfaces of Ln,1 evolving under mean curvature flow . In par-

ticular, we obtain the evolution equations for the metric, the Weingarten map,

the second fundamental form and hence the mean curvature, see [40] and [42]

for more information. These identities are very useful in order to simplify our

computation in the proof of the main theorem of this chapter.

We start by computing the evolution of the metric g of the spacelike hyper-

surfaces as follows:

Lemma 6.3. The induced metric g evolves under MCF according to

∂

∂t
gij = 2Hhij.
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Proof. Since ∂F
∂xi

is tangential to Σ, then we have ∂F
∂xi
·ν = 0. Besides, we consider

the definition of the second fundamental form hij = −〈 ∂ν
∂xi
, ∂F
∂xj
〉 or instead ∂ν

∂xi
=

−hji∂xj . Thus, by simple computation we obtain

∂

∂t
gij =

∂

∂t

(∂F
∂xi
· ∂F
∂xj

)
=

∂

∂xi

(
−Hν

)
· ∂F
∂xj

+
∂F

∂xi
· ∂

∂xj

(
−Hν

)
= −H

( ∂ν
∂xi
· ∂F
∂xj

)
−H

(∂F
∂xi
· ∂ν
∂xj

)
= 2Hhij.

We now deduce the evolution equation of the unit normal vector to Σ:

Lemma 6.4. The evolution of the unit normal ν to Σ is

∂ν

∂t
= −∇H.

Proof. We can directly obtain this formula by basic computations using the iden-

tity ∂ν
∂t
· ν = 0 and

∂ν

∂t
· ∂F
∂xi

=
∂

∂t

(
ν · ∂F

∂xi

)
− ν · ∂

∂xi
∂F

∂t

= −ν · ∂
∂xi

(−Hν)

= ν ·
(
−Hhpi ∂xp +

∂H

∂xi
ν

)
= −∂H

∂xi
.

Therefore, we have ∂ν
∂t

= −∇H.

Also, computing the evolution equation of the second fundamental form hij

and the mean curvature H give the following

Proposition 6.5. The evolution equation of the second fundamental form hij is

given by
∂

∂t
hij = ∆hij + 2Hhikhjk − hij|A|2.
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Proof.

∂

∂t
hij =

∂

∂t

(
− ∂ν
∂xi
· ∂F
∂xj

)
= − ∂

∂xi

(
−∂H
∂xk

gkl
∂F

∂xl

)
· ∂F
∂xj
− ∂ν

∂xi
· ∂

∂xj
(−Hν)

= ∇i∇jH +Hhpih
q
jgpq.

Using the above equation 6.4 yields to the required evolution equation.

Consequently, we have the following evolution equation for H by taking the

trace of the previous evolution equation for hij

∂

∂t
H = ∆H − |A|2H.

6.4 Parabolic Omori-Yau maximum principle

The maximum principle on compact Riemannian manifolds is an extremely useful

tool applied to various settings in differential geometry and other related topics.

The Omori-Yau maximum principle OYMP has been a significant and powerful

analytical tool which extends the applicability of the maximum principle to the

setting of non-compact Riemannian manifolds.

In this section, we are interested in the parabolic version of the OYMP for

the mean curvature flow 2.14. We will first introduce the OYMP for the Laplace-

Beltrami operator on a complete Riemannian manifold and its generalized form

for a second order linear semi-elliptic operator. Then, we will discuss the parabolic

analogue of the OYMP, and in particular a very general version which applies for

the mean curvature flow 2.14 which will be used in our argument in the next

section. For further information, you may refer to [8] [52], [65], [51], [80], [30],

[108] and [87].

We start by explaining the OYMP for the Laplace-Beltrami operator on non-

compact Riemannian manifolds. Let (Σ, g) be an n-dimensional smooth complete

Riemannian manifold. Assume that f : Σ → R is a real valued function defined

on Σ such that f ∈ C2(Σ) and bounded from above, that is, f̄ = supΣ f < +∞.

Then, under some geometric conditions on the manifold there exists a sequence

of points {xk} ⊂ Σ where k ∈ N satisfying the following properties:

f(xk) > f̄ − 1

k
, |∇f(xk)| <

1

k
, and ∆f(xk) <

1

k
,
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where∇ and ∆ refer to the gradient and Laplace-Beltrami operators, respectively.

The main idea of the proof of such result is based on considering a family

of functions such that every function achieves its maximum at some point of Σ.

