
TYPE Original Research

PUBLISHED 31 October 2022

DOI 10.3389/fcomp.2022.931312

OPEN ACCESS

EDITED BY

Jeronimo Castrillon,

Technical University Dresden,

Germany

REVIEWED BY

James Harold Davenport,

University of Bath, United Kingdom

Norman Rink,

DeepMind Technologies Limited,

United Kingdom

*CORRESPONDENCE

Benjamin Chetioui

benjamin.chetioui@uib.no

SPECIALTY SECTION

This article was submitted to

Software,

a section of the journal

Frontiers in Computer Science

RECEIVED 28 April 2022

ACCEPTED 16 August 2022

PUBLISHED 31 October 2022

CITATION

Chetioui B, Larnøy MK, Järvi J,

Haveraaen M and Mullin L (2022)

P3 problem and Magnolia language:

Specializing array computations for

emerging architectures.

Front. Comput. Sci. 4:931312.

doi: 10.3389/fcomp.2022.931312

COPYRIGHT

© 2022 Chetioui, Larnøy, Järvi,

Haveraaen and Mullin. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

P3 problem and Magnolia
language: Specializing array
computations for emerging
architectures

Benjamin Chetioui1*, Marius Kleppe Larnøy1, Jaakko Järvi2,

Magne Haveraaen1 and Lenore Mullin3

1Department of Informatics, University of Bergen, Bergen, Norway, 2Department of Computing,

University of Turku, Turku, Finland, 3College of Engineering and Applied Sciences, University at

Albany, SUNY, Albany, NY, United States

The problem of producing portable high-performance computing (HPC)

software that is cheap to develop and maintain is called the P3 (performance,

portability, productivity) problem. Good solutions to the P3 problem have been

achieved when the performance profiles of the target machines have been

similar. The variety of HPC architectures is, however, large and can be expected

to grow larger. Software for HPC therefore needs to be highly adaptable, and

there is a pressing need to provide developers with tools to produce software

that can target machines with vastly di�erent profiles. Multi-dimensional

array manipulation constitutes a core component of numerous numerical

methods, such as finite di�erence solvers of Partial Di�erential Equations

(PDEs). The e�ciency of these computations is tightly connected to traversing

and distributing array data in a hardware-friendly way. The Mathematics

of Arrays (MoA) allows for formally reasoning about array computations

and enables systematic transformations of array-based programs, e.g., to

use data layouts that fit to a specific architecture. This paper presents a

programming methodology aimed for tackling the P3 problem in domains

that are well-explored using Magnolia, a language designed to embody

generic programming. The Magnolia programmer can restrict the semantic

properties of abstract generic types and operations by defining so-called

axioms. Axioms can be used to produce tests for concrete implementations

of specifications, for formal verification, or to perform semantics-preserving

program transformations. We leverage Magnolia’s semantic specification

facilities to extend the Magnolia compiler with a term rewriting system. We

implement MoA’s transformation rules in Magnolia, and demonstrate through

a case study on a finite di�erence solver of PDEs how our rewriting system

allows exploring the space of possible optimizations.

KEYWORDS

partial di�erential equations, generic programming,Magnolia language,mathematics

of arrays, term rewriting, high-performance computing

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.931312
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.931312&domain=pdf&date_stamp=2022-10-31
mailto:benjamin.chetioui@uib.no
https://doi.org/10.3389/fcomp.2022.931312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.931312/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

1. Introduction

The quest for higher performance fuels innovation on

hardware architectures; we have seen a wide variety of high-

performance computing (HPC) architectures in the past and can

expect new ones to keep appearing. Long-lived and successful

HPC software must thus be highly adaptable, adjustable to

different memory hierarchies and changing intra- and inter-

process communication hardware.

The problem of producing HPC software that is easy, or at

least not unreasonably difficult, to develop and maintain across

multiple architectures is called the P3 (performance, portability,

productivity) problem. Good solutions to the P3 problem have

been achieved when the performance profiles of the target

machines have been similar (Wolfe, 2021). As more new

hardware architectures emerge, there is a pressing need to

provide developers with tools to produce such software for

targets with vastly different profiles. This includes architectures

that fit within Wolfe’s P3 machine performance model (CPUs,

GPUs, or other accelerators, possibly distributed; Wolfe, 2021)

but also those that do not (e.g., Groq’s Tensor Streaming

Processor; Abts et al., 2020).

Multidimensional array manipulation is at the core of

numerous numerical methods. The topic of optimizing the

performance of array computations is therefore extremely

relevant to the P3 problem. We have previously explored

the Mathematics of Arrays (MoA) formalism (Mullin, 1988)

as a tool to optimize array computations for different

hardware architectures, first through their Denotational Normal

Form (DNF; Chetioui et al., 2019) and then through their

Operational Forms (OFs; Chetioui et al., 2021). A thorough

mathematical understanding of a given domain is key to

enabling domain-specific semantic-preserving rewrites—and

therefore optimizations.

The portability and productivity pillars of P3 are both

strongly related to the notion of code reuse. Portability as

meant here is the ability to run the same code with high

performance on different machines. Productivity means

that applications can be developed and maintained with a

reasonable and predicable effort. Research unequivocally shows

that productivity increases through reuse (Basili et al., 1996;

Frakes and Succi, 2001; Nazareth and Rothenberger, 2004).

Generic programming has proven to be an effective method

of constructing libraries of reusable software components.

The Magnolia programming language (Bagge, 2009) is

designed as an embodiment of generic programming

(Chetioui et al., 2022). It allows the flexible intermixing

of specifications and implementations. Specifications can

additionally be restricted by semantic requirements (called

axioms) in the form of assertions. These axioms can be used

for testing (Bagge et al., 2011), but also for optimization

when used as directed rewrite rules, in the case of equational

or conditional equational axioms (Bagge and Haveraaen,

2009).

1.1. Schedules as hardware abstractions

In their 2012 paper on Halide, Ragan-Kelley et al. (2012)

introduce the term schedule to refer to decisions about storage

and about the order of computations in a program. The insight

is that the essence of an algorithm is distinct from its schedule—

allowing the advent of a programming model where both

kinds of computations are not anymore intertwined but instead

expressed independently from each other.

Stepanov-style generic programming abstracts

algorithms and data structures by specifying minimum

syntactic and semantic requirements on instantiations.

Said differently, the types and operations underlying a

generic implementation are only characterized by the

part of their observable behavior that is relevant to the

generic algorithm.

When observed through the lens of generic programming, a

schedule is an abstraction for the kind of hardware architecture

underlying the computations. We consider only the information

about the hardware that is relevant for executing our algorithm

efficiently: how computations should be ordered, and how data

should be stored. Similar hardware architectures are then valid

instantiations for the same schedule.

Scheduling, in the case of array computations, relates

particularly to the access patterns of the arrays. As a motivating

example, consider an array program running on a single CPU

with memory, the classical model of a computer. We may

have three standard traversal patterns for computations over

our arrays:

1. a row-major traversal;

2. a column-major traversal;

3. a tiled traversal.

While the original algorithm can be expressed without making

any assumption about the underlying hardware, the choice of a

particular hardware will dictate which traversal pattern is most

efficient. In other cases, the choice of a particular schedule may

be desirable. For example, on hardware consisting of several

distributed CPUs connected through some communication

network, we may want the schedule to handle inter-CPU

communication using MPI. If each one of these CPUs is

connected to several GPUs, we may also want the schedule

to load data on and off the GPUs as needed. Such choices

will affect the desired data layout, and consequently the data

access patterns so as to match the distribution of the data.

These changes will have to be reflected in the presentation of

the algorithm.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

The execution time for an algorithm adapted to its schedule

may be dramatically shorter than for an algorithm exhibiting

less well-suited data access patterns. While an algorithm

and its schedule can be expressed independently, choices

in the latter may affect what is an appropriate expression

of the former, and vice versa. Our approach uses rewriting

technology to adapt a unique algorithm to adequately exploit

the data traversal pattern of a schedule, and underlying

hardware characteristics.

Throughout the rest of the paper, we view schedules as

hardware abstractions. This view is fully compatible with Ragan-

Kelley et al. (2012)’s definition of schedules, but conveys our

intent more accurately.

1.2. Contribution, limitations, and
structure of the paper

This paper presents a programming methodology aimed for

tackling the P3 problem in well-explored domains. We define

well-explored domains as those for which significant domain-

specific knowledge and a mathematical formalization exist.

Our approach keeps the essence of the algorithm

separate from its schedule, which makes it convenient to

explore different mappings of the algorithm’s computations

to hardware. To achieve this, we extend our Magnolia

compiler with code generation and term rewriting

facilities based on axioms. We use these new facilities

to implement, in Magnolia, a library of generic and

hardware-specific optimization rules based on MoA and

its formal guarantees.

To assess our approach and how it alleviates the P3 problem,

we apply it to a Partial Differential Equation (PDE) solver based

on Finite Difference Methods (FDM). With this case study, we

demonstrate that in the case of a finite difference solver, our

methodology allows for easily producing different versions of

the solver programwith different performance characteristics on

both CPU and GPU. To be clear about our assessment, we note

that we did not compare our performance to hand-crafted fine-

tuned implementations, or quantitatively measure the effort of

producing different solver versions against implementing those

by hand. The productivity benefits of approaches emphasizing

code reuse, such as ours, become more apparent as the

number of programs to implement in a given domain grows.

The API we use is suitable for any explicit finite difference

solver, and our contribution thus extends beyond the particular

problem configuration chosen in the case study (Burrows et al.,

2018).

The paper is structured as follows. Section 2 provides

necessary background on Magnolia. Section 3 describes

our methodology in detail, and illustrates it with a PDE

solver based on FDM. Section 4 reflects on our work

and ties it together with relevant related work. All the

code is available as an example in the repository for

magnoliac (Chetioui, 2020; see the examples/pde folder at

https://github.com/magnolia-lang/magnolia-lang/tree/base-

program).

2. Background

2.1. Magnolia

The phrase generic programming has over decades

of programming language development come to have a

variety of interpretations, depending on the main type

of genericity considered. Gibbons gives a taxonomy of

interpretations (Gibbons, 2006). Stepanov-style generic

programming (Dehnert and Stepanov, 1998) corresponds to

what Gibbons calls genericity by property, where one describes

data structures and algorithms in terms of syntactic and

semantic requirements. This is the essence of Stepanov’s and

Musser’s concepts (Musser and Stepanov, 1988). They are

the direct inspiration behind C++0x concepts (Gregor et al.,

2006); the C++20 concepts are a scaled back realization

of those that only allow syntactic requirements on

instantiations (In this latter case, we talk of genericity by

structure.).

Magnolia is a programming language designed as an

embodiment of Stepanov-style generic programming (Bagge,

2009). Magnolia code is structured into modules that mix

abstract specifications of operations and their concrete

implementations flexibly, following the work of Goguen and

Burstall (1984) on the theory of institutions. The language

does not offer any primitive types aside from predicates:

every data structure is implemented in a configurable host

programming language. As of today, Magnolia can target

C++ and Python (Chetioui, 2020). Our prior work coins

the term genericity by host language to refer to this axis of

parameterization, in the style of Gibbons’ taxonomy (Chetioui

et al., 2022). Composite operations can be implemented in

Magnolia, while the base types and operations, including

loop structures, are implemented in the host language. The

programmer can freely decide where to set the boundary

between the operations implemented in Magnolia, and those

implemented in the base library written in the host language—

depending on what is more convenient. An appropriate choice

of underlying data structures results in code that is as performant

as if implemented directly in the host language (Chetioui et al.,

2022). Because the axiom formalism is semantically compatible

with the program code, Magnolia avoids the semantic gap

common in approaches to formal software verification (Sannella

and Tarlecki, 1996).

