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Abstract

Background: Pathology tests are central to modern healthcare
in terms of diagnosis and patient management. Aggregated pathology
results provide opportunities for research into fundamental and ap-
plied questions in health and medicine, but data analytic challenges
appear since test profiles vary between medical practitioners, resulting
in missing data. In this study we provide an analytical investigation
of the laboratory diagnosis of Hepatitis C (HCV) infection and focus
on how to maximize the predictive value of routine pathology data.
We recommend using the Influx - Outflux measures to help construct
the imputation model when using multiple imputation.

Methods: Data from 14,320 community-patients aged 15 - 100 years
were accessed via ACT Pathology (The Canberra Hospital, Australia).
Influx and Outflux were calculated to identify which variables were po-
tentially powerful predictors of missing values. Available Case analysis
and Multiple Imputation were used to accommodate missing values in
the dataset. Logistic regression model and stepwise selection method
were used for analysing the imputed datasets. The predictive power
of all methods was compared.
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email address: nidhi.menon@anu.edu.au
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Results: The predictive power of the models on multiply imputed
data was similar to the power of the models based on complete data.
The advantage of multiply imputed data was that it allowed for the
inclusion of all the completed variables in the logistic models, thus
identifying a broader selection of test results that could lead to the
enhanced laboratory prediction of HCV.

Conclusions: Multiple imputation is an important statistical re-
source allowing all individuals in a study to contribute whatever data
they have supplied to the analysis. MI in combination with the values
of Influx and Outflux identifies potential predictors of HepC infection.
Variables age, gender and alanine aminotransferase have been shown
to be strong laboratory predictors of HCV infection.

Keywords: Hepatitis; logistic regression; multiple imputation.

Highlights:

� Multiple imputation of missing data is a well established tech-
nique in statistics and contribute to improving laboratory diag-
nosis.

� Laboratory diagnosis of Hepatitis C infection can be achieved
using partially observed routine pathology data through multiple
imputation.

� Areas under ROC curve achieved in our analysis were around
70%

� Multiple imputation in combination with the Influx - Outflux
allows novel variables to contribute to the prediction models.

� Age, gender and alanine aminotransferase are strong laboratory
predictors of HCV infection.
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1 Introduction

Pathology laboratories generate large quantities of data representing human
function, including analyses of blood chemistry and cells, infections, genet-
ics and more. These data represent an under-utilized research resource, and
while there are drawbacks (?), they introduce a rich informatics and sta-
tistical substrate to assist clinical decision making. They also support the
interrogation of databases to assist answering research problems; for exam-
ple, such databases have been successfully mined for enhanced laboratory
prediction of infectious diseases (??). Given the observational nature of the
data collected, one drawback is that not every test is conducted for every
patient. Therefore, pathology databases contain many missing values that
potentially dilute the value of the data base.

Missingness can be one of three types: missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR). Data are
MCAR if the probability of missingness is not related to the value of the
observation or any other variables in the data. For most datasets, the as-
sumption of MCAR is unlikely to be satisfied unless the data is missing due
to the design employed. If the missingness depends on the value of another
variable in the dataset, then the data is said to be MAR. MCAR is a special
case of MAR, thus if the data is MCAR, they are also MAR. If the MAR
assumption is violated, then the data is said to be MNAR (?).

Missing data mechanisms are important since older methods of handling
missing data (e.g. available case analysis) assume MCAR missingness while
modern techniques to handle missing data such as maximum likelihood esti-
mation (MLE) and multiple imputation assume only MAR.

1.1 Hepatitis C Virus

Hepatitis virus is a world-wide health concern, with an estimated 1.45 million
deaths attributable to the virus globally in 2013 (?). More recent modelling
(?) has also shown that the global prevalence of Hepatitis C virus (HCV)
has reached an estimated 71.1 million infections. HCV affects the liver and
can cause permanent and ultimately fatal liver cancer (?). HCV causes the
inflammation of the liver and over time this can lead to liver diseases like
cirrhosis and fibrosis. HCV is a blood borne virus and in developed coun-

3



tries it is often transmitted through risky behaviour such as sharing needles.
Indeed, in Australia in 2007 (?), 90% of the new and 80% of the existing
infections are transmitted in this way.

