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Abstract

The ultimate goal of this thesis is to design and implement a fluid-structure interaction
(FSI) methodology mainly for applications in aeroelasticity, such as flutter prediction.
One of the main requirements for the FSI algorithm is a high level of modularity,
meaning that the fluid and structure solvers should be independent of each other and
the corresponding meshes do not need to align on the fluid-solid interface. For this
reason, the partitioned approach was adopted with the option of either weak or strong
coupling.

A lot of attention is given to the modelling of the fluid flow, as it tends to be the
most complicated part of any FSI problem. In this thesis, an implicit discontinuous
Galerkin scheme is derived for the solutions of compressible Navier-Stokes equations in
the arbitrary Lagrangian-Eulerian formulation. The interior penalty method is used to
approximate viscous fluxes. Artificial viscosity is added to regions with a shock accord-
ing to a fine-tuned shock sensor to stabilise the solution. The one-equation Spalart-
Allmaras turbulence model is applied to problems with turbulent flow. To contend
the computational requirement for the fluid-flow simulations, a domain decomposi-
tion method is employed for distributed computing. The implemented discontinuous
Galerkin solver is benchmarked on a few test problems of flow around stationary aero-
foils and aerofoils with prescribed motion. Both laminar and turbulent viscous flows
and inviscid flows are considered. Furthermore, torsional flutter in a blade cascade
is assessed using the energy method, which uses one-way coupling. The discontinu-
ous Galerkin solver is validated on this problem against experimental measurement
conducted at the Institute of Thermomechanics of the Czech Academy of Sciences.

In order to solve two-way coupling problems, two different structure models are
considered, specifically a system of elastically-mounted rigid bodies interconnected
with springs and dampers and an elastic structure with large deformations. The FSI
solver is validated on two problems of interaction with rigid bodies, namely on vortex-
induce vibration of a cylinder and flutter prediction of a swept-back wing modelled as a
two-degree-of-freedom aerofoil. A new efficient mesh-deformations algorithm based on
solving an elliptic equation is proposed for the case of rigid structure. The advantage
of the algorithm is that the elliptic equation is solved only once for each of the rigid
bodies before the FSI simulation starts, thereby saving computational time during
simulation.

The elastic structure is described by nonlinear equations of elastodynamics, which
are solved by an implicit finite-element scheme with Newton’s iterative procedure.
Since the fluid and structure meshes are mutually nonconforming on the fluid-solid
interface, the aerodynamic stress is interpolated using radial basis functions. The
mesh-deformation algorithm is also based on radial basis functions, the advantage of
which is that it takes care of the interpolation of the structure’s displacement on the
fluid-solid interface.

Keywords: fluid-structure interaction, discontinuous Galerkin method, compressible
flow, aeroelasticity, mesh deformation
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Abstrakt

Cilem této prace je navrhnout a implementovat metodiku pro feSeni tloh interakce
tekutiny s télesem (oznacované jako FSI) predevsim pro aplikace v oblasti aeroelas-
ticity, napt. pro predikci flutteru. Jednim z hlavnich pozadavku na algoritmus FSI
je vysoka troven modularity, coz znamena, ze TeSice pro tekutinu a strukturu by na
sobé mély byt nezavislé. Navic predpokladame, ze vypoctové sité pro oblast tekutiny
a struktury na sebe nemusi navazovat. Z tohoto duvodu byl zvolen oddéleny pristup
feseni s moznosti volby slabé nebo silné vazby namisto pristupu monolitického.

Velka cast této prace je vénovana modelovani proudéni stlacitelné tekutiny. Pro
feSeni Navierovych-Stokesovych rovnic v ALE formulaci je odvozeno implicitni schéma
nespojité Galerkinovy metody. K aproximaci vazkych toku je pouzita metoda vnitinich
penalty. Pro stabilizaci feseni je pouzita uméla vazkost, jejiz velikost je fizena senzorem
razovych vin. Pro tlohy turbulentniho proudéni je uvazovan Spalartuv-Allmarasuv
model turbulence. Implementovany CFD fesi¢ je validovan na nékolika testovacich
ulohach proudéni okolo stacionarnich leteckych profili a okolo leteckych profilu s
predepsanym pohybem. V téchto ilohach uvazujeme jak proudéni nevazké tekutiny,
tak laminarni i turbulentni proudéni vazké tekutiny. Dalsi uvazovanou tulohou je
posouzeni vzniku torzniho flutteru v kaskadé lopatek pomoci energetické metody,
kterda vyuziva jednosmérnou vazbu. Vyvinuty CFD fesi¢ je validovan pomoci ex-
perimentalniho méreni provedeného na Ustavu termomechaniky Akademie véd Ceské
republiky.

Pro teseni uloh obousmérné vazby jsou uvazovany dva ruzné modely struktury a to
soustava pruzné ulozenych tuhych téles a elastickd struktura s velkymi deformacemi.
Vyvinuty FSI fesi¢ je validovan na dvou tlohach interakce s tuhymi télesy, konkrétné
na uloze kmitani valce v tekutiné vynuceném virovou stezkou a na tloze predikce
flutteru kridla letadla. Vysledky jsou porovnany s numerickymi a experimentalnimi
daty jinych autoru. Pro ptipad tuhého télesa je navrzen novy efektivni algoritmus
deformace sité zalozeny na feseni eliptické rovnice. Vyhodou algoritmu je, ze elipticka
rovnice se Tesi pro kazdé z tuhych téles pred zahdjenim simulace FSI pouze jednou,
¢imz se uSetii vypoctovy cas.

Elasticka struktura je popsana nelinedrnimi rovnicemi elastodynamiky, které jsou
feSeny metodou koneénych prvku s implicitni integraci. Protoze vypoétové sité pro
oblast tekutiny a struktury na jejich rozhrani nemusi navazovat, tenzor napjatosti je
nutné interpolovat. Jak algoritmus deformace sité, tak interpolace tenzoru napjatosti
jsou zalozeny na radialnich bazovych funkcich. Vyhodou zminéného algoritmu je, ze
zahrnuje i interpolaci vychylek struktury, které tak nemusi byt interpolovany zvlast.

Klicova slova: interakce tekutiny s télesem, nespojita Galerkinova methoda, proudéni
stlacitelné tekutiny, aeroelasticita, deformace sité
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Notation

Throughout this thesis, we use Greek letter «, 3, v and Latin letters a, b, ¢ for indices
that are linked to the spatial coordinates z and material coordinates X“, respectively.
The Einstein summation convention is implied to these indices and these indices only,
which means that for example

D
u* v, = E Ut Vg,
a=1

D
uv, = g u® v,
a=1

where D is the dimension of the problem. Although the use of coordinate systems
other than Cartesian is fairly rare in practice, we take advantage of the elegance of the
summation over an index that appears once as subscripted and once as superscripted
in a term. The covariant metric tensor and the covariant derivative are denoted tra-
ditionally as g.s and V,, respectively. If we replace the metric tensor g,s with the
Kronecker delta symbol 6,5 and the covariant derivative V,, with the partial derivative
d,, in any of the equations in the thesis, we obtain the usual expressions applicable only
to the Cartesian coordinate system. All the other indices that are used in this thesis
(e.g. i, j, k, I, m, n, r, s) are indices for a general use and never appear once sub-
scripted and once superscripted in one term anywhere in this thesis. In other words,
the summation convention is never used in the case of these indices.

xiil






1 Introduction

1.1 Motivation

Fluid-structure interaction (FSI) is a dynamic interaction of a deformable structure
with a surrounding or internal flow. The fluid flow influences the structure through
pressure and shear and the structure influences the fluid flow by its motion in return.
Aerospace engineering is one of the obvious fields where fluid-structure interaction is
extensively studied. Other applications include turbomachinery or design of bridges
and tall structures such as towers or chimneys. The main reason that fluid-structure
interaction is studied in these fields is the danger of failure of the structure during the
interaction. Numerous types of flow-induced phenomena, some of which are unstable,
have been observed.

Bodies whose shape is not very aerodynamic or hydrodynamic, called blunt or bluff
bodies, may, under some flow conditions, experience flow-induced vibration of high
amplitude, most notably the so-called vortex-induced vibration and galloping. Blunt
bodies with variety of shapes will, for certain values of the Reynolds number, periodi-
cally shed vortices [78, 85]. These vortices induce a periodic force on the body mainly
in the direction perpendicular to the flow, which will excite vibration in an elasti-
cally mounted body in the direction transverse to the flow. If the vortex-shedding
frequency approaches the natural frequency of the structure, resonance will occur.
Vortex-induced vibration does not lead to instability, in fact, it is self-limited in am-
plitude. Nonetheless, it may cause aggravating noise, excessive wear or even lead to
failure. This phenomenon has been observed to be induced in cylindrical object, such
as antennas, wires, cables, ropes, chimneys etc., but also in some types of bridges and
thus has extensively been studies for cylinders and prisms of various cross sections, see
e.g. [1 27, 63, 80] and references therein. This phenomenon must also be taken into
consideration during the design of ocean structures.

Galloping is categorised as flutter-type instability. Flutter is unstable self-excited
flow-induced vibration of a structure. Self-excited vibration refers to vibration that
arises spontaneously even in a uniform incoming flow without fluctuations and without
the presence of other excitation forces. Flutter occurs when aerodynamic forces couple
with the motion of the body in such a way that they add negative damping to the
structure and the negative damping exceeds the positive damping of the structure.
This way, the fluid transfers energy to the structure. This happens only in special
circumstances. Aerodynamic forces usually damp rather than excite the structure.
Aerodynamic force acts as negative damping when the resulting aerodynamics force
and/or torque have generally the same direction as the linear and/or angular velocity
of the structure. Indeed, the instantaneous power transferred form the fluid to the
structure is the dot product of aerodynamic force and structure’s velocity.

Suppose for simplicity that a symmetric body, which has zero lift for zero angle of
attack, is oscillating transverse to a uniform flow. Although the velocity of the fluid is
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constant in the inertial frame of reference, from the point of view of the moving body
the fluid velocity changes both in magnitude and direction. For a streamlined body,
this results in a lift of the body in the opposite direction to its motion effectively
damping the oscillations. However, some blunt bodies have a lift-coefficient curve
with negative slope, in which case the lift has the same direction as the motion of the
body causing negative damping. If this damping exceeds the positive damping of the
structure, instability called galloping occurs. Galloping occurs at higher flow velocities
than vortex-induced vibration and the resulting amplitudes are higher as they are not
self-limited. This phenomenon has been and is being studies for rectangular prisms
[68], triangular prisms [80] and many other body shapes. Note that galloping is never
induced in circular cylinders.

Stall flutter is a phenomenon similar to galloping. Galloping occurs only for some
blunt bodies whereas stall flutter can also appear for stream-lined bodies subjected
to large angles of attack. Both phenomena occur due to negative slope of the lift-
coefficient curve. In the case of galloping, the negative slope is around zero angle of
attack. Stream-lined bodies have positive slope around zero angle of attack but it
becomes negative beyond the stall point, hence the name stall flutter. During stall
flutter, flow separation occurs periodically during oscillations on the suction surface
of the aerofoil. Stall flutter was observed in fighter aircraft already in World War I,
but the torsional flutter responsible for the collapse of 1940 Tacoma Narrows Bridge
[10] is also based on analogical principles. A thorough analysis of stall flutter can be
found in [19].

Vortex-induced vibration, galloping and stall flutter all require only a singe degree
of freedom and can manifest as bending, torsion or coupled vibration. Classic flutter,
on the other hand, relies on elastic or aerodynamic coupling between at least two
modes of vibration to do positive work on the vibrating structure. This phenomenon
does not require flow separation and, as opposed to stall flutter, can be modelled by
a linear model. FSI solvers based on inviscid flow modelling are therefore also able to
predict classic flutter. Classic flutter is a major concern during the design of aircraft
[56] and steam turbines [73]. Hodges and Pierce [47] cover flutter analysis and basic
methods for its prediction. There are other self-excited instabilities, for example an
instability related to shocks in transonic regimes called transonic buzz. We only discuss
the more prominent ones. The properties of the discussed self-excited phenomena are
summarised in Table [L.1l

The instabilities described above can occur in a uniform undisturbed flow, hence the
name self excited. Other types of instabilities are caused by a fluctuating incoming
flow. This is called buffeting. Oscillation in one body can also be induced by a wake of
another body. This is called wake buffeting. Vortex-induces wake buffeting for circular
cylinders was studied for example in [95].
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Table 1.1: Classification of flow-induced self-excited vibration.

stream- flow .
: . min.
lined  separation
. DOFs
bodies  necessary

self-limited _  vortex-induced
amplitude vibration X v 1
galloping X v 1
) 1-DOF stall flutter 4 4 1
self-excited flutter '
vibration diverging trz}bnus.;)zmc v X .
amplitude
(instability)
classic flutter v X 2
coupled
flutter combination
of the above

1.2 Requirements

The aforementioned phenomena are studied both experimentally and numerically. In
this thesis, we are interested in the numerical approach. In particular, our goal is to

1. design and implement a fluid solver,
2. design and implement a structure solver and

3. couple the solvers together with a suitable coupling algorithm.

The intended use of the FSI solver is for applications in aerodynamics, we therefore
consider the fluid flow as compressible. Furthermore, we would like to solve problems
where the structure undergoes large deformations, thus we will model the structure
with nonlinear equations of elastodynamics. One of the crucial requirements is that
of modularity, that is, we require the structure and fluid solvers to be completely
independent of each other. This also implies that the meshes of the two solvers do not
need to align at the interface. The reason why we stress this point is that we would
like to achieve interdisciplinary cooperation on problems such as flutter analysis. To
this end, we require and easy replacement of the structure solver with another one.
Another major premise of this thesis is that the discontinuous Galerkin method should
be used to approximate the fluid flow. This method has been studies theoretically and
used for many practical engineering applications in the department and has proven
effective for the problems of interest. Let us sum up the requirements in the following
points:

e model the flow as compressible,
e consider elastic structure with large deformations,

e use the discontinuous Galerkin method to approximate the fluid flow,

e achieve independence of structure and fluid solvers and
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e consider mutually nonconforming fluid and structure meshes on the fluid-solid
interface.

1.3 Fluid-structure interaction

There are two approaches that we can choose from when it comes to solving fluid-
structure interaction problems, namely monolithic and partitioned approaches. The
monolithic approach [44] is when we solve the fluid-flow equations and the solid-
structure equations as a single coupled system, whereas the partitioned approach [33]
uses two separate solvers for the fluid and solid parts, which are then solved in turns
with data exchange. The former approach is the more proper one as it corresponds
to the physics of the interaction. Moreover, monolithic schemes do not suffer from
the stability issues that partition schemes do. On the other hand, monolithic (fully-
coupled) schemes are far more difficult to implement. The flow equations must be
discretised alongside the equations for the structure dynamics, which is rather restric-
tive. The resulting system of linear equations is large. Furthermore, this approach
does not provide the desired modularity. For these reasons, the partition approach
enjoys more popularity.

There are essentially two ways to couple the partial problems. Solving the fluid
and structure problems in turns until equilibrium is reached is called strong coupling.
Weak coupling undergoes only one turn at each time step, which implies that the
coupling conditions are not satisfied exactly. The idea behind weak coupling is clearly
to spare computation time due to subiterations, which may, on the other hand, lead to
higher error. For most aerodynamic application, where the structure has much higher
density than the fluid, weak coupling is sufficient, see [33]. When the structure has
roughly the same density as the fluid, the so-called added-mass effect starts to appear
and loosely-coupled schemes are unstable. Reducing the size of time steps make the
matter even worse. In this case, subiteration of partitioned schemes is necessary,
see [16], [41]. Moreover, many subiterations of the strong coupling are needed to find
equilibrium and prevent the numerical instability. This issue is more prevalent for
incompressible than for compressible flow solvers. In an attempt to diminish the
issue, some researches put forward modifications to the strong-coupling schemes, e.g.
Ferndndez [37] suggested to use strong coupling only for the pressure equation and
weak coupling for the momentum equation in order to save computational time.

In this thesis, we choose a partitioned approach since it provides more flexibility
and modularity as opposed to a monolithic approach. Both the fluid-flow and solid-
structure solvers may be modified or substituted with another solver without affecting
the other. In this thesis, we apply both weak and strong coupling. Although most
aerodynamics applications do not require strong coupling, it is convenient to have the
option to turn on subiterations, should they be needed. Without subiterations, we
would not be able to benchmark our algorithms on many problems of hydrodynamics.

Although FSI problems have been simulated for decades, see e.g. [28] form 1982,
the interest for this subject has not declined, quite the contrary. The increasing
computational power makes the simulation of multiphysics problems more accessible
and problem that were previously too complex to simulate are now solved on daily
basis. The number of papers published on the topic of fluid-structure interaction
is also increasing. Nevertheless, FSI methodologies involving higher-order methods,
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especially those that employ the discontinuous Galerkin method, started to emerge
mostly in the last decade. A notable study in this regard is by Froehle and Persson
[39], who used loosely-coupled DG and CG solvers for the compressible fluid flow and
elastic structure, respectively. Another research group focused on the implementation
of a high-order FSI solver with a partitioned approach, which is capable of both CG
and DG formulations, is Pena et al. [I8]. Their FSI solver is primarily designed
for blood flow in arteries, therefore the fluid flow is considered incompressible, which
naturally requires strong coupling. Sheldon et al. [81] developed a monolithic FSI
algorithm based on hybridised discontinuous Galerkin method for incompressible flows.
Recently, a few other progressive high-order methods, such as spectral elements [3], 9]
or isogeometric analysis [94], have also been used for FSI problems.

Other research has recently focused on including more realistic turbulence models in
the context of FSI simulation. One of the first studies that used large eddy simulation
for FSI problems with elastic structures and obtained impressive results is a study by
Breuer et al. [I2]. Therein, a finite-volume eddy-resolving solver is strongly coupled
with a finite-element elastic-structure solver.

A study that coincides to a large degree with the requirements set by this thesis is
the study by Froehle and Persson [39], since they use a partitioned approach to sim-
ulate interaction between compressible flow and elastic structure while using the DG
method to approximate fluid flow. One aspect that their methodology is missing with
respect to the requirements of this thesis, is that the fluid and structure meshes are not
allowed to be arbitrarily aligned. Another difference is that Froehle and Persson use
only weak coupling, whereas this thesis includes both weak and strong coupling strate-
gies. Another closely related study is by Kosik et al. [52, 5], which models FSI between
compressible flow and elastic structure with large deformations and use the discon-
tinuous Galerkin method to discretise both the fluid flow and the structure. One of
the main targets of their study was to compare the space-time discontinuous Galerkin
method with a more classical implicit scheme, which uses discontinuous Galerkin dis-
cretisation for spatial discretisation and the finite-difference integration scheme called
BDF2 for temporal discretisation. They obtained promising results. Nevertheless, in
this thesis, we use the more traditional integration scheme BDF2, as it produces a lin-
ear system with substantially lower number of degrees of freedom than the space-time
discontinuous Galerkin method and is for this reason less computationally demanding.

1.4 Structure dynamics

We use two different strategies for modelling the structure in this thesis. One strategy
is to model the structure as a rigid body or a system of rigid bodies with springs and
dampers and the other strategy is to model it as a continuum. The latter model is
the more proper description of the structure and it has many applications in 2D and
3D. The rigid-body model has the advantages of being able to simplify otherwise very
complex 3D problems into much more manageable 2D problems. For instance, we can
simulate aeroelasticity of an aircraft wing either as a continuum in three dimensions
along with the three-dimensional flow around it, or we can simulate only the cross
section of the wing as a rigid body connected by fictive extension/compression and
torsion springs with a 2D flow around it. A complex 3D simulation with an elastic-
structure model is obviously able to simulate the coupled problem more realistically,
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but it does that at a high cost in term of computational demands. Although the
mass-spring-damper model is a simple model, when coupled with a 2D flow solver, it
can give us good insight into the interaction of fluid flow and solid structure, including
complex phenomena such as vortex-induces vibration or different types of flutter, at a
low cost. The rigid-body model is therefore a useful model in its own right.

The finite element method is by far the most common method for solving the equa-
tions of elastodynamics and, in this thesis, we will make no exception. The time
integration will be realised by BDF - a multilevel implicit method. The structure will
be allowed to undergo large deformations, thus nonlinear equations of elastodynamics
will be solved with Newton’s method.

1.5 Fluid-flow modelling

Undoubtedly, the the most complex task is the design and implementation of the fluid-
flow solver. The major problems of interest in this thesis are problems of aeroelastic-
ity, we therefore consider a compressible fluid flow as described by the compressible
Navier-Stokes equations as the fluid-flow model. Most aerodynamics and aeroelastic-
ity applications, however, involve turbulent flow, the subject of which is immensely
complex. For high Reynolds numbers, flow around a streamlined body with a low
angle of attack can be approximated by an inviscid flow. This simplification is no
longer valid for larger angles of attack, lower Reynolds numbers or for flows around
blunt bodies. The system of Reynolds-averaged Navier-Stokes equations closed by the
Spalart-Allmaras turbulence model [84] is considered for applications with turbulent
flows.

A substantial effort will be given to the development of an implicit discontinuous
Galerkin scheme designed to solve the system of compressible (Reynolds-averaged)
Navier-Stokes equations in the arbitrary Eulerian-Lagrangian framework. Similar
schemes were also successfully applied in [31] [64] 69], which inspired this thesis. The
BDF method is used for the time integration. The viscous terms are modelled with the
aid of interior penalty method. When we switch off the viscous terms, the solver based
on the implicit discontinuous Galerkin scheme solves the system of Euler equations.
This will be helpful when validating the solver on inviscid problems. The discontinu-
ous Galerkin method [2 6, 8, 35, 20, 21, [74] competes with the finite volume method
for the use in fluid-flow modelling in both the engineering and academical sector. The
strengths of the discontinuous Galerkin method are stability, robustness, low numeri-
cal damping and the ability to achieve high order of spatial accuracy. In the context
of fluid-structure interaction, a valuable feature of the discontinuous Galerkin method
is that it automatically satisfies the geometric conservation law, see e.g. [64]. To
mention the main weaknesses, the discontinuous Galerkin method is rather difficult to
implement and its discretisation produces a large number of degrees of freedom.