Hence, utilizing the usual maximum principle implies to the above result, see for

example [5].

In 1967, Omori [80] showed that if the sectional curvature of Σ is bounded

from below, then for any smooth function f with f̄ < +∞ there exists a sequence

of points {xk} such that

f(xk) > f̄ − 1

k
, |∇f(xk)| <

1

k
, and Hess(f)(xk) <

1

k
g,

where Hess is the Hessian operator. Soon after this work, Yau [108] deduced

another form of the above result for complete Riemannian manifold Σ with Ricci

curvature bounded from below. In particular, he proved that for any f ∈ C2(Σ)

such that f̄ < +∞ there exists {xk} satisfying the following conditions

f(xk) > f̄ − 1

k
, |∇f(xk)| <

1

k
, and ∆f(xk) <

1

k
.

In other words, the OYMP for the Hessian and Laplacian operators holds on

every complete Riemannian manifold with sectional and Ricci curvatures bounded

from below, respectively. Precisely,

Theorem 6.6. ([80], [108]) Let Σ be a smooth complete Riemannian manifold

with Ricci curvature bounded from below. Assume that f ∈ C2(Σ) has an upper

bound, then there exists a sequence {xk} satisfying

lim
k→∞
|∇f(xk)| = 0, lim sup

k−→∞
∆f(xk) ≤ 0, and lim

k→∞
f(xk) = sup

Σ
f. (6.5)

The above theorem of Omori and Yau has emerged as a prominent result,

leading to an extensive variety of applications in geometric analysis and partial

differential equations.

There are some related results in which a sufficient condition in terms of the

existence of an exhaustion function has been considered. The following definitions

are needed in order to state some of these results.

Definition 6.7. Let u : Σ→ R be a continuous function and a point x ∈ Σ.

• a function u is proper, if the set {x : u(x) ≤ r} is compact for every r ∈ R.

• a function v defined on a neighbourhood Ωx of x is an upper-supporting

function for u at x if v ≥ u on Ωx, and equality holds at x.
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Definition 6.8. Let u : Σ → R be a proper continuous function. Then, u is a

∆-tamed exhaustion function if it satisfies the following conditions:

• u ≥ 0.

• For every x ∈ Σ, u has a smooth, upper-supporting function v defined on

an open neighborhood Ωx such that |∇v| ≤ 1 and ∆v ≤ 1 hold at x.

H.L. Royden ([91], Proposition 1) showed that every complete Riemannian

manifold with Omori-Yau’s condition, that is the Ricci curvature is bounded from

below, admits a ∆-tamed exhaustion function. Motivated by this result, K.-T.

Kim and H. Lee [65] provided a new sufficient condition for the validity of (6.5)

on complete Riemannian manifolds in terms of the existence of an exhaustion

function. More precisely,

Theorem 6.9. [65] Let Σ be a manifold admitting a ∆-tamed exhaustion func-

tion. Then for every function f : Σ → R bounded from above, there exists a

sequence {xk} on Σ satisfying (6.5).

Now we want to introduce the generalized OYMP on (Σ, g) for a semi-elliptic

operator. Let L : C∞(Σ) → C∞(Σ) be a second-order linear semi-elliptic oper-

ator with bounded coefficients and no zeroth order term. Assume that A is a

symmetric positive semi-definite (0, 2)-tensor field on Σ. The operator L can be

expressed as

Lf = Tr
(
A ◦ Hess(f)

)
+ g(V,∇f),

where A ∈ Γ(End(TΣ)) is self-adjoint with respect to the metric g, Hess(f) ∈
Γ(End(TΣ)) is the Hessian of f such that Hess(f)(X) = ∇X∇f where X, V ∈
Γ(TΣ). Also, we assume that

sup
Σ

Tr(A) + sup
Σ
|V | <∞.

