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Abstract— This paper develops a multi-robotic arm system 

and a stereo vision system to sort objects in the right position 

according to size and shape attributes. The robotic arm system 

consists of one master and three slave robots associated with 

three conveyor belts. Each robotic arm is controlled by a robot 

controller based on a microcontroller. A master controller is 

used for the vision system and communicating with slave robotic 

arms using the Modbus RTU protocol through an RS485 serial 

interface. The stereo vision system is built to determine the 3D 

coordinates of the object. Instead of rebuilding the entire 

disparity map, which is computationally expensive, the 

centroids of the objects in the two images are calculated to 

determine the depth value. After that, we can calculate the 3D 

coordinates of the object by using the formula of the pinhole 

camera model. Objects are picked up and placed on a conveyor 

branch according to their shape. The conveyor transports the 

object to the location of the slave robot. Based on the size 

attribute that the slave robot receives from the master, the 

object is picked and placed in the right position. Experiment 

results reveal the effectiveness of the system. The system can be 

used in industrial processes to reduce the required time and 

improve the performance of the production line. 

Keywords— Robot arm; Computer vision; Stereo vison; 

Modbus RTU; RS485. 

I. INTRODUCTION 

Nowadays, robotic arms are widely used industrial 

applications. It can replace human labor in most jobs that can 

be characterized as repetitive or require a lot of lifting force. 

The robot can work continuously without fatigue, having 

high repeatability and reliability and creating high-precision 

and high-quality products [1-6]. Therefore, the requirements 

for flexibility, accuracy and robustness of robots are 

increasing to be able to operate in many different 

environments. To meet such requirements, robots are often 

integrated with sensors to measure and sense the surrounding 

environment (especially when the robot operates in an 

unstructured environment). The sensors that are commonly 

used are force sensors, ultrasonic sensors, lasers, vision 

sensors, etc. Among them, visual sensors (e.g., cameras) are 

the most common because the way vision sensors perceive 

the environment is close to that of humans and allows for 

non-contact measurements [7-11]. 

 The robotic system integrated with a vision system has 

enabled robots to accomplish many applications as assembly 

and disassembly, vision guide robot, mapping, navigation, 

tracking, path planning, robot localization, exploration, 

surveillance, search, recognition, inspection [12-20].  

Robots can work independently or can be combined in 

production lines to perform complex tasks involving many 

stages [21-24]. In a robotic system, robots can be pre-

programmed to perform a repetitive action without 

interacting with other robots or the rest of the system. 

However, to be able to perform complex tasks and replace 

human labour, robots must interact with each other. With the 

continuous evolvement of digital control, new advances in 

robotics as well as networked strategies being introduced in 

the industrial scene, robots can be connected and 

communicate with each other leading to the introduction of 

collaborative environments and Human-Robot Collaboration 

(HRC) [13]. 

In this paper, a multi-robot system is developed that uses 

a stereo vision system for sorting products in a production 

line. The robotic arm system consists of one master and three 

slave robots associated with three conveyor belts. Data is 

transmitted from the master robot to the slave robots based 

on the Modbus RTU protocol through an RS485 serial 

interface. The stereo vision system is built to determine the 

3D coordinates of the object. Instead of rebuilding the entire 

disparity map, which is computationally expensive, the 

centroids of the objects in the two images are calculated to 

determine the depth value. After that, we can calculate the 3D 

coordinates of the object by using the formula of the pinhole 

camera model. The contribution of this paper is: (1) propose 

a simple stereo vision system to calculate the 3D position of 

objects with a low computational cost that can be 

implemented on a low-cost embedded computer, (2) present 

the way to communicate between robots through an RS485 

network built on the embedded system. 

II. RELATED WORKS 

A computer vision system can make a robot move more 

flexibly and faster. They can improve production efficiency 

and ensure product accuracy [25-29]. For example, industrial 

robots have been commonly used in industrial production for 

sorting [30–34]. Wu et al. [31] use a deep convolutional 

neural network to locate and recognize complex workpieces 

for the vision-based sorting robot in the industrial production 

process. The pixel projection algorithm (PPA) is presented to 

eliminate uneven illumination, located and segment 

workpieces in the image. DCNN is applied to recognize 
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rational degree and type of workpieces at a high rate of speed. 

