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Abstract—The increased demand for liquid level measurement
has been a key factor in designing accurate and reliable control
systems. Here, a study was carried out to calculate the liquid
level in a tank using a pressure sensor for changes in inlet liquid
parameters like temperature, density and velocity. Prediction of
their variables for the long term is essential due to the randomness
present in the input and measurement. Hence, observer design for
state estimation of a non-linear dynamic system with uncertainties
in the measurement and process becomes important. This work
provides a feedback observer solution for a system with multiple
inputs and single measurable output. A full state observer model
is developed to estimate a system’s states with a sensor placed
at a definite position from the pipe’s input point through which
the liquid flows at different densities and temperatures. Using the
observability properties, Luenberger full state observer is designed
by various methods, verified using MATLAB and SIMULINK
for the system state estimation. To incorporate process noise and
measurement noise, the Kalman estimator is integrated with the
system. Chaotic systems are susceptible to initial conditions, vari-
ations in parameters and are complex dynamic systems. However,
providing consistently precise measurements through particular
meters necessitates time-consuming computations that can be
reduced by employing machine learning approaches that make
use of optimizers. The results obtained are compared with the
prediction models obtained using Artificial Neural Networks and
are validated through the readings obtained from the experimental
setup.

Keywords—Artificial Neural Network; Kalman filter; Liquid
level; Observer; Orifice; Sensor; State estimation.

I. INTRODUCTION

In many commercial or industrial applications as well as
other liquid level monitoring industries like biochemical pro-
cessing, chemical industry production, and aircraft fueling sys-
tems, liquid level sensing is a crucial necessity [1]. In the past
decade, numerous level sensing techniques have been proposed.
Many different forms of technologies are used to measure liquid
level. Below mentioned are the most typical sensor kinds used
in the market today. Sensors that can be installed above the
liquid, such as ultrasonic [2] sensors, that use the travel time
of an electromagnetic wave or sound to calculate the distance
from the liquid surface. Some sensors, such as floats that move
up and down a liquid-filled tube linked at the bottom of the

tank or a pressure sensor inserted in a hole at the bottom of the
tank that gauges the pressure created by gravity acting on the
liquid, can be mounted externally to liquid-filled tanks.

Another approach is to lower a probe into the tank and
submerge it in the liquid. A capacitive probe [3], for example,
can be used to detect changes in capacitance charge as the
length of the probe is exposed to various liquid concentrations
or optical sensors [4], which estimates the liquid level based on
its modulation of the intensity, spectrum, phase, or polarization
of light passing through an optical fibre.

Finally, the approach based on image processing [5] offers
the benefits of great automation and efficiency. The fast devel-
opment of machine vision to estimate liquid level based on the
image has increased interest in detection approaches based on
image processing. The currently known methods for measuring
liquid levels are either expensive to use or offer a small
measurement range. In the worst case, their size, environmental
conditions and ongoing maintenance make them difficult to
install. A liquid level sensor are also affected by variations
in liquid temperature [6], density [7], composition, viscosity,
etc. One could compensate for the sensor’s sensitivity to these
variations but doing so would make the process more complex
and time consuming. An ideal liquid level sensor should have
good stability, high resolution, and a low-cost device.

In scenarios when hardware sensors are unavailable or in-
compatible, virtual sensors can be used for estimating conclu-
sions from system observations. Soft sensors [8] also known
as virtual sensors are the plant models dedicated to estimate
the plant variables in situations where the measurement of the
actual variables from the hardware devices is a complicated
task. For level estimation, this report uses a soft sensing
approach. A sensor that is not directly in contact with the
process liquid is always better from a maintenance perspective.
Pressure sensors are one of the best alternatives [9] [10] [11].

There are several types of pressure sensors based on their
fabrication capacitive pressure sensor [12], inductive pressure
sensor [13], piezoresistive pressure [14], etc. Pressure sensors
can operate reliably in challenging environmental conditions
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[15]. However, calibration must be performed regularly to
achieve improved accuracy. Orifice plates are the most common
flow sensors, and they work by measuring the pressure drop
across the plate to detect the flow of fluid passing through it
[16].Here orifice sensor is used to calculate liquid level [17].
The velocity profile and pressure drop across the orifice were
investigated using CFD simulation [18] of flow through the
orifice plate for specific operating conditions and geometric
configurations. The liquid level is computed for different values
of temperature and density, for the plant model obtained using
the system identification technique. This report explains how
to estimate a liquid level sensor using a pressure sensor [19]
by just using one vital piece of information about pressure
flow to convert sensor output to a liquid height. Here [20], a
differential pressure flow meter-based solution to the modeling
problem of a contraction process for a liquid flow is reported.
The coefficient of contraction is calculated analytically. This
research investigates the relationship between the square-shaped
orifice plate diameter and the coefficient of flow contraction.

There are few short comings which needs to be addressed.
Process variables such variations in liquid density, temperature,
inlet velocity, and other factors might have influence on a flow
sensor. A few published papers have examined error offsetting,
but most of them haven’t taken into account change in any
of these process factors for analysis. According to reports, the
design has either been altered or some of the parameters have
been compromised due to the cost of certain sensors. Alternate
sensors has been reported in few cases with a few characteristic
sacrificed.

In any sensor based system, observers can be used as a re-
placement for a sensors. Observers are algorithms that generate
observed signals by combining sensed signals with additional
control system information. Compared to sensed signals from
the sensors, these observed signals are more precise, simpler
to produce and more dependable. Instead of adding additional
sensors or improving existing ones, observers provide designers
an attractive option. According to the observer principle, it
is possible to predict plant behavior more accurately than by
utilizing just the feedback signal by combining this measured
feedback signal with knowledge of the system (mainly the
plant). The observer can occasionally be utilized to improve
system performance. It may be more accurate than sensors or
lessen the phase lag a sensor would naturally have. In order to
increase disturbance response, observers can also offer observed
disturbance signals. In other situations, observers can lower
system costs by improving a low-cost sensor’s performance so
that the two combined can deliver performance comparable to a
more expensive sensor. In the most extreme instance, observers
can omit a sensor entirely, lowering sensor costs and related
wiring [76].

There are different types of observers: reduced-order ob-
servers [21] [22], linear functional observers, dual observers,

full-order observers [23] etc. An observer can also be designed
using a pole placement technique [24]. The design of observers
is important in getting system state variables. It is possible to
create an observer for a discrete-time system or a continuous-
time system [25]. The continuous-time observer design is
emphasized in this work. The primary goal is to estimate the
state using the input parameters and output measurement. The
full state observer designed in the present work also considers
measurement noise and unmeasured disturbances in the system.
This system can generate estimates of state variables which
can or cannot be measured. There are 2 ways of modeling a
dynamic system,

1) First principle model
2) Data-driven model

In case the physics and maths behind a problem/system are
known, using this knowledge we can build a First principle
model whereas no system details are known but only measured
data are available in such cases using this data, data-driven [27]
[26] models can be constructed. In this report, we have the data
from the CFD modeling which is then imported to the MAT-
LAB system identification toolbox for system identification i.e
a gray box modeling.