Similarly, we define an L-tamed exhaustion function by replacing the operator

∆ by L in Definition 6.8. Also, H.L. Royden [16, Proposition 2] showed that every

complete Riemannian manifold with its sectional curvature bounded below admits

an L-tamed exhaustion function. Therefore, by considering the existence of an

L-tamed exhaustion, K. Hong and C. Sung [52] generalized the OYMP for the

Laplacian ∆ to the above semi-elliptic operator L. More precisely, they deduced

the following theorem
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Theorem 6.10. [52] Let Σ be an n-dimensional smooth complete Riemannian

manifold admitting an L-tamed exhaustion function. Then for every real val-

ued function f on Σ which is bounded above, there exists a sequence {xk} on Σ

satisfying the following properties:

lim
k→∞
|∇f(xk)| = 0, lim sup

k→∞
Lf(xk) ≤ 0, and lim

k→∞
f(xk) = sup

Σ
f. (6.6)

We now want to prove the following parabolic version of OYMP for the mean

curvature flow 2.14 which provides a model for the main theorem 6.1 of this

chapter. We start by demonstrating the theorem of OYMP in the parabolic

context.

Theorem 6.11 (Parabolic Omori-Yau Maximum Principle for MCF). Let Ln,1

be the Minkowski space and Σ be an n-dimensional smooth manifold. Let F :

Σ × [0, T ] → Ln,1 be a smooth family of properly embedded complete spacelike

hypersurfaces in Ln,1 evolving by the MCF 2.14. Assume that there exists a ≥ 0

and y0 ∈ Ln,1 such that the function ρ(x, t) = a + |F (x, t) − y0|2 is non-negative

and proper on Σ×[0, T ] (so that {(x, t) : ρ(x, t) ≤ C} is compact for each C), and

satisfying |∇ρ| ≤ C(1 + |ρ|). Let Z : Σ× [0, T ]→ R is a bounded continuous and

twice differentiable function such that supΣ×[0,T ) Z > supZΣ×{0}Z. Then there is

a sequence of points (xi, ti) ∈ Σ× [0, T ] satisfying the following properties:

Z(xi, ti)→ supZ, |∇Z(xi, ti)| → 0, and lim sup
i→∞

(∂t −∆)Z(xi, ti) ≥ 0.

(6.7)

Before embarking on the proof, we make some remarks concerning the as-

sumptions: The condition on the existence of a point y0 satisfying the required

condition is a mild restriction on the solution F of mean curvature flow, which is

in particular satisfied if the evolving hypersurfaces have bounded principal cur-

vatures at each time. It seems reasonable to conjecture that this assumption is

true whenever the hypersurfaces are complete with respect to the induced metric,

strictly spacelike and properly embedded.

Proof. We will produce the required sequence of points by maximising a sequence

of modified functions: First, observe that there exists a sequence (x̄i, si) such that

Z(x̄i, si) approaches supΣ×[0,T ] Z, that is

lim
i→∞

Z(x̄i, si) = sup
Σ×[0,T )

Z. (6.8)
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Now let y0 be as assumed, and choose αi > 0 such that αi <
1
i

and

αiρ(x̄i, si) ≤
1

i
. (6.9)

We now define a function Zi : Σ× [0, T )→ R by

Zi(x, t) = Z(x, t)− αi(ρ(x, t)). (6.10)

Note that

sup
Σ×[0,T ]

Z ≥ sup
Σ×[0,T ]

Zi ≥ Zi(x̄i, si) > sup
Σ×[0,T ]

Z − 2

i
> sup

Σ×{0}
Z ≥ sup

Σ×{0}
Zi

for sufficiently large i.

Furthermore ρ > 2
iαi

implies Zi < supΣ×[0,T ] Z − 2
i
< Zi(x̄i, si) ≤ supΣ×[0,T ] Zi,

so the supremum of Zi is attained in the compact set {(x, t) : ρ(x, t) ≤ 2
iαi
}. Let

(xi, ti) be a point where supΣ×[0,T ] Zi is attained, and observe that ti > 0 since

supΣ×{0} Zi < supΣ×[0,T ] Zi.

By construction we have Z(xi, ti) = supΣ×[0,T ] Zi > supΣ×[0,T ] Z− 2
i
. It remains

to prove bounds for the derivatives of Z at (xi, ti): Since (xi, ti) is a spatial

maximum of Zi, we have at this point

0 = ∇Zi = ∇Z − αi∇ρ =⇒ |∇Zi| ≤ αi|∇ρ| ≤ αiC(a+ |ρ|) ≤ C

i
+

2

i
→ 0

as i → ∞. Furthermore, the spatial maximisation implies ∆Zi ≤ 0, while the

maximisation in the time direction (and the fact ti > 0) implies ∂tZi ≥ 0 at

(xi, ti), so we have

0 ≤ (∂t −∆)Zi = (∂t −∆)Z − αi(∂t −∆)ρ.