In [32], a dual-arm robot is used for surgical instrument 

sorting tasks using a coordinated control strategy, which 

combines a bilayer fuzzy hybrid force/position control 

method with a fuzzy control algorithm. The hybrid fuzzy 

control strategy is proposed for dual arm coordinated 

operations to dynamically adjust the motion parameters for 

efficient implementing instrument sorting tasks. Lin et al. 

[33] develop a fruit-sorting system using industrial robot and 

the three-dimensional (3D) visual perception. Robot can 

interact with human according to the real-time actual three-

dimensional information and natural language interaction. 

Based on a ‘rule-scene’ matching and interaction algorithm, 

robot can sort the object automatically using the automatic 

programming and execution algorithm. Zhou et al. [34] 

develop an automatic sorting system for agricultural products 

using a 4-DOF robot arm and a monocular camera. An image 

processing method based on histogram correction was 

proposed for target classification. Target’s position is 

calculated based on the pinhole imaging principle. The 

experiments conducted using tomatoes and oranges as the test 

objects have shown the reliability and high efficiency of the 

proposed system. 

Robot is widely used in many assembly applications with 

the supporting of the vision system [35-39]. An automatic 

vision-guided system for a fruit picking and placing robot is 

developed by Dewi et al. [40]. A simple image processing 

algorithm based on BLOB analysis is presented to recognize 

the object by color and shape. The robot is equipped with a 

PI camera to capture the image of the fruit. The image is 

processed on the Raspberry Pi for detection processes. The 

experiment shows the effectiveness of the proposed method 

with the average time of picking and placing fruit is from 

6.69s to 7.63s. Wei et al. [41] design a vision-guided 

manipulator to assemble workpieces without explicit human 

programming. A 3D camera is used to obtain the spatial 

positions of the workpiece dynamically during the 

demonstration, and then transform the positions to the 

coordinate system of the industrial manipulator. The inverse 

kinematic model of the industrial robot manipulator is 

applied to obtain the joint angles for each position of the 

workpiece. After that the robot manipulator is controlled to 

complete the task automatically based on the control 

information generated above. Instead of using 3D coordinates 

obtained from 3D camera, Jia et al. [42] use the features from 

the image acquired by a camera during the teaching process 

to generate the robot's trajectory. The desired trajectory is 

defined by using the homography instead of the coordinate of 

image feature points for more robust to image noise. 

Many applications developed stereo vision systems to 

determine the position of objects for robot grasping [43-48]. 

Chen et al. [49] develop the picking robot system based on a 

Fuzzy Neural Network Sliding Mode Algorithms. Firstly, the 

kinematics and dynamics equations of the picking robot is 

established. Secondly, visual positioning is introduced to 

determine the position of the target point for an image-based 

visual control. Finally, the improved fuzzy neural network 

sliding mode control algorithm is proposed to carry out 

simulation analysis to improve the efficiency of the robot arm 

servo control. Cong et al. [50] develop a stereo vision system 

to predict the 3D ball trajectory for the ping-pong robot. A 

multi-threshold segmentation algorithm and the triangulation 

algorithm are combined to compute the 3D coordinates of the 

ball. The aerodynamics model and rebound model are 

deployed to predict the flight trajectory of the ball. In [51], 

stereo vision-based system is used to extract 3-D coordinates 

between robot’s tool center point (TCP) and the object of 

interest for multiagent robot application that can be used for 

tracking, tooling or handling operations. Cong and Hanh [52] 

use a combination of two visual servoing techniques in 

contour following task of unknown object. A camera is 

attached to the robot's end-effector to capture the image of the 

object. Shortest Path Visual Servoing is applied to regulate 

camera parallel to contour plane. The image-based visual 

servoing is applied for contour following task. 

Recently, Deep Convolutional Neural Network (ConvNet 

or CNN), has been applied in many object recognition tasks 

which outstanding image recognition capabilities [53-56]. In 

[53], Li and Chang propose an innovative automation system 

for visual placement and precision positioning of the 

workpiece using a mobile manipulator. The system includes 

a binocular eye-in-hand system with two low-resolution 

CMOS cameras attached on the end effector of the mobile 

manipulator and a Convolutional Neural Network for 

detecting the relative position of the workpiece on the fixture. 

In order to estimating the grasping pose of SCARA robot, 

Wang et al. [54] use an end-to-end deep learning method on 

point clouds, PointNetRGPE. Point cloud data of objects is 

obtained from a binocular stereo vision system set directly 

above the objects. 