In dynamic systems [28], the response signal depends on
both the system’s input signal and past behavior. System iden-
tification uses certain observed data to estimate the parameters
for a defined model structure. The model’s accuracy depends
on the experimental design and quality of the measured data
[29]. Time-domain data contains input and output variables of
the system observed over a definite time interval. The model
structure relates the output and input variables mathematically
in the form of transfer functions. Based on this model structure,
a state-space representation of the corresponding system can be
obtained. Kalman filter [30] is an optimal estimation algorithm
applicable in guidance and navigation systems, computer vision
systems, signal processing, etc. When the variable of interest
can only be monitored indirectly or when measurements are
available from several sensors but may contain noise, Kalman
filters are utilized.

Chaotic systems are complex dynamic systems which are
extremely sensitive to initial conditions and variations in pa-
rameters. So, the prediction of their variables for the long term
is important due to the randomness present in the input and
measurement [31]. Using unmeasured state dynamics, a novel
approach for designing an adaptive state observer for a class
of nonlinear systems with unknown parameters was presented
in [32]. These were not descriptor systems, though. Similarly,
only actuator failures were taken into account when an adaptive
observer for a class of Lipschitz nonlinear descriptor systems
was proposed in [33]. Although it is common for actuator and
sensor defects to occur at the same time in real systems, only
one fault type has been considered in many previous research.
For example, in [34] [35], only actuator failures were evaluated,
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whereas in [36] [37], only sensor faults were examined. Hence,
observer design for state estimation for the nonlinear dynamic
system with uncertainties in the measurement and process
becomes very important.

The response from the mathematical model obtained using
observer design can be compared with the response’s Neural
Network (NN) prediction algorithms. Regression models make
a useful prediction for solving real-world problems in scientific,
industrial, and business environments. Regression analysis helps
in understanding the relationship between a dependent variable
and an independent variable. Neural networks and deep learning
algorithms help in solving complex mathematical problems
[38]. Artificial Neural Network (ANN) comprises neurons [39],
which can analyze complex problems and help in decision-
making by providing an accurate solution.

In [40], mathematical techniques based on Machine Learning
(ML) are used to calculate the thruster orifice size. The ML
techniques were put into practice using MATLAB. Several ML
models are used to estimate the size of the orifice utilized in
rocket engine thrusters. This study models the network based
on input parameters using 55 data sets.

Following a comparison of the outcomes produced by various
models, it was concluded that the LSSVM regression model
with Gaussian add kernel outperforms the other models when
predicting orifice size given a known flow rate and pressure
drop. Ref [41] analyzes machine learning optimizers to antici-
pate oil flow through orifice plates and avoid problematic dis-
charge coefficient calculations. Based on several input variables,
it estimates oil flow through orifice plate meters. To compute oil
flow rates (Q0) through orifice plate meters, a dataset of 6292
data records with 7 input variables including liquid temperature,
upstream and differential pressure, β ratio etc was analyzed.
Combining different algorithms with a swarm-type optimizer,
the two-stage ABC-DWKNN Plus MLP-FF model provided the
greatest predicted accuracy for the oil flow rate via the orifice
plates with RMS errors of 8.70 stock-tank barrels of oil per
day.

In [42], a special deep machine learning model called con-
volutional neural network (CNN) was built to predict oil flow
rate via an orifice plate using the same seven input variables
as in [41]. The prediction performance of three alternative
machine learning techniques, including the support vector ma-
chine (SVM), least absolute shrinkage and selection operator
(LASSO), and radial basis function (RBF), was also constructed
and compared to that of the CNN model. This was done to
demonstrate the proposed CNN model’s superior performance
versus traditional machine learning models. The result demon-
strates that the CNN model, with a Root Mean Squared Error
(RMSE) of 0.0341m3/s and a coefficient of determination of
0.9999, had the highest Q0 prediction accuracy.

Ref. [44] proposed an exponential polynomial observer,

which stabilizes the resulting state estimation error for a non-
linear system. They compare exponential polynomial high gain
and extended Luenberger observer. The simulated result of the
mentioned approach shows robustness against external noise.
Ref [45] reported an approach dealing with a chaotic system’s
synchronization problem, considering parameter identification
simultaneously. The observer here uses an extended Kalman
filter and it shows how an observer is used for estimating or
synchronizing with different chaotic systems.

Ref. [46] developed a statistically sound and robust method
of evaluating multiple input single output systems performance.
This method involves the transfer function modeling and fuzzy
logic approach. This work considers only two inputs and a
single output process, there is a scope for increasing the
interaction inputs. In [47], 1-step-ahead prediction models of
river water levels are created using an artificial neural network
(ANN) model design framework called the Multi-Objective
Genetic Algorithm (MOGA). Given the available data, the
design technique is a nearly automated method that may divide
it into datasets and find a nearly ideal model with the proper
topology and inputs, providing superior efficiency on a new
dataset, or data not utilized for model creation.

Ref. [48] reported a non-linear gradient-based observer for
the synchronization of a chaotic system. This model is based
on the Range-Kutta model, where state parameters are derived
based on error square minimization. The observer and con-
troller synchronizations are done using the Lyapunov stability
approach. Range-Kutta Gradient Observer (RKGO) and Sliding
Mode Observer (SMO) are compared using numerical simula-
tion. Ref. [49] reported a full state observer model developed for
estimating the states of a system with varying input parameters.
The system consists of a pipe fitted with an orifice sensor having
liquid flow through the pipe inlet with varying inlet velocity
having different liquid densities and temperatures. Luenberger
full state observer is designed and verified. To incorporate
process noise and measurement noise, the Kalman estimator is
integrated with the system. It is observed that error dynamics
reduce faster over time.

An accurate state estimate is vital in today’s data-intensive
control, computing, and power system applications according
to [50], since the performance and stability of the system as
a whole can be greatly impacted by missing sensor data. In
order to provide a more reliable and resilient state estimation
method, this article reports a novel second-order fault-tolerant
extended Kalman filter estimate framework for discrete-time
stochastic nonlinear systems with sensor failures, constrained
observer-gain perturbation, external noise and disturbances. The
suggested approach may be a good replacement for the current
nonlinear estimating methods, according to experimental find-
ings.

Ref. [51] describes a closed-loop Multiple-Input Single-
Output (MISO) method for detecting abnormalities during
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anesthetic induction in clinical trials. It is demonstrated that
using more complicated closed-loop identification techniques
doesn’t increase model accuracy. By employing this method, it
can identify and validate a set of models that accurately captures
the blood pressure response to propofol infusion as well as the
depth-of-hypnosis response for individuals who are at risk of
cardiovascular suppression.

The observability analysis and observer design for a non-
linear three-tank system are discussed in [52]. To ensure
convergence of the state estimation, a High-Gain Observer
(HGO) is created utilizing the equivalence of the initial state-
space realization with its observability canonical form. When
comparing the HGO response to a Luenberger observer and
the Extended Kalman Filter, taking into account non-linearity,
interaction, disturbances, and noise, the performance was val-
idated through simulation and experiments in a multipurpose
plant installed with real sensors. Despite the HGO’s sensitivity
to noisy variables in processes like liquid level, theoretical and
practical studies demonstrate that the HGO can provide a robust
estimate and disturbance rejection.

The presently reported work is based on the influence of the
placement of the sensor on the measurements. The adaptation of
sensors in terms of placement has not been discussed. Literature
reports that the flow sensor’s output gets affected by process
parameters like the variation in liquid density, temperature,
and pressure of the liquid. Though a few reported works are
available, which have been discussed to offset the errors, none
have discussed making sensing robust.