In an attempt to compensate for the latter downside, we will employ an algorithm
for distributed computing, namely the Schwarz method [79, 53, [59], which belongs to
the family of domain decomposition methods. The overlapping Schwarz method is
based on the division of the computational domain into overlapping subdomains. The
computation is then performed on each subdomain by a different node. The data from
the overlaps are exchanged between neighbouring subdomains every iteration. This
ensures that the solution may propagate among different subdomains. The Schwarz
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method is designed for mesh-based methods, such as the finite element, finite volume
or discontinuous Galerkin methods.

The boundary of the fluid domain is, of course, allowed to move. The natural
question that arises is how to deform the mesh with the moving boundary. Remeshing
in every time step (or every subiteration for the strong coupling) is unacceptable.
Many mesh-deformation algorithms have been developed, in fact so many that they are
classified into various groups. The spring analogy method [7, 32] or the method based
on solving the equations of linear elasticity [4, [I7] belong to coordinate-smoothing
algorithms. Most common velocity-smoothing algorithms are based on solving an
elliptic equation [57, 58]. In this thesis, we will be using different approaches for rigid
and elastic deformations. For the rigid deformation, we present an original coordinate-
smoothing method based on finding so-called blending functions by solving an elliptic
equation for each blending function. The advantage of this methods is that the elliptic
equations are solved prior to the simulation, thereby saving computational time. The
other approach, which we will be using for elastic boundary movement, is a coordinate-
smoothing approach based on radial-basis interpolation introduced by de Boer [25].

1.6 Objectives

Let us sum up the objectives of this thesis in the following points:
e give a thorough description of the discontinuous Galerkin method for the solution
of compressible Navier-Stokes equations in the ALE formulation,

e implement an implicit discontinuous Galerkin scheme,
e adopt an existing or develop a new mesh-deformation algorithm suitable for both
rigid and elastic movement of the boundary,

e benchmark the CFD solver for problems with stationary as well as moving bound-
ary,

e describe and implement a structure solver for a system of rigid bodies,

e describe and implement an elastic-structure solver for large deformations,
e develop an FSI algorithm based on the partitioned approach and

e validate the developed FSI solver.

The ultimate target of this thesis is to show that the developed FSI solver is able to
capture complex aeroelatic phenomena such as vortex-induced vibration or flutter.

1.7 Outline

The outline of this thesis is the following. The mathematical model of Navier-Stokes
equations as well as the Reynolds averaging and the Spalart-Allmaras turbulence model
is described in Chapter [2] Chapter [3] is devoted to the definition of boundary condi-
tions. The spatial and temporal discretisation of the governing equations is carried
out in Chapter [l The mesh deformation algorithm is discussed in Chapter [5] The
central topic of this thesis, that is fluid-structure interaction, is addressed in Chapters
[6] and [7] for rigid bodies and elastic structure, respectively, along with the correspond-
ing structural models. Finally, Chapter |8 contains the parallelisation approach of the
implicit discontinuous Galerkin algorithm.
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The mathematical model of Navier-Stokes equations is on the macroscopic level the
most accurate description of the fluid flow known today. It has been successfully
applied to fluid flow simulations for many decades. The system of Navier-Stokes
equations is a very general mathematical model which takes into account the viscosity
of the fluid and captures complex phenomena that occur in the fluid, such as shock
formation or turbulent flow. Because many difficulties arise when solving the system
of equations, a number of simplified mathematical models, such as the mathematical
model of Euler equations or the potential flow, are also used. The potential flow is a
very simple model for a steady fluid flow, which neglects viscosity and does not capture
shocks, vortices or other structures commonly present in a real fluid. The potential
flow is therefore unsatisfactory for our purposes.

The system of Euler equations, on the other hand, is capable of describing transient
flow and also captures shock formation and other complex structures. The model of
Euler equations is unable to capture the boundary layer as it describes an inviscid fluid
flow. It is a relevant and useful model nevertheless. The system of Euler equations
is from a certain perspective a special case of the system of Navier-Stokes equations.
It is therefore extremely helpful for benchmarking fluid flow software without viscous
effects.

The system of Navier-Stokes equations is thought to describe turbulent flow ac-
curately. The difficulty during simulation though is that the mesh size must match
the size of the smallest eddies to capture the turbulence phenomena precisely. The
smallest eddies are microscopic, which means that such a direct simulation is unrea-
sonably demanding in terms of memory consumption and CPU workload even to today
standards. The Reynolds averaging of the Navier-Stokes equations will be performed
to obtain a mathematical model suitable for turbulent-flow problems. Disturbingly
many models that approximate the turbulent flow on a macroscopic level have been
developed. We will use the Spalart-Allmaras turbulence model.

Before introducing the underlying mathematical model of Navier-Stokes equations,
we will go through basic notions of compressible fluids and ideal gases in particular.

2.1 Ideal gas and its properties

The thermodynamic state of a fluid is determined by exactly two state quantities.
The most basic as well as important state quantities are pressure p, density o and
temperature T and, as we have mentioned, only two of them are enough to characterise
the thermodynamic state of a gas. The third quantity can be determined using an
equation of state. An ideal gas is a compressible fluid which is described by the linear
equation of state

p=roT (2.1)
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called the ideal gas law. The proportionality constant r, which varies from gas to gas,
is called the specific gas constant and is determined out of the molar mass M and the
universal gas constant R ~ 8.314 Jmol ! K~! as follows

VE (2.2)
Molar mass for air in standard conditions (7" = 25°C and p = 101325 Pa) is about 28.97
gmol ™!, which corresponds to r ~ 287 Jkg=! K~1. All other fluid properties, such as
internal energy, enthalpy or entropy, can be expressed as functions of two other state
quantities, e.g. pressure and temperature. The equation that relates internal energy
to pressure and temperature is sometimes called the caloric state equations and in the
case of an ideal gas takes a particularly simple form. For an ideal gas, specific internal
energy ¢ and specific enthalpy h are functions of temperature 7" alone, i.e. ¢ = (7))
and h = h(T), moreover

e(T) =ceyT, (2.3)
h(T) =c,T, (2.4)
where the proportionality constants ¢y and ¢, are called the specific heat capacities

at constant volume and pressure, respectively. Note that specific internal energy and
specific enthalpy are related through

h=¢e+p/o. (2.5)
Comparing (2.3)), (2.4), (2.5) with the ideal gas law gives us a very helpful expression
r=c,— cy, (2.6)

known as Mayer’s relation. The heat capacity ratio

Cp
=2 2.7
Y ey ( )

is also a useful notion. For air in standard conditions we have, ¢, ~ 718 Jkg7! K=,
¢, =~ 1005Jkg ' K™! and v ~ 1.40. In aerodynamics, very important notion is the
speed of sound. Under the assumption of an ideal gas and isentropic propagation of
sound, the speed of sound a is

a= /12 = VrT. (2.8)
0

For derivation see [66].

2.2 Important dimensionless numbers in aerodynamics

An important dimensionless number that arises in both viscous and inviscid flow is
the Mach number Ma, which is defined as the ratio between the speed of the fluid v

10
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and the speed of sound a, that is

Ma = (2.9)

The behaviour of fluid flow changes considerably depending on whether the Mach

number is lower or greater than one, in other words, whether the flow is subsonic

or supersonic. Let us introduce two other dimensionless numbers, which provide an

insight into a viscous flow. The Reynolds number Re is defined by the equality
_ovl

Re , 2.10
. (2.10)

where g is dynamic viscosity and L is the characteristic length, which can be the
radius of a pipe or the length of an aerofoil chord. In vague terms, the Reynolds
number is the ratio of inertial forces to viscous forces in a fluid. The Reynolds number
has a major role in the dynamic similarity of flows. Let us note that ¢ and v in ([2.10))
are characteristic rather than local quantities, which are chosen based on the specific
problem. For example in external aerodynamics ¢ and v are typically chosen as far-
field density and velocity. The Prandtl number Pr is defined as the ratio of the viscous
and thermal diffusion rates or equivalently

Pr = % (2.11)

where k is thermal conductivity.

2.3 Stagnation quantities

It is useful to define stagnation analogues to many of the regular quantities. The
definition and derivation of stagnation quantities can also be found for instance in
[66]. A stagnation quantity at a certain point of a moving fluid is the value of the
regular quantity, where the fluid in the neighbourhood of that point was isentropically
brought to rest. When a fluid stream is isentropically brought to rest, the enthalpy
increases exactly by the kinetic energy of the flow. This can be summarised into the
two following equations as

1
ho = h+ §v2, (2.12)

Sp = . (2.13)

Note that stagnation quantities are denoted with the subscript 0 and specific entropy
is denoted by s. Relations and fully define the stagnation quantities.
Other stagnation quantities can be obtained by applying the equation of state. Here
we will derive the direct relationship between temperature, density, pressure and their
stagnation analogues for the case of an ideal gas. The constant entropy assumption
can for an ideal gas be written as

Po_ P (2.14)

oy 0

11
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see [66]. Using the ideal gas law we have

~

1
T 71 1
Lo _ (@)7 _ (@)” _ (2.15)
T 0 p
In order to determine Tp, let us plug (2.4)) into (2.12)) to get

1
Ty=c, T+ 5?)2. (2.16)

After a number of manipulations and using the expression for the speed of sound ([2.8)
and the Mach number ([2.9) we obtain

1
Ty=T (1 + %Maﬁ) . (2.17)

Exploiting ([2.15)) gives us expression for stagnation density and pressure

IS
00 = 0 (1 + %MaZ) , (2.18)

1 1
Do = p (1 + %Maﬂ) . (2.19)

2.4 Navier-Stokes equations

After a short overview of some relevant notions in fluid dynamics, we finally get to in-
troduce the mathematical model of Navier-Stokes equations. We will state the Navier-
Stokes equations in the Eulerian description. Arbitrary Lagrangian-Eulerian descrip-
tion (ALE) will come into play when deriving the weak formulation in Chapter
where we will make use of the Reynolds transport theorem. Considering a compress-
ible fluid flow in a finite domain Q C RP, the system of Navier-Stokes equations can
be written in the following differential form

% +Va(v®) =0, (2.20)
a(g—:ﬁ) + Va(ov*0?) =V, 07, p=1,...,D, (2.21)
8(5:) + Valeer”) = Va(o*vs —q%). (2.22)
The heat flux
Go = —k 0T (2.23)

is reversely proportional to the temperature gradient with thermal conductivity k as
the proportionality constant. We consider an isotropic Newtonian fluid with constant
viscosity in space and time. For such a Newtonian fluid, the total stress tensor o is
related to the strain-rate tensor £,3 through a relation analogous to the Hooke’s law

12
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for solid isotropic materials
o’ = NE g™’ + 2u &P, (2.24)

where A and p are the Lamé parameters, which, in the case of fluid dynamic, are called

the bulk and dynamic viscosities, respectively. The total stress tensor can be broken

up into isotropic and deviatoric parts. The isotropic part is essentially the mean stress,
1

which, with a minus sign, is also knows as static pressure, i.e. 307 = (A+ %,LL)S;/ = —p.

We obtain the deviatoric stress 77, also called the viscous stress tensor, by subtracting
the isotropic stress tensor %03 g*% from the total stress tensor o’

(03 [0} 2 (03
rﬁzu(% 6—5&79 ﬂ). (2.25)
Finally, the total stress tensor can be written as
o =798 _pgoP. (2.26)

With the assumption of small deformations, the strain-rate tensor takes the form
1
5a5 = §(V51}a + va’l)[;) (2.27)
and the viscous stress tensor thus takes the form
2
0 =p <V’Bva + VP — nggaﬁ) . (2.28)

It it easy to check that this relationship satisfies the Newtonian law of viscosity.

Since the isotropic (pressure) term has a convective nature, while the deviatoric
term is viscous, it is convenient to rewrite the Navier-Stokes equations -
so that the pressure term appears together with the other convective terms. The
Navier-Stokes equations written in this fashion read

do

5 + Vi (ov®) =0, (2.29)
B
a(g: ) + VQ(QUQU’B +p9a6) = vaTaﬁv B = 1’ Tt D’ (230)
d(ve
%)t ) V(06 + p)e®) = Val(rPu — ¢7). (2.31)

This form of the Navier-Stokes equations with the heat flux and the viscous
stress tensor (|2.28]) is much more appealing for numerical simulation than the previous
formulation. Here we have two parameters of the described viscous fluid, namely
thermal conductivity & and dynamic viscosity . Note that for an adiabatic inviscid
fluid £ = p = 0 and the right-hand side of equations and vanishes, in
which case - is called the system of Euler equations. The symbol D
denotes the spatial dimension. The system - is a system of M = D + 2
equations and D + 4 unknowns, which are in particular the density o, components
of velocity v®, total specific energy e, static pressure p and temperature 7. Hence,

13
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the system of Navier-Stokes equations must be completed by two additional relations.
Considering the expression for the total specific energy

e=c¢c+ %vava (2.32)
with the internal energy e, the two relations completing the system of Naviers-Stokes
equations are namely the equation of state relating p, o and T" and the expression for
internal energy, also called the caloric equation of state, which relates €, p and T'. We
stated equations of state for ideal gases in Section as expressions and .

Let us show how to incorporate the equations of state for an ideal gas into the
system of Navier-Stokes equations. In the case of an ideal gas flow, we can remove
the dependency of Navier-Stokes equations on temperature T by substituting for T in

(2.23) according to the ideal gas law ([2.1]), thereby obtaining the heat flux

_ kO (p\__ v n 9 (p
Qo = r Ox® <Q)_ v —1Proze (Q> (2.33)

independent of 7'. Sometimes the expression with the Prandtl number is more
convenient. By again substituting for 7" according to this time into and the
result into , we obtain the equation
oot P L (2.34)
y—1lo 2
The system of partial differential equations - with the viscous stress
tensor ([2.28)) and the heat flux (2.33) completed by the algebraic equation is a
system of D + 3 equations and D + 3 unknowns. We finally have a match between the
number of equations and number of unknowns.
Even after introducing the state equations, the system - is incom-
plete without appropriate boundary conditions the subject of which is rather complex.
Chapter |3 has been therefore reserved entirely for this purpose.

2.5 Conversion of Navier-Stokes equations into
dimensionless form

Conversion to dimensionless units is convenient, as the solver manipulates with more
reasonable values usually around the order of units. The way to convert a physical
quantity b to a dimensionless quantity is by choosing a corresponding reference value
b.ef and then substituting

b — brer b, (2.35)

where before the substitution b is understood as the physical quantity and after the
substitution as the corresponding dimensionless quantity. Let us choose the reference

value to be the same in all directions for a vector quantity, i.e. b%; = by;. We convert

the system (2.29)) - (2.31)) into dimensionless form by applying (2.35) to quantities p,

e, p, t, v, x and by figuring out the relation between the reference values in such a
way, that they cancel out, if possible. Let us first deal with the inviscid case, where
the right-hand side of the system (2.29) - (2.31)) is zero. After manipulating the three

14
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equations for a while, it is possible to see that the reference values get cancelled, if the

equations " " and ‘) are multlphed by xref/(gref Uref)a xref/(Qref U?ef) and

Tret/ (0ref V3¢), TESpectively, and if

Lref 2 Dref
tret = ) Eref = Urefs Uref = . (236)

Uref Oref

It is easy to check that the equation is also satisfied in the dimensionless form,
when the relations in are applied. This means that the system of Euler equations
- with £ = p = 0 completed by is scalable. In other words, if we
make the whole geometry of a problem larger by the same factor in all directions, then
the solution will also be scaled up, but will be otherwise unchanged. This is not the
case for the system of Navier-Stokes equations, as we will see shortly.

Let us derive the dimensionless form of the system of Navier-Stokes equations, which
differs from the system of Euler equations only by the right-hand side of and
and so these are the only terms we need to deal with. We use the same procedure
as before, that means we apply to quantities g, e, p, t, v, x, p and multiply
by Tret/(0ret V) and by Tret/(0ret v3). After using relations in (2.36)), we
find out that not all the reference values on the right-hand side of and
get cancelled. In fact, the constant 1/(gpef Urer Trer) gets factored out. It is convenient
to introduce a constants to accumulate the factored reference values, but instead of
using some randomly chosen numbers with no deeper meaning, it is better to use
dimensionless numbers, which provide an insight to the flow. We will actually use
the Reynolds number and the Prandtl number introduced in Section
Instead of the true flow values, however, the Reynolds number here consists of

reference values, that is
Oref Uref Lref

Href
In order to distinguish the two definitions let us call the above the reference Reynolds
number. Depending on the choice of the reference values, the reference Reynold num-
ber may differ from the true Reynolds number , but the important thing is that
they scale the same way, therefore they both indicate the dynamic similarity of flows.
The reference Reynolds number may be unphysical, but it is still convenient to intro-
duce it for the accumulation of reference values. Using the reference Reynolds number

(2.37) we can modify the viscous stress tensor ([2.28]) and the heat flux (2.33)) as follows

Reref = (237)

(0% N (07 (0% 2 (6%
T Rews <Vﬁv + VP — gvyzﬂg B) ) (2.38)

gl w0 (p
Y = — - . 2.39
¢ v — 1 Pr Reyef 0z (g) ( )

The system of Navier-Stokes equations - E[) completed by ([2.34]) is con-
verted to the dimensionless form by replacing @ and with and ,
respectively.

We need to set three reference values and calculate the rest out of . In practice,
the reference length .. is always set and is usually chosen as aerofoil chord or channels
width. Note that the geometry and the computational grid needs to be rescaled
according to .. so as to make the aerofoil chord or channels width equal to unity.
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For external flows, we may for example set p.r as the free-stream pressure p,, and oyef
as the free-stream density o. For internal flows the inlet stagnation pressure p;,, and
the inlet stagnation density gy, is typically used instead. In engineering practice, such
as fluid flow modelling in steam turbines, the inlet stagnation density is seldom given
as it is hard to measure. Instead, the inlet stagnation temperature 7j,, is a commonly
known parameter. It is easy to calculate the corresponding inlet stagnation density
with the ideal gas law (2.1). Many other variations for the reference values are possible
and the particular choice depends on the specific problem that is being solved.

After the reference values are chosen and the rest calculated, each physical quantity
b is converted to the corresponding dimensionless quantity b* according to the relation

b
bref .

b* = (2.40)

After an approximate solution is found by the solver, the dimensionless quantities are
converted back to physical quantities simply by the inverse relation b = b.qf b*.

2.6 Navier-Stokes equations in 2D and 3D

The system (2.29)) - (2.31)) can be written in a compact form as follows

ou
E + Vafa(u, V’U:) =0, (2'41)
where o = 1, ..., D is the summation index, w is the vector of conservative variables

and f¢ is the total flux, which consists of the inviscid (Euler) flux fg and the viscous
flux f¥ as follows

f(u, Vu) = f(u) — fi(u, Vu). (2.42)

In the case of an adiabatic and inviscid flow the viscous flux vanishes, i.e. f{y =0, and
the total flux f*(u) = fi(u) is independent of Vu. In two dimensions (D = 2) the
vector of conservative variables w, the Euler flux f; and the viscous flux f{} become

0 ov® 0
QUl N Qvavl + pgal N Tal
U = 0v? |’ fE(u) = 0002 +pg°‘2 ) fv(u,Vu) = a2 ) (2-43)
oe (oe + p)v* TPvg — ¢*

(=1, 2). In three dimensions (D = 3) we have

0 ov® 0
QUl Qvavl + pgod 7.(11
u=|ov*|, fou)=/|ov?*+pg**|, fi(u,Vu)= o2 ., (2.44)
QUS QUQUS + pga3 Ta3
oe (o€ + p)v° 75 — ¢
(a=1,23).
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2.7 Turbulence modelling

Although the system of Navier-Stokes equations without any additional turbulence
models describes turbulent as well as laminar flow accurately, numerical solvers based
on solving the system with a mesh of a reasonable element size only ever predict a
laminar flow, even in regions where the flow is supposed to be turbulent. Turbulence
will make an appearance in the simulations only when a very wide rage of time and
length scales is resolved including smallest microscopical eddies. In order to capture
the smallest structures, the mesh would have to be extremely refined and/or the or-
der of accuracy would have to be very large. Modelling with such a fine resolution is
called a direct numerical simulation and it captures the behaviour of fluid flows with
an enormous accuracy. However, a direct numerical simulation, event with the high-
est computational power that is currently available, is unthinkably computationally
demanding for any practical applications. This method allows us to simulate only a
tiny section of the fluid flow, such as turbulent flow in microchannels, and even that
is computationally challenging.

Solving the system of Navier-Stokes equations on a coarser grid than what is required
for a direct numerical simulation leads to unphysical behaviour of the numerical solu-
tion in turbulent regimes. The unresolved microscopical eddies dissipate energy and
change the behaviour of the flow even on the macroscale. For this reason, a plenty
of endeavour has been devoted to modify the Navier-Stokes equations to obtain a
new mathematical model that would be able to approximate the dissipative nature
of turbulence without explicitly resolving individual eddies. The oldest and still the
most widely used method goes back to Osborne Reynolds [77]. Turbulent flow never
reaches true steady state, even if the boundary conditions are constant. Instead, the
flow settles at a statistical steady state where chaotic fluctuations, called turbulence,
keep showing up. For such statistical steady state, Reynolds proposed to average the
fluid quantities over time to eliminate these fluctuations and find a well defined steady
state. Using Reynolds averaging for the Navier-Stokes equations results in the so-
called Reynold-average Navier-Stokes (RANS) equations. This approach is effective
for steady problems, however it is tricky to apply it to unsteady problems, as it tends
to eliminate all the unsteady structures.

