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1 Introduction

Inflation provides the most successful explanation for the isotropy and homogeneity observed
in the cosmic microwave background (CMB) to date. Indeed, modern observations of the
CMB [1] are in agreement with an early epoch of accelerated expansion driven by a slowly
rolling scalar field. On top of this, the quantum fluctuations during this inflationary epoch
lead to large-scale structure formation which is consistent with the structure we observe in
the CMB and in galaxy distributions (for nice reviews see [2] and [3]).

Single field inflationary models are quite remarkable in their simplicity. For a canonical
scalar the observational consequences of these models are determined by the first and second
derivative of the potential. Of particular interest are large field inflation models which provide
some of the simplest and most calculable models of the early universe [4, 5]. Due to the
super-Planckian excursions, these models are very sensitive to CMB measurements. On
the other hand, protecting the effective description from quantum corrections is non-trivial
due to the large values of the inflaton field. A possible approach is to use symmetries
that protect the scalar field from UV effects. One such approach within string theory is
monodromy inflation [6, 7]. In these scenarios the inflaton is an axion, a pseudoscalar with a
discrete shift symmetry allowing one to explore large field values without losing control of the
effective description.

A field theory description of axion monodromy was first introduced in [8, 9] and its
implications for inflation later explored in [10–12]. The effects of higher order corrections
and strong coupling were investigated in detail in [13] through the Kaloper-Lawrence (KL)
Lagrangian (cf. eq. (2.5)) allowing constraints based on effective monomial potentials to be
derived in [14]. It should be noted that although it is a consistent EFT, it remains unclear
whether or not there exists a consistent string embedding of the KL model [15].

In this paper, we begin by generalising the analysis of [14] to derive the observational
implications of the KL models. In particular, we do not limit our analysis to effective monomials
but rather consider the full Lagrangian in eq. (2.5) and show that one can consistently truncate
its sums to polynomials of some degree. The exact degree of the polynomials is fixed by
demanding that the error associated to the truncation of the infinite sums, i.e. the higher
order operators that we neglect, is smaller than the observational error margins of the data
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we use to fit the observables, in our case the Planck 2018 data of [1]. This leads to an
effective description of KL in terms of degree 20 polynomials and the ability to discuss the
predictions of a large class of these models in full generality. We will limit ourselves, however,
to two-derivative theories, meaning that the relevant cosmological observables that limit the
parameter space of the theory will be: the spectral index ns, the tensor-to-scalar ratio r and
the amplitude of scalar perturbations As. It would be interesting to consider the introduction
of higher order derivatives operators since it would add further bounds to the parameter space
coming from, say, non-gaussianities and the speed of propagation of scalar perturbations.
This is left for future work.

We also extend our study in another important direction, allowing us to probe a proposed
mechanism [16–24] for solving the cosmological constant problem [25]. This follows from the
realisation that monodromy inflation models could be deformed in a natural way to give rise
to vacuum energy sequestering (VES) [26]. Within the VES framework, radiative corrections
to vacuum energy are reabsorbed through new rigid degrees of freedom. The theory remains
locally indistinguishable from General Relativity, while global dynamics are modified. The
mechanism itself, initially inspired by Tseyltin’s model of duality symmetric strings [27], is
reminiscent of so-called decapitation, at least in a field theory context [23, 28].

In [26], it was shown that the KL model could be made compatible with VES by
introducing a second monodromy into the theory. The EFT would then consist of a heavy
monodromy, whose scalar would play the role of a constant dilaton enforcing the global VES
constraints on the system, and a light sector, which would contain the inflaton. Then, the
cancellation of the vacuum energy loops can be accomplished via the sequestering mechanism
at low energies, consistent with a particular structure for the inflationary sector. The recipe
for this EFT description requires multiple axions, together with their respective discrete
shift symmetries, and a hierarchy between a heavy and a light sector. These ingredients
appear naturally in string theory, which prompts the interesting question of whether a similar
mechanism would be available to string axion monodromy models of inflation. One of the
main goals of this paper is to investigate the impact of VES deformations on KL models of
monodromy inflation, via their imprint on the CMB.

Overall, after the numerical analysis, we find that KL models both with and without
VES deformations, are able to fit current Planck data and forecasted CMB Stage 3 and
Stage 4 pseudo-data. We remark that this is in contrast with the effective monomial results
of [14] which would be disfavoured at a 2σ level by current observations. The key difference
is in the more general form of the Lagrangian allowed by our analysis. Critically, fitting
the Planck data requires both positive and negative coefficients in eq. (2.5). The monomial
potentials of [14] can be mapped to our analysis with a single positive coefficient in the
potential, all other terms being turned off. As can be seen in figure 1, the monomial line
lies outside of the data and crosses the region with only positive coefficients. Allowing for
negative coefficients provides a much more efficient way of lowering r while keeping ns on
the observational range. We are also able to show that the introduction of VES is not in
tension with observations. Therefore, VES enchanced KL models have the added benefit of
including a mechanism to solve the cosmological constant problem in a natural way without
any observational drawbacks.