A Magnolia signature declares types and operations. A

signature can be augmented with axioms that restrict the

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://github.com/magnolia-lang/magnolia-lang/tree/base-program
https://github.com/magnolia-lang/magnolia-lang/tree/base-program
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

properties of its types and operations: the resulting module is

a concept. An implementation allows the same declarations as

a signature, but also (generic) implementations for the declared

operations. The last kind of module in Magnolia is a program,

a specific kind of implementation in which all the specified

operations and types are matched with implementations.

Crucially, types and operations in a program are no longer

generic but instead fully concrete. An implementation can be a

model of a concept; a concept can also be a model of another

concept. Such modeling relations can be specified directly in

Magnolia using the satisfaction language construct.

Magnolia operations can be functions, procedures, and

predicates. The arguments to functions and predicates are

immutable, while arguments to procedures are given explicit

modes: obs (read-only), upd (read/write), and out (write-

only, and the procedure promises to initialize the argument).

Procedures do not return a value. Calls to procedures are

prefixed with the call keyword.

Listing 1 gives a general overview of the different kinds

of Magnolia modules. We first specify the signature of

a magma (a set T with a closed binary operation bop).

By asserting the associativity property on a magma, we

get a semigroup. The ConcretePartialSemigroup

implementation describes an external C++ API providing

a guarded multiplication operator over integer matrices,

where the guard is intended to ensure that the argument

matrices have compatible dimensions (i.e., that the number

of columns of the matrix on the left is equal to the number of

rows of the matrix on the right). ExampleProgram builds

multiplyThreeMatrices off of the primitive building

blocks provided by ConcretePartialSemigroup.

The ExampleProgramHasMulPartialSemigroup

satisfaction relation indicates that ExampleProgram satisfies

the semigroup axioms, with the set of integer matrices

and guarded multiplication on it. The guard specified on

the multiplication operation in the left-hand side module

expression of the satisfaction relation is implicitly added to

the corresponding operation in the right-hand size module

expression—i.e., the right-hand side specification implicitly

becomes the specification of a partial semigroup. The resulting

satisfaction relation thus asserts that ExampleProgram

has a partial semigroup structure. A block of renamings

([T => IntMatrix, bop => _*_]) is applied to

Semigroup. Magnolia’s renamings allow changing the names

of types and operations in places where a module is “opened.”

This is a powerful feature which allows normalizing the

names exposed by modules when we open them in a given

scope, independently of how their types and operations were

initially named.

s i gn a t u r e Magma = {

t ype T;

f unc t i on bop(a: T, b: T): T;

}

concept Semigroup = {

use Magma;

axiom associativity(a: T, b: T, c: T) {

a s s e r t bop(bop(a, b), c) ==

bop(a, bop(b, c));

}

}

implementat ion ConcretePartialSemigroup =

e x t e r n a l C++ lib.int_matrices {

t ype Nat;

t ype IntMatrix;

p r ed i c a t e lhsNcolsIsRhsNrows(

m1: IntMatrix, m2: IntMatrix);

f unc t i on _*_(m1: IntMatrix,

m2: IntMatrix): IntMatrix

guard lhsNcolsIsRhsNrows(m1, m2);

}

program ExampleProgram = {

use ConcretePartialSemigroup;

f unc t i on multiplyThreeMatrices(

A: IntMatrix, B: IntMatrix,

C: IntMatrix): IntMatrix = A * B * C;

}

// The guard on _*_ in ExampleProgram is

// lifted to the specification on

// Semigroup in the left-hand

// side---this satisfaction relation thus

// states that ExampleProgram has a

// partial semigroup structure.

s a t i s f a c t i o n

ExampleProgramHasMulPartialSemigroup =

ExampleProgram

models Semigroup[T => IntMatrix,

bop => _*_];

Listing 1 Multiplying three matrices in Magnolia.

2.1.1. Exploiting Magnolia axioms

Concept axioms have previously found use as test

oracles (Bagge et al., 2011) and as generic optimization

rules (Bagge and Haveraaen, 2009; Tang and Järvi, 2015). We

implement two module transformations called rewrite and

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

implement in magnoliac, the Magnolia compiler under active

development (Chetioui, 2020).

The rewrite transformation extracts all assertions of

equations from a given concept, and uses them as directed

rewrite rules within a target module expression. The maximum

allowed number of applications of these directed rewrite rules

is provided as an argument to the transformation. The rewrite

rules can only be applied from left to right in the current

implementation, and there is thus no need to specify how to

orient them.

The implement transformation highlights a third possible

use case for Magnolia axioms, i.e., code generation. The

transformation extracts all the assertions of equations from a

given concept where the left-hand side is a call to a declared

function (or predicate) with pairwise distinct universally

quantified arguments, and generates an implementation for

the function where the body is the right-hand side of the

assertion. Intuitively, an assertion with the properties we

outlined describes the behavior of the function on the left-hand

side at every point. Therefore, such assertions are not only a way

to specify the intended behavior of a function, but also a way

to derive an actual implementation for it in case one was not

already provided.

The intuition behind implement is that it transforms

a specification into an implementation. The implement

transformation produces changes visible at the module level,

while rewrite replaces expressions within already implemented

operations. Figure 1 describes the grammar for the rewrite and

implement transformations.

Consider the multiplyThreeMatrices function in

Listing 1. The function is intended to multiply three matrices

together—and its body A * B * C desugars to the expression

*(_*_(A, B), C). Due to the associativity property, the

order in which the multiplications are executed does not matter

when it comes to the correctness of the result. However, it

matters a lot when it comes to performance: suppose A is

of dimensions 100 × 2, B of dimensions 2 × 20, and C of

dimensions 20 × 90. Executing A * B requires 100 × 2 ×

20 scalar multiplications, and executing (A * B)* C thus

requires 100 × 2 × 20 + 100 × 20 × 90 = 184, 000 scalar

multiplications. On the other side, executing B * C requires

2 × 20 × 90 scalar multiplications, and executing A * (B *
C) requires executing 2 × 20 × 90 + 100 × 2 × 90 = 21, 600

scalar multiplications, nearly ten times fewer.

Suppose that a developer wants to use the

multiplyThreeMatrices function in their program.

They care about efficiency, and know that the input matrices

A, B, and C have the same dimensions as specified above.

They can use the assertion provided in the associativity

property of the Semigroup concept defined in Listing 1 as a

rewrite rule in multiplyThreeMatrices to optimize the

expression from (A * B)* C to A * (B * C). Listing 2

shows how.

program DevProgram =

r ew r i t e ExampleProgram with

Semigroup[bop => _*_,

T => IntMatrix] 1;

Listing 2 Demonstration of the Magnolia rewrite transformation.

The Magnolia rewrite module transformation takes three

arguments: the module on which to perform the rewrite

(ExampleProgram in the example), the module from which

to extract rewriting rules (Semigroup with some renamings

applied in the example), and amaximum allowed number of rule

applications (1 in the example).

Here, multiplyThreeMatrices is a toy example,

and defined directly in the program being transpiled—it

would therefore be very easy to reimplement it manually.

However, this is not always the case: the function one wants

to transform could be very complicated, and hidden deep

inside an external dependency. Without the ability to perform

rewritings on functions that have been previously defined,

the developer would have to write their own version of

this function.

3. Methodology and case study

We describe here our proposed methodology for writing

performant and portable code productively using the Magnolia

programming language. Each step of this methodology is first

described from a high-level perspective, and then concretely

demonstrated for our PDE solver example. Figure 2 gives a

graphical overview of the concrete steps we take to optimize the

PDE solver example in the following.

3.1. Identifying and formalizing the
domain

The first step of our methodology is to build a thorough

understanding of the targeted problem. We do that by

identifying and formalizing the domain underlying the problem.

Formalizing the domain gives us a mathematical understanding

of the properties expected of the types and operations involved

in the problem. These in turn allow specifying semantics-

preserving optimization rules on them, whose correctness can

be proven.

PDE solvers using FDM are based on multi-dimensional

array computations. Burrows et al. (2018) identified an

array API for FDM solvers. Chetioui et al. (2019) followed

up with a formalization of the identified array API using

MoA. We will first give an overview of PDE solvers as

described by Burrows et al. (2018), and an introduction to the

corresponding MoA theory. With this background in place, we

will reimplement the PDE solver based on FDM from the work

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

FIGURE 1

The grammar for the rewrite and implement module transformations in Magnolia.

FIGURE 2

A graphical overview of the methodology presented in the paper. A high-level array program is passed as input, and translated to a

corresponding MoA expression. This MoA expression is then normalized using a process known as ψ-reduction to produce the DNF.

ψ-reduction gives hardware-independent rewriting rules on MoA expressions. By adding in knowledge about the specific hardware architecture

underlying the computation, the DNF can be transformed into one of its OFs. This enables also hardware-specific optimization rules, which we

can apply to the OF so as to produce an optimized OF. The program is initially written in Magnolia, and all the manipulation steps in the MoA

world are done in Magnolia. The hardware specialization is implemented in the host language underlying the implementation (here C++), and the

code contributing to the production of an optimized OF is thereby split between Magnolia and C++.

of Chetioui et al. (2019), and implement hardware-agnostic and

hardware-dependent rewriting rules. We show how they can be

applied to our Magnolia program, and measure the resulting

performance improvements.

3.1.1. PDEs

PDE solvers have many application areas. One example

is numerical simulations of wind flow—e.g., for optimizing

windmill positioning in large-scale wind farms.

Computing solutions to PDEs numerically requires

discretizing continuous equations to a discrete domain. This

approach to PDE solvers is often illustrated in the literature

with Burgers’ equation (Burgers, 1948). Equation (1) presents

the equation in its coordinate-free form.

∂Eu

∂t
+ Eu · ∇Eu = ν∇2Eu, (1)

where Eu is velocity, t time, and ν the viscosity coefficient.

Assuming a 3D space, we can use a Cartesian coordinate

system to rewrite Equation (1) as the following system

of equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= ν

∂2u

∂x2
+ ν

∂2u

∂y2
+ ν

∂2u

∂z2
(2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= ν

∂2v

∂x2
+ ν

∂2v

∂y2
+ ν

∂2v

∂z2
(3)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= ν

∂2w

∂x2
+ ν

∂2w

∂y2
+ ν

∂2w

∂z2
, (4)

where Eu = (u, v,w).

To discretize the domain, we describe aNx×Ny×Nz grid of

velocity values bounded by Lx (respectively Ly and Lz) on axis x

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

(respectively y and z) such that the u component of the velocity

at index (i, j, k) and timestep n is given by

uni,j,k = u(i1x, j1y, k1z, n1t), (5)

with1x = Lx
Nx

,1y =
Ly
Ny

, and1z = Lz
Nz

.

Similarly, the partial derivative of u in the x direction at

index (i, j, k) and timestep n is

∂u

∂x
(i1x, j1y, k1z, n1t). (6)

In the FDM, we compute a partial derivative as a weighted

sum of neighboring grid points—where the weights are given

by a list of factors called a stencil. The stencil is chosen by a

numerical expert. This paper, following the work of Burrows

et al. (2018) uses the numerical stencils (− 1
2 , 0,

1
2) and (1,−2, 1)

for the first and second order partial derivatives, respectively.

Given these stencils, the partial derivative of u in the x

direction at index (i, j, k) and timestep n is approximated by

∂u

∂x
(i1x, j1y, k1z, n1t) ≈

1

21x
(uni+1,j,k − uni−1,j,k), (7)

which is accurate to O((1x)2,1t). Computing the partial

derivative along the y (respectively z) axis follows a similar

pattern, where j (respectively k) varies instead of i.

