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Economic shifts in agricultural production and trade
due to climate change
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ABSTRACT In addition to expanding agricultural land area and intensifying crop yields,

increasing the global trade of agricultural products is one mechanism that humanity has

adopted to meet the nutritional demands of a growing population. However, climate change

will affect the distribution of agricultural production and, therefore, food supply and global

markets. Here we quantify the structural changes in the global agricultural trade network

under the two contrasting greenhouse gas emissions scenarios by coupling seven Global

Gridded Crop Models and five Earth System Models to a global dynamic economic model.

Our results suggest that global trade patterns of agricultural commodities may be sig-

nificantly different from today’s reality with or without carbon mitigation. More specifically,

the agricultural trade network becomes more centralised under the high CO2 emissions

scenario, with a few regions dominating the markets. Under the carbon mitigation scenario,

the trade network is more distributed and more regions are involved as either importers or

exporters. Theoretically, the more distributed the structure of a network, the less vulnerable

the system is to climatic or institutional shocks. Mitigating CO2 emissions has the co-benefit

of creating a more stable agricultural trade system that may be better able to reduce food

insecurity.
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Introduction

Ending world hunger whilst improving nutrition, promoting
sustainable agriculture, and achieving food security, are key
aspirations of the United Nations (UN) Sustainable Devel-

opment Goals (SDG) (Griggs et al. 2013). In addition to
expanding agricultural land area and intensifying crop yields
(Fischer and Velthuizen, 2016), increasing the global trade of
agricultural products is one mechanism that humanity has
adopted to meet the nutritional demands of a growing world
population (Fischer et al., 2014). However, human-induced cli-
mate change will affect the distribution of agricultural production
(Lobell et al., 2008; Rosenzweig et al., 2014; Porfirio et al., 2016)
and, therefore, food supply and global markets. The objective of
this study is to explore the consequences of climate change for the
world’s agricultural trade network.

Achieving the second SDG of zero hunger will require: meeting
shifting demands for agricultural products within a more affluent
and growing population, mitigating the impacts of climate change
on agricultural yields (Li et al., 2009; Wheeler and von Braun,
2013; Nelson et al., 2014) and liberalising world agricultural
markets (Cai et al., 2016). A growing population places additional
pressure on the demand for food and agricultural commodities.
The UN median population projection suggests that the world
population will reach 9.8 billion in 2050. Between 2000 and 2010,
approximately 66% of the daily kcal intake per person, about
1750 kcal, was derived from the four key commodities that are the
focus of this study: wheat, rice, coarse grains and oilseeds (WHO
—FAO, 2003). It is expected, in the short term at least, that 50%
of dietary energy requirements will continue to be provided by
these commodities and this will be produced in developing
regions (WHO—FAO, 2003). Extrapolating from these numbers,
an extra 10 billion kcal per day will be needed to meet global
demands by 2050. Understanding how climate change affects the
production and trade of agricultural commodities is vital for
ensuring the most vulnerable regions have access to a secure food
supply.

Climate change has already influenced the patterns of agri-
cultural production (Kang et al., 2009; Godfray et al., 2010;
Nelson et al., 2010). About a third of the annual variability in
agricultural yields is caused by climate variability (Howden et al.,
2007). In addition, the interaction between climate variability and
climate change threatens the sustainability of traditional agri-
cultural systems (Hochman et al., 2017). The area of cropped land
cannot change significantly in the future, if biodiversity and
conservation goals are to be met (Watson et al., 2013).
Improvements in agro-technologies have led to higher crop yields
but extrapolation from past trends suggests that future increases
in potential yield for most crops will be limited to 0.9–1.6% per
annum (Fischer et al., 2014). While such changes in agricultural
productivity have received a great deal of attention, the oppor-
tunities and risks brought about by changes in the global trade
network have not been explored in depth even though trade is
critical in meeting local shortfalls in production. Cooperative
approaches to facilitating trade and enhancing food security, such
as the Doha Development Round and the Bali and Nairobi
packages, have largely failed due to disagreements among World
Trade Organization members on the best strategies to achieve
these goals (Droege et al., 2016).