While there are advances in the treatment of people with HCV, the hu-
man costs of HCV, in terms of reduction of quality of life and well being
and through occupational and social discrimination and isolation, remain
significant (?). Guidelines for the care and treatment of HCV have recently
been updated (?). The financial costs of the virus for medical and hospital
care, lost productivity, and the need for social support are also an increasing
proportion of healthcare expenditure in Australia. While the diagnosis of
HCV is most confidently made through the immunoassay (?), having a pow-
erful predictive model will help focus on early detection of HCV infection
particularly for cases where the specific immunoassay has not been ordered.

1.2 Multiple imputation

Analysis of multivariate data is often negatively affected by incompleteness.
Reduced statistical power, increase in standard errors, complications in data
handling and analysis, and introduction of bias are some of the common
problems associated with missing data (?).

Several methods have been proposed over the years to handle the problem
of missing data, for example single imputation using means or medians (?)
and the EM algorithm (?). While single imputation techniques are easy to
implement, they treat the missing values as if they were known, thus elim-
inating any uncertainty that missing values bring to the dataset. They do
not preserve the inherent variability of the imputed data and can be severely
biased (?). For these reasons we will not be pursuing Single Imputation in
this paper but instead show the usefulness of Multiple Imputation (MI) (?),
where the multiple imputed datasets are analysed using standard statisti-
cal procedures and the estimates from these analyses are then combined to
produce overall estimates with more appropriate standard errors. These es-
timates and standard errors reflect the true variation and uncertainty in the
data better than the estimates obtained by deleting any observations with
missing values, also known as available case analysis. MI is less biased than
single imputation methods, increases the efficiency of estimation and also
preserves the variability in the dataset. Hence, it is the preferred method
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to fill in missing values in datasets such as the one used in this study. It
should be noted that the goal of imputation is not to replace or recover these
missing values from the dataset, as they are unknown, but to produce valid
and analytical results in the presence of the missing values.

Despite its conception in the 1980s, MI has only recently come into general
use across medical research due to advances in statistical computation. Even
with the evolution of MI and its statistical advantages, the technique has
had limited application in laboratory diagnostics. The use of MI in clinical
chemistry has been supported (??) when values of a variable in an existing
prediction model are missing.The study presented herein extends this pre-
vious approach by imputing variables with an unknown relationship to the
outcome of interest.

The primary goal of this study is to show the importance of multiple im-
putation when dealing with missing values in routinely collected pathology
data. A secondary goal of this paper is to contribute to knowledge of lab-
oratory prediction of HCV by identifying novel combinations of routinely
measured biomarkers that are highly predictive of HCV. This focus on an
existing resource which provides a low-cost approach to knowledge discovery
is important in the context of low-middle income countries, where laboratory
resources may be limited (?).

2 Materials and Methods

2.1 Data

The dataset employed in this study was made available by ACT Pathology
at The Canberra Hospital, Canberra, Australia. Patient identifiers were re-
moved and only laboratory ID numbers provided. The data set contained
the 18,625 pathology requests between 1997 and 2007 that included a re-
quest for either the assay for Hepatitis B (HepB) or Hepatitis C (HepC) or
both (Figure 1). There were 4,296 patients for whom 60% or more of the
other assays (Table 1) were missing, and these were removed before analysis
commenced due to the large proportion of missingness. Another 3,546 indi-
viduals were missing a HCV immunoassay (HepC) outcome despite a request
having been made and so excluded from the analysis. The result of the HCV
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immunoassay is recorded as positive if the test is positive to the presence of
HCV anti-bodies. The same dataset has been analysed previously (??) to
ascertain the interaction between virus, outcome, pre-processing and method
on the performance of decision tree ensembles and support vector machines.

For access to de-identified patient data, this study had human ethics ap-
proval granted by The Australian National University Human Ethics Com-
mittee (2012/349) and the ACT Health Human Research Ethics Committee
(ETHLR.11.016).

Figure 1: Flow of patients into the HepC study (To be printed in Colour)
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Table 1: Diagnostic pathology variables included in the regression analysis,
with summary statistics (n = 10,774).