A direct computation gives

∂tρ = 2Hν · (F (x, t)− y0),

while

∆ρ = gij∇i (2∂jF · (F − y0)) = 2Hν · (F − y0) + 2n,

so that

(∂t −∆)ρ = −2n.

This gives at (xi, ti) the inequality

(∂t −∆)Z ≥ αi(∂t −∆)ρ ≥ −2n

i
.

This completes the proof.
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We remark that essentially the same proof holds in the setting of hypersurfaces

in Euclidean space evolving by mean curvature flow, where ρ can be taken to be

the distance from any fixed y0 ∈ Rn+1. The complication in the Minkowski space

setting arises only from the fact that the function ρ is not in general positive, and

that the gradient of ρ cannot automatically be bounded in terms of ρ as in the

Euclidean case.

In the following section we adapt the ideas of the proof to the more compli-

cated setting of the non-collapsing estimate.

6.5 Non-collapsing of mean convex MCF in Ln,1

This main section of this chapter involves an extension of Andrews’ result [12], see

also section 3.2, to mean convex embedded spacelike hypersurfaces evolving by

the MCF of Ln,1. In particular, we deduce a non-collapsing estimate by employing

the parabolic version of OYMP (Theorem 6.11) to a quantity that relies on two

points of these spacelike hypersurfaces. Precisely, we compare the radius of the

largest hyperbola which touches the spacelike hypersurface at a given point to

the curvature at that point. Also, we apply the parabolic version OYMP in order

to control the behaviour of spacelike hypersurfaces at infinity and ensure that our

argument is applicable to this setting.

The main purpose of this section is to provide the proof of Theorem 6.1.

More precisely, we deduce that the interior boundary curvature of the touching

hyperbola satisfies a differential inequality in the viscosity sense.

To explain this result, let F : Σn × [0, T ) → Ln,1 be a family of embedded

spacelike hypersurfaces into Ln,1, deforming by the MCF. We begin by defining a

function on Σn×Σn which characterises the appropriate geometric notion of non-

collapsing. In the Euclidean setting this quantity is obtained by touching each

point of the hypersurface by interior or exterior spheres. However, in the setting

of Minkowski space we consider future or past timelike hyperboloids which touch

the evolving hypersurface at a given point but are disjoint elsewhere, and obtain

a similar quantity. For concreteness, define the future hyperboloid of radius r

centered at p to be the set

H+(p, r) = {x ∈ Ln,1 : 〈x− p, x− p〉 = −r2, xn+1 > pn+1}.

Similarly, the past hyperboloid of radius r centered at p is given by

H−(p, r) = {x ∈ Ln,1 : 〈x− p, x− p〉 = −r2, xn+1 < pn+1}.
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In the following argument we define non-collapsing using future hyperboloids.

The argument for past hyperboloids is similar.

Let x be an arbitrary point of Σ and U be the future of Σ, i.e. the set of all

points that can be reached by following future timelike trajectories from points

of Σ. We derive a condition for a future hyperboloid H+(p, r) to touch Σ at

x ∈ Σ, but be contained in U . If ν is the past timelike unit normal vector at x,

then the touching condition and the first order condition are equivalent to the

condition that p = x+ rν. The fact that H+(p, r) is equivalent to the statement

|y − p|2 ≥ −r2 for all y ∈ Σ, where we use the observation that since y − x is

spacelike, no point of Σ can intersect H+(p, r). This gives

H+(p, r) ⊂ U ⇐⇒ d(p, y)2 ≥ −r2 ∀y ∈ Σ;

⇐⇒ |y − p|2 ≥ −r2;

⇐⇒ |y − (x+ rν)|2 ≥ −r2;

⇐⇒ |y − x|2 − 2r〈y − x, ν〉 − r2 ≥ −r2;

⇐⇒ 2〈y − x, ν〉
|y − x|2

≤ 1

r
.

We now define the non-collapsing quantity by

Z(x, y, t) =
2〈F (y, t)− F (x, t), ν(x, t)〉
|F (y, t)− F (x, t)|2

, (6.11)

for all (x, y) belonging to (Σ×Σ) \D and t ∈ [0, T ) where D is the diagonal set,

that is, D = {(x, x) : x ∈ Σ}. Note that F is the embedding of the hypersurface

into Ln,1.