Here we explore the consequences of climate change on the
world’s agricultural trade network from 2008 to 2059 under two
IPCC Representative Concentration Pathways (RCPs). The
RCP4.5 scenario limits the global temperature increase to 1.5 °C
relative to pre-industrial levels, while the RCP8.5 scenario results
in global temperatures above 2 °C by 2050. To do this, we coupled
seven Global Gridded Crop Models from the Agricultural Model
Intercomparison and Improvement Project (AgMIP)

(Rosenzweig et al., 2014), which projects crop yields based on five
Earth System Models, to a global economic model, which fore-
casts the economy to the end of 2050. The economic con-
sequences of the biophysical changes in agricultural production
are calculated using the Commonwealth Scientific and Industrial
Research Organization (CSIRO) version of the Global Trade and
Environment Model (GTEM-C) (Cai et al., 2015). GTEM-C is a
dynamic general equilibrium and economy-wide model, capable
of projecting trajectories for globally-traded commodities, parti-
cularly agricultural products. A predecessor of GTEM-C, called
the Global Trade and Environment Model (Pant, 2007), was used
in Nelson et al. (2014) to analyse the economic consequences of
climate change effects on agriculture.

Methods
General modelling framework and past applications. The
GTEM-C model was previously validated and used within the
CSIRO Global Integrated Assessment Modelling framework
(GIAM) to provide science-based evidence for decision and
policy making. For example, alternative greenhouse gas (GHG)
emissions pathways for the Garnaut Review, which studied the
impacts of climate change on the Australian economy (Garnaut,
2011), the low pollution futures program that explored the eco-
nomic impacts of reducing carbon emissions in Australia (Aus-
tralia, 2008) and the socio-economic scenarios of the Australian
National Outlook and project that explored the links between
physics and the economy and developed 20 futures for Australia
out to 2050 (Hatfield-Dodds et al., 2015). In the context of agro-
economics a predecessor of the GTEM-C model was used to
analyse economic consequences of climate change impacts on
agriculture. The GTEM-C model is a core component in the
GIAM framework, a hybrid model that combines the top-down
macroeconomic representation of a computable general equili-
brium (CGE) model with the bottom-up details of energy pro-
duction and GHG emissions.

GTEM-C builds upon the global trade and economic core of
the Global Trade Analysis Project (GTAP) (Hertel, 1997)
database (See Supplementary Information). Integrated modelling
provides a unified framework to integrate transdisciplinary
knowledge about human societies and the biophysical world.
This approach offers a holistic understanding of the energy-
carbon-environment nexus (Akhtar et al., 2013) and has been
intensively used for scenario analysis of the impact of possible
climate futures on the socio-ecological systems (Masui et al.,
2011; Riahi et al., 2011).

Overview of the GTEM-C model. GTEM-C is a general equili-
brium and economy-wide model capable of projecting trajectories
for globally-traded commodities, like agricultural products. Nat-
ural resources, land and labour are endogenous variables in
GTEM-C. Skilled and unskilled labour moves freely across all
domestic sectors, but the aggregate supply grows according to
demographic and labour force participation assumptions and is
constrained by the available working population, which is sup-
plied exogenously to the model based on the UN median popu-
lation growth trajectory (UN, 2017). The simulations presented in
this study were performed setting GTEM-C’s accuracy at 95%
levels. Global land area devoted to agriculture is not expected to
change dramatically in the future; nevertheless, the GTEM-C
model adjusts cropping area within the regions based on demand
for the studied commodities.

As is proper when using a CGE modelling framework, our
results are based on the differences between a reference scenario
and two counterfactual scenarios. The reference scenario assumes
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RCP8.5 carbon emissions but does not include perturbations in
agricultural productivity due to climate. The RCP8.5 counter-
factual scenario results in an increase in global temperatures
above 2 °C by 2050 relative to pre-industrial levels. The
agricultural productivities in the reference scenario are internally
resolved within the GTEM-C model to meet global demand for
food, assuming that technological improvements are able to
buffer the influence of climate change on agricultural production.
For the two counterfactual scenarios presented here, we use
future agricultural productivities obtained from the AgMIP
database to change GTEM-C’s total factor productivities of the
four studied commodities. The counterfactual scenario with no
climate change mitigation follows the RCP8.5 emission but
includes exogenous agricultural perturbations from the AgMIP
database. This is, changes in agricultural productivity rates were
not internally calculated by GTEM-C but given by the AgMIP
projections. The RCP 4.5 scenario with climate change mitigation
assumes an active CO2 mitigation achieved by imposing a global
carbon price, so that additional radiative forcing begins to
stabilise at about 4Wm−2 after 2050. The carbon mitigation
scenario includes exogenously perturbed agricultural productiv-
ities as modelled by the AgMIP project under RCP4.5. The
RCP4.5 scenario limits global temperature increase to 1.5 °C,
relative to pre-industrial levels.