The structure of the paper is as follows: in section 2 we introduce the KL models,
then in section 3 we follow [26] in introducing a second monodromy and present the form of
the KL Lagrangian with VES enhancement. In section 4 we present the relevant equations
for discussing slow roll monodromy inflation at strong coupling, with and without VES
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Figure 1. Planck data (red) along with KL models: with only positive coefficients (green) and with
positive-negative coefficients (blue). Superimposed is the monomial line, i.e. the ns-r predictions for
potentials of the form V ∼ φp, with p = 2 and N? = 60 given by the filled circle.

enhancements. In section 5 and section 6 we describe our numerical approach in some detail
and present the results for the predictions of the KL models, with and without a VES sector,
for current Planck data and forecasted CMB Stage 3 and Stage 4 pseudo-data. Finally, we
conclude in section 7.

2 The Kaloper-Lawrence model

In [12–14], the authors build upon earlier work [8, 9] to construct an inflation model inspired
by axion flux monodromy [6, 7]. The starting point for the KL model is a massive U(1) gauge
theory given by

L = − 1
48F

2 − m2

12 (Aµνα − hµνα)2 + m

6 φ
εµναβ√
−g

∂µhναβ , (2.1)

where Fµναβ = 4∂[µAναβ] is the four-form field strength, εµναβ is the totally antisymmetric
Levi-Civita symbol defined such that ε0123 = 1, and φ is an axion with periodicity φ→ φ+2πf ,
with f left to be determined. Indices are raised and lowered with respect to the metric gµν .
The equation of motion for φ yields h = db, with bµν the Stueckelberg field invariant under
b → b + dλ, and h is it’s three form field strength. Integrating out the Stueckelberg field
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through its equation of motion yields

L = − 1
48F

2 − 1
2 (∂φ)2 + m

24
εµναβ√
−g

φFµναβ . (2.2)

We now introduce a Lagrange multiplier Q, fixing Fµναβ = 4∂[µAναβ] on shell via a term∫
d4x 1

24Qε
µναβ(Fµναβ − 4∂[µAναβ]). As the four-form now enters the Lagrangian algebraically,

it can be integrated out, with Q now identified with its magnetic dual. This allows us to
rewrite the theory in terms of a pair of pseudo-scalars,

L = −1
2(∂φ)2 − m2

2

(
φ+ Q

m

)2
− Q

6
εµναβ√
−g

∂µAναβ , (2.3)

where Q is constrained to be constant on-shell. In the presence of membranes, it is quantised
in units of the membrane charge q, 〈Q〉 = 2πNq for integers N . The Lagrangian is invariant
under a discrete shift symmetry

φ → φ+ 2πf , Q → Q− 2πq , (2.4)

where f = q/m.
The theory eq. (2.3) describes quadratic inflation, which would be in tension with current

observational bounds [1]. One can ease the tension with observations by exploiting corrections
due to higher order operators. Completing the theory, by writing all the possible higher order
terms allowed by symmetries, one finds [13]

LKL = −1
2(∂φ)2 − m2

2

(
φ+ Q

m

)2
−
∑
k>1

ak
2k k!

( 4π
M2

)2k−2
(∂φ)2k

−
∑
n>2

bn
n!

( 4π
M2

)n−2
(mφ+Q)n −

∑
k,n>1

ck,n
2k k!n!

( 4π
M2

)2k+n−2
(mφ+Q)n (∂φ)2k

− Q

6
εµναβ√
−g

∂µAναβ , (2.5)

where all the coefficients are taken to be O(1) by naturalness and M is the EFT cut-off. By
using naive dimensional analysis (NDA) [29, 30] one can find the appropriate factors of 4π
that guarantee that the higher order corrections remain under control as long as we probe
energies below the cut-off.

Crucially, the theory permits a small window M/
√

4π < mφ + Q < M2 where it is
strongly coupled (lower bound) but the effective description remains under control (upper
bound). In this strongly coupled regime, the corrections become important and can flatten the
overall potential. This argument was used in [14] to motivate a description for the potential
as a shallower-than-quadratic monomial, i.e. V ∼ ϕp with p < 2 where ϕ is the canonical
inflaton. A priori, monomial inflationary potentials with p < 2 tend to push the models to
higher values of the spectral index ns putting them in tension with data. As we will show,
the results of [14] are disfavoured by Planck 2018. Nonetheless, one might hope that the
more general character of eq. (2.5) might capture regimes that are not trivially given by the
monomial potentials, significantly altering their location in the ns − r plane, as we will show
in the later sections.
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3 The Kaloper-Lawrence model with VES enhancement

The monodromy inflation models of the previous section can be deformed in a very natural
way, giving rise to an emergent mechanism for solving the cosmological constant problem [26].
The mechanism for cancelling off radiative corrections to the vacuum energy is achieved
via vacuum energy sequestering [16–24]. In this section, we shall review how field theory
monodromy can be deformed to give rise to VES and how this yields the desired cancellation
of radiative corrections to the cosmological constant. VES enhanced monodromies can also be
thought of as an extension of VES to high energies, perhaps pointing the way to an embedding
of VES in fundamental theory.

We start with the leading order KL theory eq. (2.2) and introduce a small symmetry
breaking deformation parametrised by a spurion term

L = − 1
48F

2 − 1
2 (∂φ)2 + m

24
εµναβ√
−g

φFµναβ −
1
2m̄

2φ2 , (3.1)

where m̄ is the mass for the spurion and
(
m̄
m

)
� 1. Such a term may arise from integrating

out loops of heavy matter if there exists a suitable coupling between this and the inflaton. In
any event, one can now dualise the deformed Lagrangian and apply the NDA scheme to find

L = −
∑
k≥1

ak
2k k!

( 4π
M2

)2k−2
(∂φ)2k −

∑
n≥2

bn
n!