We will complete the proof of Theorem 6.1 in two stages: We will first prove

the second statement comparing the future hyperboloid curvature with the mean

curvature. The first statement (that the future hyperboloid curvature is a sub-

solution of the linearised MCF) requires a refinement of the argument of the

Omori-Yau maximum principle, and will be presented subsequently.

Before we start the proof of Theorem 6.1, we should assume some conditions

on our arbitrary spacelike hypersurface to ensure that the argument of maximum

principle is applicable in this situation. Precisely, since an arbitrary spacelike

hypersurface may grow rapidly at infinity, so that the non-collapsing quantity

6.11 may not attain a maximum value, so that the usual maximum principle

argument will not apply.
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Therefore, to rule out such obstacle we apply the parabolic version of gener-

alized OYMP, refer to Theorem 6.11. In particular, we can obtain a sequence of

points (yk, tk) where k ∈ N on our spacelike hypersurfaces such that

Z(yk, tk)→ supZ, |∇Z(yk, tk)| → 0, and lim sup
k→∞

(∂t − L)Z(yk, tk) ≤ 0.

(6.12)

In our situation we take a supremum of the quantity Z over y where ν is the

past timelike unit normal vector such that t0 > 0. Thus, we obtain the interior

boundary curvature Z as follows:

Z(x, t) = sup
y∈Σ\{x}

{
2〈F (x, t)− F (y, t), ν(x, t)〉
|F (x, t)− F (y, t)|2

}
.

Now we can start the proof of the main theorem 6.1 .

Proof. In the first stage of the proof, we will establish the preservation of inequal-

ities of the form Z ≤ CH for solutions of the mean curvature flow with bounded

curvature. Since Z(x, t) = supy∈Σ\{x} Z(x, y, t), this amounts to the preservation

of inequalities Z(x, y, t)− cH(x, t) ≤ 0 in such flows. We prove this by applying

the argument of the OYMP on the product manifold (Σ×Σ\∆)× [0, T ] (we note

that the function Z extends continuously from Σ×Σ \∆ to the completion S of

given by appending the unit sphere bundle {(x, v) : x ∈ Σ, v ∈ TxΣ, |v| = 1} as

in [19]).

By assumption, we have Z(x, y, 0) − cH(x, t) ≤ 0 for all y 6= x. For the

purposes of obtaining a contradiction, we suppose that there is t̄ > 0 and x̄, ȳ ∈ Σ

such that Z(x̄, ȳ, t̄)− cH(x̄, t̄) > 0. Let δ = Z(x̄,ȳ,t̄)−cH(x̄,t̄)
2t̄

> 0. Then we consider

the function P (x, y, z) := e−βt(Z(x, y, t)− cH(x, t))− γt, where β and γ will be

chosen later, and note that P ≤ 0 on Σ×Σ×{0} and P (x̄, ȳ, t̄) ≥ e−βt0δ0−γt0 > 0

provided γ > 0 is chosen small enough for given β.

Following the method of the OYMP, we consider the modified functionals

Pα(x, y, t) := P (x, y, t) − αρ(x, t) − αρ(y, t). The argument of Theorem 6.11

provides a sequence of points (xi, yi, ti) such that |∇P (xi, yi, ti)| ≤ 1
i

and (∂t −
L)P (xi, yi, ti) ≥ (∂t − L)P − 1

i
, where L is any weakly elliptic operator of the

form L =
∑

i,j g
ij
(x,t)∇x

i∇x
j + 2

∑
i,j a

ij(x, y, t)∇x
i∇

y
j +

∑
i,j g

ij
(y,t)∇

y
i∇

y
j .

In order to derive the computation of these derivatives, we choose {xi} and

{yi} (i = 1, ..., n) to be local orthonormal coordinates of x and y, respectively.

We also consider the following abbreviations to simplify the computations:

d = |F (x, t)− F (y, t)|,
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w =
F (x, t)− F (y, t)

|F (x, t)− F (y, t)|
,

dw = F (x, t)− F (y, t).

Also, we write ∂xi = ∂F
∂xi

and ∂yi = ∂F
∂yi

.

Computing the first spatial derivative of P with respect to y yields

eβt
∂

∂yi
P =

∂

∂yi

(
2

d2
〈dw, νx〉 − cHx −

δ

2
t

)
= − 2

d2
〈∂yi , νx〉+

2

d2
Z〈∂yi , dw〉

= − 2

d2
〈∂yi , νx − Zdw〉,

(6.13)

and the derivative in the x-direction is given by

eβt
∂

∂xi
P =

2

d2
〈dw,−

x

h
p

i ∂
x
p 〉+

2

d2
〈∂xi , dw〉Z − c∇iH

= − 2

d2

(
〈∂xi , dw〉Z + 〈∂xp , dw〉

x

h
p

i

)
− c∇iH.