Variable Description
Mean (SD)
(HepC = 0)
(n = 10102)

Mean (SD)
(HepC = 1)
(n = 672)

p-value

Age Patient’s age in years 44.72 (19.36) 40.09 (14.41) < 0.001

Sex
Patient’s gender (Males)
Frequency (%)

5188 (51.36%) 251 (37.35%) 0.00013

ALB Albumin 42.84 (5.80) 42.09 (5.88) 0.0004
Sodium Sodium 139.63 (3.22) 139.66 (3.06) 0.9927
K Potassium 4.00 (0.45) 4.07 (0.47) < 0.001
RCC Red cell count 4.53 (0.64) 4.68 (0.64) < 0.001
RDW Red cell distribution width 13.88 (1.78) 14.07 (1.63) < 0.001
ALT Alanine aminotransferase 1.46 (0.38) 1.64 (0.42) < 0.001
ALKP Alkaline Phosphate 1.92 (0.21) 1.94 (0.18) < 0.001
Crea Creatinine 1.93 (0.16) 1.90 (0.13) < 0.001
GGT Gamma-glutamyl transferase 1.61 (0.44) 1.69 (0.43) < 0.001
Urea Blood urea 0.72 (0.20) 0.65 (0.19) < 0.001
Plt Platelets 2.39 (0.20) 2.39 (0.18) 0.2179
WCC White cell count 0.87 (0.17) 0.90 (0.15) < 0.001
TBil Total bilirubin 1.03 (0.30) 0.98 (0.31) < 0.001
Mono Monocytes 0.74 (0.20) 0.76 (0.15) < 0.001
Eos Eosinophils 0.38 (0.18) 0.39 (0.18) 0.014
Bas Basophil 0.18 (0.09) 0.19 (0.08) < 0.001
Lymph Lymphocytes 1.38 (0.34) 1.48 (0.53) < 0.001
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2.2 Statistical Analysis

This is a cross-sectional dataset where each individual only appears once with
a non-monotone pattern of missingness. Percentage missingness is calculated
for each variable and we examine the pattern of missingness visually to get an
impression of the extent of incompleteness. These patterns of missingness in-
fluences the amount of information that can be transferred between variables
(?). For example, imputations can be more precise if complete information
is available for the other variables for the observations that are to be imputed.

In his book (?), van Buuren proposed using Influx and Outflux statistics
to streamline this process of constructing imputation models that are impar-
tial to the subjectivity of the imputer and the analyst ?. These statistics
quantity how each variable connects to others. As described by ?, for a pair
of variables (Xa, Xb) in a sample of n observations with p variables, the influx
coefficient for the variable Xa is defined as

Ia =

∑p
a=1

∑p
b=1

∑n
i=1(1− ri,a)ri,b∑p

b=1

∑n
i=1 ri,b

The value of Ia depends on the proportion of missing data in the variable Xa.
This means that if Xa has no missing values, Ia = 1. The Influx coefficient
(Ia) is the number of variable pairs (Xa, Xb), where Xa is missing and Xb is
observed. Thus, a high influx implies how well the variable is connected with
the observed data.

The second measure proposed by van Buuren, is the outflux coefficient. For
the same pair of variables (Xa, Xb), the outflux coefficient indicated how use-
ful is Xa to impute missing values in Xb. Unlike the former, outflux depends
on the extent of missing values in the variable Xa. The variable with higher
outflux is better connected to the missing data, and can be more useful in
imputing other variables (?). The outflux coefficient is given by

Oa =

∑p
a=1

∑p
b=1

∑n
i=1 ri,a(1− ri,b)∑p

b=1

∑n
i=1(1− ri,a)

Fluxplots can be used to plot both these measures to make interpretation
easier for the imputer and the analyst. It can be used to identify variables
that clutter the imputation model, thus making the process of constructing
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the imputation model less subjective. Variables in the lower areas in the
fluxplot that are not used for analysis can be removed from the data prior
to imputation. While there is a significant proportion of literature that fo-
cuses on developing proper imputation models, there is an evident lack of
illustrative examples describing the imputation process in practice to create
imputation models are as impartial to the imputer and the analysts and re-
lies on quantitative measures to develop these models.
Multiple imputation is used to address missing data. In this method, each
missing value is replaced by two or more imputed values to represent the
statistical uncertainty about which value to impute. It involves three stages;
Imputation, Analysis and Pooling. Final inference on the regression coeffi-
cient estimates is made on the pooled result using Rubin’s combination rule
(?). Variables with an Outflux coefficient above 0.95 i.e. variables that oc-
curred in the top left corner of the flux plot, are used as predictors in the
imputation model. We employ a stepwise procedure by calculating the num-
ber of times a variable occurred a predictor in the imputation model. This
method is also referred to as the impute then select method (?). A super-
model is constructed using the variables that occurred across all imputed
datasets. For all other variables, we use the multivariate Wald test and the
likelihood ratio test to determine whether the variable should be included in
the final model.