( 4π
M2

)n−2
(mφ+Q)n

−
∑
k,n≥1

ck,n
2k k!n!

( 4π
M2

)2k+n−2
(mφ+Q)n (∂φ)2k −

∑
l≥2

dl
l!

( 4π
M2

)l−2
(m̄φ)l

−
∑
k,l≥1

ak,l
2k k!l!

( 4π
M2

)2k+l−2
(m̄φ)l (∂φ)2k −

∑
l≥1,
n≥2

bn,l
l!n!

( 4π
M2

)l+n−2
(m̄φ)l (mφ+Q)n

−
∑

k,n,l≥1

ck,n,l
2n k!l!n!

( 4π
M2

)2k+l+n−2
(m̄φ)l (mφ+Q)n (∂φ)2k − Q

6
εµναβ√
−g

∂µAναβ , (3.2)

and the labels for the coefficients comply with

2k + l + n ≥ 3 .

The Lagrangian contains a pseudo symmetry: it will remain invariant under shifts of the
axion field and the magnetic dual as in eq. (2.4) as long as we transform the spurion

m̄→ m̄− 2πq
φ

m̄

m
. (3.3)

To simplify the notation henceforth, it will be convenient to define µ ≡ M√
4π and the following

dimensionless quantities

κ ≡ m̄

m
, ξ ≡ mϕ

µ2 , ξφ ≡
mφ

µ2 , (3.4)

where ϕ ≡ φ+Q/m will be our inflaton field. If we now perform a derivative expansion and
truncate the Lagrangian at second order, the EFT becomes

L = −1
2Zeff (ξ, κ ξφ) (∂ϕ)2 − µ4Veff (ξ, κ ξφ)− Q

6
εµναβ√
−g

∂µAναβ (3.5)
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where the explicit forms of the dimensionless wavefunction renormalisation and the potential
are respectively given by

Zeff ≡ 1 +
∑
n≥1

c1,n
n! ξ

n + a1,n
n! (κ ξφ)n +

∑
l,n≥1

c1,n,l
l!n! ξ

n (κ ξφ)l , (3.6)

Veff ≡
∑
n≥2

bn
n! ξ

n + dn
n! (κ ξφ)n +

∑
n≥2
l≥1

bn,l
l!n!ξ

n (κ ξφ)l , (3.7)

with b2 = 1.
To make contact with VES, we introduce a second monodromy where the field φ̂ is given

a very heavy mass m̂

L̂ =
M2
g

2 R− 1
48 F̂

2
µναβ −

1
2(∂φ̂)2 + m̂

4! φ̂ε
µναβF̂µναβ + 1

2 ĝ
2Rφ̂2 , (3.8)

where ĝ is a dimensionless coupling constant of the axion with gravity, which we expect to
be ĝ ≤ 1 for energies below the UV cutoff. We will also demand that m̂�M , thus for the
range of validity of the EFT the field φ̂ is forced to lie at the minimum of its potential. This
implies that once we find the dual theory to this Lagrangian in much the same way as we did
for eq. (3.1), the gravitational contribution goes as

L̂ =
M2
g

2

1 +
(

Q̂

m̂M̂

)2
R− Q̂

6
εµναβ√
−g

∂µÂναβ , (3.9)

where we have defined the energy scale M̂ = Mg

ĝ . As promised, from the viewpoint of the EFT,
adding the second monodromy is equivalent to minimally coupling the inflaton to gravity.
The full action for the theory is now given by [26]

S = Seff + Sg + SF + Sm , (3.10)

where

Seff =
∫
d4x
√
−g

[
−1

2Zeff (ξ, κ ξφ) (∂ϕ)2 − µ4Veff (ξ, κ ξφ)
]
, (3.11)

Sg =
∫
d4x
√
−g

M2
g

2

1 +
(

Q̂

m̂M̂

)2
R , (3.12)

SF = −
∫
d4x

εµναβ

6
[
Q∂µAναβ + Q̂∂µÂναβ

]
, (3.13)

and Sm is the action for all additional matter fields, including the Standard Model, minimally
coupled to the metric gµν . To understand how vacuum energy is cancelled, consider the path
integral, and in particular the integration over the threes forms and the Lagrange multipliers,

Z =
∫
. . . [DQ][DQ̂][DA][DÂ]ei(Seff+Sg+SF +Sm).

Integrating out the three forms suppresses all local variations of the Lagrange multipliers,
∂µQ = ∂µQ̂ = 0, such that the path integral is reduced to

Z =
∫
. . . [dQ][dQ̂]ei(Seff+Sg+Sm−Qc−Q̂ĉ).