The Earth System Models (ESMs) we use represent a wide
cross-section of climate models from CMIP5, with a range of
transient and equilibrium climate sensitivities between 1.3–2.5
and 2.44–4.67 K, respectively, consistent with the assessed likely
range from all CMIP5 climate models of 1.1–2.5 and 2.08–4.67 K,
respectively. Climate projections from the ESMs are used to force
a set of Global Gridded Crop Models (GGCM) (Nelson et al.,
2014). These models were systematically compared in AgMIP
(Rosenzweig et al., 2014) and they take into account crop
responses to atmospheric CO2 concentrations as well as responses
to water, temperature and nutrient stresses (Rosenzweig et al.,
2014). Agricultural productivities within GTEM-C were exogen-
ously forced with projections from the AgMIP database.

The current version of GTEM-C uses the GTAP 9.1 database.
We disaggregate the world into 14 autonomous economic regions
coupled by agricultural trade. Countries of large economic size
and distinct institutional structures are modelled separately in
GTEM-C, and the rest of the world is aggregated into regions
according to geographical proximity and climate similarity. In
GTEM-C each region has a representative household. The 14
regions used in this study are: Brazil (BR); China (CN); East Asia
(EA); Europe (EU); India (IN); Latin America (LA); Middle East
and North Africa (ME); North America (NA); Oceania (OC);
Russia and neighbour countries (RU); South Asia (SA); South
East Asia (SE); Sub-Saharan Africa (SS) and the United States of
America (US) (See Supplementary Information Table A2). The
regional aggregation used in this study allowed us to run over
200 simulations (the combinations of GGCMs, ESMs and RCPs),
using the high performance computing facilities at CSIRO in
about a week. A greater disaggregation would have been too
computationally expensive. Here, we focus on the trade of four
major crops: wheat, rice, coarse grains, and oilseeds that
constitute about 60% of the human caloric intake (Zhao et al.,
2017); however, the database used in GTEM-C accounts for 57
commodities that we aggregated into 16 sectors (See Supplemen-
tary Information Table A3).

The RCP8.5 emission scenario was used to calibrate GTEM-C’s
business as usual case, as current CO2 emissions are tracking
above RCP8.5 levels. A carbon price was endogenously calculated
to force the model to match the lower RCP4.5 emissions
trajectory. This ensured internal consistency between emissions
scenarios and energy production (Cai and Arora, 2015). Climate

change affects agricultural productivity, which leads to variations
in agricultural outputs. Given the global demand for agricultural
commodities, the market adjusts to balance the supply and
demand for these commodities. This is achieved within GTEM-C
by internal variations in prices of agricultural products, which
determine the position and competitiveness of each region’s
agricultural sector within the global market, thus shaping the
patterns of global agricultural trade.

Overview of the agricultural productivity in GTEM-C. We use
the AgMIP (Rosenzweig et al., 2014; Elliott et al., 2015) dataset to
modify agricultural productivities in GTEM-C. The AgMIP
database comprises simulations of projected agricultural pro-
duction based on a combination of GGCM, ESMs and emission
scenarios. Here we perturb GTEM-C agricultural production of
coarse grains, oilseeds, rice and wheat (the full list of sector
modelled in GTEM-C can be seen in Supplementary Information
Table A3). The crop yield projections for these four commodities
were obtained from seven AgMIP GGCMs accessed in January
2016 (https://mygeohub.org/resources/agmip): EPIC, GEPIC,
pDSSAT, LPJml, LPJ-GUESS, IMAGE-LEITAP and PEGASUS.
The crop yield projections of the selected commodities are based
on five ESMs: HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
CHEM, GFDL-ESM2M and NorESM1-M (see Table 1 in Villoria
et al., 2016). Our scenarios are based on two RCP trajectories, 4.5
and 8.5 and the very optimistic carbon mitigation scenario,
RCP2.6 (van Vuuren et al., 2011) was not included in our study
for two reasons: first, the AgMIP database contains a limited
number of simulations for the four analysed commodities for
RCP2.6 compare to RCPs 4.5 and 8.5. Second, it would be
necessary to include into GTEM-C a negative carbon emissions
technology in order to achieve the first Shared Socio-economic
Pathway that corresponds to the RCP2.6’s CO2 emissions
trajectory.