The standard 3D explicit finite difference approximation of

Equation (2) is then given by

un+1
i,j,k

= uni,j,k −
1t

21x
uni,j,k(u

n
i+1,j,k − uni−1,j,k)

+
ν1t

(1x)2
(uni+1,j,k + uni−1,j,k − 2uni,j,k)

−
1t

21y
vni,j,k(u

n
i,j+1,k − uni,j−1,k)

+
ν1t

(1y)2
(uni,j+1,k + uni,j−1,k − 2uni,j,k)

−
1t

21z
wn
i,j,k(u

n
i,j,k+1 − uni,j,k−1)

+
ν1t

(1z)2
(uni,j,k+1 + uni,j,k−1 − 2uni,j,k).

The discretization of Equations (3) and (4) follows the

same pattern.

The API of Burrows et al. (2018) is sufficient to compute

numerical solutions to PDEs using FDM. It consists of

elementwise arithmetic operations at the array level (+, -, *),

a rotation operation on arrays (called “shift”), and arithmetic

operations at the scalar level—corresponding to the behavior of

the elementwise operations at each index of the array.

3.1.2. MoA

MoA (Mullin, 1988; Mullin and Jenkins, 1996) is an algebra

for describing operations on arrays. MoA distinguishes between

two abstraction levels: the Denotational Normal Form (DNF),

which describes an array by its shape together with a function

describing its value at every index, and the Operational Form

(OF) which describes it on the level of the memory layout.

Programs written at the DNF level do not presume knowledge

of a hardware architecture. Reasoning at the DNF level is thus

completely hardware agnostic. By repeatedly applying a set of

terminating rewrite rules, any MoA expression can be reduced

to its DNF (Mullin and Thibault, 1994; Chetioui et al., 2019)—

where the resulting array is described at each index by indexing

into the input arrays and scalar-level operations.

Given information about the hardware architecture and

the memory layout of the arrays, the ψ-correspondence

theorem (Mullin and Jenkins, 1996) allows transforming a DNF

expression into a corresponding hardware-dependent OF—in

which the access patterns on the array are described in terms of

start, stride, and length.

We give an informal overview of some operations at the

DNF and OF levels below. We refer the interested reader to

previous work for formal definitions (Mullin, 1988; Chetioui

et al., 2021).

3.1.2.1. DNF operations

The dimension of an array A is denoted dim(A). It

corresponds to the number of axes of the array. For dim(A) = n,

the shape of A is an n-element vector ρ(A) =
〈

s0, . . . , sn−1
〉

where si is the length of axis i. The total number of elements (or

size) of A is given by the product of the shape,5ρ(A) = 5
n−1
i=0 si.

In the definitions below A stands for an arbitrary array with

dimension n and shape as defined above. Further, we use the

following array in examples:

M =

1 2

3 4

5 6

Thus, ρ(M) = 〈3, 2〉.

The relevant MoA operations on the DNF level are:

• the indexing function ψ , which takes an index i into an

array and returns the subarray at the indexed position.

When i’s length equals the dimension of the array, i is a total

index. Otherwise, it is partial. 〈〉 ψ A = A holds. For our

example, we have

〈2〉 ψ M = 〈5, 6〉

ρ(〈2〉 ψ M) = 〈2〉

• the reshape function that takes an array A and a shape s

such that5s = 5ρ(A), and creates a new array with shape

s containing the elements of A. Thus, ρ[reshape(s,A)] = s

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

holds. For example,

reshape(M, 〈2, 3〉) =

(

1 2 3

4 5 6

)

• a rotation function rotate that takes an array A, an axis

j and an offset o, and shift A by o along its jth axis. The

shape is unchanged, i.e., ρ(rotate(A, j, o)) = ρ(A) holds.

We give a few examples of how rotation behaves on axis 0

and 1 of M:

rotate(M, 0, 1) =

5 6

1 2

3 4

,

rotate(M, 0,−1) =

3 4

5 6

1 2

,

rotate(M, 1, 1) =

2 1

4 3

6 5

.

3.1.2.2. ψ-reduction

Mullin and Thibault (1994) described a rewriting system

for MoA expressions at the DNF level, referred to as ψ-

reduction. They conjectured that ψ-reduction is canonical (i.e.,

it is terminating and confluent)—and thus takes any MoA

expression to its unique DNF. In their work on embedding

Burrows et al.’s (2018) array API for FDM solvers in MoA,

Chetioui et al. (2019) outline a rewriting system sufficient to

transform a program based on this API to its DNF and show that

this rewriting system is indeed canonical. This draws appeal to

MoA as a framework for the optimization of PDE solvers based

on FDM. ψ-reduction essentially consists of rules that move

indexing operations inwards—until eventually, the expression

does not contain any collective operation, but consists only

of indexing and scalar operations. As a consequence, it is

guaranteed that the resulting array expression can be computed

without the need to materialize any intermediate array. Because

the rewriting system is canonical, another consequence is that

the form in which we choose to express our computation is

irrelevant: all equivalent expressions in the language of MoA

reduce to the same DNF expression.

3.1.2.3. OF operations

At the OF level, we assume knowledge of the target

architecture, and an intended memory layout of the array. The

central MoA operations on the OF level are:

• the family of lifting operations liftj that take two natural

numbers d, q such that d · q = sj, and reshape A into the

shape
〈

s0, . . . , sj−1, d, q, sj+1, . . . , sn−1
〉

;

• the flattening function rav that transforms a

multidimensional array into its linear representation

in memory. Thus, ρ(rav(A)) =
〈

5ρ(A)
〉

holds;

• the mapping function γ , which takes a shape s with

5s = 5ρ(A) and a total index into A and returns the

corresponding index into rav(A). In this paper, we assume

a row-major ordering.

The OF operations presented here are crucial to the theory

of MoA.We thus include them for the sake of completion. These

operations however do not appear explicitly in the development

of our methodology.

3.1.3. Initial Magnolia implementation

We implemented a PDE solver using the MoA array API.

The implementation consists of four components:

1. a specification of the necessary MoA types and

operations, with axioms asserting that they respect the

relevant properties;

2. a foreign API exposing the core types and operations of the

MoA specification;

3. an external implementation of the foreign API in a host

language (C++);

4. an implementation of the PDE solver built upon the external

MoA building blocks.

The ψ-calculus conflates arrays, indices, shapes, and scalars

into a single array type. While convenient in the formalism,

we distinguish these types in our Magnolia implementation for

ease of reasoning, and to leverage the language’s type system

to avoid programming errors. For that reason also, the version

of ψ we implement in our code takes in only total indices,

and returns “unwrapped” scalars—as opposed to arrays with an

empty shape.

Listing 3 shows the API from Burrows et al. (2018) in the

language of MoA.

s i gn a t u r e ArrayAPI = {

t ype Array;

t ype E;

t ype Axis;

t ype Index;

t ype Offset;

/* Scalar-Scalar operations */

f unc t i on _+_(lhs: E, rhs: E): E;

f unc t i on _-_(lhs: E, rhs: E): E;

f unc t i on _*_(lhs: E, rhs: E): E;

f unc t i on _/_(lhs: E, rhs: E): E;

/* Scalar-Array operations */

f unc t i on _+_(lhs: E, rhs: Array): Array;

// prototypes as above for _-_, _*_, _/_

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

/* Array-Array operations */

f unc t i on _+_(lhs: Array, rhs: Array):

Array;

// prototypes as above for _-_, _*_, _/_

/* Rotation */

f unc t i on rotate(array: Array,

axis: Axis,

offset: Offset): Array;

/* Indexing */

f unc t i on psi(ix: Index,

array: Array): E;

}

Listing 3 An array API for FDM solvers in Magnolia.

The declaration of the types and operations form an

algebraic signature. We augment that signature with semantic

properties in the form of axioms to obtain a concept. Listing 4

relates each array-level arithmetic operation in the API to

its corresponding scalar-level operation (Burrows et al., 2018;

Chetioui et al., 2019). The axioms for all binary operations follow

the same pattern, we hence only show axiom bodies for the +

operation for the sake of brevity.

concept ArrayAPI_ArithmeticAxioms = {

r equ i r e ArrayAPI;

/* Scalar-Array Axioms */

axiom scalarBinaryPlusAxiom(lhs: E,

rhs: Array, ix: Index) {

a s s e r t psi(ix, lhs + rhs) ==

lhs + psi(ix, rhs);

}

// axiom scalarBinarySubAxiom(lhs: E,

// rhs: Array, ix: Index)

// axiom scalarMulAxiom(lhs: E,

// rhs: Array, ix: Index)

// axiom scalarDivAxiom(lhs: E,

// rhs: Array, ix: Index)

/* Array-Array Axioms */

axiom arrayBinaryPlusAxiom(lhs: Array,

rhs: Array, ix: Index) {

a s s e r t psi(ix, lhs + rhs) ==

psi(ix, lhs) + psi(ix, rhs);

}

// axiom arrayBinarySubAxiom(lhs: Array,

// rhs: Array, ix: Index)

// axiom arrayMulAxiom(lhs: Array,

// rhs: Array, ix: Index)

// axiom arrayDivAxiom(lhs: Array,

// rhs: Array, ix: Index)

}

Listing 4 Axioms for the arithmetic operations of our array API.

The specifications in Listing 3 are (straightforwardly)

implemented as external C++ functions and types, not shown

here. Lastly, Listing 5 shows our implementation of one full step

of the PDE.

/* Solver */

procedure step(upd u0: Array,

upd u1: Array, upd u2: Array) {

var v0 = u0;

var v1 = u1;

var v2 = u2;

v0 = substep(v0, u0, u0, u1, u2);

v1 = substep(v1, u1, u0, u1, u2);

v2 = substep(v2, u2, u0, u1, u2);

u0 = substep(u0, v0, u0, u1, u2);

u1 = substep(u1, v1, u0, u1, u2);

u2 = substep(u2, v2, u0, u1, u2);

}

f unc t i on substep(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array =

u + dt()/(two(): Float) * (nu() * (

(one(): Float)/dx()/dx() *
(rotate(v, zero(),

-one(): Offset) +

rotate(v, zero(),

one(): Offset) +

rotate(v, one(): Axis,

-one(): Offset) +

rotate(v, one(): Axis,

one(): Offset) +

rotate(v, two(): Axis,

-one(): Offset) +

rotate(v, two(): Axis,

one(): Offset)) -

three() * (

two(): Float)/dx()/dx() * u0) -

(one(): Float)/(two(): Float)/dx() *
((rotate(v, zero(),

one(): Offset) -

rotate(v, zero(),

-one(): Offset)) * u0 +

(rotate(v, one(): Axis,

one(): Offset) -

rotate(v, one(): Axis,

-one(): Offset)) * u1 +

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

(rotate(v, two(): Axis,

one(): Offset) -

rotate(v, two(): Axis,

-one(): Offset)) * u2));

/* Float ops */

r equ i r e func t i on -_(f: Float): Float;

// magnoliac does not offer support for

// literals as of yet, and we must thus

// define constant functions in the host

// language for each number of a given

// type we want to use.

r equ i r e func t i on one(): Float;

r equ i r e func t i on two(): Float;

r equ i r e func t i on three(): Float;

/* Axis utils */

r equ i r e func t i on zero(): Axis;

r equ i r e func t i on one(): Axis;

r equ i r e func t i on two(): Axis;

/* Offset utils */

r equ i r e func t i on one(): Offset;

r equ i r e func t i on -_(o: Offset): Offset;

/* Problem-specific parameters */

r equ i r e func t i on nu(): Float;

r equ i r e func t i on dt(): Float;

r equ i r e func t i on dx(): Float;

Listing 5 Implementation of one full step of the PDE solver in

Magnolia.