– 6 –
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where the Lagrange multipliers are fixed to be spacetime constants, although we still allow
for their global variation in the path integral, and c =

∫
F , ĉ =

∫
F̂ correspond to the global

values of the flux (see appendix A of [31] for more details).The equations of motion include
two local equations coming from the variation of the metric, gµν , and the inflaton, ϕ,

M2
g

[
1 +

(
Q̂

m̂M̂

)]2

Gµν = Tµν + Tϕµν , (3.14)

∇µ [Zeff∇µϕ]− m

2µ2 (Zeff,1 + κZeff,2)(∂ϕ)2 −mµ2(Veff,1 + κVeff,2) = 0 (3.15)

where Zeff,i denotes the partial derivative of Zeff with respect to its i-th argument (similarly
for Veff). The energy momentum tensors for the matter fields and the inflaton are given
respectively by Tµν and

Tϕµν = Zeff∂µϕ∂νϕ+ pϕgµν

where pϕ = −1
2Zeff(∂ϕ)2 − µ4Veff is the inflaton pressure. In addition to these local equations

of motion, there are two global constraints coming from the global variation of the Lagrange
multipliers, giving

c = ∂Seff
∂Q

= − κ

µ2

∫
d4x
√
−g

[
−1

2Zeff,2 (∂ϕ)2 − µ4Veff,2
]
, (3.16)

ĉ = ∂Sg

∂Q̂
=
∫
d4x
√
−gR

(
Mg

M̂

)2 Q̂

m̂2 . (3.17)

Defining the normalised spacetime average 〈.〉 as

〈Y 〉 ≡
∫
d4x
√
−g Y∫

d4x
√
−g

, (3.18)

and taking ratios of eq. (3.16) and eq. (3.17) we arrive at the following constraint on the long
wavelength mode of the Ricci scalar

〈R〉 = κ

Q̂

(
m̂M̂

µMg

)2 〈1
2Zeff,2 (∂ϕ)2 + µ4Veff,2

〉
ĉ

c
≡ R∞(c, ĉ) . (3.19)

This constraint ensures that the large scale scalar curvature is controlled by the flux terms and
is not affected by large radiative corrections to the vacuum energy. To see the implications of
this, we take traces and spacetime expectation values of the field equations, to arrive at the
VES version of the Einstein equations

κ2
gGµν = Tµν −

1
4〈T 〉gµν + Zeff∂µϕ∂νϕ− gµν (δλ+ ∆Λeff) . (3.20)

Here κ2
g ≡M2

g

(
1 +

(
Q̂

m̂M̂

)2)
is the effective gravitational coupling, δλ = 〈pϕ〉 − pϕ measures

local fluctuations of the inflation pressure and

∆Λ = 1
4
[
κ2
gR∞(c, ĉ) + 〈Zeff(∂ϕ)2〉

]
(3.21)

is a global cosmological constant term that depends on the global flux, but is independent of
the vacuum energy. To see how this equation is independent of the Standard Model vacuum

– 7 –



J
C
A
P
0
9
(
2
0
2
2
)
0
8
0

energy, we decompose the energy-momentum tensor of matter into a vacuum energy piece
and local excitations (likes stars and planets) i.e. Tµν = −Vvacgµν + τµν . One can easily verify
that Vvac drops out of the VES Einstein equations eq. (3.20), giving

κ2
gGµν = τµν − Λeffgµν + Zeff∂µϕ∂νϕ− δλgµν . (3.22)

where the residual cosmological constant Λeff = ∆Λ + 1
4〈τ〉. Large radiative corrections to the

vacuum energy arising from matter loops do not induce large corrections to Λeff. Note that
the VES mechanism does not explain why the residual cosmological constant is small but it
does explain why it is radiatively stable. The scenario is now reminiscent of chiral symmetry
and fermion masses in effective field theories — this explains why radiative corrections to the
mass are under control but does not explain or predict the value of the mass itself.

4 Equations for slow-roll inflation at strong coupling

From the previous sections, we see that the dynamics of strongly coupled monodromy inflation,
with and without VES enhancement, is captured by an effective Einstein equation of the form

κ2
gGµν = −Λ?gµν + Zeff∂µϕ∂νϕ− gµν

[1
2Zeff(∂ϕ)2 + µ4Veff

]
. (4.1)

and an inflaton equation

∇µ [Zeff∇µϕ]− 1
2Zeff,ϕ(∂ϕ)2 − µ4Veff,ϕ = 0 (4.2)

The original Kaloper-Lawrence model, coupled to General Relativity, is obtained by taking the
κ→ 0 limit for Zeff and Veff, and tuning Λ? to vanish. Radiative corrections to the vacuum
energy would destablise the latter, which is, of course, the statement of the cosmolgical
constant problem [25]. In terms of our numerical analysis, the relevant Wilson coefficients
in the two potentials are {bn, cn}. In contrast, when we include VES enhancement, the
cosmological constant is given by

Λ? = 1
4κ

2
gR∞(c, ĉ)− 1

4〈Zeff(∂φ)2 + 4µ4Veff〉 (4.3)

Once again we fix Λ? to vanish, although this result now remains stable under radiative
corrections to the vacuum energy thanks to the VES mechanism. The potentials also admit
corrections from the VES deformations, parametrised by the combination

κ ξφ ≡
mκ

µ2

(
ϕ− Q

m

)
= m̄

µ2φ ,

which comes from the fact that the spurion term is related to the axion field φ rather than the
inflaton field ϕ. Since the inflaton is dominated by the flux contribution, the VES deformation
terms are heavily suppressed with respect to the KL terms, i.e. m̄φ � mϕ. One can then
approximate Zeff ' Zeff(ξ, 0) and Veff ' Veff(ξ, 0), neglecting the VES contributions altogether.
In contrast, derivatives of these quantities will see a non-trivial contribution from the VES
corrections. For example, under the previous considerations the effective potential becomes

Veff =
∑
n≥2

(bn + bn,1κ ξφ) ξ
n

n! +O(κ2ξ2
φ) ' Veff(ξ, 0) , (4.4)

– 8 –
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since κ ξφ � 1. However, its first derivative receives a non-trivial contribution, at leading
order in κ, from the bn,1 term