Mathematical characterisation of the trade network. To quan-
tify the structural changes in the agricultural trade network, we
developed an index based on the relationship between importing
and exporting regions as captured in their covariance matrix. We
represent the spectrum of the eigenvalues of this covariance
matrix as the elements, sij of a diagonal 14 × 14 matrix, where we
have modelled 14 importing and exporting regions in our
simulations. It is natural to interpret a rapidly converging spec-
trum as indicative of a trade network dominated by just a few
importers and exporters while a flat spectrum of eigenvalues
implies a network with many more equal actors. We capture this
difference by the Shannon entropy of the eigenvalue spectrum
and define the structural trade index as S. A smaller value of S
represents a centralised network structure, where export/import
flows are dominated by just few regions; larger values of S indicate
a more distributed trading structure, where export/import flows
are more uniformly distributed between all regions.

We tested if the S index could capture historical shocks to the
agricultural trade network by first applying our index to bilateral
trade data for the period 1870–2014 from the Correlates of War
Project Data Set version 4.0 (Barbieri and Keshk, 2016). Second,
we applied the metric to the agricultural global trade data from
the Food and Agricultural Organization (FAO) of the UN
(FAOstat, 2016) for the period 1986–2010, focussing on the four
selected commodities. Third, we applied the metric to the
projections for the different ESMs and RCP scenarios based on
the GTEM-C model.

The N×N import-export matrix P encapsulates structural
information about the global trade network, in this study N= 14
regions. Each entry pij in P represents the value of exports from
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region ri to region rj. Equally, each entry pji represents the value of
imports by region rj from region ri. Hence the i’th row of matrix P
can be interpreted as an N-dimensional vector of regions to
which region i exports with the components of the vector equal to
the quantity of exports received from region ri. Conversely,
column j of P can be interpreted as an N-dimensional vector of
regions from which region j imports with the components of the
vector equal to the quantity of imports received from region ri. If
the trade network is regarded as a set of N×N edges or links, then
the import-export matrix can be interpreted as the adjacency
matrix of a directed graph with edges weighted by the trade in
each direction between pairs of regions. Conventionally, we
normalise the pij values by the total volume of the global trade so
that,

XN

j�1
pij ¼ 1 ð1Þ

The resilience of the trade network to interruptions of supply
by exporting countries or to inability to pay by importing
countries is related to its relational structure.

A direct measure of the structure of the network is provided by
the Shannon entropy (Simpson, 1949) of the matrix P given by,

H ¼ �
XN
j�1

pij log2 pij ð2Þ

This measure has been proposed for applications in both
human and natural sciences (Phillips and Conviser, 1972) and
(Bonchev and Buck, 2005). However, it is easy to see that H is

unaffected by any permutation of the pij values so it cannot
convey information about the relational structure (from where to
where) of the trade network, only about its general structure.
Theoretically, a distributed network is less vulnerable to
disturbances. For example, to date soybeans are mostly exported
by three regions, United States of America, Brazil and Argentina.
If an increase in the frequency of strong ENSO events results in
an increase of severe droughts or new pathogens affecting two of
these main soybeans exporting regions, the global market would
be severely affected.

To overcome the limitations of simply computing the Shannon
entropy, H of the network, we propose a novel approach. The
import/export matrix P can be reconstructed from a set of simpler
(rank 1) matrices Ei formed from the singular vectors and scaled
by the singular values.