In an attempt to overcome this issue, another approach called large eddy simula-
tion has been proposed. Large eddy simulation is especially suitable for modelling
of unsteady turbulent flows. The idea is to remove structures of a size below a cer-
tain threshold from the flow via low-pass filtering and resolve structures with higher
length scales. As discussed above, the effect of small eddies cannot be ignored and is
modelled by the co-called subgrid-scale models. Although large eddy simulation is a
progressive way of approaching modelling of turbulent flows, it is not within the scope
of this thesis. We will address the more common simulation of turbulence using RANS
equations.

2.7.1 Reynolds averaging of the Navier-Stokes equations

Reynolds averaging [77] is a technique in which every quantity b is decomposed into
its time-averaged component b and fluctuating component b':

b=b+1. (2.45)
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The true time average b is sometimes defined explicitly by
_ 1 to+T
b(x) = lim —/ b(x, t)dt. (2.46)
to

This definition is valid only if the limit is independent of the initial condition ¢y, which
is thought to be the case for statistical steady state in turbulent flows. Often, the
explicit definition is avoided and the operator - called the Reynolds operator is defined
implicitly as a linear operator satisfying the Reynolds property, which can be written
as the following two simple properties

@\l
S

= ab, 1=1 (2.47)

Here a and b are two arbitrary quantities. The Reynolds property can readily by
derived from (2.46)). Note that there are other equivalent ways of expressing the
Reynolds property including a single-expression formula, but we choose for its
simplicity. The fluctuation operator - is defined by the Reynolds decomposition .
Other useful properties may be derived from the Reynolds property , e.g.

S

=, b =0, ab/ =0, ab=ab+ a'll. (2.48)

In addition to the Reynolds property, the Reynolds operator is typically assumed to
commute with differential operators:

ob  0b _ B
- = = . 2.4
= Vb = Vb (2.49)

The system of RANS equations is obtained by averaging both sides of each equation
in the system of Navier-Stokes equations and applying the decomposition to
each quantity. The resulting system is simplified using linearity, the Reynolds property
(2.47)) and its corollaries . The RANS equations resemble the original system,
with all quantities replaced by their time-averaged counterpart and a few extra terms
that need to be approximated. The decomposition , however, works well only
for incompressible Navier-Stokes equations.

For compressible Navier-Stokes equations, the Reynolds decomposition leads to
emergence of many terms that can no longer be simplified. For compressible flows,
it is more convenient to apply the averaging to specific quantities that are re-
lated to unit volume rather than to unit mass. For example, instead of applying the
decomposition to velocity v* (momentum related to unit mass), we apply it to mo-
mentum related to unit volume pv®. This leads us to the definition of density-weighted
averaging also called Favre averaging [34]:

b=b+1" (2.50)
with density-weighted time average
- ob
; (2.51)

and associated fluctuations b”. Properties analogical to (2.47)) and (2.48)) can be derived
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also for Favre averaging:

@ll
(=l

—ab, b=b, pV =0, pal =0, gh=ob=0ob+ . (2.52)

"‘and - follows form linearity of the Reynolds

Note that linearity of operators -, -
operator.

Finally we have suitable tools (Reynolds and Favre averaging) for the derivation the
RANS equations for compressible flows. The system of RANS equations for compress-
ible fluid flows (sometimes also called the system of FANS equations for Favre-averaged
Navier-Stokes equations) are obtained by averaging both sides of each equation in the
system of Navier-Stokes equations - by the Reynolds operator, applying

the Reynolds decomposition to p and the Favre decomposition to v*, e and T" and

using properties (12.52)):

do

2e 5i°) = 2.
o + V,(07%) =0, (2.53)
A(oP
) V@t +5g™) = Va (0 7). (2.54)
9 @é =~ —\ ~a ~a afy~ ~ o
NOD | ul(@e +5)%) = V(7 + 705 — 0 — ). (255)

The averaged total energy is

1
€E=¢+ §ﬁaﬁa + k, (2.56)
which for an ideal gas can be written as
1 p 1
e = ——=+ 0%, + k. 2.57
€ y—1p + SV + ( )

A new unknown k called turbulent kinetic energy is introduced to approximate the
kinetic energy of turbulence:

20
Turbulent kinetic energy k should not be confused with thermal conductivity k. The
system of RANS equations ([2.53]) - (2.55]) has the same form as the system of Navier-
Stokes equations (2.29) - (2.31) with every quantity appropriately averaged, except
that it contains three additional terms with two new quantities, the Reynolds stress
tensor 7;" # and the turbulent heat flux q;*, defined as

k ~ (2.58)

2 2
7 = (Vﬁﬁa + Ve’ - §vagaﬁ> N §@k9aﬁv (2.59)
~ Y o O (D
o= k0, T =——"-1°" " (Z]. 2.60
qt’ t ’Y—lPrtama (@) ( )
B

which, according to Boussinesq hypothesis [98], approximate the terms 7, ~ —pv"*v"?
and ¢ ~ c,0v" T, respectively. Here we have two new parameters - the turbulent

viscosity p; and the turbulent Prandtl number Pr;. Turbulent thermal conductivity k;

19



2 Mathematical model

is related to y; and Pry through Pr; = ¢, /ki. The turbulent Prandtl number is typ-
ically considered constant. We choose Pr; = 0.9 according to [98]. Essentially, RANS
equation model the effect of turbulence by adding appropriate amount of turbulence
viscosity. The remaining question is how much and where to add turbulence viscosity.
This is what turbulence models are designed for.

2.7.2 Spalart-Allmaras turbulence model

The system of RANS equations is incomplete as it contains two additional variables,
turbulent viscosity p; end turbulent kinetic energy k, but the same number of equa-
tions as the original system of Navier-Stokes equations. These variables require ether
an additional equation each or a clever approximation. We thus have Turbulence
models classified based on the number of additional equations - from 0-equation to
two-equation models. In this thesis, we consider a very popular one-equation model
called Spalart-Allmaras turbulence model [84]. The equation governing the transporta-
tion, dissipation and generation of viscosity-like quantity 2 is in the dimensionless form
given by

J(ov n 1 . B o

(aQt ) + Va(00u®) = Roo [V ((n+ 00)Vab) + 8c2 VDV 10 (2.61)
PN 1 D\

+ Cp oSV — R—walwa (E) (2.62)

and completed by the following relations

3

e = 0V fur, Jo1 = ﬁXTcgl’
X = ga Jo=1- %val,

. 1
S’:|w|+mfv2, fw:9<9161—05§;)6a
g:r+cw2(r6—r), r:min(m,m),

and constants ¢;; = 0.1355, ¢ = 0.622, 0 = %, k = 041, ¢y, = cbl/l‘i2 + (1 +
)]0, Cuwa = 0.3, cp3 = 2.0, ¢,; = 7.1. Here v = u/p is kinematic viscosity, d is the
distance to the nearest wall and |w| is the vorticity magnitude. The Spalart-Allmaras
turbulence model closes the system of RANS equations when the turbulent kinetic
energy k is neglected.

If we apply the same procedure as in Section to the RANS equations -
(2.55)), we convert the system into dimensionless form by replacing how we evaluate
the viscous stress tensor 77 and heat flux ¢® form and (2.33) to (2.38) and
, respectively, and if we replace the expression for the turbulent stress tensor Tta’B
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2.7 Turbulence modelling

and turbulent heat flux ¢ from (2.59)) and (2.60) with

« 22 ~a o~ 2 ~v
P = Ro <VBU + VP — ngiﬂg B) , (2.63)

Y pe O (D
L= Py, 2.64
4| v — 1 Repet Pry Oz (g) ( )

respectively. Here we set turbulent kinetic energy £ = 0. To sum up, when turbulent
kinetic energy k is neglected, the RANS equations - with the equation for
eddy viscosity constitute a system of D + 3 partial differential equations with
D + 4 unknowns, which is completed by the algebraic equation (2.57)).

Let us rewrite the system in a compact vector form as follows

0

8_? + Vo f(u,Vu) = s(u, Vu), (2.65)
where f*(u,Vu) = fa(u) — f3(u, Vu) is the total flux and s(u, Vu) is a source
term. In two dimensions the viscous and inviscid fluxes and the source term read

0 0" 0
@171 @@aﬁl + ﬁgal 7~.al + Ttal
u= |00 |, fi(u)=|00°0* +pg** |, fii(u,Vu)= 77 :
gé (o€ + p)o° (7% + 7755 — ¢ — g
ov oo (4 00) Vi /(0 Repef)
0
0
s(u,Vu) = 0 (2.66)
0
_ ~ N _ A~ (D 2
chQVQVvaV/(O-Reref) + CleSV - Cwlfw@ (3) /Reref
(a=1,2)
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3 Boundary conditions

The system of Navier-Stokes equations equipped with the equation of state
is still not complete without appropriate boundary conditions. The boundary
conditions obviously play a crucial role when defining a fluid flow problem and need
thorough care. The most natural boundary condition is the boundary condition for a
solid wall, yet we will often deal with a domain which is only a segment of a fluid flow
not entirely bounded by a solid or other wall, hence the need to introduce an inlet and
an outlet.

Let © C RP be the domain of interest and let 7@ be the unit outward normal to
the boundary 0€2. Due to the focus of this thesis on fluid-structure dynamics, the
domain must clearly be considered deformable. Thus the boundary is time dependent
in general 90 = 90(t) and moves with the velocity V = V(x), @ € 0. At the inlet
and outlet we typically assume V = 0. We will first handle the boundary conditions
for an inviscid flow and then complete these condition for a viscous flow.

3.1 Boundary conditions for inviscid flow

In this section, we will only consider an ideal gas flow in a two dimensional domain §2 C
R? for simplicity. Boundary conditions in a three-dimensional domain are analogous
and require only a few modification to the boundary conditions in 2D.

Let us first categorise different types of boundaries and deal with them separately.
The theory of hyperbolic equations [46] implies that the number of quantities that
need to be prescribed on the boundary is equal to the number of negative eigenvalues
of the Jacobi matrix

O(f*(u) —Veu)
o Ng-
The number of positive values indicates the number of quantities that need to be
extracted from the flow field. Let us denote the limit boundary value of a quantity
b by b~. For the sake of simplicity of the forthcoming expressions, let us define the
normal relative velocity

(3.1)

V, =1v%n, — V%n, (3.2)

of the fluid flow and the boundary. The eigenvalues of the Jacobi matrix are

)\1 = Vn —a,
Ao = A3 =V, (3.3)
)\4 = Vn + a,

where a is the local speed of sound defined by ([2.8)). The signs of eigenvalues depends
on the sign of the normal relative velocity V,, and on whether the normal relative
velocity is greater or lower than the speed of sound a. Note however that we assume
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3 Boundary conditions

that V¢ = 0 at the inlet and outlet, thus V,, = v*n,. The domain is only allowed
to deform at the walls. There is not a big practical reason as why the inlet or outlet
should deform. Depending on the sign of the eigenvalues it is natural to divide the
boundary conditions as follows

(a)

24

Solid wall (V,, = 0)
e cigenvalues: \; < 0; Ao = A3 =0; \y > 0,
e prescribe: zero normal relative velocity V,, = 0,
e extract from flow field: pressure py.n = p~.

In this case, we do not express u; explicitly. We will derive the flux through the
wall directly later using the condition of zero normal relative velocity V,, = 0,

which is equivalent to

v"ng = Vn,. (3.4)

Subsonic inlet (V,, <0, [V,| < a)
e cigenvalues: A\, Ao, A3 < 0; \y >0,

e prescribe: stagnation pressure pi,,, stagnation density gi,, and angle of
attack ajp,

e extract from flow field: static pressure py, = p~.

Modifying the relation (2.19)) for stagnation pressure we obtain the expression
for the inlet Mach number

y—1
2 in R
Mayy = 4| —— (p°> —1]. (3.5)
7_1 Pin

Consequently, using the relation ([2.18)) for stagnation density we obtain the inlet
density

3 e
Oin = Oing (1 + 7TMa?n) : (3.6)

It is easy determine the inlet velocity magnitude v;, using relations ({2.8)) and

£9)

Uin = 1\/[ain Ain = Main 7 Pin . (37)
Oin

The Cartesian components of velocity are given by

1
Vi, = Vin COS Qtjp,

02

in — Uin S11 Q.

Finally, we calculate the specific energy as

1 DPin 1 a
€in = mg + 2(Um) (Um)a



3.2 Boundary conditions for viscous flow

and plug into the vector of conservative variables
1 2
Up = (Qina Oin Vipsy Oin Vips Oin ein)'

(¢c) Subsonic outlet (V,, > 0, |V,| <0)
e cigenvalues: \; < 0; Ao, A3, \y >0,

e prescribe: pressure poys,

o extract from flow field: density oont = 0~ and velocity components v5,, =

VYT

The specific energy is readily calculated as

Y Pout 1 o
7 _ 1 Oout + 2(Uout) (Uout)a-

€out =
All we need to do now is to plug into the vector of conservative variables
_ 1 2
Uy = (Qout» OQout Ugyuts Qout Ugyuts Qout eout)-

(d) Supersonic inlet (V, <0, |V,| > 0)
e cigenvalues: A1, Ao, A\3, Ay < O,
e prescribe: vector of conservative variables u;,,
e no quantity is extracted from flow field.

In this case we simply prescribe the whole vector of conservative variables

Up = Uiy .

(e) Supersonic outlet (V, > 0, |V,| > 0)
e cigenvalues: A1, Ao, A3, Ay > 0,
e no quantity is prescribed,
e extract from flow field: vector of conservative variables wq, = u ™.

In this case we extract the whole vector of conservative variables from flow field

Up = Uoyt = U .

3.2 Boundary conditions for viscous flow

For a viscous flow we add two conditions to the boundary conditions for an inviscid
flow.

(a) Solid wall.
Here we impose the no-slip boundary condition, which, along with the zero
normal relative velocity condition already imposed for the Euler flux, gives us
zero relative velocity in all directions

v*=V* a=12...,D. (3.8)
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3 Boundary conditions

Furthermore, we prescribe the heat flux through the wall. We usually consider
non-conductive wall, i.e.
q“ne = 0. (3.9)

We construct the value w;, by incorporating the condition (3.8)) as follows
Up = (Qwall; Qwallvlv Owall VQ, Owall €wa11) ) (3.10)
where the total specific energy is calculated using (2.34), i.e.

1 Pwall 1
Cwall = —— + =V, 3.11
all v — 1 Owall 9 a ( )

and density owan = 0~ and pressure py.n = p~ are extracted from the flow field.

Inlet and outlet.
Here we impose the zero traction condition

70 =0 (3.12)

and the zero heat flux
¢“ne =0 (3.13)

into or out of the domain {).

3.3 Boundary conditions for the RANS equations

closed by the Spalart-Allmaras turbulence model

The application of boundary condition for RANS equations is very similar as in the
case of regular Navier-Stokes equations. The first four components of the boundary
value u;, stay unchanged, except that the quantities are appropriately averaged. The
difference is that u; has one more entry containing pv due to the extra equation given
by the turbulence model. Density is defined in all cases, so all we need to do is to
define the value for ».

(a)

(b)

()
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Solid wall. Here we prescribe
Uggal = 0. (3.14)

Inlet. According to Spalart and Allmaras [84] the ideal value to prescribe at the
inlet is 0, though numerical solvers may result in an error, when the value of ©
becomes negative anywhere in the domain. If there are such numerical issues
Spalart and Allmaras propose to prescribe any value satisfying

ﬁin
— < 0.1. 3.15
" (3.15)

We use the value 74, /v = 0.01 in the numerical simulations.

Outlet. We extract the value o from the flow field, i.e.

Dot = 7. (3.16)



3.3 Boundary conditions for the Spalart-Allmaras turbulence model

Zeros turbulent heat flux
¢'ne =0 (3.17)

is assumed through the whole boundary and zero traction due to turbulent stress
tensor through the inlet and outlet is assumed, i.e.

%04 = 0. (3.18)
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4 Discontinuous Galerkin
discretisation

The discontinuous Galerkin (DG) method [2, [6], 8, 20, 21, [36], [74] is a very stable and
robust scheme for a compressible fluid flow modelling. In the field of CFD, it is the
main competitor for the finite volume method - still the most commonly used method
in the industry. In this thesis, we choose the discontinuous Galerkin method as the
central method for fluid flow modelling. The discontinuous Galerkin method natu-
rally offers an arbitrary order of accuracy by choosing basis polynomial of appropriate
order. In this chapter, we present the spatial discretisation of the system of compress-
ible Navier-Stokes equations by the discontinuous Galerkin meshod in the arbitrary
Lagrangian-Eulerian (ALE) description and an implicit temporal discretisation, see
also [64, 69]. The ALE description enables simulation of a fluid flow in a deformable
domain with moving boundary, which is evidently an essential requirement for solving
fluid-structure interaction problems. The temporal discretisation in carried out by the
BDF method, which is an implicit single-step multi-level method.

4.1 Weak formulation

Let us first derive the weak formulation on which the discontinuous Galerkin method is
based. Let T = {1, Qq, ..., Qg } be the partition of €2, thus | J, ) = Q, and any two
elements € and €2; have distinct interiors. We do not explicit write (¢) and € (¢),
nonetheless we do assume the time dependence of the domain €2 and of the individual
mesh elements Q. Taking the dot product of each side of with a test function
¢ and integrating it over a mesh element €2, we get

ou N B
/Qk{anLVaf}-d)dQ_O. (4.1)

Here we hide the dependency of f on w and Vu for transparency. In order to obtain
the weak formulation we apply the divergence theorem

Vof® ¢ dQ = Flu*, Vu*, n) ¢~ ds — FO- 0,0 dQ, (4.2)
Qp 0Q Qp

where m is the unit outward normal to the boundary 0€2;. Here we denote the left-
hand and right-hand side limit values of w in the direction of integration by w™
and w™, respectively. In the case of the discontinuous Galerkin method, we allow
discontinuities on the boundary of each element €2 and so the value of u and ¢ is in
not known on 92, only there limit values are defined. Therefore, we approximate the
viscous and inviscid normal physical flux by a viscous and inviscid numerical flux on
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4 Discontinuous Galerkin discretisation

0%, respectively, that is

fi(u)na = Fy(u®,n),

fo(u,Vu)n, ~ ]:i/(ui, Vui,n),

where the superscript ¢ stand for the interior of 2. We will discuss the properties of the
numerical flux and a possible description in Section [£.3] Analogically to the physical
flux we define the total numerical flux as F' = F% — F,. In order to account for the
boundary conditions, we define the numerical flux F as

Fi(u*, Vu*, n) if € Q\o9,

b 3 ) (4.3)
F'(u,Vu ,n) if x €,

F(u*, Vut, n) = {

where F? is the boundary flux which will be defined in Section . Although the value
ut is not defined on the boundary, we still write F = F(u*, Vu®, n) so that the
notation is unified. We must keep in mind that the value u™ is not used, if € 99).

Inserting into and summing over all elements Q (K =1,2,..., K), we
obtain the weak formulation in the Eulerian reference frame

K
Z{ % a0 - [ o 0,640+ ¢ Flut Vut on)-¢ds| =0, (44)
—~ /g, O Q 0%,

For a stationary domain boundary and mesh, the time derivative in the first term of
can be simply moved in front of the integral. In this thesis, we consider moving
boundary, therefore the mesh elements and the test function need to be treated as
time dependent, that is 2y = Qx(¢) and ¢ = ¢(x, t). Thus, we need to employ the
Reynolds transport theorem to bring the time derivative outside the integral. The
Reynolds transport theorem reads

d B ou ¢ o _
T Qku.gde—/Qk T ¢dQ—i—/Qku py dQ—i—ngkV noeful} - ¢~ dS, (4.5)

where the average value {u}} = (u™ + u™) was taken instead of just u as w may be
discontinuous on 0€2;. Assuming that the test function moves with the mesh velocity
V implies

O

T _yed,o. 4.6

s o (1.6
Using the above relations we get the weak formulation in the ALE description as

follows:
For all ¢t € (0,7 find u(-,t) € [H' (2, 7)™ such that

i;[%/ﬂkumbdQ—/Qk(fa—vau)-aagbdQ
+é9k [}'(u{ out, m) — Vana{{u}}] P ds} —0, (4.7)
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4.2 Semi-discrete scheme

for all ¢ € [H*(Q, T)]™. Here
HY(Q,T)={w: wlo, € H' (%) V% € T} (4.8)

and H'(Qy,) = WH2(£,) is a Sobolev space.

4.2 Semi-discrete scheme

The discontinuous Galerkin discretisation is based on replacing the infinite-dimensional
space H'(2, T) with its finite-dimensional subspace Sy, which we choose as

Sy ={w € L*(Q): wlg, € P1(A%) Y €T}, (4.9)

where P9(),) is the space of polynomial of degree up to g on Q. Let us define
(k

functions ¢, ) € 8, as follows

(1) gpgk)klk? Spék)yﬂka ) (pgk)klk is a basis of Pq(Qk’)a

(ii) oM (@) =0 Vo e O\

)

The set of functions {@"”}fj x—1 is a basis of S;. Note that each basis function

gpgk) is allowed to be discontinuous at the element boundary 0€2;. The number of

basis functions I depends on the degree of polynomials ¢, for example in the case of
triangular elements in 2D we have I = (¢ + 1)(q + 2)/2.

By expanding the approximate solution w = (u1, ..., ups) as a linear combination
of basis functions

U (2, 1)

=Y U0 1) (4.10)

J=1

and choosing the test function ¢ such that its m-th component (which corresponds to
(k)

J

¢‘ B §k) if n =m,
G ) if n # m,

the mth equation) is a basis function ¢’ and all the other components are zero, i.e.