III. DESCRIPTION AND PERFORMANCE OF ROBOTIC ARM 

SYSTEM 

In this paper, a multi-robotic arm and conveyor belt 

system is developed for sorting objects. The robotic arm 

system consists of one master and three slave robots 

associated with three conveyor belts (Figure 1).  The robot 

arms use parallelogram mechanisms to keep the end-effector 

always parallel to the horizontal during the robot motion. 

Each robotic arm is controlled by a robot controller based on 

a microcontroller. The joints of the robot arms are driven by 

5.17:1 planetary gearbox stepper motor. The stepper motor 

can provide a maximum holding torque of 0.25Nm, resulting 

in a maximum robot’s payload of 500g. In addition, the 

motors use a maximum of only 10W of power each, and three 

motors combined use a maximum of only 30W, resulting in 

significant energy savings. Table 1 shows the specifications 

of the robotic arms. 

Objects in the workspace are captured by a stereo vision 

system consisting of two cameras. The images are processed 

by a master controller based on an embedded computer. A 

disparity map generated from the stereo vision system is used 

to detect and recognize objects. The depth of objects is also 

easy to determine from the disparity map, and then calculate 

the 3D coordinates of the objects. The position of the object 

is transmitted to the master robot using the Modbus RTU 

protocol through an RS485 serial interface.  The master robot 

picks and puts the object on the right conveyor branch 

according to their shape. The three conveyors correspond to 

three different shapes of the object.  
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The conveyors move the objects to the position of the 

slave robot arm. The object is detected by a proximity sensor 

fixed on the conveyor. Based on the size attribute that the 

slave robot receives from the master, the object is picked and 

placed in the right position. The end-effector of the robot is 

attached to a vacuum suction cup to grip and move objects. 

Each slave robot arm is connected to the Arduino 

microcontroller. The Arduino board creates pulses and sends 

them to three A4998 drivers to driven stepper motors, reads 

the signal from the proximity sensor to control the motor 

conveyor by outputting a signal to a DC motor driver. In 

addition, the Arduino also outputs digital signals to control 

the solenoid valve, vacuum pump of the vacuum system for 

the vacuum suction cup. Since the valve and pump operate at 

12V, relays whose coils are energized by the 5V signal from 

the Arduino are used to turn ON and OFF them. A UART to 

RS-485 converter module is used to allow the TTL interface 

of the microcontroller to be transferred to the RS485. Fig. 2 

shows the block diagram of the robot controller. 

 

Fig. 1. Multi-robotic arm system 

 

Fig. 2. Robot controller block diagram 

IV. STEREO VISION SYSTEM  

Stereo vision is a method to compute the depth of objects 

in order to construct three-dimensional model by using a pair 

of photographs of the same scene which are taken at different 

positions. Stereo vision has been widely used in many 

applications, such as cinema, video games, robot navigation, 

simultaneous localization and mapping (SLAM) as well as in 

many other aspects of production, security, defence, 

exploration. In a stereo vision system, a pair of images of an 

object is taken by a binocular camera consisting of two 

cameras as shown in Fig. 3. The object of interest is located 

in the real world at P, two origins of the left and right cameras 

are located at Ol and Or, respectively. Assuming the two 

cameras are parallel, the right camera is a distance to the left 

camera called baseline b. The projections of P on the left and 

right image planes have horizontal coordinates xr and xl, 

respectively. The disparity (𝑥𝑙 − 𝑥𝑟) can be determined by a 

simple expression: 

𝑑 = 𝑥𝑙 − 𝑥𝑟 =
𝑏𝑓

𝑍
 (1) 

where 𝑍 is the depth of the object, f is the focal length of two 

cameras. If a disparity map is determined, we can compute 

the depth 𝑍 of the object: 

𝑍 =
𝑏𝑓

𝑑
 (2) 

The challenging problem of establishing a disparity map 

is to find for each point in the left image, the corresponding 

point in the right one. Many stereo correspondence or stereo 

matching methods have been proposed, mainly in pursuit of 

real-time execution speeds, as well as decent accuracy. There 

are three common classes of techniques used for stereo 

matching: area-based [5], [6] feature-based [7], and phase-

based [8]. Sum of Absolutely Difference (SAD) is the most 

favorable area-based technique in real-time stereo vision 

since it can be straightforwardly implemented in hardware. 