P ¼ UΣVT ð3Þ

P ¼ E1 þ E2 þ ¼ Ep ð4Þ

Ek ¼ σkμkv
T
k ð5Þ

Where T denotes the transpose. Each column of Ek is a multiple of
μk, the k’th row of U, the left singular vector and each row is a
multiple of vTk , the transpose of the k’th column of V, the right
singular vector. The component matrices are orthogonal to each
other in the sense that

EjE
T
k ¼ 0; j≠k ð6Þ

Fig. 1 Historical evolution of the structure of the global trade network for the period 1870–2014. a We illustrate the historical evolution of the global trade
network by using bilateral trade data from the Correlates of War Project Data Set version 4.0 (Barbieri and Keshk, 2016). The bilateral trade dataset
(Barbieri and Pollins, 2009) tracks total national trade and bilateral trade flows between states from 1870 to 2014. We developed a metric (S) based on
Shannon’s entropy measure, which reflects the structure of the trade network by quantifying the underlying relationship between importing and exporting
regions. Small values of the S index represent a centralised network structure, where export/import flows are dominated by few regions, while larger values
of S characterise a more decentralised trading structure, where export/import flows are more uniformly distributed between all regions. b–e Network plots
characterising the structure of the global trading network from the beginning of the 20th century to the beginning of the 21st century
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The norm of each component matrix is just the singular value

Ekk k ¼ σk ð7Þ

So the size of the contribution each Ek makes to reproducing P
is just the associated singular value. This means that the singular
values are the principal components.

From an information theoretic point of view, we are interested
in how much information is needed to reconstruct P to a given
level of accuracy. If just the first few Ek are enough to reproduce
most of the P correctly because they are dominant, then the
information content of the network is small and its Shannon
entropy, H will be small. If all the Ek are equally necessary, then
its information content is maximal and its H will be large. Hence

an H formed from the spectrum of sigmas produced by the
singular value decomposition of P is all we need.

We define the information entropy of the trade network
therefore as,

S ¼ �
XN
ij¼1

bσij log2 bσij ð8Þ

where bσij are singular values of P.
S formed in this way will tend to large values when the import-

export network is well connected with trade spread across all the
regions. When the network simplifies and is dominated by a few
large exporters and importers, S values will be small and the
network will be more connected.

Fig. 2 The total global trade of four commodities: coarse grains, oilseeds, rice and wheat, among 14 regions averaged for the period 2050–2059 under two
RCP scenarios. The’ colours of the links in the circular plots correspond to the exporting regions. The circles are scaled according to the total global trade
for the corresponding years. The base year (top left) shows total global trade in 2015. The RCP4.5 and 8.5 scenarios account for the effect of climate
change on agricultural production and emission trajectories for RCP4.5 and 8.5, respectively. The CSIRO version of the Global Trade and Environment
Model (GTEM-C), a dynamic Computable General Equilibrium model, was used to project the global economy. Agricultural productivities within GTEM-C
were exogenously forced with data from the Agricultural Model Intercomparison and Improvement Project (AgMIP). This is, changes in agricultural
productivity rates were not internally calculated by GTEM-C but given by the AgMIP projections. The regions are: Brazil (BR); China (CN); East Asia (EA);
Europe (EU); India (IN); Latin America (LA); Middle East and North Africa (ME); North America (NA); Oceania (OC); Russia and neighbour countries (RU);
South Asia (SA); South East Asia (SE); Sub-Saharan Africa (SS) and the United States of America (US)
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Results
A new metric to quantify structural changes in the global trade
network. We present a novel index called the structural (S)
metric, based on Shannon’s information entropy measure. The S
metric measures the underlying relationship between importing
and exporting regions. First, we tested the performance of the S
metric by using bilateral trade data from the Correlates of War
Project Data Set version 4.0 (Barbieri and Keshk, 2016). The
bilateral trade dataset (Barbieri and Pollins, 2009) tracks total
national trade and bilateral trade flows between states from
1870–2014. Figure 1 shows the historical evolution and dynamics
of the global trade system as characterised by the S metric. Our
results show a positive trend in the S metric towards the end of
the time series, indicating an increase of import/export interac-
tions between the regions since 1870; that is, the trade network
structure became more decentralised. Geopolitical and institu-
tional events have had a strong influence in shaping the structure
of the global trade network. See for example the effects of the First
and Second World Wars on the structure of the global trade
network (See Fig. 1). Each of these events reduced the number of
connections in the global trade network; this is captured by lower
values of the S metric. Our index depicts the emergence of, for
example, the International Monetary Fund and the General
Agreement of Tariff and Trade, as corrective economic measures
in the aftermath of the Second World War (See Fig. 1). Our
results suggest that despite the economic recession in 1990 and

later on in 2008, the structure of the global trade network has
continued to diversify with more players involved.