∂

∂ϕ
Veff = m

µ2

∑
n≥2

(n bn + bn,1κ ξ)
ξn−1

n! +O(κξφ) , (4.5)

which is only suppressed by κ. In general, the p-th derivative of the potential will obtain a
contribution of the form (for p ≥ 2)

∂p

∂ϕp
Veff =

(
m

µ2

)p∑
n≥p

[(n− p+ 1) bn + p bn,1κ ξ]
ξn−p

(n− p+ 1)! +O(κξφ) . (4.6)

A similar discussion applies to derivatives of Zeff . Overall, we find that the relevant Wilson
coefficients for our numerical analysis are

{bn, bn, cn, cn} (4.7)

where we have set bn ≡ bn,1, c1,n ≡ cn and c1,n,1 ≡ cn to avoid cluttering the notation in the
remainder of this paper. The VES enhancement is contained in the bn and cn.

For general values of the coefficients in the effective Lagrangian of eq. (3.2), there is no
closed form for the integral defining the canonical inflaton field

ψ ≡
∫ √
Zeff dϕ = µ2

m

∫ √
1 +

∑
n≥1

cn
n! ξ

n dξ . (4.8)

For this reason it is convenient to study the dynamics of slow-roll inflation in a non-canonical
frame. Let us now briefly review the relevant formulae, beginning with the geometrical
slow-roll parameter

ε ≡ − Ḣ

H2 = ϕ̇

2H

[ m
2µ2Z ′effϕ̇2 + µ2m V ′eff + Zeffϕ̈

3H2

]
' 1

2
1
Zeff

(V ′eff
Veff

)2
, (4.9)

where prime denotes ∂φ. In the last step we have used the slow roll approximation for the
non-canonical field ϕ

1
2Zeffϕ̇

2 � µ4 (Veff) ,
m

2µ2Z
′
eff (ϕ̇)2 + Zeffϕ̈� µ2mV ′eff . (4.10)

Similarly, one can derive the form of the slow-roll parameter η from its definition as

η ≡ ε̇

Hε
'
M2
plm

2

µ4
1
Zeff

(V ′′eff
Veff
− 1

2
V ′effZ ′eff
VeffZeff

)
. (4.11)

It is now straightforward to express the spectral index ns, the scalar-to-tensor ratio r and the
amplitude of scalar perturbations As using the usual formulae

ns = 1− 6ε+ 2η , (4.12)
r = 16ε , (4.13)

As = µ4

24π2M4
pl

Veff
ε

(
1 + 2

3ε+O(ε2)
)
, (4.14)

where the form of the slow-roll parameters is taken as in eq. (4.9) and eq. (4.11).
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Finally, the number of e-foldings is given by

dN ≡ 1
εH

dH '
SR
dψ

Veff
Veff,ψ

, (4.15)

where the final expression comes from assuming slow roll. This yields an expression

N? = − µ4

M2
plm

2

∫ ψ(ξ=ξe)

ψ(ξ=ξ?)
dξ Zeff

Veff
Veff,ξ

, (4.16)

computed in the non-canonical frame. Here ξe is the value of the field at the end of inflation
and ξ? its value when the pivot scale, k? = 0.05 Mpc−1 crosses the horizon.

5 Numerical strategy and caveats

The most immediate obstacle to developing a sound numerical strategy in the strongly coupled
regime is the infinite tower of Wilson coefficients that appear in the relevant potentials. Indeed,
for the KL model, both the wave renormalisation factor, Zeff, and the effective potential, Veff,
can be schematically reduced to an infinite series of the form

Ceff(ξ) =
∑
n

cn
n! ξ

n . (5.1)

VES enhanced models also contain an additional series of the same schematic form, given in
terms of ξφ as opposed to ξ. Of course, series of the form eq. (5.1) converge for cn ∼ O(1).
However, for arbitrary coefficients, they cannot be expressed in closed form in terms of
elementary functions. To get around this, we truncate the potentials at some finite order nobs,
replacing Ceff(ξ) with

C̄eff(ξ) =
∑

n≤nobs

cn
n! ξ

n (5.2)

and compute the corresponding observables n̄s ands r̄. Such a truncation will inevitably
induce an error in the potentials, given schematically as

∆Ceff =
∑

n>nobs

cn
n! ξ

n , (5.3)

which is passed on to the observational predictions. In particular, the spectral index and
tensor-to-scalar ratio are expected to be off by an amount ∆ns and ∆r respectively, where

|∆ns|
1− ns

∼ |∆r|
r
∼ ∆Ceff
Ceff

(5.4)

The key point is that the data itself contains errors in the values of these parameters. Of rele-
vance to us, the combined measurement of Planck TT,TE,EE+lowE+lensing+BK15+BAO [1]
yields

ns = 0.9668± 0.0037, r < 0.063 , (5.5)

where the confidence interval is to 1σ and the upper bound on r to 2σ. The errors introduced
through our truncation will be less than the observational errors in the data provided
∆Ceff/Ceff . 0.1 for the generic potentials (and their derivatives). In this work we truncate
the potentials at 20th order, for which nobs = 20. To get a flavour of the size of ∆Ceff/Ceff ,
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consider the case where Ceff = eξ. In that case, the generic error can be expressed in terms of
incomplete Gamma functions,

∆Ceff
Ceff

= 1− Γ(nobs + 1, ξ)
nobs!