Multiple Imputation using Chained Equations (MICE) (?) has emerged in
the literature as a routine method for handling missing data in both con-
tinuous and binary variables. Descriptive statistics (mean and standard
deviation) for all iterations are used to obtain a plot to check imputation
convergence. If the mean and standard deviation of the imputed variables
appear to have settled at particular values, the imputation process is deemed
to have converged. There is a lack of formal tests of convergence (?), so the
plots of statistics such as the mean and standard deviation are used to pro-
vide visual information about convergence. A backwards step wise model
selection procedure is employed in the analysis phase after imputations.

All analysis was performed using the statistical software R (version 3.4.0)
(?). The package ‘mice’ (?) were used for multiple imputation. The package
‘ROCR’ (?) is used to produce Receiver Operating Characteristic (ROC)
curves to test the predictive ability of the imputed models and to calculate
the area under the curve (AUC). The packages ‘nortest’ (?) and ‘psych’ (?)
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are used to perform the Anderson-Darling test of normality and to obtain
summary statistics respectively. The package ‘MASS’ (?) is used to perform
χ2 and Mann-Whitney U tests.

Table 2: Diagnostic pathology variables included in the regression analysis,
with summary statistics (n = 10,774).

Variable
Percentage Missing

(HepC = 0)
(n = 10102)

Percentage Missing
(HepC = 1)
(n = 672)

Age 0 0
Sex 0 0
Urea 18.71 13.39
TBil 18.71 4.46
ALT 18.67 4.46
Crea 18.65 13.39
GGT 18.63 4.02
Potassium 17.52 12.35
ALKP 17.43 3.57
Sodium 17.19 11.61
ALB 16.41 3.57
Bas 2.52 2.23
Eos 1.97 1.04
Plt 0.86 0.15
Mono 0.53 0.30
Neut 0.53 0.30
Lymph 0.53 0.30
WCC 0.50 0
MCHC 0.23 0
Hct 0.21 0
RCC 0.21 0
RDW 0.17 0.45
MCV 0.16 0
Mch 0.16 0
Hb 0.12 0
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Figure 2: Patterns of missingness in predictor variables by combination. Each
row of the chart represents a different combination of missing values.
Blue = a variable has no missing values, red = a variable has missing values.
See Table 2 for abbreviation of biomarker names.(To be printed in Colour)
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Figure 3: Fluxplot for HepC data: Outflux v/s Influx
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Table 3: Influx and outflux of multivariate missing data patterns.

Variable
Proportion
Observed

Influx Outflux FICO

Age 1.000 0.000 1.000 0.454
Sex 1.000 0.000 1.000 0.454
ALT 0.865 0.101 0.346 0.369
ALB 0.882 0.086 0.387 0.381
ALKP 0.875 0.093 0.365 0.376
Crea 0.840 0.126 0.314 0.350
TBil 0.865 0.102 0.345 0.369
GGT 0.866 0.101 0.348 0.369
Urea 0.839 0.127 0.310 0.349
Sodium 0.862 0.105 0.348 0.366
K 0.858 0.109 0.343 0.364
Hb 0.999 0.000 0.992 0.453
RCC 0.998 0.001 0.987 0.453
MCV 0.999 0.001 0.992 0.453
Hct 0.998 0.001 0.987 0.453
RDW 0.998 0.001 0.991 0.453
Mch 0.999 0.001 0.992 0.453
MCHC 0.998 0.001 0.987 0.453
Plt 0.993 0.005 0.956 0.450
WCC 0.996 0.002 0.964 0.452
Neut 0.996 0.002 0.961 0.451
Lymph 0.996 0.002 0.961 0.451
Mono 0.996 0.002 0.961 0.451
Eos 0.983 0.014 0.939 0.444
Bas 0.978 0.019 0.928 0.442
hepout 0.752 0.250 0.791 0.274

The variables are imputed on the raw scale. Log or square root trans-
formations are applied to those variables with highly skewed distributions
using passive imputation (?). Passive imputation is a method to handle de-
rived variables in imputation by transforming the imputed values of the vari-
able. Even though a Normal distribution is not essential in the predictors,
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transformations were applied to ensure predictors were of similar order of
magnitude across analysis methods. Complex transformations (like Box-Cox
power transformations) were not considered for the final model for clarity of
interpretation. Finally, logistic regression is used to predict HCV status on
the basis of age, sex and the 23 biomarkers.