Changes in the patterns of global agricultural trade due to
climate change. We simulated patterns of global trade for 2050
for the four studied commodities: wheat, rice, coarse grains and
oilseeds; under RCP4.5 and RCP8.5 (See Fig. 2). The circular plots
in Fig. 2 are scaled according to the total global trade of the
commodities analysed in our model ensemble for the year 2015
and averaged volume of trade for the period 2050–2059 for the
two greenhouse gas emissions scenarios. For the reference,
GTEM-C estimates that the value of total agricultural trade in the
USA was 144 US$ in 2015 (measured in 2007 US$), this number
closely matches data from the United States Department of
Agriculture that reported a value of 136.7 US$ for 2015 (United
States Department of Agriculture, 2015a, 2015b).

The response of the global trade patterns to the different RCP
emissions scenarios is uneven, reflecting different regional
impacts of climate change on agricultural production and the
uneven effect of a carbon price on regional economies, assuming
no institutional changes. Climate change impact on agricultural
production results in synergies and trade-offs for the regions. For
example, in our scenarios, the US contributed 30% of global
exports in 2015, while in the period 2050–2059 we project it will
contribute only 10 or 11% under RCP4.5 or RCP8.5, respectively.

Fig. 3 Historical and projected changes in the structure of the global agricultural network under the RCP4.5 and RCP8.5 climate scenarios. A)We present a
structural index S, based on Shannon’s information entropy measure, that quantifies the underlying relationship between importing and exporting regions.
Smaller values of the structural index represent a simpler trading network. Shown in grey is the historical trend of change in the global trading network
based on data from FAO database from 1986 to 2013. From 2015 onwards the blue and red, curves represent the average values of changes in the global
trade network for the two carbon emissions scenarios, RCP4.5 and RCP8.5, respectively, based on outputs from the CSIRO version of the Global Trade and
Environment Model (GTEM-C). Higher values of the index represent a trading network that becomes more distributed. If the value of the structural index
becomes smaller, the network becomes more centralised. The projections revealed that under RCP8.5 (red) the global trading structure becomes more
centralised while under RCP4.5 (blue) CO2 mitigation scenario the global trading structure becomes more distributed. Shaded areas depict 25th and 75th
values from the combination of Global Gridded Crop Models and ESM for each RCP scenario. B) Network plots characterising the structure of the global
trading network from decentralised (top) to centralised (bottom)
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These falls in the USA’s agricultural exports between 2015 and
2050 seem large; however, they align with projections of lower
total factor productivities in the US due to climate change (Liang
et al., 2017).

We found a significant difference in the number of exports
from China to the rest of the world in our two scenarios. China is
currently a net importer of the four studied commodities, i.e., this
region contributed only about 1% of global exports in 2015. Our
simulations suggest that by 2050–2059, China could become an
exporter of some of these commodities. We project that the
exports from China to the rest of the world will increase by 7.4%
under RCP4.5 and 12.3% under RCP8.5 (See Fig. 2). This increase
in the proportion of exports from China is triggered by a positive
response in agricultural productivity under the high carbon
emissions scenario, i.e., China is a strong economy and contains a
large landmass with multiple biomes suitable for growing the
studied commodities. Brazil contributed 9.6% of exports of the
four agricultural commodities in 2015 and is projected to share
about 9.2% of the exports market under RCP4.5 and 7.7% under
RCP8.5 by the period 2050–2059 (See Fig. 2). Europe’s
contributions to exports were 20% in 2015, and are projected to
be 16.7% under RCP4.5 and 15.5% under RCP8.5 by the 2050
decade.

The simulations to 2050–2059 suggest that Sub-Saharan Africa
will be the region with the largest increase in imports of coarse
grains, oilseeds, paddy rice and wheat (See Fig. 2). Imports to
Sub-Saharan Africa will double because the largest increase in
human population in the next few decades will occur in this
region, with a subsequent increase in the demand for food, which
is accounted in our modelling framework. The response of global
trade patterns to the different RCP emissions scenarios for other
regions is uneven, reflecting different regional impacts of climate
change on agricultural production and on regional economies.