(6.14)

In order to compute the second derivatives of P , we first differentiate the

above equation (6.13) with respect to the y-coordinate. This is given by the

following:

eβt
∂2

∂yi∂yj
P = − 2

d2
〈−hyijνy, νx − dwZ〉 −

2

d2
〈∂yi ,−

∂Z

∂yj
dw + Z∂yj 〉

−2
∂

∂yj
(d−2)〈∂yi , νx − dwZ〉

=
2

d2
〈hyijνy, νx − dwZ〉 −

2

d2
〈∂yi , ∂

y
j 〉Z

= − 2

d2

(
hyij + Zδij

)
.

We next differentiate the equation (6.14) in the direction of the x-coordinate and

derive the following identity:

eβt
∂2

∂xi∂xj
P = − ∂

∂xj

(
2

d2
〈∂xi , dw〉Z +

2

d2
〈∂xp , dw〉

x

h
p

i + c∇iH

)
= − 2

d2
Zδij −

2

d2
hxij + Zhxjph

x
iqδ

pq − 2

d
〈∂xq , w〉δpq∇ph

x
ij

+Z2hxij −
2

d
〈∂xi , w〉

∂Z

∂xj
− 2

d
〈∂xj , w〉

∂Z

∂xi
− c ∂2φ

∂xi∂xj
.
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Moreover, the derivative of the equation (6.13) in the x-direction is given by

eβt
∂2

∂xj∂yi
P = − ∂

∂xj

(
2

d2
〈∂yi , νx − Zdw〉

)
= − 2

d2
〈∂yi ,−

x

h
p

j∂
x
p − Z(∂xj )− ∂Z

∂xj
dw〉

=
2

d2
〈∂yi ∂xp 〉

(
x

h
p

j + δpjZ

)
+

2

d

∂φ

∂xj
〈∂yi , w〉.

We now compute the derivative of P with respect to time and obtain the

following:

eβt
∂

∂t
P =

2

d2
Hx −

2

d2
〈Hyνy, νx − dwZ〉 −

2

d
〈w,∇Hx〉+ Z2Hx − c

∂H

∂t
− βP − γeβt

=
2

d2
Hx −

2

d2
Hy −

2

d
〈w,∇Hx〉+ Z2Hx − c(∆H − |A|2H)− βP − γeβt,

where we used the expression for ∂H
∂t

from Proposition 6.5.

Now we choose the coefficients aij in order to define the operator L: We define

aij(x, y, t) = gipx g
jq
y

〈
∂xp , ∂

y
q

〉
. Combining the last four identities gives

eβt(∂t − L)P ≤ − 2

d2
Hx +

2

d2
Hy +

2

d
〈w,∇Hx〉 − Z2Hx

− 2

d2
gijx h

y
ij −

2

d2
gijx Zδij

−2gijx
2

d2
〈∂yi ∂xp 〉

(
x

h
p

j − δ
p
jZ

)
+ 2gijx

2

d

∂φ

∂xj
〈∂yi , w〉

−gijx
2

d2
Zδij +

2

d2
Zhxij − Zhxijhxijδpq +

2

d
〈∂xq , w〉δpq∇ph

x
ij

+Z2hxij −
2

d
〈∂xi , w〉

∂Z

∂xj
− 2

d
〈∂xj , w〉

∂Z

∂xi
+ c|A|2Hx − βP − γeβt.

Hence,

eβt(∂t − L)P ≤ gijx (P +
µ

2
t)hipδ

pqhjq −
4

d2
Hx +

4

d2
gijx hiqδ

pq〈∂yj , ∂xp 〉

− 4

d2
Zgijx δij +

4

d2
Zgijx 〈∂xi , ∂

y
j 〉 −

4

d
gijx
∂Z

∂xi
〈w, ∂xj − ∂

y
i 〉 − βP − γeβt.

Note that the some of the terms can be rewritten as follows:

4

d2
Hx −

4

d2
gijx hiqδ

pq〈∂yj , ∂xp 〉 =
4

d2
gijx hiqδ

pq(δjp − 〈∂yj , ∂xp 〉),
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while the first two terms of the last line can be rewritten as follows:

4

d2
Zgijx δij −

4

d2
Zgijx 〈∂xi , ∂

y
j 〉 =

4

d2
Zgijx (δij − 〈∂xi , ∂

y
j 〉).