(n=1,..., M), we obtain the following problem:
For all t € (0,7 find u(-,t) € [Sy]™ such that

I
d (*) / ) (k) / *)
= Upm | i ey dQ| — fo(u, V) — Vo, | Jap;” dQ
e [ e an] - [ st v v
+]§ | Fnlwt, vt ) = Vongu, [¢Pas =0 (411)
a0,

fore=1,...,1, k=1,..., Kandm=1,...,M. Herea=1,..., D is the summation
index.
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4 Discontinuous Galerkin discretisation

4.2.1 Matrix structure of the semi-discrete scheme

The semi-discrete scheme ((4.11)) is a system of I x K x M ordinary differential equations
and can be written in the matrix form as follows
d(MU)
dt

— R(U), (4.12)

where M is the global mass matrix, U is the global vector of basis coefficients Ui(:;)
and R is the global residual vector, components of which take the form

RM(u, Vu) = /

5 [ 2 (u, V) — V"‘um} 9ap™ A0

- j{ []—"m(ui, Vu*, n) — V“naum} soz(k)* ds. (4.13)
oy,

The structure of the global mass matrix depends on the order of chosen coefficients in
the global vectors. Let us arrange the coefficients such that the global index s is given
by

s=(k—1)xMxIT+(m—1)xI+i. (4.14)

The global vector of basis coefficients and the global residual vector is then given by

Ul, = U, (4.15)
R|, = R"). (4.16)

For this particular choice, the global mass matrix M is a block diagonal matrix with
local mass matrices as its blocks, i.e.

M —times M —times M —times
7\ 7\ 7\

M = diag(M®, ... MO, M®, M@, M® M), (4.17)

where the local mass matrix is given by

M &)

= / P ol aq (4.18)
ij O

Note that for a moving mesh the basis functions gogk) = gogk)(:c, t) are also functions of

time, which implies that the mass matrix is also time dependent.

4.3 Numerical Flux
The notion of a numerical flux was initially introduced with the finite volume method

and it is now being exploited also for the discontinuous Galerkin method. It is typically
required that a numerical flux satisfies the following conditions

e comnsistency:

Fr(u,u,n) = fap(u)n,, (4.19)

32



4.4 Flux through the boundary

e conservativity:
Fr(u,v,—n) = —Fg(u,v,n), (4.20)

e Lipschitz continuity:

dLeR: |Fe(v,w,n) — fap(u)n,| < L max(ju — v|, |lu — w)|). (4.21)

A simple numerical flux that satisfies the above conditions is the Lax-Friedrichs nu-
merical flux

Fr(u,v,n) = % fau)n, + fa(v)ng, — Apax(v — u) |, (4.22)

with the maximum eigenvalue Apa.x = [v*n, — V¥n4| + a and the local speed of
sound a = /vp/o. The Lax-Friedrichs numerical flux is know for its dissipative
behaviour. That is an issue for the finite volume method, in which case a more
sophisticated numerical flux is used, such as AUSM or Van Leer numerical flux. In
the case of the discontinuous Galerkin method of order at least second order, the
jump on the boundary of elements tends to vanish, if the exact solution is smooth.
Consequently, the numerical flux does not produce too much dissipation (or numerical
viscosity). In regions with a discontinuity or high gradient, the dissipation helps to
damp the solution. In summary, the Lax-Friedrichs numerical flux is sufficient for the
discontinuous Galerkin method of at least second order.

In order to approximate the viscous fluxes, we use the interior penalty method.
This method is formally equivalent to approximating the viscous flux with the Lax-
Friedrichs flux

Fylu,v,Vu, Vo, n) = %[f‘%(u, Vu)n, + F2(v, Vo)ng — Aip(v — u)], (4.23)

where Arp is called the penalty and it is a suitably chosen number. Performed numerical
experiments show that values of A\;p around unity work sufficiently well for considered
test cases. A thorough study of how different values of A\;p effect the solution is needed.

4.4 Flux through the boundary

We introduced the numerical flux through the boundary F° in in order to account
for the boundary conditions. As always, F is split into the inviscid and viscous parts
as F' = Fo 4+ F i’/— and each part is dealt with separately. We will derive the numerical
flux F? for the 2D case. The 1D and 3D cases are analogical.

4.4.1 Euler flux through the boundary

This section follows what we derived in Section B.1]
(a) Solid wall

In this case, we do not know u, explicitly, we derive the flux F bE directly instead.
To this end, let us rearrange the normal Euler flux fgn,, where f7 is defined in
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4 Discontinuous Galerkin discretisation

(2.43)), as follows

ov® 0
a,,1 al 1
a | ov"v" +pg o« n
fa(u)n, = U + pg? Ng = VN + p 2 ) (4.24)
(o€ + p)ov° V1

Using the condition of the zero normal relative velocity (3.4) and inserting the
boundary value u;, gives us Euler boundary flux

1
Fb(u™,n) = Venuy +p- ZQ . (4.25)

6%
Vg

As a matter of fact, we need to know the flux Fh(u=,n,V) = Fiylu ", n) —
Vnauyp, which is taken relative to the moving boundary, in order to evaluate
the curve integral in (4.11]). The terms with wu, cancel out to produce

.’F%(u_,n, V)=p" 2 . (4.26)

Ven,,

This means that a solid wall interacts with the fluid flow by means of pressure
and, if the wall deforms, by adding energy to or removing if form the flow.

(b) Inlet and outlet
Regardless of whether the flow is subsonic or supersonic, we obtain the inviscid
numerical flux F% through the inlet or outlet by inserting the value w, = uy(u ™)
derived in Section [3.1], which uses the extracted value u~ from the flow field, into
the physical flux fg, i.e.

Fhu™,n) = fi(up(u))na. (4.27)

4.4.2 Viscous flux through the boundary

This section is closely related to Section where the viscous boundary conditions
are stated.

(a) Solid wall
Using the no-slip boundary condition (3.8)) and the assumption of zero heat flux
through the wall (3.9)) in the normal viscous flux f% = f¥n., where fg is defined

in (2.43), we derive the viscous normal boundary flux as

0

Tal

frlw Vu )= | 5 |7 (4.28)
7-045‘//3
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4.5 Stability and artificial damping

To evaluate the normal viscous flux through the wall, we need to construct the
viscous stress tensor 7% = 79(Vu~) at the wall. We need to be careful when
dealing with the viscous numerical flux through the wall. Without applying the
interior penalty method, a boundary layer would never develop. Therefore we
use the numerical flux analogous to (4.23), that is

1
Fo(u™, Vu ,n) = 5 [f{}(u_, Vu, n)+fi(u, Vu_)na—AIp(u_—ub(u_))],
(4.29)
where u;, was derived in Section [3.2] as (3.10)),

(b) Inlet and outlet
Conditions (3.12)) and (3.13)) imply a trivial normal viscous boundary flux

Fb=o. (4.30)

4.5 Stability and artificial damping

First order approximation by the discontinuous Gelerkin method (when we use piece-
wise constant basis polynomials) is equivalent to the first order finite volume method.
It is know to be TV-stable, provided that we use a reasonable numerical flux, such
as Lax-Friedrich, AUSM or Van Leer numerical flux. In order to get a high accurate
solution with a first order method, we need to use a very fine grid, which makes the
computation very costly. Furthermore, an approximation of the gradient, which we
need for the viscous terms, becomes problematic in the first order approximation.

It is much more convenient to use at least second order approximation. Higher order
approximations however tend to produce deleterious oscillations near shocks. Multiple
techniques have been developed in an effort to damp these oscillations. Artificial
viscosity is a method of high popularity. It is based on adding the viscous term

V*(eVau) (4.31)

to the right-hand side of the system . We regulate the amount of viscosity added
to specific region at specific times with the function e = e(a, t). Naturally, we wish to
add viscosity to the problematic regions where a shock is present. A number of shock
sensors that determine these regions have been developed. One which has proven very
effective [70] is the following

_ ka<Q - é)z dQ

Sk ka 92 dQ )

(4.32)

where p and ¢ are approximations of density of order ¢ and ¢ — 1, respectively. The
value of Sy gives us a good idea whether € lies in the region with a shock.

The amount of added viscosity is taken to be constant over each element and should
depend smoothly on the value of Si. To this end, we follow Persson and Peraire [70]
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4 Discontinuous Galerkin discretisation

and employ the following smooth function

if sp <sg—k,

Ep = %’(1—#8111%), if so—r < s < 50+ K, (4.33)

€0, if s, > So + K.

Persson and Peraire [70] propose the choice s; = log;q Sk, so ~ 1/¢* and gy ~ h/q,
where h is the minimum element size and ¢ is the order of basis polynomials. In
particular, we choose sg = 1 /q4 and €9 = Amaxh/q, where Ap.x is again the maxi-
mum eigenvalue. The parameter x is chosen sufficiently large to obtain a smooth and
nonoscillatory solution, at the same time not too large to still obtain sharp shocks.

4.6 Geometric conservation law

Another advantage of the discontinuous Galerkin method is that the so called geomet-
ric conservation law is automatically satisfied under one assumption, which we have
already assumed above. The geometric conservation law states that the state of uni-
form flow is preserved. This seems trivial but it is not always granted for deformable
domains. Let us show (see also [64, [69]) that the constant solution u(x,t) = u =
(@1, ..., uyp) is preserved by the discontinuous Galerkin method. The numerical flux
is consistent, which means that

F(u*, va*, n) = f(a, 0)n, = £(a)n, (4.34)

because obviously 4t = @ and V,u* = 0. We suppress the second input of f. If
we insert @ into the DG scheme (4.11)) and use consistency of the numerical flux, we

obtain
4 {um / o dﬂ} - / [f%(ﬂ) - V“am} Dapl” dQ)
dt 2
+\% [fr?z(ﬁ) -V naum] 2y -~ dS =0. (435)
O,

Furthermore, we rearrange the left-hand side as follows

d
U, {— / oF a0 + / V0, A — ]f Vel ds]
dt Qp Qp O

+f%(u) {fgg nagplk)_ ds — /Q c%goz ] =0. (4.36)

The second term vanishes due to the divergence theorem. The Reynolds transport
theorem implies that

D)
/ L dQ+]§ Vg~ dS+/ vaaagag’“)dfz—j[ Vg™ dS = 0
(4.37)
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4.7 Relationship between the DG, FE and FV methods

and after cancelling two terms we have

;" (k)
/ —— + V@ 0up; | d2 =0, (4.38)
o, | Ot

which by (4.6]) is always satisfied, since the basis functions are assumed to move with
the mesh. To sum up, in case of the discontinuous Galerkin method with the ALE
description (4.11)), the geometric conservation law is satisfied under the assumption

().

4.7 Relationship between the discontinuous Galerkin,
finite element and finite volume methods

In this section we compare the discontinuous Galerkin method, sometimes called the
discontinuous Galerkin finite element method, with the continuous Galerkin finite
element and finite volume methods. To this end, we first modify the weak formulation
to a more convenient form.

Let us assume that each element €2 is a polygon and that every two elements have
at most one common edge for simplicity. Furthermore, let I'y, ..., I', be the set of all
edges in the triangulation 7. The sum of the curve integrals in over boundaries
of all elements €2y, ..., Qx can be expressed as a sum of the curve integrals over all
edges I'y, ..., [',. Since each interior edge is integrated over two times, each time in
the opposite direction, we have

K L
Flu*, Vu* n, V) ¢ dS =) {74 F(u*, Vut n, V). ¢~ ds
1=1 W1

k=1 " S

+ ¢ Fur, Vu*, —n, V). ¢ |dS

ry

L
=> Ff(ui,vui,n, V) - [¢]dS, (4.39)
=171

where F(u®, Vu*, n, V) = F(ut, Vu®, n) — Ven,{u}. The jump in ¢ is denoted
by [@#] = ¢~ — ¢ and the left-hand side value ¢* is defined as ¢™ = 0 on the
boundary 0€2. Note that the derivation in assumes that the numerical flux is
conservative. Using in we get an alternative form of the weak formulation:
For all t € (0,7] find u(-,t) € [H*(Q, T)]™ such that

K
d o
Z[E/Qku-qbdﬂ—/mm—v w) - 0up 0

L

+) P Flut, Vutn, V) [¢] dS =0 (4.40)

for all ¢ € [H1(Q, T)|M.
The continuous Galerkin finite element method is based on the weak formulation,
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4 Discontinuous Galerkin discretisation

where the solution w and test function ¢ are required to be continuous in €2, in other

words ¢ € [H*(Q)]M.

continuous Galerkin method: HY(Q)
discontinuous Galerkin method: H'(Q,T)

As a consequence [¢] = 0 on I'; and the curve integral in (4.40)) vanishes everywhere

except on the boundary 02 and the weak formulation then becomes:
For all t € (0,7] find u(-,t) € [H*(Q)]™ such that

d (0%
G [woa- [ (f.-vw-0.0a0

+ 7{ [.’Fb(u_, Vu ,n)— Vo‘nau_] -~ dS =0 (4.41)
09

for all ¢ € [H*(Q)]M. The choice of the discrete space S, in case of the continuous
Galerkin finite element method is similar to the choice in case of the discontinuous
Galerkin method, except of course that the functions are continuous, i.e.

continuous Galerkin method: Sp={w e CQ): wlg, € P1(Q), VU € T},
discontinuous Galerkin method: S, = {w € L*(Q) : wlq, € PY (), Y% € T}.

The choice of basis functions, however, differs substantially. Since the weak formulation
is missing the curve integrals over interior edges, the only way the solution
propagates between neighbouring elements is via the volume integrals. Therefore, in
addition to being continuous, the basis functions span over a couple of elements. In
the case of the discontinuous Galerkin method, on the other hand, the support of
each basis function coincides with a single element and the information propagates
exclusively through the curve integrals in (4.40]).

The finite volume method is naturally derived from the integral form of the con-
servation law, but it is also possible to derive it from the weak formulation by
choosing the basis functions as follows

1 inQ
k) — " 4.42
7 {0 elsewhere. ( )

The derivative of all basis functions is zero and the volume integrals vanish. The
semi-discrete scheme (4.11]) then becomes

avy) 1
 + AR []—"m(ui, Vu®,n) = Vonau, | dS =0 (4.43)
k

(k=1,...,K;m=1,...,M). The finite volume method is equivalent to the discon-
tinuous Galerkin method when the degree of basis polynomial is chosen equal to zero
and so the method is first-order accurate. There are a few options of how to modify
the finite volume method for a higher degree of accuracy. Polynomial reconstructions
are commonly used for this purpose. Similarly to the discontinuous Galerkin method
however, once we get to a higher order of accuracy we run into stability problem. The
solution then needs to be damped either by using limiters, artificial viscosity or other
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4.8 Temporal discretisation

means. Below we sum up the characteristics of the three methods.

Continuous Galerkin finite element method:

e Naturally enables arbitrarily high order of accuracy.
It is prone to spurious oscillations.

It is not stable in the L?-norm in general.
Substantial damping is needed.

The method is not conservative.

Finite volume method:

e [t is naturally only first order accurate.

e There are many ways to achieve a high order of accuracy.

e Spurious oscillations occur near discontinuities or high gradients for higher-order
reconstructions.

e [t is capable of achieving TV-stability, when appropriate limeters are used.

e The method is conservative.

e For a viscous flow modelling a complicated way of approximating the gradient
needs to be implemented (dual control volumes).

Discontinuous Galerkin method:

e Naturally enables arbitrary order of accuracy.

e First order of accuracy is equivalent to finite volume method.

e Spurious oscillations occur near discontinuities or high gradients for higher-order
reconstructions.

e [2-stability is guaranteed.

e [t is capable of achieving TV-stability, when appropriate limeters are used.

e The method is conservative.

4.8 Temporal discretisation

There are two possibilities to consider when it comes to temporal discretisation, namely
implicit and explicit methods. Explicit methods are by far simpler to implement,
nonetheless, they are limited by the Courant-Friedrichs-Lewy (CFL) condition - a
necessary condition for stability, which restricts the maximum time step size depending
on the minimum element size. Explicit methods are therefore unfit for steady flow
problems, as the convergence to the steady state is unacceptably slow. They may
be suitable for some transient problems, but for most such problems the convergence
is usually rather slow, especially when the mesh is refined for the purpose of the
boundary layer or shock capturing. Implicit methods are therefore superior especially
for steady problems despite the implementational difficulties. The greatest difficulty is
the construction of the Jacobi matrix and the need to employ a suitable linear solver
with an effective preconditioner. Implicit methods for the discontinuous Galerkin
method are investigated in studies [96), [71].

An attempt to recover efficiency of explicit methods was made by introducing sepa-
rate time stepping for individual elements. This leads to relaxation of the CFL condi-
tion since it only needs to be satisfied locally. Methods based on this ideal are called
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4 Discontinuous Galerkin discretisation

local time-stepping schemes [22), 23, [IT]. This modification to explicit schemes, how-
ever, introduces additional implementational difficulties and the time step size still
depends on the mesh resolution. Moreover, parallel implementation for distributed
computing of local time-stepping schemes is very challenging, to say the least. Stud-
ies [11, 13] extensively compare the methods mentioned above and their outcome is
that the efficiency of implicit and explicit local time-stepping schemes are compara-
ble, whereas classical explicit schemes are considerably less efficient. Complex schemes
such as implicit-explicit schemes [50] or the space-time discontinuous Galerkin method
[01], 2] have also been proposed.

In this thesis, we choose to employ an implicit scheme, namely the backward differ-
ence formula (BDF). Applying BDF of order R to the equation results in the
non-linear system of equations

R
)T - R(UM) =0, (4.44)

where U™ is the unknown vector and ag, . .., ar are coefficients given by BDF. The
upper indices are the time level indices. The coefficients for the first order BDF,
abbreviated as BDF1, are

ap = ]_, ap = —1. (445)

This method is also called the backward Euler method. Although first-order methods
are sufficient for steady problems, they do not provide enough accuracy for transient
problems, in which case the second or higher order methods are more suited. One such
scheme is BDF2, coefficients of which are

1+ 27, T2
- = —(1+71,), =" 4.46
ag T +7, aq (14 7,) as 111 ( )

where 7,, = At,,/At,_;. The stability condition of BDF2 is 7, < 1 + V2, which only
restricts how much two consecutive time steps may vary.

Applying Newton’s method to the non-linear system of algebraic equation (4.44]) we
acquire the following iterative procedure

ﬁ ls be N
0
— M, — AU R(U (MU MU
M. - S5 (U.) z +ao(MU),
U, =U, + AU, (4.47)

which is initiated by Uy = U™ and My = M". Once Newton’s method converges,
we set U™ = U, ; and M""! = M, ;. Note that for a prescribed motion of the
boundary the mass matrix M"*! at the future time level can be evaluated at the
current time level ¢,,. This is not the case for FSI problems, because the mass matrix
is evaluated using the mesh coordinates, which are updated by the structure solver
depending on the corrected value Uy every iteration. This is the reason why the mass
matrix in (4.47) changes after every iteration.
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4.9 Benchmarks

The Jacobian matrix % needs to be explicitly known in order to construct a suitable

preconditioner. However, the evaluation of the Jacobian matrix analytically is very

difficult and tedious, especially in the case of turbulence modelling. It is thus conve-

nient to construct the Jacobian matrix numerically. The entry (i, ;) of the Jacobian
matrix can be approximated by the difference quotient

— = 4.4

where e; is a vector with 1 in the j-th entry and zero elsewhere and h is a sufficiently
small number, e.g. h = 1078, Note that we do not need to evaluate each entry of the
Jacobian matrix, as it is a sparse matrix. The entry (7, j) of the Jacobian matrix is
non-zero only if indices i and j correspond to basis functions that are supported on the
same element or on two neighbouring elements. In this thesis, the linear system (4.47))
is solved by the GMRES algorithm with the block diagonal or ILU(0) preconditioner.

Note that one iteration of Newton’s method is equivalent to linearisation and it is
second-order accurate in time. This means that only one iteration of Newton’s method
is required for the first- or second-order time integration methods (BDF1 or BDF2) to
maintain their accuracy. It is when we use BDF3 or higher order methods that more
iterations are needed to retain their accuracy.

4.8.1 Time step size

In this thesis, we choose time step At as a multiple of the allowed value for explicit
schemes due to the Courant—Friedrichs-Lewy condition. The formula for the time step
size is

At =C, mkin (%) , (4.49)

where (). is the Courant number, the value of which we choose, hy, is the size of (), e.g.
the diameter of the inscribed circle of Qx, and A = \/A®\,. The maximum eigenvalue
is calculated as \* = |0* — V| 4 @ with the average mesh velocity V' and average
speed of sound @. Here b denotes the integral average ka bdQ2.

4.9 Benchmarks

The following benchmark aims to validate the presented DG solver for stationary
meshes. We consider three test cases with compressible flow past NACA0012 aero-
foil. The first two cases concern subsonic laminar flow, while the third one involves
turbulent transonic flow. The parameters of the considered cases are summarised in

Table [4.11

4.9.1 Steady laminar flow past an aerofoil

We consider two test cases of steady laminar flow over the NACA0012 aerofoil. The
results produced by the presented DG solver are compared with those of NASA
[88]. NASA’s report provides an extensive numerical study of fluid flow around the
NACAO0012 aerofoil for five different cases with various Reynolds numbers and angles
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Fig. 4.1: Computational mesh of 34 192 elements in the vicinity of the aerofoil.
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Fig. 4.2: Streamlines in the trailing edge region for Case 1 (laminar flow, a = 0°).
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(a) NASA [8§]

4.9 Benchmarks

(b) DG solver

Fig. 4.3: Streamlines in the trailing edge region for Case 2 (laminar flow, o = 3°).
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Fig. 4.4: Pressure and skin-friction coeff. along aerofoil for Case 1 (laminar flow, ae = 0°).
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Fig. 4.5: Pressure and skin-friction coeff. along aerofoil for Case 2 (laminar flow, o = 3°).
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4 Discontinuous Galerkin discretisation

Table 4.1: Parameters for benchmarks with flow around the NACA0012 aerofoil.