Changes in the patterns of global agricultural trade. Our
simulations based on GTEM-C suggest that there are changes in
both the volume and patterns of agricultural trade. We used the S
metric to study changes in the patterns of agriculture trade,
induced by regional variations in both the climate impacts on
agricultural productivity and the economic impacts of unmiti-
gated climate change and/or the cost of mitigation through an
imposed carbon price. Small values of the S metric represent a
centralised network structure where export/import flows are
dominated by few regions, while larger values of S characterise a
more decentralised trading structure where export/import flows
are more uniformly distributed between all regions. The projected
behaviour of S through 2050 for all model realisations and
ensembles are shown in Fig. 3. We also calculated the S metric for
a small historical global agricultural trade dataset from the FAO
(FAOstat, 2016) that accounts for the four studied crops for the
period 1986–2013 (grey line in Fig. 3). We observed two sig-
nificant drops in the value of the index in that period (See Fig. 3).
The first significant drop reflects the economic recession in the
late 1980’s that affected agricultural production. The second drop
in 1995-1996 relates to climatically adverse conditions that
resulted in agricultural production shortfalls. As a consequence,
grain prices rose to record levels (Food and Agriculture Organi-
zation of the United Nations, 1996). The fluctuations in the S
metric during 1995-1996 (See Fig. 3) reflect a shortage in cereal
production, which has removed some regions from trading these
commodities, affecting the structure of the global agricultural
trade network.

The simulations of the structure of the agricultural trade
network from 2015 to 2059 (See Fig. 3) project a period of
stability from 2015 to 2030, where the small differences in the

climate responses of the two RCP scenarios over this period have
little impact on agricultural production and therefore on trade.
After 2030 both scenarios are affected by global warming, mostly
through a reduction in agricultural production, which, under the
framework of the dynamic global economic model is buffered by
an increase in the amount of agricultural trade. This is captured
by our index as an increase in the value of the S metric. After
2040 we enter a phase where the two scenarios diverge, driven by
the increasing differences in the climate response to the carbon
emissions and increasing differences in the regional economic
impacts of mitigating (RCP4.5) or not mitigating (RCP 8.5) GHG
emissions. The global agricultural trade structure remains stable
under RCP4.5, as climate affects agricultural production to a
lesser degree than under RCP8.5, where agriculture is heavily
impacted with a shortfall in production of key commodities.
Under RCP 8.5 the global trade network becomes more
centralised (showing smaller values of the S metric). Hence,
under RCP8.5, just a few regions may dominate export markets of
the four commodities, while under RCP4.5 more regions may be
involved in the global trade as either importers or exporters.

Discussion and outlook
Some caveats need to be acknowledged. It should be noted that
our modelling and analysis did not consider other extreme socio-
economic events, such as a recession or shift in geopolitical
regimes, life expectancy or illiteracy rates, among others. Adding
these considerations would be feasible and would provide a range
of different scenarios. However, the focus of this paper is to assess
the impacts of climatic change on agricultural production and,
therefore, global agricultural trade; and we aimed to develop a
metric capable of characterising and quantifying such a complex
structure. Therefore, as a first attempt we decided to isolate the
biophysical component, climate change and agricultural pro-
duction, from other impacts so its mechanism could be fully
understood. In the same way, we can test if it is possible to
achieve the RCP2.6 scenario by incorporating negative emissions
technologies into GTEM-C. For this to happen, it will require
large breakthrough in carbon sequestration technology and sig-
nificant land use change. These potential scenarios may yield
interesting results; however, they depart from our main goal,
which was to explore and understand the consequences of climate
change for the world’s agricultural trade network.

It is important to make one caveat regarding our use of GTEM-
C. The model parameters are estimated and calibrated against
historical data. Economic data for many countries, particularly
those outside the Organisation for Economic Cooperation and
Development are very often of poor quality. Therefore, validation
by post-diction and uncertainty analysis are critical when using
the model. The current version of GTEM-C was validated in the
context of the Australian National Outlook (Hatfield-Dodds et al.,
2015). We have addressed the uncertainties in our methods by
using the climate and crop model ensembles. Despite these lim-
itations, GTEM-C provides a rigorous tool to analyse the energy-
carbon-environment nexus, and more importantly, a platform to
integrate transdisciplinary knowledge about human societies and
the biophysical world.