3 Results

There were over 100 different patterns of missingness in the predictor vari-
ables across the 14,320 patients (Figure 2a). There were 7,820 individuals
(54.6%) with complete data on age, sex and all 23 biomarkers.
Percentages of missingness (Figure 2b, Table 2) occurs in one of three ways.
For Sodium, Potassium, creatinine (Crea) and Urea, there is approximately
15% missingness, whether or not a patient was HCV positive. For serum al-
bumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP),
gamma glutamyl transferase (GGT) and total serum bilirubin (TBil), there is
about 15% missingness amongst HepC negative, and less than 1% missingness
amongst HepC positive. For the remainder (Age, Sex, platelets (Plt), mono-
cytes (Mono), eosinophils (Eos), basophils (Bas), lymphocytes (Lymph)),
there was only occasional missingness of data.

The area under the ROC curve (AUROC) (Figure 5a) for the available cases
logistic regression model on the validation dataset was 72%; namely, the
model has a 72% chance of correctly classifying individuals as having a pos-
itive HepC assay. The model identified the variables Age, Sex, Sodium,
RDW, Potassium, log(ALT), log(ALP), log(Crea), log(TBil), log(Urea) and
sqrt(Lymph) as significant (p < 0.05; see Table 3).

As stated earlier, variables with higher outflux are potentially powerful pre-
dictors and can be used to impute variables with missing values. As indicated
by the flux plot (Figure 3), variables in the far left corner have more complete
data. Variables closer to the diagonal have more balanced values of influx
and outflux. The group below the diagonal with higher values of influx de-
pend highly on the imputation model. In this study, we consider variables
with outflux values > 0.90 to be included in the imputation model. These
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comprise: Age, Sex, Hb, RCC, MCV, Hct, RDW, Mch, MCHC, Plt ,WCC,
Mono, Eos, Bas, Neut and Lymph.

We fit a stepwise logistic model to predict HepC and count the number of
times each variable occurred in the imputation model in each of the imputed
datasets. This was done for five, and 20 imputations. We observe that vari-
ables that did not occur in any of the imputation models when there were
five imputations, occur in lower frequencies when there were 20 imputations.

Figure 4: Percentage of missingness across variables in the dataset. Variables
coloured pink have between 0 and 10% mising values, variables in blue have
between 11 and 25% missing values. (To be printed in Colour)
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Table 4: Tabulation of the number of occurrences in imputation model across
all imputed datasets.

Variable
No. of Occurrences
(5 imputations)

No. of Occurrences
(20 imputations)

Age 5 20
ALB 5 20
ALT 5 20
Lymphocytes 5 20
RCC 5 20
RDW 5 20
Sex 5 20
TBil 5 20
Urea 4 20
Crea 5 18
K 3 15
MCV 4 14
Basophils 5 13
Hb 3 13
MCHC 3 13
Sodium 4 13
Hct 2 9
ALKP 0 7
Monocytes 2 6
Eosinophils 0 5
Mch 3 5
WCC 0 3
Neut 0 2
Plt 0 1

Variables that occurred in all imputation models were considered in the
supermodel.For other variables, the likelihood ratio test was applied to iden-
tify if the variable should be included in the final model. Variables with
p-value < 0.05 were selected in the final supermodel. Table 4 shows the
results of the tabulation for number of occurrences of each variable when
number of imputations were equal to 5 and 20.
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The parameter estimate from the multiple imputation methods are au-
tomatically pooled and presented in Table 5. The AUROCs of the five-fold
imputed models have a mean of 72% (SD 0.003). We increased the num-
ber of imputations from 5 to 20 and observed variable selection was more
consistent, reducing the randomness in the variable selection process. The
AUROCs of the twenty-fold imputed models have a mean of 71% (SD 0.002).

4 Discussion

Discussion of the results will involve both the meaning of the results for mul-
tiple imputation in general, and the results for the diagnosis of hepatitis C
in particular. The focus of the study is to improve the diagnostic process
by developing a powerful predictive model for HepC without discarding any
information collected during laboratory tests due to the presence of missing
values, and using the completed dataset for developing this model.

The percentage of missing values displayed three patterns (see Results).
Biomarkers with around 15% missingness included sodium, potassium, cre-
atinine and urea which are associated with the Urea-Electrolytes-Creatinine
battery of tests. These are routinely requested for most laboratory investi-
gations. Biomarkers such as ALB, ALT, ALP, GGT and TBil and displayed
around 15% missingness for those found HCV negative, and less than 1%
missingness for those found HCV positive. These are routine liver function
tests and would be primary markers sought when HepC is suspected. The
remaining biomarkers are from the full blood count and are routinely re-
quested, and so records are complete for almost all individuals. A recent
paper (?) has been published on this strategy, but with the goal of avoiding
painful and expensive liver biopsy.