Q@ Ma, Re  flow regime

Case1l 0° 0.5 5.10% laminar
Case 2 3° 0.5 5-10° laminar
Case 3 2.26° 0.799 9-10°% turbulent

of attack. Therein, several parameters (Cr, Cp, C,, Cy, etc.) are evaluated for each
case using the finite volume method with various structured and unstructured meshes
from relatively coarse to extremely fine. The chosen combination of small angels of
attack and low Reynolds numbers guarantees that the flow is laminar in the whole do-
main. We consider two of the cases with two values for the angle of attack a;, namely 0
and 3 degrees. In both cases, the Reynolds number Re is 5000 and the far-field Mach
number Mag, is 0.5.

For the DG solver, we use an unstructured mesh of 34 192 elements with rectangu-
lar elements near the aerofoil in order to capture the boundary layer and triangular
elements elsewhere as shown in Fig. [{.1 The most problematic part of the mesh tends
to be the trailing edge because that is where NACA aerofoils have a spike. Instead of
rounding the tip as it is usually done, we create a fan around the tip out of triangular
elements as shown in Fig. [f.1¢ We benchmark the DG solver against NASA’s finest
result produced by the unstructured mesh of 4096 x 2048 elements.

The presented results match NASA’s report in predicting the occurrence of two
vortices behind the trailing edge as shown in Figs [£.2] and The positions of
the predicted vortices are almost identical in both cases. The pressure coefficient
and skin-friction drag distributions are plotted in Figs and The agreement
of the pressure coefficient distributions is undeniable as no difference between the
presented and borrowed results is available to the naked eye. The skin-friction drag
distribution also agrees remarkably well for the most part except for a small region
near the maximum value of the distribution. The presented results show noticeably
smaller maximum value compared with borrowed NASA’s results. That is presumably
caused by the fact that the borrowed results were obtained with an extremely fine
mesh of more than 8 million elements and thus are more accurate.

4.9.2 Steady turbulent transonic flow past an aerofoil

The previous test problem gives us confidence in the described algorithm and the
implemented solver for subsonic laminar flow. Let us test the on a similar problem but
in a turbulent transonic flow regime. We again consider external flow over NACA0012
aerofoil, this time with Mach number Ma, = 0.799, Reynolds number Re = 9 - 10°
and angle of attack @ = 2.26°. The computational mesh consists of 31746 elements
and 16 063 vertices out of which 300 vertices are located on the surface of the aerofoil.
Structured triangular elements were used for the refinement in the boundary layer
region as shown in Fig. and [£.7b] The flow field and the computational mesh are
shown in Fig. [4.7 The simulation was carried out using RANS equations with the
Spalart-Allmaras turbulence model described in Section [2.7.2]

The distribution of the pressure coefficient along the aerofoil with respect to the x
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axis is shown in Fig. along with the experimental data from [43]. The experiment
was conducted with the angle of attack o = 2.86°, but the author of the experiment
suggested to correct for the interference of the wall in the wind tunnel by reducing the
angle of attack in simulations.

-1.5

—— DG solver
experiment

0 0.2 0.4 0.6 0.8 1
X

Fig. 4.6: Pressure coefficient along NACA0012 for Case 3 (turbulent flow, o = 2.26°).
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5 Fluid-flow problems with moving
boundary

When solving FSI problems, we need to deal with a moving boundary. This of course
means that the mesh also has to be changing as time passes. In Section [d] we presented
an implicit discontinuous Galerkin scheme formulated in the ALE description, which
takes into account the movement of the computational mesh. However, we did not
discuss an algorithm for mesh deformation. One option is to regenerate the mesh every
time step, but this typically consumes too much computational time. Alternatively,
the mesh is deformed while keeping its topology unchanged. The combination of the
approaches, that is deforming the mesh until its quality is too low or some elements
are broken and then remeshing, is also commonly used. In the section, we will focus on
algorithms for mesh deformation without remeshing and describe two such algorithms
in detail. At the end of this section, we will benchmark the developed implicit discon-
tinuous Galerkin solver on three test problems with a moving boundary and validate it
experimentally on flow through a blade cascade with prescribed motion of the blades.

5.1 Overview of mesh-deformation algorithms

The target of a mesh-deformation algorithm is to deform the mesh given the time-
dependent boundary 0€(t) without crossing the edges and collapsing the elements
while maintaining the quality of the mesh as high as possible. There are a lot of
approaches for mesh deformation, which may be classified into different categories
depending on various criteria. For example, there are methods that are only applicable
to structured meshes, such as the transfinite interpolation [97], which is based on
interpolating the displacement from the boundary to the interior of the domain along
grid lines. Other methods may be used for the more general unstructured meshes,
which are of interest in this thesis, therefore we will discuss only these methods below.

A different classification divides the mesh-deformation algorithms into coordinate-
smoothing and velocity-smoothing algorithms. Velocity-smoothing algorithms, as the
names suggest, formulate the problem with mesh velocity as the unknown. After the
problem is solved, the velocity is integrated to obtain mesh displacement. Coordinates-
smoothing algorithms on the other hand determine coordinates of the vertices first and
then the velocity is obtained using a finite difference.

A popular coordinate-smoothing method is a method based on spring analogy. Here
the edges of the mesh are treated as extension/compression springs and the mesh is
deformed according to the steady state of the discrete system of springs with forced
motion of the nodes on the boundary 0€2(t). The remaining question is how to choose
the spring stiffness. A typical choice is that the stiffness is inversely proportional
to the length of the edges [7), 82], although more intricate relations have also been
proposed [93]. The pioneer of the spring analogy method is Batina [7]. With the

47



5 Fluid-flow problems with moving boundary

original method, elements may collapse when a vertex penetrates an edge. In order
to prevent that, Palmerio [67] added a pseudo-pressure penalty term. Farhat, Degand
and others proposed another solution for two-dimensional problems and that is to
add torsion springs [32]. They later generalised the torsion-spring approach also for
three-dimensional problems [26]. Another coordinate-smoothing approach is based on
solving equations of linear elasticity [4, [I'7, 65]. In this analogy, the fluid domain is
replaced by a fictitious solid and its equilibrium gives the deformation of the mesh.
To make the method more robust, the modulus of elasticity is chosen inversely pro-
portional to the cell volume or to the distance from the moving boundary.

Most common velocity-smoothing algorithms [57, [58] are based on solving a partial
differential equation, the following elliptic equation in particular

V2 (k(@) V5V (@) = 0. (5.1
(=1, ..., D) equipped with the boundary condition
Vi x) = Vig(x) forall x e 00(t), (5.2)

where V§, is the velocity of the boundary 0€2(t). The boundary value problem is
solved for the mesh velocity V<. The velocity is then integrated to obtain the mesh
displacement. A nice property of velocity-smoothing algorithms is that a stationary
boundary produces a stationary mesh. That is not the case for coordinate-smoothing
algorithms in general, where a source term may need to be added in order to insure
this condition is satisfied.

If we set the diffusivity k constant, then the equation becomes Laplace’s equa-
tion, which corresponds to uniform deformation of the mesh. This might seem ideal
until we perform a few tests. Uniform mesh deformation tends to fail due to edge
crossing in regions close to the moving boundary with high curvature or sharp corners.
This effect is worsen by mesh refinement, which is commonly present to capture inter-
esting behaviour near bodies, e.g. boundary layer. These mesh-deformation failures
force us to regenerate the whole mesh, consequently causing a loss of computational
efficiency. Lohner and Yang [57, 58] propose diffusivity as a function of distance from
the moving boundary. The stiffness is chosen higher near bodies, which leads to more
rigid-like deformation. Helenbrook [45] deal with the edge crossing seen for Laplace’s
equation by instead solving a forth-order partial differential equation involving the
biharmonic operator. The advantage here is that we must specify two boundary con-
ditions instead of one and that gives us more flexibility. In addition to specifying
the velocity on the boundary (Dirichlet boundary condition), we may also prescribe
the normal mesh spacing (Neumann boundary condition). A downside are increased
computational costs.

In the following two section, we will describe two methods that will in this thesis be
used for mesh deformation. One will be more suited for problems of interaction with
a system of rigid bodies and the other with an elastic structure.
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5.2 Mesh-deformation algorithm based on blending functions

5.2 Mesh-deformation algorithm based on blending
functions

In this section, we propose a novel mesh-deformation algorithm suitable for fluid-
flow problems with multiple independently-moving bodies. Let us present the mesh-
deformation algorithm for a system of N, rigid bodies in two dimensions. The rigid
transformation of the j-th body consisting of rotation around the centre :I:‘;-entre by
angle «; and translation by vector a:}rans can be expressed as

% () = R(q;) (z — %) + o

centre trans
. j . + . (5 . 3)

J J
Here @ is the position before and az;-igid after the rigid transformation of the j-th body
and R(a;) is the rotation matrix. We present an algorithm which determines the
coordinates of vertices, but it uses slightly different approach than typical coordinate-
smoothing algorithms. We determine the deformed mesh with the aid of blending
functions b;, which must satisfy

b — 1 on the boundary of the j-th body, (5.4)
710 on the rest of the boundary. '
A very natural such function is determined by solving the elliptic equation
V*(k(z) Vab;(x)) =0, (5.5)

equipped with the boundary conditions (5.4). When the Poisson’s equation ((5.5)) is
solved for each body, we may apply the following formula for mesh deformation:

T =x+ i b;(20) (w;igid(a;o) . :1:0>, (5.6)

which transforms the reference position xy of a mesh vertex to . This formula is
constructed such that the points that lie exactly on the j-th body are effected by the
blending function b; alone and stay unaffected by all the other blending functions.
Furthermore, stationary boundary, namely inlet, outlet and stationary walls, stay
motionless at all times. We compute the mesh velocity V' with BDF in the same
manner as described in Section [4.§] i.e.

TR
Vit = — N g gt (5.7)
At,
r=0
where the upper indices are indices of time steps and ay, as, ..., ar are coefficient of

BDF.

If we set the diffusivity k£ constant, than the equations becomes the Laplace’s
equations. Using constant k tends to fail due to edge crossing in regions close to
the moving boundary with high curvature or sharp corners as seen in Fig For
this reason, we choose the diffusivity as a function of distance d(x) from the moving
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Fig. 5.1: Deformed mesh after rotating the middle blade by 30° anticlockwise computed by

the blending-function approach with 5 = 0.45.

boundary as follows

1

k(x) = W’

where 3 is a parameter. We demonstrate the algorithm on a blade cascade with five
blades, where the three inner blades are allowed to rotate and the two outer blades
are fixed in place. The outcome of the mesh-deformation algorithm when the middle
blade is rotated by 30° anticlockwise is shown in Fig. Here we use § = 0.45. The
corresponding blending functions are shown in Fig.[5.3] The deformed mesh for various
values of the parameter ( is shown in Fig. and the corresponding magnitude of the
blending function gradient Vb is shown in Fig[5.4l Low values of 8 produce blending
function which change too rapidly close to the body. Higher value of 3 cause more
rigid mesh deformation close to the moving body. If the value of 3 is too high though,
the mesh may collapse inside of the domain. The most suitable value for 5 is around
0.5, in which case the gradient of the blending function is most spread out and the

maximum gradient is lowest, see Fig. [5.4d We use § = 0.45 in this thesis.

The strength of this algorithm is that the elliptic equation with the boundary
condition needs to be solved for each of the N, bodies only once in the prepro-
cessing before discontinuous Galerkin solver starts and so it does not slow down the
computation. This means that we only need to apply the formula at each time
step, per each mesh vertex, as the blending functions by, b, ..., by, are precomputed.
No iteration procedure needs to be performed, no linear system needs to be solved to
obtain mesh deformation during the computation. The blending function approach
can readily be generalised for three-dimensional problems by modifying the formula

4

use an algorithm based on radial basis functions for flexible bodies instead.

20

5.3)). The generalisation for elastic bodies is also possible, however, in this thesis, we
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cascade geometry with three movable

blade with the middle blade rotated by 30° anticlockwise.
and two stationary blades. Here 5 = 0.45 was set.

Fig. 5.3: Blending functions b2, b3 and b4 of a blade
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5.3 Mesh-deformation algorithm based on radial basis functions

5.3 Mesh-deformation algorithm based on radial basis
functions

In the previous section, we developed a mesh-deformation algorithm for rigid bodies.
Let us now focus on flexible structures instead. During FSI simulation, the structure
solver must pass the information about the displacement of the structure to the fluid
solver in some format. For rigid bodies, it suffices to pass the position of a chosen
centre and angles. This sum us to thee numbers in two dimension and six numbers in
three dimension for each body according to degrees of freedom. Flexible structure is
very different, as it theoretically has an infinite number of degrees of freedom.

The outcome of the structure solver is the displacement and velocity of the structure
at the nodes of the structure mesh, some of which lie on the boundary. The obvious
option is to transfer the displacement or velocity of the boundary nodes along with
their coordinates. If the structure and fluid meshes are mutually conforming, i.e. if
their boundary nodes are identical, we can move onto the mesh deformation. For non-
conforming meshes however, interpolation of the displacement (or velocity) between
the structure boundary nodes and the fluid boundary nodes must be carried out. Once
that is finished, we may proceed to the deformation of the fluid mesh.

The idea behind the mesh deformation presented by de Boer et al. [25] is to make
use of the interpolation also for the deformation of the fluid mesh. We can think of the
stationary boundary as having zero displacement. After adding some points along the
stationary boundary with zero displacement we can interpolate the displacement onto
the the whole fluid domain including the interior, not just its boundary. That way we
kill two birds with one stone - we carry out the interpolation from the structure nodes
to the fluid nodes and the mesh deformation is also taken care of.

Let us denote the points along the fluid domain at the initial configuration as
Ty, Ty, ..., 2, and the corresponding displacements as di, ds, ..., d,. This means
that the points in the current configuration are y; = «; + d;. As mentioned above,
d; = 0 for points x; which lie on the inlet, outlet and stationary wall. The interpolation
is based on finding a reasonable function f : Q — R” such that

[ (i) = df (5.9)
(o =1,2,...,D;i=1,2,...,n). After choosing suitable basis functions v,s,. ..,
1, we expand the function f as their linear combination

(@) =3 (@), (5.10)

The condition (5.9) gives us D linear systems

> (@) = df (5.11)
j=1

with unknown coefficients ¢f. In the matrix form, this translates to

Ac® = b° (5.12)
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5 Fluid-flow problems with moving boundary

with
A|ij = @Z)j(mi), ba|i = d;-x, Ca|j = C?. (513)

After solving these linear systems for ¢, we may use the formula (5.10)) to deform the
mesh nodes. The question that remains is the choice of the basis functions. Following
de Boer et al. [25], we use radial basis functions (RBF) for this purpose

;@) = 1bi([|z — ), (5.14)

where rbf is a continuous function of one variable defined for all non-negative real
numbers. Fig. shows an example of a deformed mesh produces by the naive ap-
proach described above. The original mesh is shown in Fig. [5.5] The mesh collapses for
rbf(x) = z, because the function grows rapidly around zero, which leads to substantial
deformation too close to the moving body. This causes problems especially near sharp
corners. It is wise to choose a smooth function whose first and perhaps even second
derivatives vanish at zero. This results in a more rigid deformation of the mesh close
to the structure. We can see the improvement when choosing such functions in Fig.
- Fig. [5.6d. The quality of any of the deformed meshes in Fig. [5.6] is not very
good, hence the need to improve the algorithm.

To sum up, the naive approach described above is based on interpolation of the
displacement by expanding the displacement as a linear combination of basis functions.
This is not ideal, since for large non-linear deformations the quality of the mesh is very
poor, the mesh may even collapse. Also, the resulting mesh heavily depends on the
chosen basis functions. A huge improvement is seen when instead of interpolating the
displacement, we interpolate the increments of the displacement between time steps.
All we have to do is to replace the right-hand side of with

b%i(tn) = d (tn) — di*(tn-1). (5.15)
This small modification greatly increases the deformation that the mesh will allow
without edge crossover, because at every time step only a small nearly-linear defor-
mation is dealt with. The results for the modifies method is shown in Fig. 5.7 The
deformed meshes have greatly improved. The deformation is much more evenly dis-
tributed across the domain. Although the deformed mesh with rbf(x) = x no longer
contains crossed edges, there are extremely deformed elements close to corners of the
body. The so-called thin plate spline rbf(x) = z?log(z) is a better choice. The thin
plate spline is undefined at zeros and that is why we added a constant to its ar-
gument. Surprisingly, the simple cubic polynomial rbf(z) = 2? also produces good
results. There are many more functions that are commonly used as RBFs. We only
chose these four functions for their simplicity to gain some feeling about their impact
on the result. Much more extensive and rigorous study was done by de Boer et al.
[25], who studied RBFs with both bounded and unbounded supports. A downside of
the RBF mesh deformation method with the incremental approach is that, in general,
when the structure restores to the reference configuration, the mesh does not. We
demonstrate this fact in Fig. [5.8 where the deformed meshes are shown after the bar
rotates between angles 90° and —90° twice. The final configuration of the meshes is
clearly different from the initial one.
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5.3 Mesh-deformation algorithm based on radial basis functions

Fig. 5.5: original mesh.
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Fig. 5.6: Deformed mesh after rotating the parallel bar by 80° anticlockwise by the naive
approach using various basis functions.
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Fig. 5.7: Deformed mesh after rotating the parallel bar by 80° anticlockwise with 10
intermediate steps (8° each) using various basis functions.

Apart from the mesh quality, another criterion to consider is the efficiency of the
mesh-deformation algorithm. Ideally, the computational costs for mesh deformation
should be negligible compared to the requirements for the CFD solver. Many of the
methods mentioned above, e.g. spring analogy, solid-dynamics analogy or Laplace-
smoothing approach, are based on solving a system of equations on the very same
mesh that is being deformed. The size of the linear system is approximately equal to
the number of mesh vertices. Though the mesh deformation still typically consumes
less CPU time than the CFD solver, the linear system are comparable in size. The RBF
approach described in this section is a so-called point-to-point scheme, which means
that it does not use the mesh topology. Here only the boundary mesh points are
involved in the assembly of the linear system. The resulting linear system is therefore
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Fig. 5.8: Deformed mesh after rotating the parallel bar by 90° anticlockwise, 180°
clockwise, 180° anticlockwise, 180° clockwise and finally 90° anticlockwise with
altogether 80 intermediate steps. In each step the bar rotates by 9°.

much smaller than those encountered in the case of the mesh-connectivity schemes,
due to the fact that the number of boundary vertices is one dimension lower then the
number of all mesh vertices. We should keep in mind though, that the linear system
is dense or nearly dense in the case of the RBF mesh deformation. For large-scale
problem, this system could still be too large. Rendall and Allen [75] [76] proposed a
point selection process for the reduction of the control points used to define the surface
motion in an attempt to minimise the linear system while also minimising the position
error across all surface points. For problems solved in this thesis, the reduction of
control points was not necessary, therefore the original simple RBF mesh deformation
is employed here. When solving large-scale three-dimensional problems in the future,
some kind of selection algorithm for control points may need to be implemented.

5.4 Benchmarks

We are now going to see how well the DG solver does on problems with moving
boundary. In the case of first benchmark, the domain boundary does not actually
move, nevertheless, it tests for errors that may occur while solving problems with
moving boundary. In particular, it tests whether the geometric conservation law is
satisfied. The second and third benchmarks are classical benchmarks with a pitching
aerofoil. The second benchmark has transonic flow conditions with a small maximum
angle of attack and high Reynolds number, which allows us to model this flow as
inviscid. The third benchmark is in the subsonic regime and the aerofoil undergoes
much large pitching. The flow is therefore modelled as turbulent.

5.4.1 Geometric conservation law

In Section 4.6} we derived that the geometric conservation law is satisfied for the discon-
tinuous Galerkin method in the ALE formulation (4.11)). We will test this proposition
numerically. One of the simplest ways to check the geometric conservation law is to
choose the initial and boundary condition such that the exact solution is constant in
space and time and then observe whether the approximate solutions changes as we
move the mesh with prescribed motion. To this end we choose the square domain
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(a) t =0 | | (b) t =25

Fig. 5.9: Mesh with h = 2 and 200 elements for the geometric conservation law benchmark
(a) at the initial time ¢ = 0, (b) at time ¢ = 2.5 when the deformation is greatest.

Table 5.1: Geometric-conservation-law benchmark - L2-error at time t = 10 for varying
order of basis polynomials ¢ and Courant number C, while using BDF1.

h  elements q=20 q=1 q=2
C,=05 C,=50 C.=05 C,=50 C.,=05 C,=5.0

4.0 50 2.72e-14  1.88e-14 4.9le-14 4.07e-14 4.71e-14 6.74e-14
2.0 200 4.77e-14  1.47e-14 7.3le-14 3.0le-14 8.16e-14 1.12¢-13
1.0 800 7.33e-14  2.12e-14  1.13e-13  3.30e-14 1.61e-13  2.10e-13
0.5 3200 1.98e-13  6.44e-14  2.69e-13 7.16e-14 3.11e-13  4.37e-13

2 =[0,20] x [0,20], set the initial condition to
wo = (1,0, 0, 2.5) (5.16)

everywhere in the domain and consider the solid wall around the whole domain. The
exact solution is trivial so long as the boundary does not move. Let us prescribe a
moving mesh by assigning the time-dependent vertex coordinates

x(t) = xo + Ay sin(2nt/ty) sin(2nz/L,) sin(2ry/L,)
y(t) = yo + Ay sin(2nt/ty) sin(2mz/L,) sin(2wy/Ly,) (5.17)

with the choice A, = A, =2, L, = L, = 20 and ¢y = 10. The motion of the mesh is
chosen so that the solid wall never moves. The structured triangular mesh with h = 2
is shown in Fig. 5.9 at the initial and most deformed configurations. The results of
the benchmark are tabulated in Tables and for varying order of space and time
approximation, grid size and time step size. The time step size is determined by the
Courant number C,. through . We use the L2-error defined as

error e = \// 1w — wp |72 dS2, (5.18)
0

where u denotes the exact solution and w;, denotes an approximate solution.
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5 Fluid-flow problems with moving boundary

Table 5.2: Geometric-conservation-law benchmark - L2-error at time ¢ = 10 for varying
order of basis polynomials ¢ and Courant number C, while using BDF2.

h  elements q=20 qg=1 q=2
C.=05 (C,=50 C.=05 C.,=50 C.=05 C,=5.0

4.0 50 2.84e-13  6.76e-14  5.73e-13  1.13e-13  1.58e-13  3.49e-13
2.0 200 1.59e-13  1.67e-13  4.05e-13  4.52e-13  3.48e-13  6.30e-13
1.0 800 5.94e-13  2.97e-13  1.05e-12  2.62e-13 6.43e-13  1.79e-12
0.5 3200 2.95e-13  4.55e-13  2.03e-12  4.36e-13  4.32e-13  2.19e-12

Larger numerical errors seem to be produced when we use higher order approxima-
tion, nevertheless the L2-error is very low for all the combinations of chosen parameters.
In fact the calculated errors are of order at most 1072, This finding is satisfactory as
a number of published papers show errors of higher orders, for instance Nguyen [64]
obtained errors of order 107 in an almost identical benchmark.