In this paper, a full-order observer for a Multiple Input Single
Output system(MISO) is designed. The designed observer helps
calculate the liquid level for a system having a sensor placed
at a fixed place from the pipe’s input point through which the
liquid flows at different densities and temperatures. Luenberger
estimator [53] can be used in a deterministic system, whereas
if the system characteristics are stochastic, Kalman filters
are used. The overall structure achieves stability disturbance
rejection. The results are compared with the predictions made
by Artificial Neural Networks.

II. DESCRIPTION OF SYSTEM AND CALCULATION OF THE
LIQUID LEVEL

Fluid Dynamics is an interesting and complex topic of study
and research. Almost everywhere in the actual world, there
is fluid. As a result, we require fluid dynamics to describe
or simulate these fluid flows. To measure fluid flow through
numerical analysis, Computational Fluid Dynamics (CFD) may
be used to provide precise insight into the fluid flow charac-
teristics through orifice plates [54]. A CFD simulation for a
three-dimensional model [1] is carried out using ANSYS to
investigate the laminar type of liquid flow and the pressure
profile through the sharp-edge orifice plate with a pipe diameter
(D) of 1inch and the orifice diameter (d0) of 0.5inch. β ratio

= 0.5inch and length/depth of the orifice plate is 0.05inch
[55]. The pipe’s total length is kept at 40inch having both
upstream and downstream flow lengths as 19.975inch. The
distance between points P1 and P2 (Fig. 1) from the point D
(Fig. 4) is 0.5334m and 0.4953m i.e. 20.5inch and 19inch. At
the upstream and downstream of an orifice, appropriate lengths
are provided to allow flow to develop fully throughout the
pipe. Vena-contracta taps are used in this work. The pressure
slightly rises as the fluid moves in the direction of the orifice
plate. At the orifice point, pressure will be at its peak before
abruptly decreasing when the orifice is passed. This results in
a rise in flow velocity and a corresponding fall in pressure.
We are taking a pressure tap near the Vena contracta, which
is where the minimal flow area—also known as the Vena
contracta—occurs, to measure the highest pressure decrease.
Static pressure is determined both at the upstream point (P1)
and downstream point (P2) of the pipe in order to calculate
the pressure difference. The flow continues to contract a short
distance downstream of the hole called the vena-contracta point.
Accordingly, pressure tap P2 is installed at vena-contracta.

Fig. 1. Model of orifice meter flow lines and their pressure characteristics

Equation (1) is used to calculate the liquid flow rate to the
tank,

Q = Cd
A0

√
2√

1− β4

√
(P1− P2)

ρ
(1)

where, ′C ′
d is the coefficient of discharge, ′A′

0 is the cross-
sectional area of an orifice, ′P1 − P ′

2 i.e., ∆P is the static
differential pressure at a distance ′D′ and ′0.5D′ respectively,
′ρ′ is the density of the liquid.

It was reported in [56] that the discharge coefficient declined
as the orifice’s flow rate increased, and it also did so for
the same pressure drop when the orifice’s diameter increased.
Study on orifice discharge coefficient is done by [57] [58]
[59],suggests that the discharge coefficient Cd is a product of
three coefficients (the viscosity coefficient(Cv), the contraction
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coefficient(Cc), and the velocity profile coefficient (Cp) such
that Cd = CcCvCp.

The Cd typically settles at or around 0.8 for most orifices
[60]. Here, the same number is used in Equation (1) to compute
the flow rate. As seen in Fig. 2, the fluid flows through the
pipe to the 24cm long by 30cm wide rectangular tank. Cal-
culating the liquid level while maintaining a constant outflow
from the tank Q

′
= 0.00035m3/sec is done by changing

the input velocity. Inlet velocity is increased at a rate of
0.03m/s every 100seconds (step-size). With steps of 0.03m/s
per 100seconds, the input velocity ranges from 0.03m/s to
0.6m/s. As a result, 100 simulations are run for each inlet flow
valve, producing 100 ∆P values. Hence, accumulation can be
calculated using Equation (2).

Q−Q
′
= Accumulation (2)

Tank V olume = Length(L)×Width(W )×Height(H) (3)

From Equation (2) and Equation (3),

Q−Q
′
= Length(L)×Width(W )×Height(H)

Height =
Q−Q

′

Length(L)×Width(W )

Height =
Q−Q

′

30cm× 24cm
(4)

Substituting values of Q and Q
′

in Equation (4) we get the
theoretical liquid level in the tank.

Fig. 2. Experimental setup

A. Setting Up CFD Simulation

The computational mesh created for an orifice pipe needs
to be set up for a CFD analysis using ANSYS Fluent. A
transient pressure-based solver with SIMPLE pressure velocity
is been used here. Material for CFD simulation is set up

as water with a default density of 998.2kg/m3. A User-
Defined Function(UDF), is a code that the ANSYS FLUENT
solver may dynamically load to enhance the code’s built-
in functionality. Here, UDF is defined for a change in inlet
velocity via ANSYS. The inlet velocity increases from 0.03m/s
to 0.6m/s in 0.3m/s steps every 100secs. Inlet and outlet
boundary conditions (Fig. 3) are set up by selecting inlet
velocity magnitude from a previously created UDF file. Since
the level is estimated using a pressure sensor, Point P1 and P2

are created across the upstream and downstream to calculate the
pressure drop. The pipe is modeled with the no-slip condition
as a solid wall. The gauge pressure was set as 600000 pascals
at the pipe’s exit. The output report file is then imported to an
excel sheet for system identification purposes. Fig. 1 and Fig: 4,
Fig. 5 demonstrate the model and the geometry accordingly. To
measure the relative pressure difference between the upstream
and downstream, static pressure is assigned at the outlet of the
pipe.

Fig. 3. Boundary conditions for CFD simulation

Fig. 4. Geometry of computational domain for the CFD analysis

Fig. 5. Orifice geometry

The density of the mesh was increased to get more precise
findings. Although the mesh generator comes with a default
mesh density, several density trials were conducted to assess the
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sensitivity in terms of convergence and result accuracy. Here re-
meshing was carried out for the same model as shown in Fig.
6 by just increasing the number of elements (finer meshes) in
the mesh keeping the same settings in both cases. The result
(Delta P) was almost similar to the previous meshed model.
This means that the simulation carried out is grid-independent.
The meshing gave a total of 15495 nodes and had 69874
elements that consisted of unstructured triangular (tetrahedral)
mesh. Contours of static pressure magnitude along the pipe are
shown in Fig. 7.

Fig. 6. The Computational mesh for the orifice geometry in ANSYS meshing
application

Fig. 7. Contour of Pressure distribution along the pipe

The model consists of a level tank with a constant outflow,
and the tank’s inlet is supplied by a pipe that is equipped with
an orifice-type flow metre that measures the tank’s inflow rate.
The inflow and outflow values are used to calculate the liquid
level in the tank. This model extracts simulated readings for
changes in input to the liquid level for various liquid profiles.
The data is then used to find the model of liquid level relating
to inflow, the temperature of the liquid, type of liquid (density
of liquid).