We have presented a comprehensive global assessment of the
impact of future climate on the agricultural trade network. To our
knowledge, this study is the first attempt to combine both the
biological impacts of climate change on crop production with the
economic impacts of climate change, both unmitigated or miti-
gated through a carbon price, on the ability of regions to grow,
export or import staple food crops. We used the GTEM-C
dynamic economic model to combine data from seven Global
Gridded Crop Models from the AgMIP database, in which
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agricultural projections were based on five ESMs run for two
RCPs, 4.5 and 8.5. Our year-to-year projections revealed that
under RCP8.5 the structure of the global trade network becomes
more centralised while under RCP4.5 it becomes more dis-
tributed. The results suggest that there is a synergistic interaction
between mitigating CO2 emissions and obtaining a more dis-
tributed structure of the agricultural trade network and possibly
promoting food security by having more regions able to partici-
pate in the trading market. Structural changes in the global trade
network would have implications for biosecurity through the
transport of commodities and potential new pathogens. A more
distributed trade and production network could be more resilient
to biological or economic impacts. Such considerations have a
direct impact on each region’s possibility of achieving the second
United Nations’ SDGs: zero hunger locally or contributing to
global achievement.

Although there is apparent global willingness to transition to a
low carbon economy (UNFCCC, 2015), current global carbon
emissions are tracking above RCP8.5 (Friedlingstein et al., 2014).
Our projections to 2050 suggest that the structure of agricultural
trade under either RCP4.5 or 8.5, will be significantly different
from the current reality. A compelling result is that the quantity
of agricultural commodities imported by Sub-Saharan Africa will
at least double by 2050. However, the two RCP scenarios present
significantly different stories in terms of who the exporting
regions could be, this is driven by shifts in regional climatic
conditions that alter the existing agricultural system and the
reaction of the various regions to climate impact and/or mitiga-
tion on their economies.

The agricultural productivities of the four selected crops show
different responses to climate change. Rice, for example, is
strongly affected by inter-annual climate variability, but overall
rice yield has been increasing steadily since 1980’s (Liu et al.,
2016). Under the RCP8.5 climate scenario, rice yields are likely to
decline by around 10% (Zhao et al., 2017), but rice’s yields will be
less impacted than the other major crops, as wheat yields are
projected to decrease by ≈22%, maize by ≈27% and soybean by
≈11% under the RCP8.5 high CO2 emissions scenario. We note,
however, that this divergence in yields between rice and other
staples could be even higher if the crop models were to account
for the future generation of rice cultivars that may be able to
achieve higher yields with a reduction of methane emissions by
about 10% (Jiang et al., 2017).

The stability and resilience to shock of a complex system, such
as a trade network, is strongly conditioned by the structure of the
network (Albert et al., 2000). Theoretically, the more distributed
the network, the more resilient the system is to local and global
failure. If the agricultural system is locally impacted, e.g., by a
severe drought, flood or emergence of new pathogens, and crop
production falls in a region as a result, a more distributed global
trade network should be better able to fill the gap in agricultural
production. The low CO2 emissions pathway (RCP4.5) leads to
more stable and diversified agricultural production (Gerald et al.,
2009) and as a consequence, the structure of the global trade
network becomes more distributed. This suggests that a more
distributed food trading network could be more resilient to
shocks and better able to sustain future growing demand for food
(May et al., 2008; Arinaminpathy et al., 2012) than the counter-
part scenario, under RCP8.5.

Mitigating CO2 emissions has the unintended co-benefit of
creating a more stable agricultural trade system that may be better
able to reduce food insecurity (Porfirio et al., 2016; Zhao et al.,
2017) and increase welfare by reducing social costs of carbon
(Moore et al., 2017). Trading rules could potentially help to
achieve transformative change in climate policy (Lininger, 2015).
A strong economic structure (May et al., 2008; Arinaminpathy

et al., 2012), with agile and robust policies, can help in mitigating
climate impacts on agricultural production while transitioning to
a low carbon economy.

Data availability
The results from the current study are available in the Dataverse repository: https://doi.
org/10.7910/DVN/48BCMJ. The datasets analysed during the current study are from the
following resources: https://www.gtap.agecon.purdue.edu/about/project.asp; and https://
mygeohub.org/resources/agmip
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