 

Fig. 3. Principle of stereo vision 

Rebuilding the entire disparity map is computationally 

expensive. Instead, in this paper, we will find the coordinates 

of the centroids of the objects in the two images and use 

equation (2) to determine the Z depth value. After that, we 

can calculate 3D coordinates of the object by using the 

formula of the pinhole camera model: 

𝑋 = 𝑍
𝐶𝑥 − 𝑢0

𝑓
 

𝑌 = 𝑍
𝐶𝑦 − 𝑣0

𝑓
 

(3) 

where 𝑓 is the focal length of cameras, (𝑢0, 𝑣0) is the center 

of the image. 

The 3D coordinates of the object’s centroid in the camera 

frame are transformed to the robot frame using equation (11): 

[
𝑥
𝑦
𝑧
] = 𝑅 [

𝑋
𝑌
𝑍
] + 𝑡 (4) 

where [𝑥, 𝑦, 𝑧]𝑇 and [𝑋, 𝑌, 𝑍]𝑇 are the coordinates of the 

object in the robot frame and the camera frame, respectively, 

R is the rotation matrix, t is the translation vector, 

representing the relationship between the two frames. Fig. 4 

shows the flow chart to calculate the 3D coordinate of 

objects. 
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Fig. 4. Flow chart to calculate the 3D coordinate of objects 

To extract objects from the background, the algorithm 

described in the previous studies [2] is applied. After extract 

the objects in images, we can compute image moments of 

objects and other features for classification and localization. 

The image moments are calculated according to the following 

formula: 

𝑀𝑖𝑗 =∑∑𝑢𝑖𝑣𝑗𝐵(𝑢, 𝑣)

𝑣𝑢

 (5) 

where 𝑢 and 𝑣 are the row and column index, 𝐵(𝑢, 𝑣) = 1 in 

the case of the binary image. 

From the image moment we can determine the area, 𝐴 and 

centroid (𝐶𝑢 , 𝐶𝑣) of the objects. 

𝐴 = 𝑀00 =∑∑𝐼(𝑢, 𝑣)

𝑣𝑢

 

𝐶𝑢 =
𝑀10

𝑀00

 

𝐶𝑣 =
𝑀01

𝑀00

 

(6) 

The area is used for size classification. To classify the 

shape of the object, compactness is used: 

𝑐 =
𝑝2

𝐴
 (7) 

where 𝑐 is the compactness, 𝑝 is the perimeter and 𝐴 is the 

area. The perimeter is calculated by summing all pixels on 

the contour of the object.  

Some objects have overlapping compactness values in 

some cases. Therefore, to accurately identify the object, we 

use an additional attribute, called the fullness. 

𝐹 =
𝐴𝑝

𝐴
 (8) 

where F is the fullness, 𝐴𝑝 is the area of a rectangle that 

approximates the object. 

The threshold values for classification will be determined 

by experiment. 

V. COMMUNICATION  

In this project, robots are communicated through the 

Modbus RTU protocol that uses RS485 technology to wire 

Modbus Master and Slave devices. Fig. 5 shows the 

connection of the system. It is a 2 wire Modbus network 

corresponding to Half-Duplex communication. Converter 

modules are used to convert UART module to the RS485 

communication standard. The master is a Raspberry Pi 

computer, slaves are Arduino boards used to control robot. 

Each slave must be connected to a common GND and wire to 

the master. Each device has 'A' and 'B' wires connected to 

form a half-duplex communication channel. A+ connects to 

A+ and B- connects to B-. Two wires A+ and B- are 

combined to create a signal. Logic value 1 is transmitted if 

line A is low and line B is high. Value 0 is transmitted if line 

A is high and line B is low. In this connection (half-duplex 

solution), the signal can travel only in one direction at once. 

Only one device can broadcast a signal at a time. The slaves 

only respond when a request message is received from the 

master. 

Wiring devices in RS485 is easy. It has a multipoint 

topology, where one master is connected to multiple slaves. 

Each slave can be addressed with its own ID. We can connect 

a maximum of 247 slave devices (by 247 different ID-s) to a 

master device. The advantage of the RS485 connection is that 

signals can be transmitted faster and over greater distance 

than possible with a single wire RX/TX RS232 connection. 

To initiate transactions (referred to as queries), the master 

sends a request message on the bus to a slave device or 

broadcasts to all the slave devices. The slave device takes 

action as per the request received and responds if required in 

the form of a "response message". Fig. 6 depicts a transaction 

of Modbus. 