B. Methodology

The MISO system is designed using the calculated liquid
level values for various inlet velocities, temperatures and den-
sities for a specific sensor position. System identification is
a technique for designing mathematical models of dynamic
systems by utilizing the system’s input and output signals.
Using time-domain signals, the transfer function model of the
overall system is built. This iterative process uses an estimation
algorithm to estimate the values of the selected model. The
generated model can be justified by fitness parameters such

as fit to estimation data and final prediction error, which are
obtained as 92.17% and 2.64598 × 10−5 correspondingly. In
general, the overall system can be represented mathematically
as given in the Equation (5)

y(s) = (u1(s)×G1(s)) + (u2(s)×G2(s))

+(u3(s)×G3(s)) (5)

y =
3.931

(s+ 10.41)
u1 +

(−2.814× 10−7)

(s+ 0.03977)
u2

+
(−1.406× 10−7)

(s+ 0.02577)
u3 (6)

From Equation (6), the differential equation is obtained as,
...
y = 3.931ü1 + 0.2576u̇1 + (4.0279× 10−3u1)

−(2.814× 10−7ü2)− (2.936× 10−6u̇2)

−(7.548× 10−8u2)− (1.406× 10−7 ...
u3)

−(1.469× 10−6u̇3)− (5.821× 10−8u3)

−10.4757ÿ − 0.6833ẏ − 0.011 (7)

Since y(t) represents the liquid’s height in the tank, the dif-
ferential Equation (7) can calculate the same. The Range-Kutta
method of order 4 has been used to find the solution of this
differential equation.

Equation (5) can be represented as,

ẏ(s) = ẏ1(s) + ẏ2(s) + ẏ3(s) (8)

ẏ1(s) =
3.931

(s+ 10.41)
u1(s) (9)

ẏ1 = 3.931u1 − 10.41y1 (10)

1st iteration:
Taking ’0’ initial condition and step size of ’0.01’:
u1(0) = 0, y1(0) = 0, h = 0.01

K1 = f(u1(0), y1(0)) = f(0, 0) = 0

K2 = f(u1(0) +
h

2
, y1(0) +

k1
2
) = f(5× 10−3, 0)

= 0.01966

K3 = f(u1(0) +
h

2
, y1(0) +

k2
2
) = 0.0186

K4 = f(u1(0) + h, y1(0) + k3) = 0.0374

(11)

y1(1) = y1(0) +
h

6
(k1 + 2k2 + 2k3 + k4)

= 1.8991× 10−4 (12)

ẏ1(1) = f(u1(1), y1(1)) = f(0.01, 1.8991× 10−4)

= 0.03733 (13)
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2nd iteration:
u1(1) = 0.01, y1(1) = 1.8991× 10−4, h = 0.01

K1 = f(u1(1), y1(1)) = 0.03733

K2 = f(u1(1) +
h

2
, y1(1) +

k1
2
) = 0.0550

K3 = f(u1(1) +
h

2
, y1(1) +

k2
2
) = 0.0541

K4 = f(u1(1) + h, y1(1) + k3) = 0.0710

(14)

y1(2) = y1(1) +
h

6
(k1 + 2k2 + 2k3 + k4)

= 0.7344× 10−3 (15)

ẏ1(2) = f(u1(2), y1(2)) = f(0.02, 0.7344× 10−3)

= 0.0709 (16)

Similarly from Equation (6)

ẏ2(s) =
−2.814× 10−7

(s+ 0.03977)
u2(s) (17)

ẏ2 = −2.814× 10−7u2 − 0.03977y2 (18)

1st iteration:
Taking ’0’ initial condition and step size of ’0.01’:
u2(0) = 0, y2(0) = 0, h = 0.01

K1 = f(0, 0) = 0

K2 = −1.407× 10−9

K3 = −1.3790× 10−9

K4 = −2.7592× 10−9

(19)

y2(1) = −1.3885× 10−11 (20)

ẏ2(1) = −2.8134× 10−9 (21)

2nd iteration:
u2(1) = 0.01, y2(1) = −1.3885× 10−11, h = 0.01

K1 = −2.8134× 10−9

K2 = −4.1645× 10−9

K3 = −4.1376× 10−9

K4 = −5.4635× 10−9

(22)

y2(2) = −5.5353× 10−11 (23)

ẏ2(2) = −5.6258× 10−9 (24)

Similarly from Equation (6)

ẏ3(s) =
−1.406× 10−7

(s+ 0.02577)
u3(s) (25)

ẏ3 = −1.406× 10−7u3 − 0.02577y3 (26)

1st iteration:
u3(0) = 0, y3(0) = 0, h = 0.01

K1 = 0

K2 = −7.03× 10−10

K3 = −6.9394× 10−10

K4 = −1.3881× 10−9

(27)

y3(1) = −6.9699× 10−12 (28)

ẏ3(1) = −1.4058× 10−9 (29)

2nd iteration:
u3(1) = 0.01, y3(1) = −6.9699× 10−12, h = 0.01

K1 = −1.4058× 10−9

K2 = −1.3877× 10−9

K3 = −2.0909× 10−9

K4 = −2.7579× 10−9

(30)

y3(2) = y3(1) +
h

6
(k1 + 2k2 + 2k3 + k4)

= −2.5505× 10−11
(31)

ẏ3(2) = f(0.02,−2.5505× 10−11)

= −2.8113× 10−9
(32)

Substituting the value of Equations (13), (21) and (29) in
Equation (8), we get

ẏ(1) = ẏ1(1) + ẏ2(1) + ẏ3(1)

= 0.03733 + (−2.814× 10−9) + (−1.4058× 10−9)

= 0.0373 (33)

For Inlet velocity u1 = 0.6m/s, liquid temperature u2 = 800C,
liquid density u3 = 900kg/m3, Height of the liquid in the tank:

ẏ(1) = 0.6× ẏ1(1)+80× ẏ2(1)+900× ẏ3(1) = 0.0224 (34)

For a tank height of 24cm,

Level =
0.0224× 100

0.24
= 9.3333% (35)

Substituting the value of Equations (16), (24) and (32) in
Equation (8), we get

ẏ(2) = ẏ1(2) + ẏ2(2) + ẏ3(2)

= 0.0709 + (−5.6258× 10−9) + (−2.8113× 10−9)

= 0.0709 (36)

For Inlet velocity u1 = 0.6m/s, liquid temperature u2 = 800C,
and liquid density u3 = 900kg/m3, Height of the liquid in the
tank:

ẏ(2) = 0.6× ẏ1(2)+80× ẏ2(2)+900× ẏ3(2) = 0.0425 (37)
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For a tank height of 24cm,

Level =
0.0425× 100

0.24
= 17.7083% (38)

Similarly, the levels can be computed for the next iterations. The
system is a Multiple Input Single Output system whose inputs
are inlet velocity, temperature, and density and the output is the
liquid’s height in the tank. The differential equation solution
gives the height of the liquid in the tank, which is further
converted to the liquid level in the tank. For this system, the
observer can be designed using various methods as described
in upcoming sections.