3.2. Deriving optimization rules

Armed with a thorough understanding of the problem,

we can now derive semantics-preserving optimization rules—

hardware-specific or otherwise.

Before we can apply rewriting rules defined using MoA to

our program, we need to change its level of abstraction, i.e., go

from an implementation that describes the resulting array using

whole-array operations to one that describes its value at every

index. This transformation corresponds to the step from the

high-level array program to a corresponding MoA expression in

Figure 2.

We define a Magnolia program called BasePDEProgram

that contains the functions in Listing 5, giving a concrete

implementation to the basic underlying operations and data

structures in a host language. Listing 6 shows how we achieve

the transformation from the high-level array program to a

corresponding MoA expression in Magnolia. We break down

the components of the listing in the following.

program PDEProgramMoA = {

use (r ew r i t e

(implement ToIxwiseGenerator

in BasePDEProgram)

with ToIxwise 1);

use ExtBasicSchedule;

};

Listing 6 Lowering step from a high-level array program to a MoA

expression.

The ToIxwiseGenerator concept is shown in Listing 7.

The toIxwiseGenerator axiom consists of a single

assertion, which describes the behavior of the substepIx

function when all of its arguments are universally quantified

distinct variables. The right-hand side of the equation is thus

a valid implementation for substepIx. Because this function

is not implemented in the original program, we can use

the implement transformation with ToIxwiseGenerator

to generate an implementation of substepIx in the

implementation given in Listing 5. So as to enable further

optimizations, implement unfolds function calls in the right-

hand side of the equation. The resulting index-level code is

shown in Listing 18 (in Appendix A).

concept ToIxwiseGenerator = {

t ype Array;

t ype Float;

t ype Index;

f unc t i on substepIx(u: Array, v: Array,

u0: Array, u1: Array, u2: Array,

ix: Index): Float;

f unc t i on substep(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array;

f unc t i on psi(ix: Index,

array: Array): Float;

axiom toIxwiseGenerator(

u: Array, v: Array, u0: Array,

u1: Array, u2: Array, ix: Index) {

a s s e r t

substepIx(u, v, u0, u1, u2, ix) ==

psi(ix, substep(u, v, u0, u1, u2));

}

}

Listing 7 A generator for an index-level implementation of substep.

To make use of substepIx within the program, we need

to replace calls to substep with calls to a scheduling function

schedule that uses substepIx to describe the value of

the result array at every index. This is achieved through the

outermost program transformation in Listing 10, that uses the

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

ToIxwise concept of Listing 8. Throughout the rest of the

paper, we use the term schedule as in Halide (Ragan-Kelley et al.,

2012).

concept ToIxwise = {

t ype Array;

f unc t i on substep(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array;

f unc t i on schedule(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array;

axiom toIxwiseRule(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array) {

a s s e r t substep(u, v, u0, u1, u2) ==

schedule(u, v, u0, u1, u2);

}

}

Listing 8 A concept with a rewrite rule from substep to a new

scheduling function.

Magnolia does not expose native looping constructs. For

that reason, the implementation of schedule is done in the

host language, and imported through ExtBasicSchedule.

From that point onwards, we can use MoA’s transformation

rules on the part of our program implemented

in Magnolia.

3.2.1. Reusability of modules

Of the modules presented in Listings 6–8,

PDEProgramMoA is the only one that is completely problem-

specific. The ToIxwise and ToIxwiseGenerator

concepts’s types and operations are given names that relate

to our domain of application. Due to the renaming feature

however, specific names within a module are largely irrelevant:

two signatures that expose the same set of types and operations

(and overloads) up to renaming (of types and operations) can

be made to match.

For example, the ToIxwise concept states that there

exists two functions with the same prototype (they take in five

arguments of the same type that is also the return type), such that

calling one of them is equivalent to calling the other. Listing 9

shows a more generic presentation of the ToIxwise concept.

concept FunctionEquality5 = {

t ype T;

f unc t i on f(t1: T, t2: T, t3: T,

t4: T, t5: T): T;

f unc t i on g(t1: T, t2: T, t3: T,

t4: T, t5: T): T;

axiom functionEqualityRule(t1: T,

t2: T, t3: T, t4: T, t5: T) {

a s s e r t f(t1, t2, t3, t4, t5) ==

g(t1, t2, t3, t4, t5);

}

}

// ToIxwise can be defined from

// FunctionEquality5, and vice-versa.

concept ToIxwise =

FunctionEquality5[f => substep

, g => schedule

, T => Array

, functionEquality5Rule

=> toIxwiseRule

];

Listing 9 A domain-generic formulation of the ToIxwise concept.

The FunctionEquality5 concept can be further

generalized by taking in arguments of five different types, and

returning an element of a sixth different type—all of which

would be mapped to Array for defining ToIxwise. The

concept could also be stated more concisely for any number

of arguments using variadics. Magnolia does not support

variadics today, but the feature is a desired future language

extension (Chetioui et al., 2022).

3.2.2. Hardware-agnostic transformation rules

The next step outlined in Figure 2 is to reduce the MoA

expression we just constructed to its DNF. Rewriting rules at the

DNF level do not require hardware knowledge, and therefore

constitute hardware-agnostic transformation rules. Listing 10

shows how we achieve this transformation in Magnolia. The

DNFRules concept is spelled out in Listing 17, which can be

found in Appendix A. The choice of applying the rewrite rules

defined in DNFRules twenty times is carefully made by the

developer, as this is the number of applications required to full

reduce the MoA expression produced previously to its DNF. In

this case, the rewriting system has been shown to be confluent

and terminating, and specifying a higher number would yield

the same result with negligible overhead (namely, one additional

application of the rewrite rules). The rewrite rules are applied by

magnoliac until the number of maximum applications has been

reached, or until no progress is made.

program PDEProgramDNF =

r ew r i t e PDEProgramMoA with DNFRules 20;

Listing 10 Transforming the MoA expression to its DNF.

The DNF reduction rules discussed here mirror the

specification presented in Listing 4 for the arithmetic operations

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

of the API, and are completely reusable for any program

based on this API. These axioms describe for each operation

the content of the resulting array at each index, turning

the array from a large opaque block to a function from its

index space to its content. Applying the DNF rules pushes

computations down from the array-level to the index-level, i.e.,

the resulting computations are devoid of whole-array operations

and contain only indexing and scalar arithmetic operations.

This can be thought of as loop fusion, or also as some kind of

function composition.

The external schedule implemented in Listing 6 describes

how the indexwise computation is executed on the underlying

hardware. The psi function is also given an external

implementation that thus describes how the arrays are actually

laid out in memory. This hardware “specialization” gives us

an initial executable OF—as outlined in Figure 2. For the

sake of completeness, our (non-specific) C++ implementation

of schedule is shown in Listing 19, and another CUDA

implementation is shown in Listing 20 (both available

in Appendix A).

The reduction of our MoA expression to its DNF (and

resulting “default” OF) already leads to significant performance

improvements. Table 1 shows runtime results for our PDE

solver implementation in Magnolia, before and after full

DNF reduction using the DNF rewriting rules. The baseline

implementation shown here is a direct lowering of the program

written in Magnolia to C++, and we do not perform any

transformation beyond what is offered by g++’s optimization

level O3 (for the CPUs) and what is offered by nvcc by default

(for the GPU). Every array is allocated on the heap, and every

intermediate array in the computation is materialized—resulting

in a baseline that is inefficient. DNF reduction speeds up the

code by a factor between roughly 5.78× and 14.11× depending

on the targeted device, and significantly reduces memory usage.

At the DNF level, the expression is written in terms of scalar

and indexing operations, eliminating the costly need to compute

temporary arrays, and increasing computational density.

This experiment shows that such a rewriting system gives the

ability to write programs using whole-array operations without

losing out on the benefits of writing index-level code. The

ability to write algorithms in different ways without inducing

a loss of performance is key to the productive development of

performant code.

3.2.3. Hardware-specific transformation rules

Which hardware-specific transformation rules are relevant

to implement is by nature dependent on the underlying

hardware architecture we are interested in. For example,

Chetioui et al. (2021)’s previous work on formalizing PDE

computations in MoA gave rise to rules for introducing padding

into array expressions. Their work also discusses rewrites rules

that use the dimension lifting operation, which is a reshape

Table 1 Execution time (in seconds) of the 3-dimensional PDE solver

Magnolia implementation compiled to C++, with and without

reduction to DNF.

CPU 1 CPU 2 GPU

Before DNF reduction 2622.09 3494.35 8.75

After DNF reduction 312.10 604.25 0.62

The code is compiled with g++ 10.2.0 with optimization level O3 for the CPU runs; it is

compiled with nvcc 11.6 for the GPU runs. The space dimensions are 512×512×512 and

the solver is run for 50 timesteps. The code is run 5 times on each device, and the time

measurements are averaged. CPU 1: Intel Xeon Silver 4112, CPU 2: ThunderX2 CN9980,

GPU: NVIDIA A100.

operation with the explicit purpose of matching the shape of

arrays with characteristics of the underlying hardware—more

commonly called array partitioning. For example, lifting by d1

across the first axis allows one to scatter the resulting subarrays

across d1 processes; or, lifting by 4 across the last axis of an

array of 32-bit floats allows one to vectorize computations

on an architecture with 128-bit vector registers. The hardware

architecture combined with the data dependencies of the

algorithm determine the shape and layout of the arrays.

We discuss an example of a hardware-dependent rewriting

system for padding below.

3.2.3.1. Example: Padding computations

Our example assumes a toroidal space—i.e., the first element

is a neighbor of the last element for each dimension. Figure 3

shows the dependency patterns for one third of a half-step

of the PDE across the last axis of the array. The element at

index i at time t + 1 depends on the elements at index i,

(i − 1) mod N, and (i + 1) mod N at time t. The modulo

operation serves to index the right dependencies for the first

(respectively last) element of the array, where decrementing

(respectively incrementing) the index would create an out-of-

bounds index. Modulo operations are still expensive, even on

modern hardware (Lemire et al., 2019). Additionally, if N is

large, the computations at the boundary need to access elements

that are far apart in memory—therefore benefitting less from

data locality than the computations in the middle of the array.

How boundaries are handled in our computation is not

relevant for our previous rewrite rules. Circular boundary

handling computations in PDE codes can be optimized in

different ways. For example, the expensive modulo operations

(i − 1) mod N and (i + 1) mod N, assuming a valid index i

between 0 and N − 1, can be, respectively, replaced by i ==

0 ? N − 1 : i − 1 and i == N − 1 ? 0 : i + 1—or even

with i ± 1 & (N − 1), if N is a power of two. With padding,

we can do even better and completely eliminate the modulo

computations (Chetioui et al., 2021). Padding also increases data

locality for such dependency patterns. The cost of padding is at

the duplication of data in memory.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

FIGURE 3

The dependency pattern for one third of a half-step of the PDE

across the last axis of the array. Each column represents an array

of length N indexed from 0 to N− 1 for a given timestep. The

element at index i of the array at time t+ 1 depends on the

elements at indices i, (i− 1) mod N and (i+ 1) mod N of the array

at time t.

FIGURE 4

The dependency pattern for one third of a half-step of the PDE

across the last axis of the array when the array is padded once

on each side on the last axis. Each column represents an array of

length N indexed from 0 to N− 1 for a given timestep. The

elements colored in the same color have the same value. The

element at index i of the array at time t+ 1 depends on the

elements at indices i, i− 1, and i+ 1 of the array at time t.

Figure 4 shows the dependency patterns for one third

of a half-step of the PDE across the last axis of the array

when the array is padded. In that case, the computation at

the boundaries of the array can be rewritten to depend on

three adjacent elements in the array. The modulo computation

can also be eliminated. We pay for these improvements

by using more space, and by refilling the padding before

every timestep.