5.4.2 Inviscid transonic flow past an aerofoil with prescribed
oscillations

0.4 T T T T © 0.4

O experiment

DG solver

= = = Kirshman and Liu
+  Furmanek et al.

O experiment
DG solver
= = = Kirshman and Liu

- Furmaének et al.

031 03[

0.2

0.2

011 011

-0.21 021

-0.3 -0.3

0.4 : : : . - 0.4

(a) Original data (b) Altered data

Fig. 5.10: Dependence of the lift coefficient C';, on the pitching angle a of the aerofoil -
results obtained by the presented DG solver along with published numerical and
experimental results [42], 54, [51]. The experimental data in (b) were shifted
downwards for easier comparison.

Let us consider an inviscid compressible fluid flow around an oscillating NACA0012
aerofoil with the far-field Mach number Ma,, = 0.755 as the external boundary con-
dition. The aerofoil performs a harmonic pitching movement around the axis located
at the centre of pressure - a quarter-chord length from the leading edge. The angle of
incidence « is prescribed as

at) = am, + apsin(wt). (5.19)

We simulate an experiment done by Landon in [54]. Therein experiments for a number
of configurations are conducted to examine the conditions for the dynamic stall. We
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5.4 Benchmarks

choose the case with a small angle of attack, namely with the mean angle «,,, = 0.016°
and the amplitude oy = 2.51°. The hope is that for these flow conditions (small
angle of attack and high Reynolds number Re = 5.5 - 10%) an inviscid flow could be a
relatively good approximation of the real flow. The reduced frequency of pitching for
this case is k = 8.14 - 1072, The reduced frequency is a dimensionless number, which
is related to the actual frequency w as

s (5.20)

Voo

where b is the half chord. In dimensionless form we have b = 1/2, hence w = 2kv,, =
0.1628 Vs. The far-field velocity ve, can, thanks to the relations (2.8), (2.9)), (2.18)
and (2.19)), be expressed as a function of the far-field Mach number Ma,, as

V Oco

(

with the heat capacity ratio v = 1.4. Note that 0., ps and v, are dimensionless with
the choice gy = py = 1.

The dependence of the lift coefficient C} on the pitching angle a is shown in
Fig. We compare the numerical results of the presented implicit DG solver
and the results published by Kirshman and Liu [51], Furmdanek et al. [42] and the
experimental results of Landon [54]. All the numerical results agree with one another
to a large extend. There is however a slight shift of the numerical results downwards
in comparison with the experimental data, the reason for which is questionable. A
reasonable agreement is apparent nonetheless. The shape of the diagrams obtained
by the simulations and experiment are very similar as shown in Fig. [5.10D] where the
experimental data were shifted downwards for easier comparison.

5.4.3 Turbulent flow past an aerofoil with prescribed oscillations

This benchmark is inspired by series of experiments performed by various authors, e.g.
[9, 4] 55, 61], to investigate the dynamic stall. A stall is a reduction in lift when an
aerofoil reaches the critical angle of attack. A (static) stall is analysed for fixed or
slowly changing angle of attack. In contrast, the dynamic stall occurs when the angle
of attack is increased rapidly and a vortex forms at the leading edge increasing the
lift and delaying normal stall. Once the leading edge vortex detaches, a sudden drop
in lift is seen and the aerofoil is in regular stall. This phenomenon was observed and
analysed by the aforementioned experimental studies.

This benchmark is similar to the previous one. We again consider the NACA0012
aerofoil that undergoes prescribed harmonic oscillations in pitch around the quarter-
chord axis given by the formula . In this case, we simulate the experiment done
by Berton et al. [9], who prescribed the mean angle «,,, = 12°, amplitude ap = 6° and
reduced frequency k£ = 0.188. In the experiment, the Reynolds number Re = 100 000
was high enough for the flow to be turbulent and the velocity low enough to consider
the flow as incompressible. In fact, the fluid flow is too slow to simulate the experiment
with the compressible DG solver in a reasonable computational time with real flow
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210

6.00 8.00 10.00 12.00 14.00 16.00 18.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00
Angle of Attack, a Angle of Attack, a

——Experimental Data - Berton et al. (2002)
DDES k-Omega SST - Martinat et al. (2008)
——k-Omega SST 0.25 - Medina et al. (2014)

——Spalart-Allmaras - present DG solver

Fig. 5.11: Dependence of the lift coefficient C}, and drag coefficient C'p on the angle of
attack « of the aerofoil - results obtained by the presented DG solver along with
published numerical and experimental results [9, 60, 62].

parameters. We therefore artificially, for the purpose of the simulation, set the far-field
Mach number equal to 0.05, which is around 10 times larger than the actual value.

The angle of attack is considerably higher than in the previous benchmark and so
the flow separation is bound to occur. Furthermore, the Reynolds number of the flow
is 55 times lower, therefore the dissipative nature of the flow is more apparent. Inviscid
flow is no longer a good approximation. We therefore model this problem using RANS
equations with the Spalart—Allmaras turbulence model.

The hysteresis loop of the lift and drag coefficients as a function of the angle of
attack are shown in Fig. [5.11} During the upstroke, the present Spalart-Allmaras DG
solver predicts the experimental value for the lift coefficient more accurately than the
k-w solvers, but overestimates the maximum lift and drag coefficients, which occur at
the maximum incidence angle, to a similar degree as the other two solvers. During the
downstroke, all three solvers show similar qualitative divergence from the experimental
data.

5.5 Experimental validation of the CFD solver on
flutter assessment in a blade cascade

In this section, we validate the developed implicit discontinuous Galerkin solver ex-
perimentally on a one-way coupling problem. In particular, we use the energy method
to assess torsional flutter in a blade cascade. This study was conducted in cooperation
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with the Institute of Thermomechanics of the Czech Academy of Sciences as part of
grant GA 20-26779S ”Study of dynamic stall flutter instabilities and their cosequences
in turbomachinery application by mathematical, numerical and experimental meth-
ods” of the Czech Science Foundation. As the test geometry, we consider a blade
cascade consisting of five blades. Each of the three inner blades have a rotational
degree of freedom and the two outer blades are stationary. Experimental investigation
of flutter in turbines or compressors using a blade cascade is a relatively old idea Sisto
[?], nevertheless, this approach is commonly used to the present day, see e.g. [40],
since realistic models of turbine stages are extremely expensive to build.

5.5.1 Energy method

We use the energy method with the travelling wave mode assumption to predict flutter.
The energy method was first adopted by Carta [15] and extended by Snyder and
Commerford [83]. This method is popular with many authors to this day [72], 87, 86,
38]. The travelling wave mode assumption is an assumption that during flutter the
corresponding wave mode is travelling around the bladed disk. In other words, all
blades are assumed to flutter at the same frequency and amplitude but with different
phase. The phase of each two neighbouring blades is assumed to be shifted by a
constant angle called the interblade phase angle. To perform this analysis, we prescribe
a harmonic motion to the blades with given amplitude and frequency and evaluate
work done by the fluid flow during one period for various interblade phase angles. We
calculate the aerodynamic work per cycle (WPC) using the pitching angle ¢ and the
moment of aerodynamic forces M as follows:

t+T o(t+T)
WPC = / Mwdt = / Mde, (5.22)
t »()

where T' is the period of the prescribed harmonic motion. The value of WPC shows
whether the energy is transmitted from the blade to the flow or the other way around.
If the value of WPC is negative, than some of the kinetic energy of the blade is
absorbed by the flow and the oscillations are damped. When similar conditions occur
in the full interaction, flutter will most likely not be excited. On the other hand, if
WPC is positive, than the kinetic energy of the flow is transmitted to the blade acting
as negative damping. If the negative damping of the fluid exceeds the damping of the
structure, flutter will occur.

5.5.2 Experiment

The experiments were performed in a wind tunnel at Institute of Thermomechanics
of the Czech Academy of Sciences in Prague. The chosen blade cascade consists of
five blades with NACAO0010 aerofoil cross section. The blades are 16.14 mm apart
and the chord length of each blade is 73mm, see the drawing in Fig. [5.14 The
center of rotation is placed 0.3 chord lengths from the leading edge of the blades.
The two utmost blades are fixed in place while the remaining three blades have a
torsional degree of freedom each. The blades are placed into a closed channel with
minimal clearances to avoid tip vortices. With the absence of tip vortices, the flow can
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5 Fluid-flow problems with moving boundary

be considered two dimensional, which dramatically simplifies CFD simulation. The
velocity field is measured using particle image velocimetry (PIV).

The channel is 420 mm long, 250 mm high and 100 mm wide. This means that the
span of the blades is also 100 mm. The top and bottom walls and one of the side walls
of the channel are made of clear plastic, see Fig. [5.13al The other side wall has a
built-in circular plate that can be rotated to change the angle of attack between —15°
and 15° as shown in Fig.[5.12b] The circular plate has five horizontal grooves, wherein
the shafts that hold the blades are fixed. These grooves allow us to move the blades
horizontally to achieve various stagger angles. In particular, the grooves allow stagger
angle between 15° and 30°. Behind the side wall with the circular plate are bearings,
springs, shakers, force transducers and encoders, see Fig. and Fig. [5.13h]

CHANNEL

=
] SHAKER ROTATING TABLE

BEARINGS
SPRINGS FLOW
ENCODERS DIRECTION

BLADES

°/

2 BLADES
o BLAVES

( ) ) 1

(a

—

Rear view. (b) Side view.

Fig. 5.12: Assembly of the blade cascade.

(b) View of the shakers.

Fig. 5.13: Wind tunnel with the blade cascade.

5.5.3 Results

As mentioned above, the CFD simulation was performed in two dimensions. The
outer boundary of computational domain is rectangular with dimensions 420 mm X
250 mm. The geometry of the computational domain is shown in Fig. and the
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Table 5.3: Parameters

parameter symbol value
angle of attack « —12°
stagger angle I6] 30°

chord length c 73 mm
blade distance - 16.14 mm
frequency f 40 Hz
amplitude A 3°

inlet velocity Vin 20ms~!
outlet pressure Dout 101 325 Pa

dynamic viscosity 7 1.81-107°Pas
reduced frequency k 0.459

corresponding unstructured triangular mesh with 27296 elements is shown in Fig.
5.15. The center of rotation of the middle blade (blade 3) is placed in the center of
the computational domain, i.e. at the position &y = [210, 125]. The angle of attack
a = —12° and the stagger angle 5 = 30°.

The boundary conditions for both the experiment and the simulation are given by the
inlet velocity v, = 20ms~! and the outlet pressure poy = 101325 Pa. Air in standard
conditions is considered as the fluid, i.e. g = 1.81-107°Pas. All the parameters
of the problem are summarized in Table [5.3. The flow conditions correspond to the
low-Mach-number regime, in which case the flow can be modelled as incompressible.
We model the flow as compressible nevertheless. The parameters associated with
compressible flow, such as heat capacity or thermal conductivity, should have little
to no effect on the solution. The fluid flow is turbulent, we therefore model the flow
using the RANS equations with the Spalart—Allmaras turbulence model.

Blades 1 and 5 are fixed in place, while the three middle blades (blades 2, 3 and 4)
perform a prescribed harmonic pitching motion given by expression

(t) = Asin(2n ft + ) (5.23)

with the amplitude A = 3° and the frequency f = 40 Hz. The phase angle v is different
for each of the blades:

—60 for blade 2,
=<0  for blade 3, (5.24)
6  for blade 4.

The angle 6 is called the interblade phase angle. We perform four experiments and
simulations for four different interblade phase angles 6, namely for —m /2, 0, 7/2 and .
The resulting WPC on blade 3 depending on interblade phase angle 6 is shown in Fig.
5.16 Here we present result obtained by the discontinuous Galerkin solver and the
experimental results. Both the experiment and the CFD simulations show qualitative
agreement. In both cases, instability is predicted for a single tested interblade phase
angle § = —90°. A paper [52] containing the obtained numerical and experimental
results has been submitted for review.
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210

250

125

420

Fig. 5.14: The geometric configuration of the blade cascade. The dimensions are in
millimetres.

Fig. 5.15: Computational domain and triangular mesh. Inlet (green) is on the left-hand
side, outlet (red) is on the right-hand side, the slip boundary condition is
prescribed on the top and bottom walls (blue) and the no-slip boundary

condition is prescribed on the blades.
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Fig. 5.16: Aerodynamic work per cycle WPC depending on the interblade phase angle 6.
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6 Fluid and rigid-body interaction

In the present thesis, we consider F'SI problems with two different models for the struc-
ture part - a system of rigid bodies and a flexible structure. Both of these models have
a wide rage of applications in engineering. A system of rigid bodies is substantially
easier to model and solve, as it has a finite number of degrees of freedom. We will
therefore concentrate on rigid-body model in this section. We will restrict the discus-
sion to two dimensions, because for 3D problems it only really make sense to consider
the structure elastic. For example, wing aeroelasticity is restricted to rigid aerofoils in
2D, whereas in 3D the wing must be modelled as elastic. The same applies to other
structures such as turbine blades or cylinders, where a 2D flow around a cross section
with assigned mass and fictive springs and dampers attach to it may give us valuable
insight into F'SI phenomena that occur in reality, which, of course, is always 3D.

6.1 Structure model

We assume that the bodies may affect one another not only through aerodynamic
forces but also directly as if there were a spring and damper between each pair. One
such example is a flow in a turbine blade cascade, where every two neighbouring
blades are in contact with each other through shrouds and sometimes also tie-boss.
Furthermore, the blades are attached to one disk, which transfers vibrations among
blades. Movement of one blade, therefore, induces forces on other blades. A very
general description for a dynamics of a system of rigid bodies is the following nonlinear
system of second-order ordinary differential equations

Md = i (d, d, t) + £(t), (6.1)

where M is the mass matrix, fi; is the vector of internal forces, f is the vector of
external forces and d is the unknown displacement vector. The aerodynamic force in
FSI problems is included in f. In most problems f;; is independent of ¢. In many
practical applications, the system can and often is considered linear. This is justifiable
if the amplitudes of the vibrating system are moderate so that Hook’s law applies, in
which case the vector of internal forces is a linear function fi,(d, d) = —Bd — Kd
and the structural model becomes the following linear system of ordinary differential
equations with constant coefficients

Md + Bd + Kd = f(t), (6.2)

where B and K are the damping and stiffness matrices. This structural model, though
simple, is still capable of describing complex phenomena, some of which we wish to
avoid in practice. Resonance is one that may have disastrous effects.
We arrange d as follows
d=(dy, dy, ..., dn,), (6.3)
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6 Fluid and rigid-body interaction

where d; is the displacement vector for the j-th body and N, again denotes the number
of bodies. In most FSI applications no complicated constraints are imposed on the
bodies. Let us assume that in fact there are no constraints. In two dimensions, this
means that each vector d; has 3 components:

d; = (dj, 43, &3). (6.4)

where we choose dj and dj to be components of the linear displacement and d? the
pitching angle of the j-th body. The linear and angular displacement is taken with
respect to a chosen centre :B;fentre of the body. Sometimes we consider very simple
constrains that can be taken into account just by removing components from the
displacement vector d thereby decreasing the number of degrees of freedom.

6.2 Discretisation

Let us move onto the discretisation of the system (6.1)). Instead of discretising the
system of second-order differential equations (6.1)) directly, we first rewrite it as a
system of first-order ordinary differential equations

d=wv, (65)
v =M i, (d, v, t) + M (). '
There are many explicit and implicit schemes that can be applied to solve (6.5). A
sensible choice is a scheme of the same order as the temporal discretisation of the fluid
flow. This time around, we will use the Adams-Bashforth method, which is a simple
explicit multilevel scheme and can be written as follows

R
dn+1 —d"+ Atn Zar ,Unfr7

r=0
R tn41
V" = 0"+ AL, Y, M i (d T 0" ) + MY (t) dt. (6.6)
r=0 tn

We use the notation d" = d(t,,) and v" = v(t,). The integral involving the vector
of external forces f(¢) is left to be approximated along with the development of the
fluid-structure algorithm in the next section. For the second-order Adams-Bashforth
method we have R = 1 and the coefficients are

1 At,, 1A,

B = .
=1%o N “ 2 At, .

(6.7)

6.3 Fluid-structure interaction

Let us now establish the interaction of the fluid with a system of rigid bodies in two
dimensions. There are two conditions that need to be satisfied between the fluid and
the bodies and that is the balance of forces and geometric continuity. We already have
an equation for the balance of forces - the equation or . If we work out
the fluid forces acting on the bodies, we add them to the vector of external forces f

68



6.3 Fluid-structure interaction

and the balance of forces is satisfied. The geometric continuity means that the fluid
boundary has to follow the displacement of the body. The fluid influences the body
through the balance-of-forces condition, while the body interact with the fluid via the
geometric-continuity condition. Let us focus on the former condition first.

The fluid flow exerts a force and a torque on the body through shear and pressure
acting on the surface, which are the tangent and normal components of the traction
vector T. The components of the traction vector are obtained by contracting the
stress tensor 0 = 7% — p¢*?  see Section with the unit surface normal, i.e.
T8 = ny,0%?. 1 The resulting fluid force and torque on the j-th body is calculated as

B8 __ @ _ _
Fj_ﬁnaaﬁds_ﬁﬁds (B=1,2),
’ 7 (6.8)
T :7{ eawr?nga’gwds:% 73 x T'dS.
T T,

J J

Here T'; is the boundary of the j-th body, 7 is the vector that points from the chosen
center of the body a:jen“e to its boundary I';, n® are components of the unit outward
normal to the boundary I'; pointing into the fluid and e,4 is the Levi-Civita tensor,
which is responsible for the cross product. In the case of an inviscid flow, the shear
viscous tensor 7*¥ = 0, hence the fluid flow acts on the j-th body through static
pressure alone

Ff == ¢ onas (3=1.2).
! (6.9)
T; :j{ PEapn” rde :7{ p (i x 75)dS.
Ly Ly
The vector of external forces f in or , which contains fluid forces, needs to
respect the arrangement of the displacement vector d. Therefore we analogically
have f = (fl, fg, ey be) with fj = (Fjl, FjZ, Tj).

As we have just described above, the fluid flow influences the solid structure through
shear and normal stress. As a result, each body responds to the aerodynamic forces
by corresponding motion according to or , thereby deforming the fluid flow
domain €(¢). The motion of the boundary 0€(t) is the feedback from the structure
to the fluid flow. Consequently, the mesh on the fluid domain needs to be deformed.
In particular, the formula (5.6 is applied to the mesh vertices with x"# determined

by . The translation vector w;mns and the angle of rotation «; in is given by
the displacement vector d as follows

xi = (df, d3), a; = di. (6.10)
This description gives us a good idea how the fluid flow and the solid structure interact.
The next task is to apply a solution procedure.

There are two main approaches for solving the fluid-structure interaction problems.
Solving the dynamics of both the fluid flow and the solid structure as one coupled
system is called the monolithic approach. Partitioned methods utilise separate solver
for the flow and structure problems. The solvers can be either strongly or weakly
coupled. The strong coupling is when we solve the fluid-flow system and the structure
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Unfl Un Un+1
f”*2 fnfl f" fn+1
Adr! Ad" Admtt
" dn—l V dn dn+1 "
(a) Weak coupling.
U, =U" U, U, Ut = Upg
>
f
R dr
d, =d" d, dri1 d" =dp

(b) Strong coupling - subiterations.

Fig. 6.1: Coupling algorithms. The structure solver takes the first step (black lines), the
fluid solver takes the second step (blue lines).

system separately in turns until the steady state is reached. Solving each the fluid-flow
and structure systems only once and then proceed to the next time level regardless of
residuum is called the weak coupling.

The performance of the monolithic approach [44] is superior to strongly coupled
partitioned solvers and it surpasses both the strongly and weakly coupled solvers in
robustness. The monolithic approach is however not very flexible, as it needs to be
developed for the combined fluid-structure problem. When the structural model is sub-
stituted for a different one, for instance the rigid-body model for a flexible-structural
model, then the derivation and implementation needs to be revisited. Moreover, the
derivation of the fully coupled system and implementation of its solution is remarkably
difficult in the first place. For these reasons the monolithic approach is not all that
popular.

The partitioned approach [33] has the obvious advantage of having two separate
solvers, which enjoy separate discretisation and solution procedures. The methods
used for the discretisation of the fluid and structural models can be very different, just
like in the present thesis, where we use an implicit time-integration scheme for the
fluid flow and an explicit one for the solid structure. We can go as far as utilising two
different commercial solver for each of the problems and then couple them either weakly
or strongly. A drawback of partitioned solvers is that the convergence is not guaranteed
and greatly depends on the problem. Considering the differences between the weak
and strong coupling, the weak coupling has better computational performance, as the
subcycling of the strong coupling may turn out to be very costly. On the other hand,
the weak coupling may lead to the loss of time accuracy, whereas the strong coupling
preserves time accuracy just as the monolithic approach does, under the condition of
stability of course.