III. LUENBERGER OBSERVER DESIGN

A new parametric observer-based approach for liquid level
detection in multivariable linear systems is proposed in this
section. Possibly the most useful observer form is the Luen-
berger observer. The Luenberger Observer (LO) has a very
simple design, which makes it an interesting general design
method. This section describes the construction of a Luenberger
observer. Sensors frequently result in phase lag, attenuation,
and noise issues. Phase lag and attenuation are caused by
either the sensor’s physical design or by sensor filters, which
are frequently employed to reduce noise. Selecting a quicker
or more accurate sensor will offer advantages that are more
predictable and manageable than utilizing an observer. The
observer’s objective is to make the best use of the sensor that is
being utilized, but constraints like cost, size, and reliability will
typically oblige the designer to accept sensors with undesired
characteristics. The transfer function with respect to input
1(inlet velocity) is,

G1(s) =
1.255

s+ 3.322
(39)

The transfer function with respect to input 2(liquid temperature)
is,

G2(s) =
0.2907× 10−4

s+ 3.322
(40)

The transfer function with respect to input 3(liquid density) is,

G3(s) =
−0.2134× 10−4

s+ 3.322
(41)

From Equations (39), (40) and (41), the overall system can be
represented as,

y(s) =
1.255

s+ 3.322
u1(s) +

(0.2907× 10−4)

s+ 3.322
u2(s)

+
(−0.2134× 10−4)

s+ 3.322
u3(s) (42)

Given that the order of the system =1= Rank of the system
[61], the system is observable.
Open loop settling time,

ts =
4

a
=

4

3.322
= 1.2041seconds (43)

For a settling time of 0.5sec,

0.5sec =
4

a
(44)

a = 8

Pole of the system without an observer,

s=-3.322

Pole of the system with an observer,

s=-8

Reducing the settling time to 0.5sec, the new characteristic
equation is,

s+ 8 = 0 (45)

Therefore s = −8 can be chosen as a new pole for designing the
observer using the pole placement technique. The state space
representation of the system is,

ẋ(t) = [−3.322]x(t) + [−9.4500 − 0.0002 0.0002]u(t) (46)

y(t) = [−0.1328]x(t) + [0 0 0]u(t) (47)

From equations (46) and (47),
A=

[
−3.3220

]
B=

[
−9.4500 −0.0002 0.0002

]
C= −0.1328
D=

[
0 0 0

]
The Luenberger observer gain [62] is calculated as shown
below. Using Ackermann’s formula,

L = ϕ(A)


C
CA
.
.

CAn−2

CAn−1



−1 
0
0
0
.
.
1

 (48)

ϕ(A) = An + α1A
n−1 + ......+ αn−1A+ αnI (49)

ϕ(A) = A+ α = A+ 8 = 4.678

L = ϕ(A)[C]−1[1]

L = [4.678][−0.1328]−1

L = [−35.2259] (50)

The overall representation of the system with the observer is,

y(s) =
1.255

s+ 8
u1(s) +

(0.2907× 10−4)

s+ 8
u2(s)

+
(−0.2134× 10−4)

s+ 8
u3(s) (51)

Using Range-Kutta method of order 4 as mentioned earlier,

ẏ(1) = ẏ1(1) + ẏ2(1) + ẏ3(1) = 0.0121 (52)
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For u1 = 0.6m/s, u2 = 800C, u3 = 900kg/m3,

ẏ(1) = 0.6× ẏ1(1)+80× ẏ2(1)+900× ẏ3(1) = 0.0071 (53)

Level =
0.0071× 100

0.24
= 2.9583% (54)

ẏ(2) = ẏ1(2) + ẏ2(2) + ẏ3(2) = 0.0232 (55)

For u1 = 0.6m/s, u2 = 800C, u3 = 900kg/m3,

ẏ(2) = 0.6× ẏ1(2)+80× ẏ2(2)+900× ẏ3(2) = 0.0136 (56)

Level =
0.0136× 100

0.24
= 5.6667% (57)

Luenberger observer has been designed for the mathematical
obtained from the MISO system. The differential equation
obtained from the system with the observer is solved using
the Range-Kutta method of order 4, which calculates the
tank’s liquid level. The error between the actual and estimated
output is found to be minimum. The designed observer does
not incorporate process and measurement noise [63]. Hence
Kalman filter is used to include these uncertainties. One way
to look about Kalman Observer (KO) is as an expansion of LO.
The KO (filter) is one of the better observers against a variety
of disturbances [64].

IV. KALMAN FILTER

The Kalman filter combines measuring and prediction to
provide the best estimate of the liquid level in the tank. It is
an iterative technique that employs a series of equations and
subsequent data inputs to swiftly estimate the real value of
the item being measured when the estimated results contain
unpredicted or random error, uncertainty, or variation [65].
It can overcome the non-linear state observation by using a
linearized approximation [66]. The working of the Kalman filter
is shown in Fig. 8.

Fig. 8. Working of Kalman filter

Fig. 9. Estimation of parameters using a mathematical model of the system

The derived mathematical model merely approximates the
actual system. It encounters several uncertainties. If the model
outputs are perfect with no uncertainties and the actual system
model has the same initial conditions, then the calculated
and predicted output values exactly match each other. So in
this case, the model outputs are without uncertainties and the
system’s output would match the estimated height of the tank.
This is the reason for incorporating a state estimator to estimate
the internal states of the system. If the output and estimated
value are the same, the model will converge to a real system.
Hence it is important to minimize the difference between
estimated and measured output values. Fig. 9 shows the closed
loop system with the observer having a definite gain (K) which
tries to eliminate the error between estimated and measured
output values such that the internal states that are estimated
drive to their true values. This system estimates the output,
i.e., the liquid level in the tank based on the input velocity for
different liquid densities, temperature having a definite sensor
placement position. There are 3 major steps involved in the
process of state estimation when we have a set of measured
values.

1) Calculation of Kalman gain.
2) Calculating the current estimate.
3) Calculating the updated value of error in the estimate.

The value of Kalman gain lies between 0 to 1. Its value
depends on an error in the estimate and an error in the
measurement. It gives more importance to the one whose error
is lesser. Based on the calculated value of Kalman gain, the
estimate is re-calculated. Kalman gain decides the weightage
to be given to the previous estimate and the new measurement
value and calculates the new value of the estimate. The newly
calculated value of error in the estimated is fed back to re-
calculate Kalman gain. Fig. 10 describes the steps involved in
the Kalman filter design to update the estimate.
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Fig. 10. State estimation using Kalman filter

Kalman filter helps decide how many portions of the pre-
diction and new measurements are to be added to predict
new estimates to minimize the error. X0 and P0 represent
the initial state matrix and initial process covariance matrix
respectively. The initial state matrix can be uni-dimensional
or multidimensional, depending on the process. The process
covariance matrix denotes the error in the estimate. Newly
predicted state estimation depends on the physical model and
previous state. It depends on control variables of the system
(u), predicted state noise (w) , and process noise covariance
(Q). It then calculates the measurement of the state using
uncertainty in the measurement called measurement noise. The
value of Kalman gain is calculated based on process covariance
and measurement error [67]. It decides how many fractions of
measurement and prediction are to be used for updation. Based
on this, the state and process covariance get updated for the
next iteration. Fig. 11 describes how the Kalman filter algorithm
works to predict the next state from its initial state with Kalman
gain.