Listing 11 shows one way of introducing padding in the

PDEProgramDNF program introduced in Listing 10. We

truncate some of the modules in the following listings so

as not to clutter the presentation, and add corresponding

listings containing the full modules to Appendix A for the sake

of completeness.

program PDEProgramPadded = {

use (r ew r i t e PDEProgramDNF

with OFPad 1);

// imports a new schedule, a new

// function for index rotation, and a

// procedure for refilling padding

use ExtExtendPadding;

}

concept OFPad = {

...

procedure refillPadding(upd a: Array);

f unc t i on schedulePadded(

u: Array, v: Array, u0: Array,

u1: Array, u2: Array): Array;

f unc t i on schedule(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array;

axiom padRule(u: Array, v: Array,

u0: Array, u1: Array, u2: Array) {

a s s e r t schedule(u, v, u0, u1, u2) ==

{ var result = schedulePadded(

u, v, u0, u1, u2);

c a l l refillPadding(result);

va lue result;

};

}

f unc t i on rotateIx(ix: Index, axis: Axis,

offset: Offset): Index;

f unc t i on rotateIxPadded(ix: Index,

axis: Axis, offset: Offset): Index;

axiom rotateIxPadRule(ix: Index,

axis: Axis, offset: Offset) {

a s s e r t rotateIx(ix, axis, offset) ==

rotateIxPadded(ix, axis,

offset);

}

}

Listing 11 Introducing padding into PDEProgramDNF. The full

specification ofOFPad can be found in Listing 21.

The transformations given by OFPad act on the OF

of the program. The transformation rules replace calls to

rotateIx with calls to rotateIxPadded within the

implementation of substepIx, and calls to schedule

with calls to schedulePadded succeeded by an operation

refilling the padding within the implementation of step.

The resulting step procedure is shown in Listing 23.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

Likewise, the schedule is now replaced by one that is

mindful of padding—whose C++ implementation is shown

in Listing 22. The result is a program with a different—

a priori more optimized—OF. The rewrites correspond to

the last transformation step in the methodology presented in

Figure 2.

Our implementation in Listing 11 assumes that the

input arrays are padded arbitrarily across each axis in the

host language, in a way that is compatible with the new

rotateIxPadded function. Details such as the amount of

padding across each axis are therefore not visible in Magnolia.

This is however purely a design choice, insofar as we have

chosen to make the Index type completely opaque. This has

the benefit of making the program naturally shape polymorphic

to a degree—though the program is not as interesting for

input arrays with initial number of dimensions different

than three.

We can control padding across each axis more

explicitly by specializing our code further. This can also

be achieved using transformation rules, as is shown in

Listing 12.

program PDEProgram3DPadded = {

use (r ew r i t e

(r ew r i t e

(r ew r i t e

(r ew r i t e

(implement

OFSpecializeSubstepGenerator

in PDEProgramDNF)

with OFSpecializePsi 10)

with OFReduceMakeIxRotate 20)

with OFPad[schedulePadded =>

schedule3DPadded] 1)

with OFEliminateModuloPadding 10);

// pulling in ScalarIndex utils

use ExtScalarIndex;

// pulling in AxisLength utils

use ExtAxisLength;

// pulling in psi

use ExtSpecializeBase;

// pulling in schedule3DPadded

use Ext3DSchedule;

}

Listing 12 Adding padding to and specializing PDEProgramDNF to 3

dimensions.

The content of OFSpecializeSubstepGenerator

is shown in Listing 13. The concept contains an axiom

following the generator pattern to specialize the shape

polymorphic substepIx to three dimensions. As previously,

the call to substepIx on the right-hand side of the

equation is unfolded to enable additional optimizations.

concept OFSpecializeSubstepGenerator = {

t ype Index;

t ype Array;

t ype Float;

t ype ScalarIndex;

f unc t i on mkIx(i: ScalarIndex,

j: ScalarIndex,

k: ScalarIndex): Index;

f unc t i on substepIx(u: Array, v: Array,

u0: Array, u1: Array, u2: Array,

ix: Index): Float;

f unc t i on substepIx3D(u: Array, v: Array,

u0: Array, u1: Array, u2: Array,

i: ScalarIndex, j: ScalarIndex,

k: ScalarIndex): Float;

axiom specializeSubstepRule(u: Array,

v: Array, u0: Array, u1: Array,

u2: Array, i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex) {

a s s e r t substepIx3D(u, v, u0, u1, u2,

i, j, k) ==

substepIx(u, v, u0, u1, u2,

mkIx(i, j, k));

}

};

Listing 13 A generator for a 3D implementation of substepIx.

Recall the original implementation of substepIx given

in Listing 18. Every indexing operation of some array a in the

resulting implementation of substepIx3D is now either of

the form psi(mkIx(i, j, k), a), or of the form psi(

rotateIx(mkIx(i, j, k), x, o), a) for some axis

x and some offset o.

The OFSpecializePsi (shown in Listing 14) then

introduces a specialized psi function for 3D arrays. It does

that by introducing three projection functions ix0, ix1,

and ix2 on Indexes. General indexing operations of the

form psi(mkIx(i, j, k), a) are first specialized to

expressions of the form psi(ix0(mkIx(i, j, k)),

ix1(mkIx(i, j, k)), ix2(mkIx(i, j, k)), a)

by an application of specializePsiRule—which can then

be reduced to psi(i, j, k, a) via three applications of

reduceMakeIxRule.

concept OFSpecializePsi = {

...

t ype ScalarIndex;

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

f unc t i on ix0(ix: Index): ScalarIndex;

...

f unc t i on mkIx(i: ScalarIndex,

j: ScalarIndex,

k: ScalarIndex): Index;

f unc t i on psi(i: ScalarIndex,

j: ScalarIndex,

k: ScalarIndex,

array: Array): E;

axiom specializePsiRule(ix: Index,

array: Array) {

a s s e r t psi(ix, array) ==

psi(ix0(ix), ix1(ix), ix2(ix),

array);

}

axiom reduceMakeIxRule(i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex) {

var ix = mkIx(i, j, k);

a s s e r t ix0(ix) == i;

a s s e r t ix1(ix) == j;

a s s e r t ix2(ix) == k;

}

}[E => Float];

Listing 14 Specializing calls to the indexing function ψ . The full

specification of the concept can be found in Listing 24.

We also want to call our specialized version of psi

instead of the general one in expressions now of the form

psi(ix0(rx), ix1(rx), ix2(rx), a) where

rx = rotateIx(mkIx(i, j, k), x, o). For

that purpose, we apply the rewriting rules defined in

OFReduceMakeIxRotate—shown in Listing 15. These

rewriting rules essentially unfold rotateIx. All the indexing

operations in substepIx3D now use the specialized form of

psi, and the scalar indices are either constants or of the form

(i + o)% s, with i a scalar index, o an offset, and s the

length of the relevant axis of the array.

concept OFReduceMakeIxRotate = {

...

f unc t i on rotateIx(ix: Index, axis: Axis,

offset: Offset): Index;

t ype AxisLength;

f unc t i on shape0(): AxisLength;

...

f unc t i on _+_(six: ScalarIndex,

o: Offset): ScalarIndex;

f unc t i on _%_(six: ScalarIndex,

sc: AxisLength):

ScalarIndex;

axiom reduceMakeIxRotateRule(

i: ScalarIndex, j: ScalarIndex,

k: ScalarIndex, o: Offset) {

var ix = mkIx(i, j, k);

a s s e r t ix0(rotateIx(ix, zero(), o)) ==

(i + o) % shape0();

a s s e r t

ix0(rotateIx(ix, one(), o)) == i;

a s s e r t

ix0(rotateIx(ix, two(), o)) == i;

...

a s s e r t ix1(rotateIx(ix, one(), o)) ==

(j + o) % shape1();

...

a s s e r t ix2(rotateIx(ix, two(), o)) ==

(k + o) % shape2();

}

}

Listing 15 A rewriting system to specialize the index rotation

operation. The full specification of the concept can be found in

Listing 25.

At this point, we can reintroduce padding using the

rules previously defined in Listing 11, and renaming

schedulePadded to schedule3DPadded. As we are

in the case when an implementation for schedulePadded

is not in scope before the rules defined in OFPad are applied,

we can replace the rewrite by a simple renaming—as shown in

Listing 12.

The function schedule3DPadded is imported

through Ext3DSchedule, and calls substepIx3D to

compute the result of the computation at every index. We

decide to implement this function externally such that the

array is always circularly padded at least once on each

side of each axis—a decision made based on the width

of the stencil. With that knowledge, we can completely

eliminate the modulo operations in substepIx3D. The

OFEliminateModuloPadding concept (shown in

Listing 16) defines the relevant rewriting rules.

// We suppose here that the amount of

// padding is sufficient across each axis

// for every indexing operation.

concept OFEliminateModuloPadding = {

...

f unc t i on psi(i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex,

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

a: Array): Float;

axiom eliminateModuloPaddingRule(

i: ScalarIndex, j: ScalarIndex,

k: ScalarIndex, a: Array,

o: Offset) {

a s s e r t

psi((i + o) % shape0(), j, k, a) ==

psi(i + o, j, k, a);

a s s e r t

psi(i, (j + o) % shape1(), k, a) ==

psi(i, j + o, k, a);

a s s e r t

psi(i, j, (k + o) % shape2(), a) ==

psi(i, j, k + o, a);

}

}

Listing 16 Elimination of the modulo operations in the program. The

full specification of the concept can be found in Listing 26.

Table 2 gives an overview of the performance variations for

four different implementations, all produced by the application

of rewriting rules on our original solver implementation

presented in Listing 5. We briefly describe the resulting

implementations below.

DNF reduction This implementation is the same as

PDEProgramDNF as described in Listing 10.

DNF reduction + Padding This implementation adds

padding to PDEProgramDNF, i.e. it is the same as

PDEProgramPadded as described in Listing 11.

DNF reduction + Index specialization This implementation

is a version of PDEProgramDNF in which each element

of type Index is transformed into three elements of type

ScalarIndex, e.g. a call of the form psi(ix, a) is

transformed into a call of the form psi(i, j, k, a),

and rotation along a specific axis is implemented as a

modular addition over that axis.

DNF reduction + Index specialization + Padding This

implementation is a version of PDEProgramPadded in

which elements of type Index are also decomposed into

three elements of type ScalarIndex. It is assumed that

each axis is padded sufficiently such that rotation can be

implemented as a non-modular addition.

On both CPUs, the performance variation follows the

same pattern. The fastest runs are achieved by the padded

versions of the baseline implementation with DNF reduction

applied, and its counterpart with also specialized indexing. In

the unpadded case, the version of the code that incorporates

specialized indexing runs faster—1.22× faster on CPU 1, and

Table 2 Execution time (in seconds) of the three-dimensional PDE

solver Magnolia implementation compiled to C++ with specialized

indexing and with or without padding.

CPU 1 CPU 2 GPU

DNF reduction 312.10 604.25 0.62

DNF reduction + Padding 190.46 311.52 0.91

DNF reduction + Index specialization 256.64 561.95 0.63

DNF reduction + Index specialization + Padding 190.95 313.22 0.91

The code is compiled with g++ 10.2.0 with optimization level O3 for the CPU runs; it is

compiled with nvcc 11.6 for the GPU runs. The space dimensions are 512 × 512 × 512

and the solver is run for 50 timesteps. In the padded case, each axis is padded circularly

exactly once on both ends. The code is run 5 times on each device. CPU 1: Intel Xeon

Silver 4112, CPU 2: ThunderX2 CN9980, GPU: NVIDIA A100.