When transmitting a message, the entire message frame 

must be sent as a continuous stream of characters without 

inter-character hesitations. The message frame should be 

discarded by the receiver if the interval between two 

characters is more than 1.5-character times. Fig. 7 shows the 

Modbus RTU frame structure. Message frames are separated 

by a silent period of at least 3.5-character times. Each 8-bit 

byte is framed by 1 start bit, 8 data bits (least significant bit 

sent first), 0 or 1 parity bit, 1 or 2 stop bits. The different fields 

of Modbus frame structure are as follows: 

Modbus Address: Modbus message starts with the 8-bit 

target slave address which is in the range of 0 – 247 decimal. 

Address 0 is used as broadcast address. The master places the 

slave address in the address field to specify the slave for 

receiving the request message. When the slave responds, it 

places its own address in the response address field to tell the 

master where the response message came from. 
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Fig. 5. 2-wire (half-duplex) connections 

 

Fig. 6. Modbus message frames 

 

Fig. 7. Modbus RTU message frame structure 

Function code: describe the kind of action that the master 

performs on the slaves. These actions can be ''read" or ''write'' 

data on registers. Table 1 describes some common codes in 

Modbus. Discrete Inputs and Coils are 1-bit registers, Input 

Registers and Holding registers are 16-bit register. 

TABLE I.  TABLE TYPE STYLES 

Function code  Function name 

01(0x01) Read Coil Status 

02(0x02) Read Discrete Inputs 

03(0x03) Read Multiple Holding Registers 

04(0x04) Read Input Registers 

05(0x05) Write Multiple Coils 

06(0x06) Write Single Holding Register 

15(0x0F) Write Multiple Coils 

16(0x10) Write Multiple Holding Registers 

 

 

Data Field: contains request and response parameters. 

The maximum length of the data is 252 bytes. 

CRC check Field: contains a 16–bit error-detecting code 

to detect accidental changes to raw data. The CRC field is 

calculated by the master and appended to last in the message 

where the low–order byte is appended first, followed by the 

high–order byte. The slave device calculates a CRC during 

receipt of the message and compares the calculated value to 

the CRC in the received message. If the two values do not 

match, the message should be ignored. Fig. 8 shows the code 

to create CRC on C/C++. 

 

Fig. 8. C\C++ code for calculate CRC 

The type of object and robot’s joint angles are sent by the 

master to robots on the Modbus network. The robot’s joint 
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angles include three angle values of three rotation axes. 

Therefore, to transmit joint angles, function code 16 is used. 

Table 2 and Table 3 show the Data Field in the request and 

response messages of function code 16. 

TABLE II.  TABLE TYPE STYLES 

Starting Address 2 bytes 0x0000 to 

0xFFFF 

Quantity of Registers 2 bytes 0x0001 to 

0x007B 

Byte Count 1 byte 2 x N 

Registers Value N x 2 Bytes value 

 

TABLE III.  TABLE TYPE STYLES 

Starting Address  2 bytes 0x0000 to 

0xFFFF 

Quantity of Registers 2 bytes 0x0001 to 

0x007B 

 

In detail, for sending the coordinates of the object, the 

request message is: 

Addr 0x10 0x0001 0x0003 0x06 T1 T2 T3 CRC 

where 

• Addr: The Slave Address  

• 0x10: The Function Code 16 (Write Multiple 

Holding Registers) 

• 0x0001: The Data Address of the first register  

• 0x0003: The number of registers to write. 

• 0x06: The number of data bytes to follow (3 

registers x 2 bytes each = 6 bytes). 

• T1: The rotation angle of joint 1 

• T2: The rotation angle of joint 2 

• T3: The rotation angle of joint 3 

• CRC: The CRC (Cyclic Redundancy Check) for 

error checking. 

And the response message from the slave is: 

Addr 0x10 0x0001 0x0003 0x06 CRC 

where: 

• Addr: The Slave Address  

• 0x10: The Function Code 16 (Write Multiple 

Holding Registers) 

• 0x0001: The Data Address of the first register  

• 0x0003: The number of registers to write. 

• CRC: The CRC (Cyclic Redundancy Check) for 

error checking. 

T1, T2 and T3 are 16-bit integer values. The actual 

rotation angle values are not integers. However, they are 

rounded to 2 decimal places and multiplied by 100 to become 

an integer before being sent. The rotation angles have values 

from -180 degrees to 180 degrees. So, a 16-bit integer is 

enough to represent them. 