Fig. 11. Kalman filter algorithm

Error (e) = ActualHeight(H)− EstimatedHeight(Ĥ)
(58)

Gain K of the estimator must be computed such that the
error between measured and estimated output is minimum.
To represent the observer mathematically, the problem can be
generalized by taking input as ′u′, output as ′y′ and state to

be estimated as ′x′. Error dynamics can be computed using the
following equations.

e = x− x̂ (59)

ė = ẋ− ˙̂x (60)

ẋ = Ax+Bu (61)

y = Cx (62)

˙̂x = Ax̂+Bu+K(y − ŷ) (63)

ŷ = Cx̂ (64)

Subtracting Equation (63) from (61),

ẋ− ˙̂x = Ax−Ax̂+Bu−Bu+K(y − ŷ) (65)

Subtracting Equation (64) from (62),

y − ŷ = C(x− x̂) = C(e) (66)

Substituting Equation (59), (60), (62) and (64) in Equation (65),
we get

ė = Ae+K(C(x− x̂)) (67)

ė = (Ae) +KCe (68)

ė = (A+KC)e (69)

Solution to Equation (69) is,

ė = e(A+KC)te(0) (70)

If (A+KC) < 0, then e → 0 as t → ∞.So x̂ → x.
The significance of having a feedback loop around the

observer is that the decay rate of the error function can be con-
trolled by selecting the observer gain ′K ′ accordingly. Having
a feedback controller gives more control over Equation (70)
and guarantees a faster elimination of the error. Faster the error
vanishes, faster is the estimated state x̂ converging to the true
state ′x′. The value of ′K ′ can be optimized by choosing the
appropriate Kalman filter. Kalman filter considers measurement
noise ′V ′

k which is a random variable and process noise ′W ′
k

which is also a noise representing the output measurement
dynamics. These random variables [39] do not follow a definite
pattern, but using probability theory, their average properties
can be known.

Vk ∼ N(0, R) (71)

Wk ∼ N(0, Q) (72)

Kalman filter combines measurement and prediction to find
the optimal estimate of the height of liquid level in the tank
by considering randomness. Optimal state estimation can be
obtained by multiplying prediction and measurement probabil-
ity function together [68]. Hence modified equation with the
addition of measurement and process noise of the Kalman filter
are as shown in Equation (73).

x̂t = Ax̂t−1 +But +Kt(yt − C(Ax̂t−1 +But)) (73)
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Ax̂t−1+But predicts the current state using the state estimate
from the previous time step and the current input which is
calculated before the measurement is estimated. This is similar
to Equation (63).

Ax̂t−1 +But = x̂−
t (74)

where, x̂−
t is the prior estimate.Hence,

x̂t = x̂−
t +Kt(yt − Cx̂−

t ) (75)

where,
x̂t is the posterior estimate, x̂−

t is the prediction and Kt(yt−
Cx̂−

t ) is the updation. Kt(yt−Cx̂−
t ) uses the measurement and

incorporates it into the prediction to update the prior estimate
and this result is called a posterior estimate [69].

A. Prediction:

x̂−
t = Ax̂t−1 +But (76)

P−
t = APt−1A

T +Q (77)

where, P is the error co-variance of the prior estimate. It is the
measure of uncertainty in the estimated state. This variance
comes from the process noise x̂t−1. It uses prior estimates
calculated in the prediction step to update posterior estimates of
the state and error co-variance. The Kalman gain is calculated
such that it minimizes the posterior error co-variance.

B. Updation

Kt =
P−
t CT

CP−
t CT +R

x̂t = x̂−
t +Kt(yt − Cx̂−

t )

Pt = (I −KtC)P−
t

If the measurement co-variance is zero (R → 0), the
posterior estimate will be equal to the measurement.

lim
R→0

Kt = lim
R→0

P−
t CT

CP−
t CT +R

(78)

= lim
R→0

1

C
= 1

x̂t = x̂−
t +Kt(yt − Cx̂−

t ) (79)

= x̂−
t + C−1(yt − Cx̂−

t )

x̂t = yt

On the other hand, if the prior error co-variance goes to zero,
the Kalman gain is found to be zero.

lim
P−

t →0
Kt = lim

P−
t →0

P−
t CT

CP−
t CT +R

= lim
P−

t →0

0

0 +R
= 0

x̂t = x̂−
t +Kt(yt − Cx̂−

t )

= x̂−
t + 0(yt − Cx̂−

t )

x̂t = x̂−
t

Using the value of prediction and Kalman gain, the algorithm
updates system states even though uncertainties exist. The
results can also be verified using ANN prediction algorithms
as described in section V.

V. PREDICTION USING ARTIFICIAL NEURAL NETWORK
MODEL

Neural networks are well known for classification and predic-
tion. Neural networks here refer to Artificial Neural Networks
(ANNs). ANN is a layered network of artificial neurons. It
typically consists of an input layer, one or more hidden layers,
and an output layer. Each layer is composed of a number of
artificial neurons, also called nodes. The artificial neurons in
one layer are connected by weights to the artificial neurons in
the next layer as shown in Fig. 12. It explains a simple model
of the ANN which helps in solving complex mathematical
problems. In the present work, ANN can be used for building a
mathematical model of the observations for making predictions
[70], [71]. Here X is the input parameters and Y is the liquid
level. Normalized output data using standard scaling is used for
the supervised learning technique with the output data obtained
from ANSYS. Using hyperparameter searching, the total num-
ber of parameters (weights and biases) are decided. The trained
model is tested for its accuracy and mean squared error. The
liquid level is estimated with an optimization algorithm which
gives the least mean squared error. The complete details are
described below. The plant’s NNs model are built during the
system identification process, and the system should thereafter
be developed or trained utilizing the developed model [72].

Fig. 12. Architecture of Artificial Neural Network

Steps for building the ANN model using Python are given
below.
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A. Loading the data

Simulated data in ANSYS are loaded to the pandas data
frame. Here input data is a vector consisting of inlet velocity,
temperature and density. The output vector comprises the height
of the liquid in the tank.

B. Pre-processing of dataset

’Keras’ is the most used deep learning framework which
makes new experiments run easier. Keras is a simple, con-
sistent interface optimized for normal use. It gives clear and
noteworthy feedback on the error made by the end user. Keras
models are built by connecting configurable building blocks.
It is possible to modify building blocks accordingly to convey
new ideas for research by creating new layers, metrics, loss
functions, and state-of-the-art model development. In this work,
the data collected using ANSYS simulation consists of height
calculated as a dependent variable for different values of fluid
inlet velocity, temperature and density. After importing the
required packages, the data set is imported. The imported data,
after installing the required packages, are normalized since they
have different units and ranges. This is done to avoid non-
correlation between the input and the output values.

C. Training the model and building the model using hyperpa-
rameter searching

The model is trained for 100 epochs. A summary of the
model built is given in Table I.

TABLE I
MODEL SUMMARY

Layers Output Shape Parameters
Input - -

Hidden layer 1 (1,3) 12

Hidden layer 2 (1,1) 4

Output - -

Total Parameters = 16
Trainable parameters = 16
Activation function = Rectified Linear Unit
Optimizer = Stochastic Gradient Descent (SGD)
Loss function = Mean Squared Error
Learning rate= 0.01

Here the model is built using a neural network having hidden
layers between 2 to 6. Here, a random search is carried out
within the model to find the best possible neural network that
can be created. Among 0.01, 0.001 and 0.0001 best learning rate
is chosen based on a random search. An activation function is
one of the main parts of the Artificial Neural Network which
helps to derive output from a set of input values given to the
node (or a layer). By activation function, the weight and bias
could express the non-linear relationship. There are majorly 3
types of activation functions used in neural networks namely

binary step activation function, linear activation function, and
complex non-linear activation function. Here, Rectified linear
unit activation function (ReLU) activation function has been
applied. Being one of the non-linear Neural Network activation
functions, the main intention of using the ReLU activation
function is it overcomes the vanishing gradient problems which
occur when there are many hidden layers in the networks. It
also allows the model to learn faster and perform better than
the other two activation functions. The mathematical equation
for Relu is shown below in (80)

ReLU(x) = max(0, x)

ReLU ′(x) =

{
0 x<0
1 x≥ 0

(80)

Here if the input is negative, the output of ReLU is ’0’ and for
positive values, it is ’x’. Optimizers are algorithms or methods
for altering the characteristics of a neural network such as
weights and learning rate to reduce the losses. By minimizing
the function, optimizers are used to solve optimization prob-
lems. Adam optimizer is used for compilation as it results in
lease Mean Squared Error (MSE) of 6.3487× 10−7.