In the current thesis, we choose the partitioned approach for its flexibility, modular-
ity and lower implementational demands. In particular, we couple the solid structure
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solver based on the Adams-Bashforth scheme and the fluid flow solver based on
the implicit discontinuous Galerkin method . Although the Adams-Bashforth
scheme is explicit, we apply an approximation of the integral involving f in that
includes the value f"*! from the future time level. If we used only the past values (",
fn=1 . ..), the structure would not be able to receive feedback from the flow during the
strong coupling. In order to achieve the second order of accuracy, we may approximate
the integral by the trapezoidal rule for example, that is

tntl At,,
/ f(U(t)) dt ~ 5 (£ 4+ £"11) (6.11)
tn

with the notation f* = f(U") = f(U(t,)). Here we emphasise the dependency of the
external forces vector f on the flow vector U. The algorithm of the strong coupling
can be summarised into six steps:

1. Set r = 0 and Uy = U™ and extrapolate f; (approximation of f"1), e.g.

At At
fo=(1+——"2 ) — —2 1 12
0 ( * Atnl) Atnfl (6 )

2. Take a step by the explicit solid-structure solver
d,., = S¥(E,). (6.13)

The operator S represents a single step by the Adams-Bashforth scheme
with the integral approximation (|6.11]).

3. Deform the mesh and calculate the mesh velocity according to (5.6) and (5.7)),
respectively.

4. Take a step by the implicit fluid-flow solver

U, = S™YU,, d.,1). (6.14)

The operator 8" represents one iteration of Newton’s iterative procedure

@47).

5. Calculate aerodynamic forces f,,; = f(U, ;) according to or .

6. If the steady state is reach, proceed to the next time level by setting d"*! = d,, |,
Ut =U, .y, f*™' =f.,; and n = n + 1 and by going to step 1, otherwise set
r =1+ 1 and go to step 2.

The weak coupling corresponds to a single subiteration of the algorithm, that is when
we remove the if statement from step 6 and replace it with

6. Proceed to the next time level by setting d"™! = d,,, U™ = U, ., "1 =1£,
and by going to step 1.
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6.4 Benchmarks

In order to validate the presented FSI solver, we choose two problems that investigate
interesting phenomena and compare the results with numerical and experimental re-
sults from literature. The first test problem studies vortex-induced vibration for an
elastically-mounted circular cylinder with one degree of freedom. In particular, we
examine the amplitude and frequency response of the cylinder to the Karman vor-
tex street and observe the lock-in phenomenon close the resonance. The second test
problem validates the presented FSI algorithm on the flutter boundary assessment of
a two-degree-of-freedom aerofoil. Flutter boundary is the line separating the stable
region where oscillations decay from the unstable regions where flutter occurs. This is
a large-scale benchmark in terms of the number of executed simulations.

6.4.1 Vortex-induced vibration of a cylinder

A blunt body or structure submerged into a fluid flow will periodically shed vortices
for a fairly large range of Reynolds numbers. The range very much depends on the
shape of the body. This phenomenon is called Karman vortex street and it causes
an oscillating force on the body. When the body is subjected to elastic forces and
is allowed to move in the axis perpendicular the the flow, the vortices will induce
vibration. Vortex-induces vibration is a heavily studied problem both experimentally
and numerically especially for a cylinder with a circular cross section, see for example
[1, 27, 63]. We will make use of experimental and numerical results for this problem
in order to benchmark the developed FSI solver.

We will be simulating the setup from the experiment by Anagnostopoulos and Bear-
man [1]. The experiment is designed to study the vortex-induced vibration around the
natural frequency of the structure for a rage of Reynolds numbers between 90 and
140. This is a stable rage of low Reynolds numbers where the flow is purely laminar.
A circular cylinder with the mass m = 35.75 g and the diameter D = 1.6 mm is
submerged into water upto the length L, = 12 cm, giving the aspect ratio of 75. The
cylinder has one degree of freedom in the axis perpendicular to the incoming flow and
was subjected to an elastic force from a linear spring with stiffness & = 69.48 N/m and
damping b = 3.9-107% Ns/m. The resulting natural frequency is f,, = 7.016 Hz and the
damping ratio is 1.24. The authors of the experiment state that the nondimensional
mass n = pD?L,/(2m) ratio is 4.27 - 1073, which gives the value for the fluid density
at 994 kgm™3. In the this thesis, we used the more standard value o = 10? kgm™2 for
density of water and p = 1072 Pas for viscosity. The purpose of this experiment was
to measure amplitudes and frequencies of the cylinder response to the flow for different
flow velocities and thus for different Reynolds numbers in the rage around the value for
which the vortex-shedding frequency f, matches the natural frequency of the structure
fn- In this thesis, we simulate the series of experiments where a separate experiment
was conducted for each of the chosen values of the Reynolds number with the cylinder
developing from rest. The amplitudes and frequencies of the steady-state response are
shown in Fig. [6.5] where we show the experimental results obtained by Anagnostopou-
los [I] and numerical results obtained by Dettmer [27] and by the presented solver.
The computational mesh is shown in Fig.[6.2] Since we have a compressible solver, but
the problem is incompressible, we choose Ma,, = 0.1, which is low enough to consider
the results obtained by the compressible DG solver as approximately incompressible.
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Fig. 6.3: Frequency and amplitude of the steady-state oscillations, which are induced by a
laminar flow at different Reynold numbers, for a cylinder developing from rest.
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Fig. 6.4: Frequency and amplitude of the steady-state oscillations, which are induced by a
laminar flow at different Reynold numbers, for a cylinder initially at equilibrium
(yo/D = 0) and for a cylinder initially displaced (yo/D = 0.6).
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Fig. 6.5: Time evolution of vortex-excited cylinder oscillations for different values of the
Reynolds number. The left column contains envelopes.
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6 Fluid and rigid-body interaction

To understand the results, we need know the relationship between the frequency
of the excitation force coming from the fluid and the Reynolds number. For this
discussion, let us assume that the body is fixed in place. Due to Strouhal [85] we have
the relationship

_ JsiL

Voo

St

(6.15)

between the Strouhal frequency fs; (vortex-shedding frequency for the cylinder at
rest), the flow velocity vy, and the characteristic length L of the body. The Strouhal
number St depends on the Reynolds number. For circular cylinders, Roshko [78] came
up with a function approximating the dependency of the Strouhal number on the
Reynold number

St =0.212(1 — 21.2/Re)  for 50 < Re < 150,

6.16
St =0.212(1 — 12.7/Re)  for 300 < Re < 2000. (6.16)

The studied problem is in the stable region of low Reynolds numbers. The Strouhal
frequency by Roshko [78] is included in Fig. [6.3] which, after substituting for the
Strouhal number and expressing velocity as a function of Reynolds number, is the
following linear function of the Reynolds number

fo = éOQB(Re —21.2). (6.17)
In the case of our system, resonance occurs when Re = 106 because for this value
the Strouhal frequency matches the natural frequency of structure, ie. fg =~ f, =
7.016 Hz. Let us look at Fig.[6.3] For Reynolds numbers further away from the value
that corresponds to resonance f, = fs; and the dimensionless amplitudes are moderate
of the order of 1-1073. At resonance, when Re = 106 and f, = fg; = f,,, the amplitudes
are two orders of magnitude higher as expected. What is interesting though, is that in
some region around resonance point, which is called the lock-in region, the vortices are
initially shed at the Strouhal frequency (f, = fst), but over time the vortex-shedding
frequency switches to the natural frequency of the cylinder-spring system (f, = f,)
and the amplitude of cylinder builds up to values similar to the resonance amplitudes.
In fact, the response of the cylinder is indistinguishable from resonance in almost the
whole lock-in region.

The response of the cylinder for some chosen Reynolds numbers is shown in Fig-
ure . In the case of our simulations, values 98 < Re < 110 correspond to the lock-in
region, while in the range 102 < Re < 110 behaves just like resonance. Below and
above the lock-in region we have too regions with two distinct qualitative behaviours.
An interesting point is for Re = 98 where the cylinder locks into the natural frequency,
but the amplitude is one order of magnitude lower than in the rest of the lock-in region.

Let us focus on the comparison between result obtained by different authors. The
lock-in regions are compared in the following table.
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lock-in region (Re)

experiment 104 - 126
Dettmer 96 - 108
present solver 98 - 110

Fig. indicates that the two simulation match very well, except that the present
solver predict the same behaviour as Dettmer at higher Reynolds numbers by a value
of 2. The Dettmer’s graphs are shifted by 2 to the left with respect to the present
study. The experiment, however, shows rather different results. The lock-in region is
wider and shifted to the right and the lock-in amplitudes are also somewhat higher.
Moreover, in the region above the lock-in region, the amplitudes in the experiment
do no drop to low amplitudes immediately as seen in the simulations. The difference
between the experiment and the two simulations is questionable. A factor that might
play a big role is that, in the experiment, the submerged length of the cylinder was 12
cm with no end plate mounted at the end of it. The three-dimensional nature of the
flow around the ending of the cylinder might have effected the results substantially.
Also, as pointed out by Dettmer, the experiment involves the free-surface flow, which
is also not captured by the 2D simulations. This is supported by the fact that the
simulations achieve a better agreement than Anagnostopoulos’s experiment with the
experiment conducted by Roshko on stationary cylinder outside the lock-in region.

It is well known that the lock-in region is larger if the body is initially vibrating.
This is explored in Fig[6.4l Here we compare the steady oscillations of the cylinder
with zeros initial conditions (the same case that we considered before) and with initial
displacement yo/D = 0.6 and zero initial velocity. Both cases are simulated by the
present solver. We found two steady solutions in ranges 96 < Re < 100 and 112 <
Re < 118 depending on the initial conditions of the cylinder. One solution is locked
and the other unlocked.

6.4.2 Flutter boundary assessment

The flutter boundary is a curve in R? that determines the threshold for the occurrence
of the instability of type flutter depending on two variables, the far-field Mach number
Ma,, and flutter speed index Ur. We study the flutter boundary for a wing with the
NACA 64A010 aerofoil as the cross section. Let us consider the wing model of Isogai
[48, [49] illustrated in Fig. , which has two degrees of freedom - vertical translation
and pitching. The dynamics of the wing is governed by the following system of two
differential equations

2@ e)@)-G) e

where
m = Umosb?, Sa = mbzx,, Iy = mb*r?,
v
K, = mw?, K, = LW, w=—_
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6 Fluid and rigid-body interaction

The structural parameters are r, = 1.8, 72 = 3.48, u = 60 and b is the half chord.
The lift F, and the torque 7 on the aerofoil are calculated from the flow field. The
far-field velocity v, is again expressed as a function of the far-field Mach number
Ma,, by . We have two parameters left that can be arbitrarily chosen, namely
the far-field Mach number Ma., and the flutter speed index Ur. Depending on these
two parameters, the following three cases may occur:

1. Oscillations of the aerofoil are damped by the fluid flow and the system is stable.

2. Oscillations of the aerofoil are magnified by the fluid flow and the system is
unstable.

3. The system continues to oscillate with a constant amplitude and the flutter
boundary is established.

We perform simulations for many combinations of Ma,, and Ur to identify stable
and unstable regions. The flutter boundary is then found using the bisection method.
The examined range of Mach numbers correspond to the transonic regime and the
flow is considered inviscid. We use a computational mesh with 14 761 elements shown
in Fig. [6.7 The flutter boundary predicted by the presented DG solver as well as
predictions published in [14], [51] are presented in Fig. The flutter boundary in the
region for far-field Mach number between 0.75 and 0.85 agrees across the three solvers.
In the region where 0.85 < Ma,, < 0.9, the present DG solver and Hall predict and
S-shaped flutter boundary, whereas Kirshmann predicts a jump around Ma,, = 0.875.
We suspect that Kershmann did not undertake an exhaustive check in this region and
thus came to a hasty conclusion of a simpler-looking flutter boundary.

Fig. 6.6: Isogai wing model.
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Fig. 6.7: Mesh with 14761 elements in the vicinity of the NACA 64A010 aerofoil.
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Fig. 6.8: Flutter boundary predicted by the DG solver along with published results [14} [51].
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7 Fluid and elastic-structure
interaction

Let us turn our attention to mathematical modelling of the dynamic behaviour of
homogeneous elastic structures and couple the developed structure solver with the
fluid-flow DG solver. We have successfully developed and coupled a rigid-body solver,
however, that task was significantly easier.

7.1 Structure model

We will model the structure naturally using the Lagrange approach, in which case, we
have the option to formulate the momentum balance law for the spatial coordinates
x® = x%(X,t) or for the displacement d*(X,t) = x%(X, t) — X* In this thesis,
we choose the latter option. Suppose we have a domain {2 the boundary of which is
divided into two parts - I'p and I'y. We formulate the equation of elastodynamics
along with the boundary and initial condition as follows:

pd® = V,P* + f*  in Qx|[0, T,

d*=0 onI'p x [0, TY,
POy =T on 'y x [0, 7], (7.1)
d*(-,0) = ds in Q,
de(-, 0) = v§ in Q,

a=1,...,D; b =1,...,D. Here P* is the first Piola-Kirchhoff stress tensor, p
is the density of the structure, f is an external body force per unit mass and df
and v{ are initial displacement and velocity, respectively. We impose traction 7% on
'y and zero Dirichlet boundary condition on I'p. The formulation of the balance
law is in a mixed formulation in the sense that it is partially attached to the
deformed configuration and partially to the reference (initial) configuration. We use
Latin letters a, b, ¢ and Greek letters «, (3, v for indices attached to the reference and
deformed configurations, respectively. By this convention, the covariant derivative V,
is taken with respect to the material coordinates X°. The reason for the mix nature
of the balance law is the use of the first Piola-Kirchhoff stress tensor, which relates
forces in the deformed configuration to areas in the reference configuration. For this
reason, traction 7T is related to the deformed configuration. This is convenient for
FSI applications because the traction received from the fluid solver is also related
to the deformed configuration. The second Piola-Kirchhoff stress tensor S, on the
other hand, expresses a relationship between areas and forces both in the reference
configuration. The first and second Piola-Kirchhoff stress tensors can be converted
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7 Fluid and elastic-structure interaction

between each other via the deformation gradient F = V,z* as follows
P = F* 8% = (V,d* + 62) S. (7.2)
The second Piola-Kirchhoff stress tensor is related to the Green strain tensor
£ — % (Vods + Vody + Vd,V.ody) (7.3)
by the Saint Venant—Kirchhoff constitutive model
S = NEC g™ + 21 £ (7.4)

for the case of isotropic materials.

7.2 Discretisation

Since we intend to use a partitioned approach for FSI simulations, nothing holds us
back from choosing a different method for the discretisation of the structure model than
what we used for the fluid model. We therefore choose the finite element method for
this purpose. To this end, let us introduce the function space S = {w € HY(V): w =
0 on I'p} and note that the solution d* to the system (7.1)) is an element of S in the
following sense: d“(-, t) € S. Multiplying the equation by a test function ¢ € S,
integrating over €2, using the divergence theorem and finally applying the boundary
conditions, we obtain the following weak formulation

pd®¢dQ = [ T*¢dS — pav 9 bdQ+ f“d)dQ (7.5)
Q I'n Q 0X

The finite element approximation is based on replacing the infinite-dimensional space
S with the finite-dimensional subspace

Sy = {w €S w|Qk c Pq(Qk) VQ, € T}, (76)

where 7 is a partition of the domain 2 and P9();) is a space of polynomial up to
degree q. Let @1, o, ..., p; be the basis of S;. Expanding the displacement as a
linear combination of basis functions

1

d(z, t) = Y dI(t) () (7.7)

J=1

and substituting a basis function ¢; for the test function ¢ we get

I

. Dv;
> d?/pgoigoj dQ:/ T%ids—/mb a)(f'b d§2+/fo‘ ©; dQ, (7.8)
=1 Q 'y Q
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7.2 Discretisation

(j = 1,2,...,1). This ordinary differential equation can be written in the matrix
form as

Md = r(d), (7.9)
with the mass matrix

M],. = M[2 = /Q p oy dV (7.10)

and the right-hand side vector
o o ab 8901 a
T(d)’r = T'(d)li = T%;dS — P ave dQ + f w; d€. (7.11)
'y Q 0X

There are a number of ways how the values might be arranged into the mass matrix
and right-hand side vector. We choose the arrangement given by the following relations

(i—1)D + «,

-
s=(—1)D+0,

(7.12)

where D is the dimension of the problem.

Let us define a new variable v = d. Adding the 1dent1ty Md = Mv we rewrite the
system of second-order ordinary differential equation as a system of first-order
ordinary differential equation of twice the size as follows

Mo = r(d),

: (7.13)
Md=Mwo.

Defining

() N (5Y) - ()

we can rewrite the system as
N4 = R(u). (7.15)

Discretising the system with the BDF method, we obtain the following nonlinear
implicit iterative procedure
R
N ) U™ = At, R(U™) (7.16)
r=0

with U™ as the unknown. This nonlinear system can be written as

S(U) =0 (7.17)
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7 Fluid and elastic-structure interaction

with
R
S(U) =aNU+N > a, U — At, R(U). (7.18)
r=1
Newton’s iterative procedure is then
95(Us)
AU, = —S(U,), 7.19
- (v,) (7.19)

U, = U + AU,

which we initialise with Uy = U". Once Newton’s method converges we set U"™! =
U, and proceed to the next time level. The Jacobian of S is

oS OR —At, 2 aoM
U — N Al Gy ( apM —Atnl\/[) ’ (7.20)
since the Jacobian of R is
oR o
Y [ ad
5 (0 M) . (7.21)

7.3 Fluid-structure interaction

In this section, the notation introduced for the fluid dynamics will meet with the
notation for the structure dynamics and these two notations overlap. To distinguish
the two notations, an upper prefix f will be used for the symbols related to the fluid
part and s for the solid part. There are two condition that need to be satisfied on the
fluid-solid interface 5" = fQ) N Q) - balance of forces and geometric continuity. These
are as follows

fTa + sTa — 07

f,Ua — Sy = O7

on T, (7.22)
(¢ = 1,2,..., D). The first condition tells us that the fluid traction ‘T° = fn,'c®?
and the structure traction T® = %n,P*® must be in balance on the interface. The
Cauchy stress tensor ‘0 is fully attached to the deformed configuration, whereas the
first Piola-Kirchhoff stress tensor P is attached to the deformed configuration in the
first index and to the initial configuration in the second index. This does not pose any
problems, because the equal-traction condition, which can be rewritten as

fno o8 4 5ny PP = 0, (7.23)

is paired by 3, which corresponds to the deformed configuration. Note that this also
means that 'n, is the unit outward normal to fluid boundary in the deformed config-
uration, while ®n; is the unit outward normal to the solid boundary in the reference
configuration. The fluid influences the structure by the equal-traction condition, which
will be satisfied by the structure, if we plug T% = —nzo#® in the Neumann boundary

condition in ([7.1]).
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7.3 Fluid-structure interaction

The mesh-deformation algorithm described in Section [5.3| makes sure that the mov-
ing boundary of the fluid moves with the boundary of the structure due to the condition
(5.9). The mesh velocity 'V is calculated from positions of the mesh vertices at dif-
ferent times according to formula . This guarantees that the mesh velocity V¢ is
approximately equal to the velocity of the structure on the interface, i.e. fV® =%v® on
5. That, together with the no-slip boundary condition imposed on the fluid’s
walls, means that the geometric condition is satisfied. If the flow is inviscid, the fluid
is allowed to slip along the structure boundary and the geometric-continuity condition
becomes

g (fo™ =) =0, (7.24)

which is of course satisfied due to the boundary condition imposed on the walls
of inviscid fluids.

We assume that the fluid and structure meshes are mutually nonconforming. The
real challenge therefore is how to transfer the information between the fluid and the
structure solvers. Half of the work is already done because the mesh-deformation
algorithm based on RBFs, which was described in Section [5.3] takes care of the inter-
polation of the structure’s displacement. The structure solver transfers the displace-
ment of the mesh vertices located along the fluid-structure interface to the fluid solver.
The mesh-deformation algorithm interpolates the received displacement together with
zero displacement prescribed on the stationery boundary of the fluid into the whole
fluid domain including the interior. This is the basic ideal behind the RBF mesh
deformation.

The remaining task is how to deal with the transfer of the traction from the fluid
solver to the structure solver. The traction vectors are defined on the integration
points of each edge of the fluid mesh. We need to interpolate the traction vectors from
the integration points of the fluid onto the integration points of the structure. This
is also done using RBFs. In an attempt to increase accuracy, instead of transferring
the traction vector 'T? to the structure solver and interpolating it onto the integration
points of the structure, we transfer and interpolate the fluid stress tensor 'o®? and
only then contract it with interface normals like so T? = —T% = —In 6% The
reason why this approach should be more accurate is that the normals to the interface
are not interpolated and therefore are exact. Because the interpolation is carried
out by the structure solver, we must for this purpose calculate normals *n,, which
are attached to the current deformed configuration, and not to use °n,, which are
attached to the reference configuration. We can either calculate the normals from the
spatial coordinates of the vertices or by transforming the normals using the inverse
deformation gradient F as *n, = “ng Fo.

Let @1, T, . .., &, be the integration points along the fluid-solid interface *I" and let
fa?ﬁ ,of p , ..., 0% be the fluid stress tensor given at the integration points. The RBF

interpolation is based on finding an interpolant 'o? (x), which satisfies '0*? (z;) = o7,
as a linear combination of basis functions

n

0 () = 3 ¢y () (7.25)

=1
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fUnfl fUn fyn+1
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(b) Strong coupling - subiterations.