The type of objects is encoded as an ASCII character. 

Therefore, to transmit type of objects, function code 06 is 

used. Table 4 shows the Data Field in the request and 

response messages of function code 06 

TABLE IV.  TABLE TYPE STYLES 

Starting Address  2 bytes 0x0000 to 
0xFFFF 

Registers Value 2 Bytes 0x0000 to 

0xFFFF 

 

In detail, the request and respond messages for sending 

the type of objects are: 

Addr 0x06 0x0004 P CRC 

where: 

• Addr: The Slave Address  

• 0x06: The Function Code 16 (Write Single 

Holding Registers) 

• 0x0004: The address of the register  

• P: type of product (8-bit value) 

• CRC: The CRC (Cyclic Redundancy Check) for 

error checking. 

VI. RESULTS AND DISCUSSION  

The stereo vision system uses two cameras with 

resolution of 480x640 pixels. Two cameras are mounted 

parallel to each other by using a fixture (see Fig. 9). The 

distance between two camera is 60mm. A sample images of 

objects taken by two camera is shown in Fig. 10.  

 

Fig. 9. Two cameras of the stereo vision system 

   
(a)                                           (b) 

Fig. 10. Sample Images. (a) left image (b) right image  

The images are processed to create binary images by 

using our algorithm presented in [2]. Then, the thresholds of 

the compactness and fullness are applied to classify objects. 

By experiment, we determine ranges of two thresholds to 

classify three objects as follows: 

Object 1: 

𝟏𝟕 ≤ 𝒄 ≤ 𝟏𝟗 

𝟏. 𝟔 ≤ 𝑭 ≤ 𝟏. 𝟕 

Object 2: 

𝟐𝟑. 𝟓 ≤ 𝒄 ≤ 𝟐𝟓. 𝟓 

𝟏. 𝟒 ≤ 𝑭 ≤ 𝟏. 𝟔 

Object 3: 

𝟑𝟔 ≤ 𝒄 ≤ 𝟑𝟖 

𝟑. 𝟏 ≤ 𝑭 ≤ 𝟑. 𝟑 
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After classifying objects, we find the centroids of objects 

in the image by using Equation (6). These coordinates are 

used to calculate the 3D coordinates of objects by using 

Equation (2) and Equation (3). The experiment results show 

that the estimate method can determine accurately the 

coordinate of the object.  

From the analysis of the Modbus RTU protocol using 

RS485 technology, we can write code to implement on 

Raspberry Pi and Arduino. The function code to send Angles 

is shown in Fig. 11. This function is used to send a rotation 

angle from the master to the slave robot controller. It has four 

inputs, the first is the address of the slave, and the other three 

values are the rotation angles of the three joints. This function 

is written in Python language and runs on Raspberry Pi.  

 

Fig. 11. Function to send angles 

The function code to send type of object is shown in Fig. 

12. This function is used to send type of objects from the 

master to the slave robot controller. It has two inputs, the first 

is the address of the slave, and another value is a symbol 

describing the object. This function is also written in Python 

language and runs on Raspberry Pi. 

 

Fig. 12. Function to send type of objects 

The functions are written by C/C++ language and 

implement on Arduino to read message from the master is 

shown in Fig. 13 and Fig. 14. The function for reading angle 

is shown is Fig. 14. It is used to read three angle values for 

the joints of the robot from the master. The function for 

reading the type of objects is shown in Figure 15. Practical 

tests show that these functions work well to exchange 

information between the master and slaves. 

  

Fig. 13. Function to read angles 

 

Fig. 14. Function to read type of objects 
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VII. CONCLUSSION  

This paper has developed a multi-robot arm system to sort 

object based on a stereo vision system. The master robot and 

slave robots communicate data by using the Modbus RTU 

protocol through an RS485 serial interface. Through Modbus 

protocol analysis, functions for sending and receiving data 

are written in Python and C/C++ languages for the master and 

the slaves, respectively. The experiment results show that the 

robots can exchange data and operation on demand. 

The stereo vision system is built to determine the 3D 

coordinates of the object. Instead of rebuilding the entire 

disparity map, which is computationally expensive, the 

centroids of the objects in the two images are calculated to 

determine the depth value. After that, we can calculate the 3D 

coordinates of the object by using the formula of the pinhole 

camera model. 
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