D. Loss functions and Optimizers

The process of minimizing (or maximizing) any mathemati-
cal expression is called optimization. Optimizers are algorithms
or methods used to change the attributes of the neural net-
work such as weights and learning rate to reduce the losses.
Here learning rate is a hyperparameter [73] value. Gradient
means slope or rate of inclination. So gradient descent means
descending a slope to reach the lowest point on that surface
[74]. Stochastic denotes randomness. SGD chooses one of the
measured values during every iteration to minimize the number
of computations. Data can also be split into a small group of
data points called ’batch’ rather than just one point at every
step which is called the “mini-batch” gradient descent algorithm
[75].

wt+1 = wt − η∇w (81)

∇w =

N∑
i=1

∂

∂w
(f(xi)− yi)

2 (82)

Momentum-based Gradient Descent utilizes the history of
gradients to filter the update. It calculates an exponentially
weighted average of the gradients and then uses that gradient
to update the weights. It has a greater execution speed when
compared to the gradient descent algorithm.

Vt = γ × Vt−1 + η∇wt (83)

wt+1 = wt − Vt (84)

Adagrad increases the robustness of SGD and utilizes it for
training neural networks comprising large-scale data.

vt = vt−1 + (∇wt)
2 (85)
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wt+1 = wt −
η

√
vt + ϵ

∇wt (86)

The RMSprop Optimizer takes larger steps by increasing the
learning rate to restrict the oscillation in a vertical direction to
converge faster.

Vt = β × Vt−1 + (1− β)(∇wt)
2 (87)

wt+1 = wt −
η

√
vt + ϵ

∇wt (88)

Adam Optimizer combines RMSprop and SGD with momen-
tum, which squares gradients to scale the learning rate.

mt = β1 × vt−1 + (1− β1)(∇wt) (89)

vt = β2 × vt−1 + (1− β2)(∇wt)
2 (90)

wt+1 = wt −
η

√
vt + ϵ

mt (91)

Fig. 13. The workflow of CFD simulation, design of estimator, ANN prediction
model and real-time implementation

VI. RESULTS

The previously calculated values of liquid level (height of
the tank) for different inlet velocities, temperature, and density
for a definite sensor position are used to design multiple input
single output (MISO) system. Inlet velocity, temperature, and
density are inputs to the system, and liquid level, which is
calculated using the tank’s height, is the output of this MISO
system. System identification helps in designing mathematical
models based on the observed data. Based on the experimental
design, data is pre-processed and a definite model structure for
parameter estimation is obtained. G1(s),G2(s) and G3(s) are

the transfer functions(gains) with respect to inputs i.e., inlet
velocity, temperature and density respectively. Using this model
structure, a chaotic equation of the system is obtained and the
resulting differential equation is solved using the Range-Kutta
method.

Based on the open loop characteristics, a full state observer
is designed for settling time 0.5sec, which is 1.2041sec for
an open loop system. Luenberger observer is designed whose
gain is calculated theoretically as −35.2259 and matches with
MATLAB results. Fig. 14 represents liquid level estimation in
a tank using the MISO system with the observer. The level
of liquid measured in the tank is 94.0535% and the estimated
value of the same is 93.3566% as shown in Fig. 14. The error
between the responses is plotted in Fig. 15 and this error is
found to be very less settling down to 0.6448%. The mean
squared error from the graph is calculated to be 0.00022 for the
estimation of the height of the liquid in the tank and 38.24% for
the level of liquid in the tank. It is observed that error reduces to
minimum value taking very less time(time < 1sec). The liquid
level settles down with very less transients and with minimum
error.

Fig. 14. Estimation of liquid level in the tank with an observer

.

Fig. 15. Error between the plant and output

To incorporate the process and measurement noise, a linear
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quadratic estimation algorithm based on Kalman filtering is
used. It uses a set of observed data consisting of inaccuracies, to
estimate unknown variables with high accuracy. Kalman filter
designed for the MISO system is as shown in Fig. 16. For the
estimation, the value of measurement noise R is chosen to be
0.1 and process noise Q is 0.1. Fig. 17 shows the observed data
with high randomness because of the measurement and process
noise. Fig. 18 shows the plot of estimated values of tank height
which is accurate with less randomness.

Fig. 16. Plant with Kalman filter

Fig. 17. Measurement with uncertainties

Fig. 18. The output of the system with Kalman filter

The regression model is built using ANN for the observed
data. Observed data is imported using the ’Pandas’ data frame
and pre-processed. Since the independent variables lie in dif-
ferent ranges, they are first normalized using standard scaling

and then split into test and train data. ANN model is built
with three input layers and one output layer. Rectified linear
activation function, which is known as ’RELU’ is used as the
activation function. By using different optimization algorithms,
performance metrics accuracy and loss are determined. The
model is run for 100 epochs and tested with test data, and
the prediction result is shown in Fig. 19. Similarly, the model
is run for different optimization functions the loss functions
are plotted for 100 epochs which is shown in Fig. 20. Here in
this work, the ANN architecture of 2 layers has been taken for
validation purposes. Our approach is based on:

• Formulation of an artificial neural network (ANN) us-
ing ANSYS simulation data’s input and output variable
records

• Using the data, train and test the ANN
• ANN behavior verification using data not utilized for

training or testing
• Comparing the ANN’s performance against a simulator

that was already developed

Fig. 19. Prediction for inlet velocity=0.6m/s, temperature=80°C and
density=900kg/m3

Fig. 20. Loss functions for 100 epochs

Table 2 compares the height of the liquid calculated using
different methods.
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TABLE II
COMPARISON OF LIQUID HEIGHT IN THE TANK USING VARIOUS METHODS

Inlet Velocity(m/s) Temperature(°C) Density(kg/m3) Liquid level(m) MSE

Actual model 0.6 80 900 0.2250 -

Luenberger observer 0.6 80 900 0.2236 0.0002

Kalman filter 0.6 80 900 0.2215 1.2309

ANN prediction 0.6 80 900 0.2224 6.3487× 10−7

VII. VALIDATION USING PRACTICAL SETUP

For validation, a pressure sensor is connected to a panel
held vertically as shown in Fig. 21. The flow rate is adjusted
by increasing or decreasing the flow bypass manual valve.
Rotameter is used to measure the flow rate in LPH. Liquid
passing through the pressure sensor is collected in the tank
below. Table III compares the difference between actual and
measured values for water with different values of inlet velocity
at room temperature. Differences in actual and measured height
are plotted in Fig. 22. The flow rate is converted to the inlet
velocity using the Equation (92). From the volume obtained,
the level is calculated using the tank dimensions.