1.08× faster on CPU 2. As outlined above, we expect padded

implementations to perform better due to increased data locality

at the boundaries of the computations. On the GPU considered,

the variations are different: the unpadded programs (with or

without specialized indexing) perform best. We confirm with

a profiler that this is due to additional calls to the expensive

cudaMemcpy in the implementation of replenishPadding

—which add a significant cost to the computation. Padding does

not seem to have an effect on the execution time of each substep,

at least for this particular problem size on the GPU considered.

Crucially, the performance improvements and variations

we observe here did not require any reimplementation of the

core algorithm. Building our core algorithm generically allows

us to introduce specialized underlying types and operations,

once more information is known about our input data or the

underlying hardware architecture. The Magnolia term rewriting

engine then allows us to introduce new operations and to replace

calls to existing concrete implementations with calls to other

functions with possibly different argument lists.

This is another twist of generic programming: rewrite and

implement allow to replace operations (or combinations of

operations) in a generic module with others that have potentially

different argument lists — so long as we can describe the

behavior of the former at all points in terms of calls to the

new operation(s).

4. Discussion and related work

We presented a methodology aimed for tackling the

P3 problem on existing and emerging architectures and applied

it to the domain of array computations. Instead of developing

one program to target n hardware architectures, we implement

a single program, along with hardware-specific rewriting rules.

By relating the high-level problem to a mathematical basis, we

ensure that the set of optimization rules we implement is correct,

and reusable for problems that can be embedded within the

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

same formalism. For example, the exact set of optimization rules

we defined may be reused with other explicit finite difference

solvers—and likely for stencil computations in general—as these

are problems for which Burrows et al.’s API is suitable (Burrows

et al., 2018).

Magnolia gives developers the tools to write high-level,

domain-specific compilers with custom optimization rules,

and a custom target language. The ability to choose flexibly

to which opaque building blocks a Magnolia program

reduces allows the application of optimization rules at

various abstraction levels, until the boundary between

Magnolia and the external primitives implemented in the

host language is reached. Our approach is centered around

the idea of expressing generic algorithms independently

from any particular schedule, i.e., independently from any

hardware abstraction.

As we mentioned in Section 1.1, the term schedule as used

throughout the paper originates in the work of Ragan-Kelley

et al. on Halide (Ragan-Kelley et al., 2012). SPIRAL (Puschel

et al., 2005) and Sequoia (Fatahalian et al., 2006) predate

Halide, but make a similar distinction between an algorithm

and its mapping to the underlying hardware architecture.

Halide exposes a set of scheduling primitives from which

developers can build their own schedules. TVM (Chen et al.,

2018) follows this idea and extends Halide’s set of scheduling

primitives. The set of schedules that can be expressed in

such systems is necessarily limited by the set of available

scheduling primitives. Extending this set requires modifications

to the language and its compiler, and is thus costly. Recent

work by Liu et al. (2022) shows that carefully choosing

high-level rewriting rules on schedules allows optimizing

tensor programs beyond what is currently possible in these

languages. Exo allows for expressing schedules for different

hardware targets through composable rewrites and user-defined

hardware abstractions (Ikarashi et al., 2022). Ikarashi et al.

(2022) note that adding support for new hardware using a

library approach (as in Exo) appears to require one order

of magnitude less development time than in systems like

Halide or TVM. In our system, schedules are fully specified

by the developer—similarly to the work of Ikarashi et al.

(2022). Compared to the approach taken by Halide or TVM,

the developer has full control over how their computations

are executed, but incur a higher implementation cost when

no scheduling algorithm exists for their particular flavor

of target hardware architecture. Adding “default” scheduling

primitives to Magnolia as a convenience could improve the

developer experience, and is therefore a consideration for

future work.

MLIR (Lattner et al., 2021) makes heavy use of rewrite

rules through theMLIR PatternRewrite infrastructure (Vasilache

et al., 2022). Their design is influenced by LIFT (Steuwer et al.,

2015, 2017), another programming language exploiting rewrite

rules for high-performance array computations. In LIFT, the

application of rewrite rules is automated by a stochastic search

method. Hagedorn et al. (2018) extend LIFT specifically for

optimizing stencil programs. Such rewrite approaches are so

far limited in that they do not always deliver high enough

performance for real-world use (Hagedorn et al., 2020). This

is in contrast to autoscheduling in Halide, which outperforms

human experts on average (Adams et al., 2019). Automatic

scheduling techniques are key to improving solutions to the

P3 problem, and are thus an important topic to further

explore also for rewrite rules-based optimizers. A potentially

promising approach for semi-automatic optimization using

rewrite rules is sketch-guided equality saturation (Koehler et al.,

2021).

Approaches to optimization based on rewrite rules, such as

the one presented here, can benefit from rewriting strategies, e.g.,

for localizing rewrites to only a particular chunk of the input

program or for traversing the AST in a specific order. Kirchner

(2015) gives a recent survey of strategic rewriting. Example

of tools implementing such strategies include Maude (Martí-

Oliet et al., 2005, 2009; Clavel et al., 2007) and Stratego (Visser,

2005). Hagedorn et al. (2020) introduce a functional approach to

high-performance code generation based on rewriting strategies:

computations are expressed in the RISE programming language,

and rewrite rules and strategies in the ELEVATE strategy

language. Fu et al. (2021) later added a type system to ELEVATE

to ensure statically that rewrites are composed correctly. As

shown throughout the paper, our rewriting system today only

provides the ability to apply sets of rewrite rules a certain

number of times, in sequence. Given a rule e1 = e2, the sequence

e1; e1 can be rewritten to e2; e1, but not directly to e1; e2. Such

a transformation can be expressed today by applying the rule

e1 = e2 twice, and then applying the opposite rule e2 = e1 once,

but this is both embarassingly verbose and inefficient. Adding

rewriting strategies to Magnolia will unlock those rewrites

that are not easily accessible today, and thus further improve

the system’s code reuse capabilities. The implementation of

Magnolia strategies is of particular interest, and fits into our

larger project of exploring module transformations through the

lens of Syntactic Theory Functors (Haveraaen and Roggenbach,

2020).

For future work, we also envision the implementation of

an extension to the Magnolia rewriting system that supports

conditional rewrite rules. Conditional equations can already be

expressed inMagnolia, but the rewriting system is not yet able to

exploit them.

Whether axioms constitute valid rewriting rules is

verifiable by extending Magnolia with formal verification

tools—insofar as the relevant properties that a program

must satisfy can be derived from the stated axioms about

its external building blocks. The properties asserted

about externally implemented code can however only be

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

assumed to hold, and constitute the trusted computing

base of the whole program. Work on connecting

verification tools with Magnolia’s specification facilities

is already underway, with encouraging results (Hamre,

2022).

Data availability statement

Publicly available datasets were analyzed in this study. This

programs discussed in this paper can be found at: https://github.

com/magnolia-lang/magnolia-lang.

Author contributions

BC extended the Magnolia compiler, implemented

the PDE solver, the underlying array library, and

the rewriting rules, ran experiments, and wrote the

development of the paper. ML worked on an initial

Magnolia MoA specification, ran some experiments,

and contributed background to the manuscript. JJ and

MH contributed to formulating the research question

and general approach, and helped refine the manuscript

throughout revisions. LM is an expert on MoA and

helped revise the manuscript. All authors approved the

submitted revision.

Acknowledgments

The research presented in this paper has benefited from

the Experiment Infrastructure for Exploration of Exascale

Computing (eX3), which is financially supported by the

Research Council of Norway under contract 270053. We thank

our reviewers JD and NR for their insights and for truly

helping us raise the quality of our paper throughout the

reviewing process.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Abts, D., Ross, J., Sparling, J., Wong-VanHaren, M., Baker, M., Hawkins, T.,
et al. (2020). “Think fast: A tensor streaming processor (TSP) for accelerating deep
learning workloads,” in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 145–158. doi: 10.1109/ISCA45697.2020.00023

Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-M., Gharbi, M., et al.
(2019). Learning to optimize Halide with tree search and random programs. ACM
Trans. Graph. 38, 1–12. doi: 10.1145/3306346.3322967

Bagge, A. H. (2009). Constructs & concepts: language design for flexibility and
reliability (Ph.D. thesis). Research School in Information and Communication
Technology; Department of Informatics; University of Bergen, Bergen, Norway.

Bagge, A. H., David, V., and Haveraaen, M. (2011). Testing with axioms in
C++2011. J. Object Technol. 10, 1–32. doi: 10.5381/jot.2011.10.1.a10

Bagge, A. H., and Haveraaen, M. (2009). “Axiom-based transformations:
optimisation and testing,” in Proceedings of the Eighth Workshop on Language
Descriptions, Tools and Applications (LDTA 2008), Vol. 238, eds J. J. Vinju and
A. Johnstone (Budapest: Elsevier), 17–33. Available online at: https://people.cs.
kuleuven.be/~dirk.craeynest/ada-belgium/events/08/080405-etaps-ldta.html

Basili, V. R., Briand, L. C., and Melo, W. L. (1996). How reuse
influences productivity in object-oriented systems. Commun. ACM 39, 104–116.
doi: 10.1145/236156.236184

Burgers, J. M. (1948). “A mathematical model illustrating the theory of
turbulence,” in Advances in Applied Mechanics, Vol. 1 (Elsevier), 171–199.
Available online at: https://www.sciencedirect.com/science/article/abs/pii/
S0065215608701005?via%3Dihub

Burrows, E., Friis, H. A., and Haveraaen, M. (2018). “An array API for finite
difference methods,” in Proceedings of the 5th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY
2018 (New York, NY: ACM), 59–66. doi: 10.1145/3219753.3219761

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Cowan, M., et al.
(2018). “TVM: an automated end-to-end optimizing compiler for deep learning,”

in Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation, OSDI’18 (Carlsbad, CA: USENIX Association), 579–594.
Available online at: https://www.usenix.org/system/files/osdi18-chen.pdf

Chetioui, B. (2020). magnoliac: A Magnolia compiler.
doi: 10.5281/zenodo.6572953

Chetioui, B., Abusdal, O., Haveraaen, M., Järvi, J., and Mullin, L. (2021).
“Padding in the mathematics of arrays,” in Proceedings of the 7th ACM
SIGPLAN International Workshop on Libraries, Languages and Compilers for
Array Programming, ARRAY 2021 (New York, NY: Association for Computing
Machinery), 15–26. doi: 10.1145/3460944.3464311

Chetioui, B., Järvi, J., and Haveraaen, M. (2022). Revisiting
language support for generic programming: when genericity is a core
design goal, in The Art, Science, and Engineering of Programming, 7.
doi: 10.22152/programming-journal.org/2023/7/4

Chetioui, B., Mullin, L., Abusdal, O., Haveraaen, M., Järvi, J., and
Macià, S. (2019). “Finite difference methods fengshui: alignment through a
mathematics of arrays,” in Proceedings of the 6th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Programming,
ARRAY 2019 (New York, NY: Association for Computing Machinery), 2–13.
doi: 10.1145/3315454.3329954

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J.,
et al. (2007). All about Maude–a High-Performance Logical Framework: How
to Specify, Program and Verify Systems in Rewriting Logic. Berlin; Heidelberg:
Springer-Verlag.