The multiply imputed analyses are largely consistent with the available case
analysis (??) (Table 3). However, three variables in the single imputation
model were not identified as important disease markers in the analysis of
the imputed datasets; hence some unnecessary variables were removed via
MI. Although the ROC curves (Figure 5) produced by the MI methods did
not yield high absolute accuracy, the ten key predictors common to all the
multiply imputed regression models suggest a pattern of routine, easily ac-
cessible pathology markers, which predict a HCV infection. In addition to
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early detection, the advantage of using quality routine pathology data as a
predictive model, where immunoassay is not easily available is a key outcome
especially when handling population health issues for rural or remote areas
in third world countries.

The regression models suggest that increased levels of ALT, RDW and lym-
phocytes increased the odds of detecting HCV infection. All models pre-
sented include the variable ALT which implies that ALT is one of the most
useful routine test predictors of HCV infection. The finding for ALT coin-
cides with current medical practice (?), as cases with elevated ALT levels are
more likely to be infected with HCV. However, ALT elevation is not specific
for viral hepatitis [(?) and so an increased level of ALT in the blood is used
as a guide to request specific second-tier tests that may include HepC im-
munoassay.

RDW has also been previously identified as having a relationship with HCV
in a small-scale Chinese in-patient study (?); the current analysis supports
that finding in a much larger Australian community cohort. Lymphocytes
have also been identified as playing a role in HCV infection in a systematic
review of epidemiological studies (?).

Age is another strong predictor of HCV status, with increasing age decreasing
the chance of being HCV positive. Evidence from Europe (?) and Australia
(?) supports this. The increased prevalence in this study of HCV diagno-
sis in younger patients suggests that clinicians could use this evidence to be
proactive in seeking information on the key variables identified in this study
in the younger age groups. Although the laboratory supplying the data is
housed on a hospital campus, the organisation provides pathology services to
the public as well as inpatients, hence the sample contains many community-
living persons with a wide range of clinical indications leading to the request
for an HCV immunoassay.

The multiple imputation methods employed here assume MAR. However,
the results of this study are limited by the likelihood that MNAR is actually
the type of missingness observed in pathology data. Policy initiatives such
as those recently employed for Vitamin D (?) provide external reasons to
reduce the number of pathology tests ordered in a variety of situations. An-
other likely reason that MNAR would arise in the context of this study is that
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clinicians are likely to use their clinical judgement to order some tests and
not others. This clinical judgment is now also being enhanced by data min-
ing (?). Non-clinical characteristics can also drive choice of tests requested
(?). Practice characteristics and other clinical notes are not captured in the
available data.

A second and related limitation of this multiple imputation analysis is that
were MAR to be assumed, the parameter estimates from the imputed data
are very sensitive to the model employed for the probability of response (?).
The probability of response can be modelled by using linear regression mod-
els for continuous variables, logistic regression models for binary variables,
and multinomial logistic regression models for categorical variables with more
than two classes.

A final limitation of this analysis concerns the rarity of the outcome: only
3% of subjects tested positive for HCV. Whilst the rarity of the outcome
supports our view that inclusion bias is likely to be small, it does raise issues
around the stability of classical estimation algorithms. Logistic regression for
rare events may require the use of penalised likelihood instead of maximum
likelihood (?).

5 Conclusion

Faced with missing data in a routine pathology laboratory database, logistic
regression to develop a prediction model for HCV positive assay results was
successfully undertaken following the use of multiple imputation. The coef-
ficient estimates of the regression models built on various imputed datasets
were pooled to obtain overall estimates. These logistic regression models, on
average, explained about 70% of the variation in the imputed dataset. The
regression models built on imputed datasets have similar AUROCs compared
to the regression model generated using the complete dataset (73% on com-
plete dataset compared to an average of 71% to 72% on multiply imputed
datasets). However, the regression models on the imputed datasets identified
more predictors as significant in predicting HCV infection. This means that
MI leads to richer prediction models and not using MI may lead to missing
predictors that have a useful relationship with the outcome of interest. This
study suggests that MI in the diagnostic process of HepC infection using lab-
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oratory data has identified combinations of routinely measured biomarkers
that are integral to the prediction of HCV infection.
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