Q = V ×A (92)

where Q= Flow rate, V = Inlet velocity, A= Cross-sectional area
of the measurement location

TABLE III
COMPARISON OF PRACTICAL AND SIMULATED VALUES OF LIQUID HEIGHT

IN THE TANK

Inlet velocity(m/s) Liquid height hactual(m) Practical hmeasured(m) Simulated hmeasured(m)

0.0109 0.09 0.10 0.084

0.0263 0.15 0.14 0.1463

0.0439 0.21 0.22 0.2087

0.0658 0.27 0.29 0.2711

0.0877 0.35 0.34 0.3519

0.1096 0.42 0.40 0.4250

Fig. 21. Real-time setup

Fig. 22. Comparison of actual and simulated

VIII. CONCLUSION

The estimation of a tank’s liquid level is described in this
work. To evaluate the laminar type of water flow via an orifice
meter with a constant pipe length and orifice diameter, a CFD
simulation is performed. For varying inlet velocity, temperature,
and density, the flow rate is calculated. By using the Range-
Kutta method of order 4, a solution for the differential equation
of the MISO system is obtained for the calculation of the liquid
level in the tank. Using various approaches, the Luenberger ob-
server is designed for the same system. To incorporate process
and measurement noise Kalman filter is added to the system.
Results obtained are also verified using an artificial neural
network prediction model. For an inlet velocity of 0.6m/s ,
temperature 80°C and liquid density 900kg/m3 , the height of
the liquid is estimated to be 0.2250m by Luenberger observer,
0.2236m by Kalman filter and 0.2224m by ANN prediction
model. Various optimization algorithms are used to minimize
the error. The mean squared error calculated was found to
be 0.00022,1.2309, 6.3487 × 10−7 for Luenberger observer,
Kalman filter, and ANN prediction model respectively. Using
the experimental setup, actual values and simulated values are
compared and the error is found to be minimum. As a future
work, the experiments is carried out for wider range of input
parameters like liquid density, temperature, inlet velocity, liquid
type etc and study was carried out for different sensor place-
ments i.e., where the sensor needs to be and in what position.
This can be extended for estimating the state of a linear system
with unknown inputs using an Unknown Input Observer (UIO)
[77]. Also Kalman filters are linear quadratic estimators, which
assumes that both system and observer models to be linear
which may not be real in many situations. Using extended
kalman filters can solve the problems with non-linearity for
estimation.
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41, no. 12, pp. 1473–1490, Dec. 2016, doi:10.1007/s12046-016-0562-z.

[31] Y. Li and B. Hou, “Observer-based sliding mode synchronization for a
class of fractional-order chaotic neural networks,” Advances in Difference
Equations, vol. 2018, no. 1, Apr. 2018.

[32] N. Oucief, M. Tadjine, and S. Labiod, “A new methodology for an
adaptive state observer design for a class of nonlinear systems with
unknown parameters in unmeasured state dynamics,” Trans. Inst. Meas.
Control, vol. 40, no. 4, pp. 1297–1308, 2018.

[33] Z. Wang, Y. Shen, and X. Zhang, “Actuator fault estimation for a class
of nonlinear descriptor systems,” Int. J. Syst. Sci., vol. 45, no. 3, pp.
487–496, 2014.

[34] M. Liu, L. Zhang, P. Shi, and Y. Zhao, “Fault estimation sliding-mode
observer with digital communication constraints,” IEEE Trans. Automat.
Contr., vol. 63, no. 10, pp. 3434–3441, 2018.

[35] Y. Wang, V. Puig, and G. Cembrano, “Robust fault estimation based on
zonotopic Kalman filter for discrete-time descriptor systems: Robust fault
estimation based on zonotopic Kalman filter for discrete-time descriptor
systems,” Int. J. Robust Nonlinear Control, vol. 28, no. 16, pp. 5071–5086,
2018.

[36] W. Han, Z. Wang, Y. Shen, and Y. Liu, “Fault detection for linear discrete-
time descriptor systems,” IET Control Theory Appl., vol. 12, no. 15, pp.
2156–2163, 2018.

[37] A. Zemzemi, M. Kamel, A. Toumi, and M. Farza, “Robust integral-
observer-based fault estimation for Lipschitz nonlinear systems with time-
varying uncertainties,” Trans. Inst. Meas. Control, vol. 41, no. 7, pp.
1965–1974, 2019.

[38] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, Jan. 2015.

[39] C. Gershenson, ”Artificial neural networks for beginners,” arXiv preprint
cs/0308031, 2003.

[40] K. Prudviraj, S. Deshmukh, R. K. Tripathy, K. Supradeepan, P. Tandon,
and P. K. Jha, “Machine learning-based approach for the prediction of
an orifice size of aerospace vehicle RCS thrusters during cold flow
calibration,” in 2021 IEEE 6th International Conference on Computing,
Communication and Automation (ICCCA), 2021, pp. 455–459.

[41] M. Farsi et al., “Prediction of oil flow rate through orifice flow meters:
Optimized machine-learning techniques,” Measurement (Lond.), vol. 174,
no. 108943, p. 108943, 2021.

[42] A. R. Behesht Abad et al., “Predicting oil flow rate through orifice plate
with robust machine learning algorithms,” Flow Meas. Instrum., vol. 81,
no. 102047, p. 102047, 2021.

[43] C. Choi, J. Kim, H. Han, D. Han, and H. S. Kim, “Development of water
level prediction models using machine learning in wetlands: A case study
of Upo wetland in South Korea,” Water (Basel), vol. 12, no. 1, p. 93, 2019.

[44] J. L. Mata-Machuca, R. Martı́nez-Guerra, and R. Aguilar-López, “An
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[45] L. Torres, G. Besançon, D. Georges, and C. Verde, “Exponential nonlinear
observer for parametric identification and synchronization of chaotic
systems,” Mathematics and Computers in Simulation, vol. 82, no. 5, pp.
836–846, Jan. 2012.

Vighnesh Shenoy, Estimation of Liquid Level in a Harsh Environment Using Chaotic Observer



Journal of Robotics and Control (JRC) ISSN: 2715-5072 582

[46] C. C. Nwobi-Okoye, S. Okiy, and A. C. Igboanugo, “Performance
evaluation of multi-input–single-output (MISO) production process using
transfer function and fuzzy logic: Case study of a brewery,” Ain Shams
Engineering Journal, vol. 7, no. 3, pp. 1001–1010, Sep. 2016.

[47] M. L. Lineros, A. M. Luna, P. M. Ferreira, and A. E. Ruano, “Optimized
design of neural networks for a river water level prediction system,”
Sensors (Basel), vol. 21, no. 19, p. 6504, 2021.

[48] S. Beyhan, “Runge–Kutta model-based nonlinear observer for synchro-
nization and control of chaotic systems,” ISA Transactions, vol. 52, no.
4, pp. 501–509, Jul. 2013.

[49] V. Shenoy and K. V. Santhosh, “Design Of Estimator For Level Moni-
toring Using Data Driven Model,” 2021 2nd International Conference on
Computation, Automation and Knowledge Management (ICCAKM), Jan.
2021.

[50] X. Wang and E. E. Yaz, “Second-order fault tolerant extended Kalman
filter for discrete time nonlinear systems,” IEEE Trans. Automat. Contr.,
vol. 64, no. 12, pp. 5086–5093, 2019.

[51] K. van Heusden, M. Yousefi, J. M. Ansermino, and G. A. Dumont,
“Closed-loop MISO identification of propofol effect on blood pressure
and depth of hypnosis,” IEEE Trans. Control Syst. Technol., vol. 28, no.
1, pp. 254–263, 2020.
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