Dehnert, J. C., and Stepanov, A. A. (1998). “Fundamentals of
generic programming,” in Selected Papers from the International Seminar
on Generic Programming (Berlin; Heidelberg: Springer-Verlag), 1–11.
doi: 10.1007/3-540-39953-4_1

Fatahalian, K., Horn, D. R., Knight, T. J., Leem, L., Houston, M., Park, J. Y., et al.
(2006). “Sequoia: programming the memory hierarchy,” in Proceedings of the 2006

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://github.com/magnolia-lang/magnolia-lang
https://github.com/magnolia-lang/magnolia-lang
https://doi.org/10.1109/ISCA45697.2020.00023
https://doi.org/10.1145/3306346.3322967
https://doi.org/10.5381/jot.2011.10.1.a10
https://people.cs.kuleuven.be/~dirk.craeynest/ada-belgium/events/08/080405-etaps-ldta.html
https://people.cs.kuleuven.be/~dirk.craeynest/ada-belgium/events/08/080405-etaps-ldta.html
https://doi.org/10.1145/236156.236184
https://www.sciencedirect.com/science/article/abs/pii/S0065215608701005?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0065215608701005?via%3Dihub
https://doi.org/10.1145/3219753.3219761
https://www.usenix.org/system/files/osdi18-chen.pdf
https://doi.org/10.5281/zenodo.6572953
https://doi.org/10.1145/3460944.3464311
https://doi.org/10.22152/programming-journal.org/2023/7/4
https://doi.org/10.1145/3315454.3329954
https://doi.org/10.1007/3-540-39953-4_1
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

ACM/IEEE Conference on Supercomputing, SC ’06 (New York, NY: Association for
Computing Machinery), 83. doi: 10.1109/SC.2006.55

Frakes, W. B., and Succi, G. (2001). An industrial study of reuse, quality,
and productivity. J. Syst. Softw. 57, 99–106. doi: 10.1016/S0164-1212(00)0
0121-7

Fu, R., Qin, X., Dardha, O., and Steuwer, M. (2021). Row-polymorphic
types for strategic rewriting. arXiv [Preprint]. arXiv:2103.13390.
doi: 10.48550/arXiv.2103.13390

Gibbons, J. (2006). “Datatype-generic programming,” in Proceedings of the 2006
International Conference on Datatype-Generic Programming, SSDGP’06 (Berlin;
Heidelberg: Springer-Verlag), 1–71. doi: 10.1007/978-3-540-76786-2_1

Goguen, J. A., and Burstall, R. M. (1984). “Introducing institutions,” in Logics
of Programs, eds E. Clarke and D. Kozen (Berlin; Heidelberg: Springer Berlin
Heidelberg), 221–256. doi: 10.1007/3-540-12896-4_366

Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., and Lumsdaine, A.
(2006). “Concepts: linguistic support for generic programming in C++,” inOOPSLA
’06: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (New York, NY: ACM Press),
291–310. doi: 10.1145/1167473.1167499

Hagedorn, B., Lenfers, J., Kundefinedhler, T., Qin, X., Gorlatch, S., and Steuwer,
M. (2020). Achieving high-performance the functional way: a functional pearl
on expressing high-performance optimizations as rewrite strategies. Proc. ACM
Program. Lang. 4, 1–29. doi: 10.1145/3408974

Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., and Dubach, C. (2018).
“High performance stencil code generation with Lift,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, CGO 2018 (New
York, NY: ACM), 100–112. doi: 10.1145/3179541.3168824

Hamre, H.-C. (2022).Automated verifications formagnolia satisfactions (Master’s
thesis). The University of Bergen, Bergen, Norway.

Haveraaen, M., and Roggenbach, M. (2020). Specifying with
syntactic theory functors. J. Logic. Algeb. Methods Prog. 113:100543.
doi: 10.1016/j.jlamp.2020.100543

Ikarashi, Y., Bernstein, G. L., Reinking, A., Genc, H., and Ragan-Kelley, J.
(2022). “Exocompilation for productive programming of hardware accelerators,” in
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2022 (New York, NY: Association for
Computing Machinery), 703–718. doi: 10.1145/3519939.3523446

Kirchner, H. (2015). Rewriting Strategies and Strategic Rewrite Programs.
Cham: Springer International Publishing. 380–403. doi: 10.1007/978-3-319-231
65-5_18

Koehler, T., Trinder, P., and Steuwer, M. (2021). Sketch-guided equality
saturation: scaling equality saturation to complex optimizations in languages
with bindings. arXiv [Preprint]. arXiv:2111.13040. doi: 10.48550/arXiv.2111.
13040

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J., et al.
(2021). “MLIR: scaling compiler infrastructure for domain specific computation,”
in 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 2–14. Available online at: https://conf.researchr.org/home/cgo-2021

Lemire, D., Kaser, O., and Kurz, N. (2019). Faster remainder by direct
computation: Applications to compilers and software libraries. Softw. Pract. Exp.
49, 953–970. doi: 10.1002/spe.2689

Liu, A., Bernstein, G. L., Chlipala, A., and Ragan-Kelley, J. (2022). Verified
tensor-program optimization via high-level scheduling rewrites. Proc. ACM Prog.
Lang. 6, 1–28. doi: 10.1145/3498717

Martí-Oliet, N., Meseguer, J., and Verdejo, A. (2005). Towards a strategy
language for Maude. Electron. Notes Theor. Comput. Sci. 117, 417–441.
doi: 10.1016/j.entcs.2004.06.020

Martí-Oliet, N., Meseguer, J., and Verdejo, A. (2009). A rewriting semantics
for Maude strategies. Electron. Notes Theor. Comput. Sci. 238, 227–247.
doi: 10.1016/j.entcs.2009.05.022

Mullin, L. (1988). A mathematics of arrays (Ph.D. thesis). Syracuse University,
Syracuse, NY, United States.

Mullin, L., and Thibault, S. (1994). Reduction Semantics for Array Expressions:
The PSI Compiler. Technical Report CSC 94-05, Department of CS; University of
Missouri-Rolla.

Mullin, L. M. R., and Jenkins, M. A. (1996). Effective data parallel
computation using the PSI calculus. Concurr. Pract. Exp. 8, 499–515.
doi: 10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1

Musser, D. R., and Stepanov, A. A. (1988). “Generic programming,” in Symbolic
and Algebraic Computation, International Symposium ISSAC’88, Vol. 358 of Lecture
Notes in Computer Science, ed P. M. Gianni (Rome: Springer), 13–25.

Nazareth, D. L., and Rothenberger, M. A. (2004). Assessing the cost-effectiveness
of software reuse: a model for planned reuse. J. Syst. Softw. 73, 245–255.
doi: 10.1016/S0164-1212(03)00248-6

Puschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M.,
Singer, B., et al. (2005). SPIRAL: code generation for DSP
transforms. Proc. IEEE 93, 232–275. doi: 10.1109/JPROC.2004.8
40306

Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand,
F. (2012). Decoupling algorithms from schedules for easy optimization of image
processing pipelines. ACM Trans. Graph. 31, 1–12. doi: 10.1145/2185520.21
85528

Sannella, D., and Tarlecki, A. (1996). “Mind the gap! Abstract versus concrete
models of specifications,” in Mathematical Foundations of Computer Science
1996, 21st International Symposium, MFCS’96, Vol. 1113 of Lecture Notes in
Computer Science, eds W. Penczek and A. Szalas (Cracow: Springer), 114–134.
doi: 10.1007/3-540-61550-4_143

Steuwer, M., Fensch, C., Lindley, S., and Dubach, C. (2015). “Generating
performance portable code using rewrite rules: from high-level functional
expressions to high-performance OpenCL code,” in Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP
2015 (New York, NY: Association for Computing Machinery), 205–217.
doi: 10.1145/2784731.2784754

Steuwer, M., Remmelg, T., and Dubach, C. (2017). “Lift: A functional data-
parallel IR for high-performance GPU code generation,” in Proceedings of the 2017
International Symposium on Code Generation and Optimization, CGO ’17 (Austin,
TX: IEEE Press), 74–85. Available online at: https://cgo.org/cgo2017/

Tang, X., and Järvi, J. (2015). Axioms as generic rewrite rules in C++with
concepts. Sci. Comput. Prog. 97, 320–330. doi: 10.1016/j.scico.2014.05.006

Vasilache, N., Zinenko, O., Bik, A. J. C., Ravishankar, M., Raoux, T., Belyaev, A.,
et al. (2022). Composable and modular code generation in MLIR: A structured
and retargetable approach to tensor compiler construction. arXiv [Preprint].
arXiv:2202.03293. doi: 10.48550/arXiv.2202.03293

Visser, E. (2005). A survey of strategies in rule-based program transformation
systems. J. Symb. Comput. 40, 831–873. doi: 10.1016/j.jsc.2004.12.011

Wolfe, M. (2021). Performant, portable, and productive parallel
programming with standard languages. Comput. Sci. Eng. 23, 39–45.
doi: 10.1109/MCSE.2021.3097167

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://doi.org/10.1109/SC.2006.55
https://doi.org/10.1016/S0164-1212(00)00121-7
https://doi.org/10.48550/arXiv.2103.13390
https://doi.org/10.1007/978-3-540-76786-2_1
https://doi.org/10.1007/3-540-12896-4_366
https://doi.org/10.1145/1167473.1167499
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3179541.3168824
https://doi.org/10.1016/j.jlamp.2020.100543
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1007/978-3-319-23165-5_18
https://doi.org/10.48550/arXiv.2111.13040
https://conf.researchr.org/home/cgo-2021
https://doi.org/10.1002/spe.2689
https://doi.org/10.1145/3498717
https://doi.org/10.1016/j.entcs.2004.06.020
https://doi.org/10.1016/j.entcs.2009.05.022
https://doi.org/10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1
https://doi.org/10.1016/S0164-1212(03)00248-6
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1007/3-540-61550-4_143
https://doi.org/10.1145/2784731.2784754
https://cgo.org/cgo2017/
https://doi.org/10.1016/j.scico.2014.05.006
https://doi.org/10.48550/arXiv.2202.03293
https://doi.org/10.1016/j.jsc.2004.12.011
https://doi.org/10.1109/MCSE.2021.3097167
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

Appendix A

concept GenericBinopRules = {

t ype E;

t ype Array;

t ype Index;

f unc t i on binop(lhs: E, rhs: E): E;

f unc t i on binop(lhs: E,

rhs: Array): Array;

f unc t i on binop(lhs: Array,

rhs: Array): Array;

f unc t i on psi(ix: Index,

array: Array): E;

// Rule 1

axiom binopArrayRule(ix: Index,

lhs: Array, rhs: Array) {

a s s e r t psi(ix, binop(lhs, rhs)) ==

binop(psi(ix, lhs),

psi(ix, rhs));

}

// Rule 2

axiom binopScalarRule(ix: Index,

lhs: E, rhs: Array) {

a s s e r t psi(ix, binop(lhs, rhs)) ==

binop(lhs, psi(ix, rhs));

}

}

concept DNFRules = {

use GenericBinopRules[

binop => _+_,

binopScalarRule => addScalarRule,

binopArrayRule => addArrayRule

];

use GenericBinopRules[

binop => _-_,

binopScalarRule => subScalarRule,

binopArrayRule => subArrayRule

];

use GenericBinopRules[

binop => _*_,

binopScalarRule => mulScalarRule,

binopArrayRule => mulArrayRule

];

use GenericBinopRules[

binop => _/_,

binopScalarRule => divScalarRule,

binopArrayRule => divArrayRule

];

t ype Axis;

t ype Offset;

f unc t i on rotate(array: Array,

axis: Axis, offset: Offset): Array;

f unc t i on rotateIx(ix: Index,

axis: Axis, offset: Offset): Index;

// Rule 3

axiom rotateRule(ix: Index,

array: Array, axis: Axis,

offset: Offset) {

a s s e r t psi(ix, rotate(array, axis,

offset)) ==

psi(rotateIx(ix, axis, offset),

array);

}

}[E => Float];

Listing 17 The DNF rewriting rules in Magnolia.

f unc t i on substepIx(u: Array, v: Array,

u0: Array, u1: Array, u2: Array,

ix: Index) : Array =

psi(ix,

u + dt()/(two(): Float) * (nu() * (

(one(): Float)/dx()/dx() *
(rotate(v, zero(),

-one(): Offset) +

rotate(v, zero(),

one(): Offset) +

rotate(v, one(): Axis,

-one(): Offset) +

rotate(v, one(): Axis,

one(): Offset) +

rotate(v, two(): Axis,

-one(): Offset) +

rotate(v, two(): Axis,

one(): Offset)) -

three() * (

two(): Float)/dx()/dx() * u0) -

(one(): Float)/(two(): Float)/dx() *
((rotate(v, zero(),

one(): Offset) -

rotate(v, zero(),

-one(): Offset)) * u0 +

(rotate(v, one(): Axis,

one(): Offset) -

rotate(v, one(): Axis,

-one(): Offset)) * u1 +

(rotate(v, two(): Axis,

one(): Offset) -

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

rotate(v, two(): Axis,

-one(): Offset)) * u2)));

Listing 18 Generated index-level implementation of substep in

Magnolia.