(5.6)

For nobs = 20 and ξ bounded by the strong coupling limit, ξ ≤ 4π, we find that ∆Ceff/Ceff ≤
1− Γ(21,4π)

20! ≈ 0.018. This places the error well below the observational limits.
For the truncated polynomials, the slow-roll equations were solved numerically using

Python. For a given model, the procedure we adopt is as follows:

1. Initially, all roots Veff(ξ) = 0 in the range ξ ∈ [0.01, 4π] are identified, and any intervals
with Veff < 0 are discarded. The lower bound in ξ arises from noting that for ξ < 1 the
potential becomes nearly quadratic which would be in tension with data. As a sanity
check, we allow a region 0.01 ≤ ξ ≤ 1 where we expect quadratic inflation to occur and
show that observationally viable inflation requires ξ > 1.

2. Within each interval, ξ ∈ [ξlower, ξupper], we solve for all possible field values that will
lead to the end of inflation, specified by ε(ξe) = 1.

3. For each ξe, we evaluate whether N? can be satisfied using (4.16). This is achieved by
choosing a trial value for ξ? = ξe + ∆ξ, and increasing ∆ξ until sufficient e-folds are
achieved, or ξ? > ξupper. If successful, a further root finding step is performed to find ε?.

4. Finally, we perform an additional check that both slow-roll conditions are satisfied,
|η| < 1, ε < 1∀ξ ∈ [ξe, ξ?].

Passing these conditions ensures there is a sufficient period of slow-roll inflation. Each model
may give rise to either no, single or multiple inflationary regions. Before discussing the generic
predictions for these families of models, let us point out a few important caveats as well as
fleshing out the numerical strategy that we followed. In the following, we will only consider
models that comply with the following:

i. Positivity of Zeff: In order to avoid ghosts in the theory, we require that

Zeff(ξ) > 0 ∀ξ ∈ [ξe, ξ?] .

ii. After the end of inflation, the potential monotonically decreases to the
Minkowski vacuum defined at ξ = 0. The original Kaloper-Sorbo theory
is defined as an expansion around the Minkowski vacuum at ξ = 0, the weakly
coupled regime. We limit ourselves to those potentials that allow access to
this vacuum classically.

iii. Related to the previous point, we only consider the classical evolution of the
field. Even though one might be tempted to argue in favour of keeping models
with false de Sitter vacua, since in some finite time we would tunnel to the true
Minkowski vacuum, the technicalities of the calculation involving tunnelling
probabilities disallow the statistical treatment of the next section.
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Figure 2. Random potentials, Veff v ξ, for the Kaloper-Lawrence model. The banded regions show
[ξe, ξ?]. The red regions are ruled out by the positivity of Zeff and the orange regions by the requirement
that the final phase of evolution must decrease monotonically to the Minkowski vacuum.

iv. We only consider a single phase of inflation. Although models with multiple
phases of inflation could satisfy the observational constraints on the length of
inflation, these models require further study of the dynamics and the spectrum
of perturbations. This implies that, in the case of multiple regions that satisfy
the above constraints, we choose the region that is closest to the Minkowski
vacuum, as this would be the first N e-folds of inflation that we would observe.

In order to gain some intuition on the range of possible solutions, we generate 10k
Kaloper-Lawrence models drawn randomly from a mass prior of m ∼ U(0.1, 1), and bn>2,
cn>0 ∼ U [−3,−0.1]∪ U [0.1, 3]. The remaining parameters are set by their values in eq. (2.5),
i.e. b0, b1 = 0, b2 = 1 and c0 = 1. These priors are chosen to give natural O(1) values. We
also did a run with coefficients in the range U [−3, 3] with no major change in results. During
sampling, we choose N? ∼ U(50, 60) to give a representative range consistent with standard
reheating. As discussed above, we truncate the series at nobs = 20.

In total, we find 39% of models satisfy slow-roll and give a sufficient number of e-folds,
but only 12% are viable, due to conditions (i) and (ii) above.1 We plot a selection of models
in figure 2. If one repeats the analysis considering only positive coefficients, we find viable
inflation occurs for all 10k random models. Many of these models, of course, will not give
consistent observations, so in figure 3 we show the fraction of viable models that survive a given

1We do not consider observations when determining if a model is viable.
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Figure 3. Fraction of viable inflationary models that survive an observational bound on r. On the
left we show positive coefficient models only, and on the right both positive and negative coefficients.
The same model but with VES included is given by the dashed red curve.

observational bound on r. Of particular note is that for KL models both with and without
VES enhancement, if we demand only positive coefficients, none of them in the random sample
survive r < 0.1, whereas, when we allow for both positive and negative coefficients, ∼ 30%
of the previously viable models survive the very stringent CMB bound of r < 0.001.

To evaluate the impact of VES, we use priors of bn>1, cn>1 ∼ U [−3,−0.1] ∪ U [0.1, 3]
and log10 κ ∼ U(−5,−1). The ranges on κ are fixed so that the condition κ := m̄/m� 1 is
satisfied, with the upper bound marginally doing so. One could consider even lower values
of κ, however that would make the contributions from the VES sector even weaker. For the
range 10−5 < κ < 10−1, it is already the case that including VES does not significantly change
these results and one finds a similar number of viable models. Therefore, we would expect
that pushing the bound on κ to lower values would not yield any interesting new results.