Thus, we arrive to

eβt(∂t − L)P ≤ gijx Phipδ
pqhjq −

4

d2
gijx hiqδ

pq(δjp − 〈∂yj , ∂xp 〉)

− 4

d2
Zgijx (δij − 〈∂xi , ∂

y
j 〉)−

4

d
gijx
∂Z

∂xi
〈w, ∂xj − ∂

y
i 〉+ γ(|A|2t− eβt)− βP

By using the first derivative identity (6.14) for ∂P
∂xi

, the previous inequality

becomes

eβt(∂t − L)P ≤ gijx Phipδ
pqhjq − βP

+
4

d2
gijx δ

pq(hiq + Zδip)(2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉)

+
4

d2
gijx δ

pq(hiq + Zδip)(δjq − 〈∂yj , ∂xq 〉) + γ(|A|2t− eβt).

If we choose β > |A|2, this can be reformulated as

eβt(∂t − L)P ≤ γ(|A|2t− eβt)

− 4

d2
gijx δ

pq(hiq + Zδip)(δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉).

The next Lemma controls the term δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉:

Lemma 6.12. We have

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 ≤ 0.

Proof. We consider the computation at the point (xi, yi, ti). Let {xi} and {yi}
be the local coordinates, we choose them so that ∂xi = ∂yi for i = 1, ..., n − 1.

Hence ∂xn and ∂xn are coplanar with w. As a result, if p = q = n, then we find

that δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 does not vanish.

Therefore, the proof will be divided into two parts: 〈w, νx〉 ≤ 0 and 〈w, νx〉 ≥
0. If 〈w, νx〉 ≤ 0, then we may assume that 〈w, νx〉 = − sin θ, where θ ∈ [0, π

2
).

We can adjust the direction of ∂xn such that 〈w, ∂xn〉 = cos θ. Assume that we have

the conditions 〈∂xn, ∂yn〉 = − cos 2α and 〈∂yn, νx〉 = sin 2α where α ∈ [0, π
2
) and the

orientation of ∂yn is satisfied. By using the first derivatives of P , particularly
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equation (6.13) with respect to the yn-direction, and the definition (6.11) of Z,

we obtain

∂

∂yn
P =

2

d2
〈∂yn, νx − Zdw〉

= 2〈∂yn, νx〉 − 2〈∂yn, Zdw〉
= 〈∂yn, νx〉 − 2〈∂yn, w〉〈w, νx〉
= sin 2α cos 2θ − sin 2θ cos 2α

= sin(2α− 2θ)→ 0.

Thus, we have θ = α and 〈∂yn, w〉 = − cosα. By substituting, we get

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 = 1 + cos(2α)− 2 cosα(cosα + cosα)

= 2 cos2 α− 4 cos2 α = −2 cos2 α ≤ 0.

In the case of 〈w, νx〉 ≥ 0, this direction is similar to the previous case. We

suppose that θ ∈ [0, π
2
) satisfying 〈w, νx〉 = sin θ. We have 〈w, ∂xn〉 = − cos θ by

directing ∂xn . Also, we can choose the orientation of ∂yn and α ∈ [0, π
2
) to meet

the conditions 〈∂xn, ∂yn〉 = − cos 2α and 〈∂yn, νx〉 = sin 2α. By using again the

equations (6.13) and (6.11), we deduce that

〈∂yn, νx〉 = 2〈∂yn, w〉〈w, νx〉
sin(2α− 2θ) = 0,

this implies θ = α and 〈∂yn, w〉 = cosα. The computation is given by the following:

δqj − 〈∂yj , ∂xq 〉+ 2〈w, ∂xq 〉〈w, ∂
y
j − ∂xj 〉 = 1 + cos(2α)− 2 cosα(− cosα− cosα)

= 2 cos2 α− 4 cos2 α = −2 cos2 α ≤ 0.

Finally, the inequalities 1
i
≤ (∂t−L)P ≤ γ(|A|2t−eβt) give a contradiction for

T small enough, proving that P remains non-positive. Since γ > 0 is arbitrary,

this implies that Z ≤ cH for all times, proving the second claim of Theorem

6.1.
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