Array schedule(cons t Array &u,

cons t Array &v, cons t Array &u0,

cons t Array &u1, cons t Array &u2) {

Array result;

f o r (size_t i = 0;

i < TOTAL_ARRAY_SIZE;

++i) {

result[i] = substepIx(u, v, u0, u1,

u2, i);

}

r e turn result;

}

Listing 19 A naive and non-specific C++ implementation of a

scheduling function. TOTAL_ARRAY_SIZE corresponds to the number

of elements within one array. Every array has the same number of

elements.

size_t threadsPerBlock = 1024;

size_t nbBlocks =

(TOTAL_PADDED_SIZE / threadsPerBlock) +

(TOTAL_PADDED_SIZE % threadsPerBlock > 0

? 1 : 0);

// This kernel assumes that it is launched

// on at least TOTAL_ARRAY_SIZE threads

t empla te < c l a s s _substepIx>

__global__ void substepIxGlobal(

Array *res, cons t Array *u,

cons t Array *v, cons t Array *u0,

cons t Array *u1, cons t Array *u2) {

size_t ix = blockIdx.x * blockDim.x +

threadIdx.x;

// Create the function object substepIx

_substepIx substepIx;

i f (ix < TOTAL_PADDED_SIZE) {

res->content[ix] =

substepIx(*u,*v,*u0,*u1,*u2,ix);

}

}

__host__ Array schedule(cons t Array &u,

cons t Array &v, cons t Array &u0,

cons t Array &u1, cons t Array &u2) {

Array result;

Array *result_dev = NULL,

*u_dev = NULL,

*v_dev = NULL,

*u0_dev = NULL,

*u1_dev = NULL,

*u2_dev = NULL;

// Creating arrays on device

// ...

// Copying pointer to device data from

// the input arrays

// ...

// Calling the kernel to compute the

// result at every index

substepIxGlobal<_substepIx><<<nbBlocks,

threadsPerBlock>>>(

result_dev, u_dev, v_dev, u0_dev,

u1_dev, u2_dev);

// Clean up device arrays

// ...

r e turn result;

}

Listing 20 Our CUDA implementation of a scheduling function.

TOTAL_ARRAY_SIZE corresponds to the number of elements within

one array. Every array has the same number of elements. Some code

related to memory allocation and copying is omitted from this listing,

for the sake of conciseness.

program PDEProgramPadded = {

use

(r ew r i t e PDEProgramDNF with OFPad 1);

// imports a new schedule, a new

// function for index rotation, and a

// procedure for refilling padding

use ExtExtendPadding;

}

concept OFPad = {

t ype Array;

t ype Float;

procedure refillPadding(upd a: Array);

f unc t i on schedulePadded(u: Array,

v: Array, u0: Array, u1: Array,

u2: Array): Array;

f unc t i on schedule(u: Array, v: Array,

u0: Array, u1: Array,

u2: Array): Array;

axiom padRule(u: Array, v: Array,

u0: Array, u1: Array, u2: Array) {

a s s e r t schedule(u, v, u0, u1, u2) ==

{ var result = schedulePadded(u, v,

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

u0, u1, u2);

c a l l refillPadding(result);

va lue result;

};

}

t ype Index;

t ype Axis;

t ype Offset;

f unc t i on rotateIx(ix: Index, axis: Axis,

offset: Offset): Index;

f unc t i on rotateIxPadded(ix: Index,

axis: Axis, offset: Offset): Index;

axiom rotateIxPadRule(ix: Index,

axis: Axis, offset: Offset) {

a s s e r t rotateIx(ix, axis, offset) ==

rotateIxPadded(ix, axis,

offset);

}

}

Listing 21 Introducing padding into PDEProgramDNF.

Array schedulePadded(cons t Array &u,

cons t Array &v, cons t Array &u0,

cons t Array &u1, cons t Array &u2) {

Array result;

size_t paddedS1 = S1 + 2 * PAD1;

size_t paddedS2 = S2 + 2 * PAD2;

f o r (size_t i = PAD0; i < S0 + PAD0;

++i) {

f o r (size_t j = PAD1; j < S1 + PAD1;

++j) {

f o r (size_t k = PAD2; k < S2 + PAD2;

++k) {

size_t ix =

i * paddedS1 * paddedS2 +

j * paddedS2 + k;

result[ix] =

substepIx(u, v, u0, u1, u2, ix);

}

}

}

r e turn result;

}

Listing 22 A C++ implementation of a scheduling function for padded

arrays. All the arrays have the same (three dimensional) shape and

each axis is padded by the same amount on each ends. S0, S1, and S2

respectively represent the length of the first, second, and third axis of

the arrays. PAD0, PAD1, and PAD2 respectively represent the amount

of padding for one end of the first, second, and third axis of the arrays.

procedure step(upd u0: Array, upd u1:

Array, upd u2: Array) = {

var v0: Array = u0;

var v1: Array = u1;

var v2: Array = u2;

v0 = {

var result: Array = schedulePadded(

v0, u0, u0, u1, u2);

refillPadding(result);

va lue result;

};

v1 = {

var result: Array = schedulePadded(

v1, u1, u0, u1, u2);

refillPadding(result);

va lue result;

};

v2 = {

var result: Array = schedulePadded(

v2, u2, u0, u1, u2);

refillPadding(result);

va lue result;

};

u0 = {

var result: Array = schedulePadded(

u0, v0, u0, u1, u2);

refillPadding(result);

va lue result;

};

u1 = {

var result: Array = schedulePadded(

u1, v1, u0, u1, u2);

refillPadding(result);

va lue result;

};

u2 = {

var result: Array = schedulePadded(

u2, v2, u0, u1, u2);

refillPadding(result);

va lue result;

};

};

Listing 23 The implementation of step produced by an application of

rewritewithOFPad.

concept OFSpecializePsi = {

t ype Index;

t ype Array;

t ype E;

t ype ScalarIndex;

Frontiers inComputer Science 22 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

/* 3D index projection functions */

f unc t i on ix0(ix: Index): ScalarIndex;

f unc t i on ix1(ix: Index): ScalarIndex;

f unc t i on ix2(ix: Index): ScalarIndex;

/* 3D index constructor */

f unc t i on mkIx(i: ScalarIndex,

j: ScalarIndex,

k: ScalarIndex): Index;

f unc t i on psi(ix: Index,

array: Array): E;

f unc t i on psi(i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex,

array: Array): E;

axiom specializePsiRule(ix: Index,

array: Array) {

a s s e r t psi(ix, array) ==

psi(ix0(ix), ix1(ix), ix2(ix),

array);

}

axiom reduceMakeIxRule(i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex) {

var ix = mkIx(i, j, k);

a s s e r t ix0(ix) == i;

a s s e r t ix1(ix) == j;

a s s e r t ix2(ix) == k;

}

}[E => Float];

Listing 24 Specializing calls to the indexing function ψ .

concept OFReduceMakeIxRotate = {

use s i gn a t u r e(OFSpecializePsi);

t ype Axis;

t ype Offset;

f unc t i on zero(): Axis;

f unc t i on one(): Axis;

f unc t i on two(): Axis;

f unc t i on rotateIx(ix: Index, axis: Axis,

offset: Offset): Index;

t ype AxisLength;

f unc t i on shape0(): AxisLength;

f unc t i on shape1(): AxisLength;

f unc t i on shape2(): AxisLength;

f unc t i on _+_(six: ScalarIndex,

o: Offset): ScalarIndex;

f unc t i on _%_(six: ScalarIndex,

sc: AxisLength): ScalarIndex;

axiom reduceMakeIxRotateRule(

i: ScalarIndex, j: ScalarIndex,

k: ScalarIndex, array: Array,

o: Offset) {

var ix = mkIx(i, j, k);

var s0 = shape0();

var s1 = shape1();

var s2 = shape2();

a s s e r t ix0(rotateIx(ix, zero(), o)) ==

(i + o) % s0;

a s s e r t

ix0(rotateIx(ix, one(), o)) == i;

a s s e r t

ix0(rotateIx(ix, two(), o)) == i;

a s s e r t

ix1(rotateIx(ix, zero(), o)) == j;

a s s e r t ix1(rotateIx(ix, one(), o)) ==

(j + o) % s1;

a s s e r t

ix1(rotateIx(ix, two(), o)) == j;

a s s e r t

ix2(rotateIx(ix, zero(), o)) == k;

a s s e r t

ix2(rotateIx(ix, one(), o)) == k;

a s s e r t ix2(rotateIx(ix, two(), o)) ==

(k + o) % s2;

}

}

Listing 25 A rewriting system to specialize the index rotation

operation.

// We suppose here that the amount of

padding is sufficient across

// each axis for every indexing operation.

concept OFEliminateModuloPadding = {

use s i gn a t u r e(OFReduceMakeIxRotate);

t ype Array;

t ype Float;

f unc t i on psi(i: ScalarIndex,

j: ScalarIndex, k: ScalarIndex,

a: Array): Float;

Frontiers inComputer Science 23 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Chetioui et al. 10.3389/fcomp.2022.931312

axiom eliminateModuloPaddingRule(

i: ScalarIndex, j: ScalarIndex,

k: ScalarIndex, a: Array,

o: Offset) {

var s0 = shape0();

var s1 = shape1();

var s2 = shape2();

a s s e r t psi((i + o) % s0, j, k, a) ==

psi(i + o, j, k, a);

a s s e r t psi(i, (j + o) % s1, k, a) ==

psi(i, j + o, k, a);

a s s e r t psi(i, j, (k + o) % s2, a) ==

psi(i, j, k + o, a);

}

}

Listing 26 Elimination of the modulo operations in the program.

Frontiers inComputer Science 24 frontiersin.org

https://doi.org/10.3389/fcomp.2022.931312
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	P3 problem and Magnolia language: Specializing array computations for emerging architectures
	1. Introduction
	1.1. Schedules as hardware abstractions
	1.2. Contribution, limitations, and structure of the paper

	2. Background
	2.1. Magnolia
	2.1.1. Exploiting Magnolia axioms

	3. Methodology and case study
	3.1. Identifying and formalizing the domain
	3.1.1. PDEs
	3.1.2. MoA
	3.1.2.1. DNF operations
	3.1.2.2. ψ-reduction
	3.1.2.3. OF operations

	3.1.3. Initial Magnolia implementation

	3.2. Deriving optimization rules
	3.2.1. Reusability of modules
	3.2.2. Hardware-agnostic transformation rules
	3.2.3. Hardware-specific transformation rules
	3.2.3.1. Example: Padding computations

	4. Discussion and related work
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Appendix A