The small impact arising from the VES corrections are not entirely unexpected. For
example, from eq. (4.5) and using that the sum peaks around ξ ' n+ 1 we see that the first
derivative of the potential is given by

V ′eff = m

µ2

∑
n≥2

(n bn + bn,1κ ξ)
ξn−1

n! ∼
m

µ2

∑
n≥2

n(1 + κ)ξ
n−1

n! ∼ V
′
eff(ξ, 0)(1 + κ) , (5.7)

with the corrections to the cosmological observables being, roughly, ns ∼ nns
s (1 + κ) and

r ∼ rns(1 + κ), with nns
s , r

ns the original non-VES KL predictions. Nonetheless, it is very
interesting to point out that despite more than doubling the number of parameters in the
theory, the VES models are not disfavoured by a Bayesian analysis, as shown in section 6.
From a theoretical point of view, the VES models might even be preferred since they include
a mechanism to cancel vacuum energy loop contributions.

In the following section we assess more concretely whether these solutions give rise to
slow-roll parameters consistent with observations.

6 Testing with observations and forecasting

We now ask whether the models under investigation give rise to slow-roll parameters consistent
with observations. We first consider the case of strictly positive Wilson coefficients using
Planck 2018 [1] and Bicep-Keck (BK15) [32] data. As suggested by figure 3, we expect these
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Figure 4. Planck data (red) along with predictions (blue) for Kaloper-Lawrence inflation with strictly
positive Wilson coefficients, both without (left) and with (right) VES contributions. We also show the
V ∼ φp monodromy line, with p = 2 and N? = 60 given by the filled circle.

class of models to be under tension due to the paucity of consistent solutions satisfying r < 0.1.
However, these were generated by random sampling from the prior, and it may be possible
that regions of parameter space are more consistent with observations.

For this analysis, we perform a Markov Chain Monte Carlo (MCMC) analysis using
a Gaussian likelihood. We fit the (ns, r) covariance matrix from the Planck TT, TE, EE
+ lowE + BAO + BK15 chains, which gives a good approximation to the true likelihood.
In total we fit for 39 parameters in the Kaloper-Lawrence model, and 79 including VES
enhancements, using the same prior ranges as in the previous section and fixing N? = 60. We
use the ensemble sampler emcee [33], using 200 walkers in the ensemble and a combination
of the affine invariant stretch [34] and differential evolution moves. The reason for this is
when generalising to negative Wilson coefficients we find a bi-modal posterior, with a mode
of lower likelihood running along the monodromy line, and this combination of MCMC moves
gives improved mixing. Running the ensemble for a chain length of 20 autocorrelation times,
the resulting posterior is shown in figure 4. As expected, models with strictly positive Wilson
coefficients are unable to fit observational data and can be ruled out at the ∼ 2.7σ level.

The marginalised parameters and best-fits are similar both with and without VES, as
expected from the small ∼ (1 + κ) corrections to r and ns. This is supported by inspecting
the posterior distribution for κ, which only becomes non-uniform for log10 κ & −2. Given the
large number of additional parameters in the fit, it is natural to ask if VES is disfavoured
by model comparison. In order to quantity this, we compute the Bayesian Evidence by
performing nested sampling. For ease of integration with our code we use the dynesty
sampler [35] with 1000 live points. The Bayesian Evidence (B) values are given in table 1.
We find the difference between VES and no VES to be logB = 0.6, which is inconclusive on
the Jeffreys scale. Whilst this may seem counter-intuitive, VES is compatible with data over
almost all of its prior range, so is not penalised by Bayesian Evidence as very little additional
parameter space is wasted.
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Dataset Model logB
Planck Positive Wilson coefficients −4.8
Planck Positive Wilson coefficients with VES −4.2
Planck Positive and negative Wilson coefficients −4.4
Planck Positive and negative Wilson coefficients with VES −3.8
CMB S3 Positive Wilson coefficients −40.5
CMB S3 Positive Wilson coefficients with VES −41.0
CMB S3 Positive and negative Wilson coefficients −26.9
CMB S3 Positive and negative Wilson coefficients with VES −24.3
CMB S4 Positive Wilson coefficients −231.7
CMB S4 Positive Wilson coefficients with VES −229.5
CMB S4 Positive and negative Wilson coefficients −27.2
CMB S4 Positive and negative Wilson coefficients with VES −28.0

Table 1. Log of the Bayesian Evidence B for various data and model combinations.

The result of figure 3 indicates that negative Wilson coefficients are needed. This is
related to the fact that observationally successful models of inflation require the presence
of a turning point in the potential, i.e. some degree of cancellation between neighbouring
coefficients. Running the MCMC, we find this class of model has no issue in fitting current
data, so we also check that it is compatible with forecasted Stage 3 (S3) and Stage 4 (S4)
constraints. To do this, we assume an uncorrelated Gaussian likelihood for (ns, r), using
1σ upper bounds on r of 0.01 and 0.003 respectively. Since these experiments will primarily
target the large-angle polarization signal, we use existing Planck constraints on ns. In figures 5
and 6 we show the resulting posterior distributions. As expected from the previous section,
these models can naturally give rise to small r values and cannot be ruled out, even by a
future S4 experiment.

To see why, it is worth examining the reconstruction of the potential. In figure 7 we
show Veff(ξ), Zeff(ξ) and Veff(ϕ) for samples from the MCMC chains for the Kaloper-Lawrence
model with positive Wilson coefficients and Planck data. In figure 8 we show the same but
for positive and negative coefficients and a S4 experiment. The crucial role played by the
negative Wilson coefficients becomes clear — they have the effect of flattening the potential
from its otherwise rapdily monotonic decline, in particular leading to a point of inflection
from where inflation can begin, staying flat enough to give rise to at least sixty efolds of
acceleration expansion. This flatness slows the inflaton down, decreasing ε, and leading to a
much smaller value for r.

Plotting a histogram of the number of negative coefficients, we find this is strongly peaked
at ∼ n/2. The requirement that a degree of cancellation is required between coefficients is not
ideal from a model building perspective. This can be quantified by comparing the Bayesian
Evidence between models with positive and negative coefficients, compared to strictly positive
coefficients. From table 1 one can see that for Planck, even though there is an improvement in
the fit, there is only weak evidence for including negative coefficients. For a stage 3 experiment,
however, if there is no detection of tensor modes, there would be strong evidence for negative
coefficients in the context of monodromy models.
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Figure 5. CMB S3 experimental data (red) along with predictions (blue) for Kaloper-Lawrence
inflation with positive and negative Wilson coefficients, both without (left) and with (right) VES con-
tributions.

Figure 6. CMB S4 experimental data (red) along with predictions (blue) for Kaloper-Lawrence
inflation with positive and negative Wilson coefficients, both without (left) and with (right) VES con-
tributions.

– 16 –



J
C
A
P
0
9
(
2
0
2
2
)
0
8
0

Figure 7. (Left) Veff(ξ) from MCMC samples for the Kaloper-Lawrence model with positive Wilson
coefficients and Planck data. (Middle) Zeff(ξ). (Right) Potential for the canonical field, Veff(ψ). The
banded regions show the final 60 e-folds of inflation.

Figure 8. Same as figure 7 but for positive and negative Wilson coefficients with S4 constraints.
The combination of positive and negative coefficients flattens the potential during the crucial final 60
efoldings of inflation region, leading naturally to small values of r consistent with the data.
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7 Conclusions

Field theory models of monodromy inflation allow one to consistently probe large values of
the inflaton field whilst retaining control of the effective description. Of course, such models
are guaranteed to be ruled out by observation unless there is some additional flattening of
the potential, something which can be achieved by pushing the dynamics into a strongly
coupled regime, without losing control of the theory. Although an heuristic analysis of the
observational tests of these models was performed in [14], a thorough numerical examination
was still lacking. In this paper, we have carried out that examination and revealed some
new features required by the family of models in order for them to satisfy the observational
constraints. In particular, the tower of Wilson coefficients that define the higher order
operators of the theory cannot all have the same sign. Indeed, in order for the potential to
be sufficiently flat to yield enough inflation and be compatible with bounds on the spectral
index and tensor to scalar ratio, there needs to be cancellations between terms. This requires
a combination of positive and negative coefficients. Once this is the case, these coefficients
can be order one in absolute value, consistent with naturalness, and remain compatible with
CMB data, both current and forecasted Stage 3 and Stage 4 with strong constraints on the
tensor to scalar ratio. Although the best models seem to require a roughly equal number of
positive and negative coefficients, we were not able to identify any further structure in the
array of coefficients.

These monodromy models can be enhanced, from a theoretical perspective by including
the corrections suggested by vacuum energy sequestering [16–24]. These are desirable since
they guarantee the cancellation of vacuum energy loops, allowing us to set the vev of the
potential to vanish without having to fine tune the result against large radiative corrections.
From a Bayesian perspective, we might have expected the addition of the VES corrections
to have been disfavoured because we introduce many more parameters into the theory. As
it happens, this doesn’t matter: VES enhanced models are not significantly favoured or
disfavoured relative to the original models of monodromy inflation, at least as far as the
data is concerned. This is encouraging as it suggests an emergent mechanism for solving the
cosmological constant problem can be incorporated into inflationary dynamics without any
cost to the likelihood.

We might ask whether there is any prospect for picking out VES enhanced models versus
say the KL models? These initial results suggest not at the level of the inflaton itself, as the
two models agree so closely. However there may be features arising during the reheating phase,
arising from the extra couplings associated with VES models that would lead to observational
features on small scales. We might also ask, what are the weaknesses and strengths of the
scenarios we have investigated. A clear strength of the VES enhanced models is that they
contain a mechanism to address the cosmological constant problem. A potential strength of
both sets of models, with and without VES enhancement, arises from the fact that when
allowing for positive and negative coefficients, these can conspire to flatten the potential as
seen in figure 7. It opens up the intriguing possibility that they may cause the potential to
flatten to such a degree that the inflaton field could enter a period of ultra slow roll inflation,
leading to the associated production of primordial black holes, and therefore providing, both,
a new observational signature for the model and a new set of constraints on the allowed
values of the coefficients. It would also arguably be the first particle inspired model that
leads naturally to a period of ultra slow roll inflation occurring during the final e-foldings of
inflation. Perhaps a weakness in probing both sets of models is that we don’t know precise
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values of the Wilson coefficients and so the best we can do is to sample from a broad class of
possible values. However, we are not alone with this problem, it is true of any effective theory
unless there is some additional symmetry controlling the relative structure of the higher order
operators. Not knowing these coefficients makes it hard to say much about the end of inflation
if you want to think about the formation of oscillons, axion stars, and possible links to dark
matter. But it remains the case that we may be able to make more general statements about
the likely formation mechanisms and the associated production of primordial gravitational
waves — an exciting prospect.
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