Fig. 7.1: Coupling algorithms. The structure solver takes the first step (black lines), the
fluid solver takes the second step (blue lines). Loops represent subcycling by
Newton’s method.

by solving D? the linear systems

n
> (@) = "o,

Jj=1

(7.26)

for the coefficients c?ﬁ foreach o =1,2,...,D and =1, 2,...,D. In the matrix
form this translates to

Ac®P = p*? (7.27)
with
Al = (=), bl =07, ;= (7.28)
The basis functions are chosen as radial basis functions
() = rbf([[x — a]]), (7.29)

where rbf is a suitably chosen function as discussed in Section [5.3] The fluid stress
tensor can at any point x along the interface boundary be recovered by plugging
into .

The strong-coupling algorithm is analogous to the one discussed in Section [} The
main difference is that the structure solver is implicit and the fluid solver transfers
stress tensors along the fluid-solid boundary to the structure solver rather than the
force and torques on the whole body. Let us denote the vector containing stress tensors

36
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along the fluid-solid boundary as ‘o

The elastic-structure solver works very differently from the rigid-body solver. The
underlying mathematical model is nonlinear and one step of the structure solver re-
quires Newton’s procedure to converge. So both the fluid solver and the structure
contain Newton’s procedure. In the case of the structure solver however, one New-
ton’s iteration per time step is insufficient. Luckily though, one step with the structure
solver is far less expensive than one step with the fluid solver. We therefore propose
to combine the fluid’s Newton iterations with the subiterations of the strong coupling.
In other words, during one subiteration of the strong coupling only one Newton itera-
tion of the fluid solver is carried out while structure solver completes whole Newton’s
procedure.

Before introducing the coupling algorithm, let us note that the aerodynamic forces
are calculated form ‘U so technically we can write o = {o(U) and U = (d, *v)
contains the structure’s displacement so we can think of the displacement as a function
of U, i.e. d = d(*U). Diagrams for the weak and strong coupling are shown in
Fig. [7.1] The subiterations of the strong-coupling algorithm during n-th time step can
be summarised into six steps:

1. Set r =0, 'U, = f'U" and U, = U™

2. Interpolate stress tensors ‘o, = lo("U,) from the integration points of the fluid
to the integration point of the structure on the fluid-solid interface by RBF's
(7.25)).

3. Take a step by the implicit structure solver
U, =°S (*U,, ‘o). (7.30)

The operator S represents the whole Newton’s iterative procedure ((7.19) of the
structure solver.

4. Deform the mesh with the RBF algorithm (Section and calculate the mesh
velocity according (/5.7]).

5. Take a step by the implicit fluid-flow solver
U, =S ('0,,%4,41) (7.31)

The operator !S represents one iteration of Newton’s iterative procedure (4.47)
of the fluid solver.

6. If the steady state is reach, proceed to the next time level by setting fU™+! =
'U,41, U = 5U,,; and n = n + 1 and by going to step 1, otherwise set
r=r -+ 1 and go to step 2.

The weak coupling corresponds to a single sub-iteration of the algorithm, that is when
we remove the if statement from step 6 and replace it with

6. Proceed to the next time level by setting n = n + 1 and by going to step 1.
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7.4 Turek-Hron benchmarks

In this section, the FSI algorithm is validated on the well-known Turek-Hron bench-
mark, which was first proposed in [89] and then again published in [90]. The bench-
mark consist of a couple of problems with a 2D incompressible laminar flow around
a fixed cylinder with elastic cantilever embedded in the cylinder as show in Fig.
The vortices that are shed from the cylinder excite oscillations in the cantilever. The
Turek-Hron proposal [89] contains not only FSI benchmarks, but also separate bench-
marks for the structure solver and for the fluid solver. It comes in handy to first
validate each of the solvers separately and once we have confidence in the structure
and fluid parts, we may proceed in benchmarking of the coupled FSI solver. Although
we have already validated the fluid solver on a number of benchmarks, it is convenient
to benchmark it again on a CFD benchmark with the exact same geometry and the
same parameters as the FSI benchmark that will later be conducted. We will keep
the cantilever fixed in its reference configuration for the CFD benchmark and release
it for the FSI benchmark.

The outer boundary of the fluid domain is rectangular with length L = 2.5 m and
height 'H = 0.41m. The centre of the fixed cylinder is C' = [0.2, 0.2] and its radius
is 7 = 0.05m. The height of the cantilever is *H = 0.02m and its length is 0.35m, if
measured from the middle of the bar, or °L = 0.4 — 1/0.05%2 — 0.01%2 =~ 0.351 01 m, if
measured from the left corners of the structure. This is because the cantilever is not
perfectly rectangular in the reference configuration, its left edge is in fact an arc of
radius . The coordinates of the right bottom corner of the cantilever are [0.6,0.19].
In order to represent the displacement of the elastic structure, the reference point A
located at the end of the cantilever was chosen. The coordinates of point A at time
t = 0 are [0.6,0.2]. In the following figures and tables, its this point whose displacement
is shown. The geometry parameters are summarised in Table [7.1]

H

[0,0]

Fig. 7.2: Geometry of the Turek-Hron benchmark. Fluid domain is on the top and the
detail of the structure is on the bottom.

7.4.1 Initial and boundary conditions for the fluid flow

The Turek-Hron benchmarks consider incompressible flow. In contrast, our DG solver
is designed for compressible flows. The reason why we decided to test the FSI algorithm
on FSI benchmarks with incompressible flow is that there are not very many FSI
benchmarks with data available. The way we dealt with this hurdle is that we chose
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Table 7.1: Geometry parameters.

name symbol value (m)
channel length o 2.5
channel height " 0.41
cylinder centre C [0.2,0.2]
cylinder radius r 0.05

elastic structure length °L 0.35101
elastic structure height *H 0.02
reference point at ¢ = 0 A 0.6,0.2]

the Mach number low enough so that the flow can be considered incompressible, in
particular we chose the Mach number for the mean inlet velocity as Ma = 0.05.
The heat capacity ratio v and the Prandtl number Pr should not have a substantial
effect on the fluid flow in the low-Mach regime. Using compressible flow solver for
incompressible problems is not very efficient, because the speed of sound in much
higher than the speed of the fluid resulting in small time steps. For benchmarking
purposes it is sufficient with a little bit of patience.

The no-slip boundary condition is prescribed at the walls - the fixed cylinder, the
elastic cantilever and the upper and lower walls. At the outlet on the right-hand side
of the fluid domain, zero pressure is typically prescribed. In the case of incompressible
flow, any value of pressure can be added to or subtracted from the whole flow field
resulting in different outlet pressure. At the inlet on the left-hand side of the fluid
domain, a parabolic velocity profile is prescribed:

y('H —y)

£ 1Rt
Uin(y) = 1.505, GIDE

~ 35.69, y('H — 1), (7.32)

where y € [0, 'H] is the vertical coordinate at the inlet and ', is the mean inlet
velocity.

Table 7.2: Parameters for the CSM benchmarks.
parameters units CSM1  CSM2  CSM3

) Xe 103 103 103
B ks 1.4-10 5.6-10% 1.4-106
kg 0.4 0.4 0.4

g m 2 2 2

7.4.2 CSM benchmarks

We perform CSM benchmarks first, where CSM stands for Computational structural
mechanics, to validate the elastic-structure solver. We approximate the arc on the
left-hand side of the domain with a straight line. Hence, the domain is rectangular
with height *H = 0.02 and length °L ~ 0.35101. There are three benchmarks designed
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by Turek and Hron. Our task in the first two problems, CSM1 and CSM2, is to find
the equilibrium configuration of the structure, whereas in CSM3 we investigate how
the displacement changes as time passes. In all the three cases the only added external
force is gravity acting in the negative y direction with acceleration ¢ = 2 m/s*. All
parameters are shown in Table [7.2] Notice that the only parameter that is different is
the module of elasticity °F and that the parameters for CSM1 and CSM3 are exactly
the same. The difference is that CSM1 investigates statics, whrereas CSM3 investigates
dynamics of the structure. The results along with errors and convergence rates for the
steady benchmarks are shown in Tables ~[7.6] Here the most accurate results by
Turek and Hron [89] are considered as the reference solution. The structure solver is
based on finite element method with linear basis functions and so the convergence rate
should turn out around 2 and that is fortunately what we observe.

The results for the unsteady CSM3 benchmark are plotted in Fig. [7.3]and tabulated
in Table[7.7 In Fig. [7.3] we can see a great agreement with result by Turek and Hron
[89]. Here, an unstructured triangular mesh with the minimum element size 1.25-1073
corresponding to 11 776 uniformly-distributed elements was used.

Table 7.3: CSM1 benchmark: xz-component of the displacement at point A is tabulated.

h (m)  elements d, (m) abs. error (m) rel. error (%) conv. rate
1.00 -1072 150 —2.674-1073 4.514-1073 62.8 -
5.00 -1073 724  —5.846-1073 1.342-1073 18.7 1.75
250 -107% 2996 —6.913-1073 2.751-1074 3.8 2.29
1.25 -107% 11776  —7.135-1073 5.277-107° 0.7 2.38
6.25 -107* 47066  —7.200-1073 1.218-107° 0.2 2.12

Turek and Hron —7.188-1073 - 0.0 -

Table 7.4: CSM1 benchmark: y-component of the displacement at point A is tabulated.

h (m)  elements d, (m) abs. error (m) rel. error (%) conv. rate
1.00-1072 150  —4.071-1072 2.540 - 1072 38.4 -
5.00- 1073 724 —5.965- 1072 6.450 - 1073 9.8 1.98
2.50-1073 2996  —6.484-1072 1.262-1073 1.9 2.35
1.25-107% 11776  —6.587-1072 2.287 1074 0.3 2.46

6.25-107* 47066 —6.617-1072 7.227-107° 0.1 1.66
Turek and Hron —6.610 - 1072 - 0.0 -
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7.4 Turek-Hron benchmarks

Table 7.5: CSM2 benchmark: x-component of the displacement at point A is tabulated.

h (m)  elements d,; (m) abs. error (m) rel. error (%) conv. rate
1.00 - 1072 150  —1.698-10* 2.992 - 104 63.8 -
5.00 -1073 724 —3.783-107*  9.067-107° 19.3 1.72
250 -107% 2996  —4.503-107* 1.872-107° 4.0 2.28
1.25 -107% 11776  —4.654-10~* 3.601-107° 0.8 2.38
6.25 -107* 47066  —4.698-107* 8.189-1077 0.2 2.14

Turek and Hron —4.690 - 10~* 0.0

Table 7.6: CSM2 benchmark: y-component of the displacement at point A is tabulated.

h (m)  elements d, (m) abs. error (m) rel. error (%) conv. rate
1.00 - 1072 150 —1.028-1072 6.699 - 1073 39.5 -
5.00-1073 724 —1.524 - 1072 1.735-1073 10.2 1.95
2.50-1073 2996  —1.663 - 1072 3.416 - 1074 2.0 2.34
1.25-107% 11776 —1.691- 102 6.229 - 107° 0.4 2.46
6.25-107* 47066 —1.699 1072 1.904 - 107° 0.1 1.71

Turek and Hron  —1.697 - 1072 — 0.0 -
—— present solver
—— Turek and Hron

0.000 0.00

~0.005 -0.021
B B
E ~0.010 E —0.041
% o015 % ~0.06
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~0.121
-0.0304 S . : — —
8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 8.00 8.25 850 875 9.00 9.25 9.50 9.75 10.00
time (s) time (s)

Fig. 7.3: CSM3 benchmark: displacement at point A.

Table 7.7: CSM3 benchmark: displacement at point A for At = 0.01s is tabulated.
h (m)  elements d, (m) d, (m)

1.00 - 1072 150  —5.325-1073 £ 5.322-107% —4.026- 1072 + 4.004 - 102
5.00- 1073 724 —1.159-1072 4+ 1.159-10"2 —5.814-1072 + 5.834- 1072
250-107% 2996 —1.366-10"2 + 1.366-10~2 —6.287-10"2 + 6.319- 1072
1.25-1073% 11776 —1.410-1072 4+ 1.410-1072 —6.383-10"2 + 6.416 - 1072

Turek and Hron — —1.431-10"2 + 1.431-10"2 —6.361-10"2 + 6.516 - 1072
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Fig. 7.4: CSM3 benchmark: cantilever at time ¢ = 0 (blue) and at time ¢t = 0.43s when the

deformation is greatest (black). Mesh with h = 5- 1073 m and 724 elements is
shown.
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7.4 Turek-Hron benchmarks

7.4.3 CFD benchmarks

Although we have previously tested the DG fluid solver on both steady and unsteady
problems, we will test it again on the CFD benchmarks provided by Turek and Hron
[89]. The geometry for the CEFD benchmark is the same as for the FSI benchmarks
shown in Fig. [7.2], with the only difference that the cantilever is considered rigid and
fixed in place. The are three test cases CFD1, CFD2 and CFD3. The first two are
steady problems where the parameters are set such that over time the solution reaches
equilibrium. The last benchmark CFD3 produces periodic oscillations over time, thus
never reaches a steady state.

The fluid parameters are tabulated in Table In all three cases the density of
the fluid is {» = 1000 kg/m? and the dynamic viscosity is iz = 1Pas. The quantity
that changes from case to case is the mean inlet velocity 'v;,, which of course also
changes the Reynolds number Re. The diameter of the cylinder is considered as the
characteristic length.

Two different meshes depicted in Fig. were used to compute the results. The
coarser one has the minimum element size h = 0.02m and 3040 elements and the
finer one has the minimum element size h = 0.01 m and 12092 elements. The lift and
the drag on the whole body, which includes both the cantilever and the cylinder, is
monitored and compared. Tables [7.9) and contain the results for the CFD1 and
CFD2 benchmarks. We perform 6 computations for each of the benchmarks - with the
coarser and finer meshes and with second, third and forth order of spatial accuracy
(linear, quadratic and cubic basis polynomials). We compute the relative error with
respect to the best results obtained by Turek and Hron [89], which we consider as
the reference solution. The error decreases with increasing spatial accuracy and when
the finer mesh is used. The error of both lift and drag drops below half a percent
for the finest results in both test cases. More than satisfactory agreement is seen in
Fig. [7.5], where the results obtained using the finer mesh and cubic basis polynomial
are compared to the results obtained by Turek and Hron [89].

Table 7.8: Parameters for the CFD benchmarks.
parameters units CFD1 CFD2 CFD3

b o108 100 108
b X8 1 1 1
in o 0.2 1 2
Re - 20 100 200
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7 Fluid and elastic-structure interaction

Table 7.9: CFD1 benchmark: drag and lift on the whole body (cylinder and cantilever).

h (m) elements order drag (N) dragerror (%) lift (N) lift error (%)

0.02 3040 2 1.283 - 10* 10.2 1.171 4.6

0.02 3040 3 1.398 - 10! 2.2 1.149 2.7

0.02 3040 4 1.414 - 10! 1.1 1.120 0.1

0.01 12092 2 1.350 - 10* 9.9 1.181 5.5

0.01 12092 3 1.423 - 10* 0.5 1.124 0.4

0.01 12092 4 1.425 - 10* 0.3 1.115 0.3
Turek and Hron 1.429 - 10! 0.0 1.119 0.0

Table 7.10: CFD2 benchmark: drag and lift on the whole body (cylinder and cantilever).

h (m) elements order drag (N) dragerror (%) lift (N)  lift error (%)
0.02 3040 2 1.322 - 102 3.3 2.075 - 10! 97.0
0.02 3040 3 1.302 - 102 4.7 1.230 - 10* 16.7
0.02 3040 4 1.357 - 102 0.8 1.083 - 10¢ 2.8
0.01 12092 2 1.287 - 102 5.8 1.156 - 10* 9.7
0.01 12092 3 1.359 - 10? 0.6 1.066 - 10* 1.2
0.01 12092 4 1.362 - 102 0.4 1.050 - 10t 0.3
Turek and Hron 1.367 - 102 0.0 1.053 - 10* 0.0
—— present solver
—— Turek and Hron
444 400+
442 200
g 440 A =
g - 9
T 438 =
~2001
4361
4341 —400
9.0 91 9.2 9.3 94 95 9.6 90 91 92 93 94 95
time (s) time (s)

Fig. 7.5: CFD3 benchmark: drag and lift on the whole body (cylinder and cantilever)
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obtained using the finer mesh and cubic basis polynomials.
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/3 /3

2h 4h

(a) Mesh layout.

(b) Coarse mesh with size h = 0.02m and 3040 elements.
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Fig. 7.6: Fluid-flow meshes for CFD and FSI benchmarks.
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7 Fluid and elastic-structure interaction

7.4.4 FSI benchmarks

Finally we get to the FSI simulations. For the fluid part, we have the same geometry as
for the CFD benchmarks. The structure and fluid parameters, found in Table[7.11], are
chosen such that for FSI1 the flow stabilises at the steady state, whereas FSI2 and FSI3
lead to periodic oscillations of the structure at the frequency close to the second lowest
natural frequency of the structure. The FSI2 benchmark has increased density of the
structure by a factor of 10 to eliminate the added-mass effect. The added-mass effect is
observed in FSI1 and FSI3, where % = . FSI1, as it is a steady-state problems, does
not cause significant stability issues, whereas FSI3 does. For Turek and Hron this does
not pose any problems, as they are using the monolithic approach. In this thesis, we
use a compressible solver for the fluid part, which somewhat relaxes the solution and
the implications of the added-mass effect are not so severe, nevertheless we do need
to perform subitarations for FSI3, otherwise the solver would not converge. Since
this thesis focuses on compressible fluid dynamics and on aerodynamics in particular,
where structures tend to be several orders of magnitude denser then the fluid around
them, we do not need worry about the added-mass effect in practical applications.

The displacement at point A and forces on the whole body for the FSI1 benchmark
are shown in Tables and , respectively. The displacement of the structure (at
point A) for the FSI2 and FSI3 benchmarks is plotted in Figs and . A reasonable
agreement is found with Turek and Hron. We can see that the y-component agrees
better than the z-component, since the z-component of the amplitude is one order
lower than the y-component. A sequence of velocity fields during half a period is
shown in Figs and for FSI2 and FSI3 benchmarks, respectively.

Table 7.11: Parameters for the FSI benchmarks.
parameters units  FSI1 FSI2 FSI3

% kg 103 104 103
*E X8 14-10° 1.4-10° 5.6-10°
sy - 0.4 0.4 0.4

b kg 10 103 10
fu X8 1 1 1
i o 0.2 1 2
Re - 20 100 200
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7.4 Turek-Hron benchmarks

Table 7.12: FSI1 benchmark: x and y components of displacement at point A.

h (m) elements order d, (m) d, error (%) d, (m) d, error (%)
0.02 3040 2 1.995-107° 12.2 6.709 - 10~* 18.3
0.02 3040 3 2.221-107° 2.2 7.568 - 107* 7.8
0.02 3040 4 2.253-107° 0.8 8.004 - 10~* 2.5
0.01 12092 2 2.112-107° 7.0 7.467 - 1074 9.0
0.01 12092 3 2.252-107° 0.8 7.863 - 1074 4.2
0.01 12092 4 2.271-107° 0.0 8.024 - 1074 2.3

Turek and Hron 2.271-107° 0.0 8.209 - 1074 0.0
—— present solver
—— Turek and Hron
0.08 1
—0.005 1 0.06 -
= € 0.041
< -0.0101 <
o Z o002
£ 0015 £ 0.0
B 3 -0.021
§ ~0.0207 §—0.04-
~0.025 1 006
—0.081
34.0 34.2 34.4 34.6 34.8 35.0 34.0 34.2 34.4 34.6 34.8 35.0
time (s) time (s)
Fig. 7.7: FSI2 benchmark: displacement at point A.
—— present solver
—— Turek and Hron
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Fig. 7.8: FSI3 benchmark:

displacement at point A.
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Fig. 7.9: FSI2 benchmark: contours of velocity magnitude during half a period.
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Table 7.13: FSI1 benchmark: drag and lift on the whole body (cylinder and cantilever).
h (m) elements order drag (N) dragerror (%)  lift (N)  lift error (%)

0.02 3040 2 1.282 - 10! 10.3 8.907 - 107! 16.6
0.02 3040 3 1.398 - 10! 2.2 8.240 - 107t 7.9
0.02 3040 4 1.413 - 10! 1.1 7.761 107! 1.6
0.01 12092 2 1.351 - 10! 5.5 8.613-107! 12.8
0.01 12092 3 1.423 - 10! 0.5 7.847-1071 2.7
0.01 12092 4 1.425 - 10! 0.3 7.701-107! 0.8

Turek and Hron 1.429 - 10! 0.0 7.637-107! 0.0
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8 Parallel implementation

The computational complexity of FSI problems calls for a parallel implementation.
In the following, we will describe an algorithm, which is also described in our paper
[a2], for an effective parallelisation of the CFD solver, as it is the most computation-
ally demanding component of an FSI solver. First we will focus on computation with
distributed memory, which is typically intended for parallel computation among com-
puters (nodes) in a computer network. Shared memory parallelisation will be covered
in Section [8.1 which is intended for parallelisation among CPUs (CPU cores) within
one node.

When designing an algorithm for distributed computing, we aim for the least fre-
quent transmissions and for the smallest amount of data that is being transferred
among nodes in the computer network. A frequently used method for parallelisa-
tion of algorithms that solve boundary value problems is the domain decomposition
method. The idea behind the domain decomposition method is to split the problem
into smaller boundary value problems by dividing the domain into smaller subdomains.
The subdomains may or may not be overlapping depending on the method used. The
subproblems are then solved iteratively until the steady state is reached. The iterative
process needs to be performed at each time step for transient boundary value prob-
lems. After each iteration, there is a data transfer between any two problems with
adjacent subdomains. The resulting subproblems are independent of one another, and
so each subproblem can be solved on a different computer in a computer network.
This makes the domain decomposition method a suitable tool for parallel computing
with distributed memory. The first occurrence of a domain decomposition method
dates back to 1870 when Hermann Schwarz published the so-called Schwarz alternat-
ing method [79]. Many other authors extended his work [30, 29| 53, 59]. Another
example of a domain decomposition method is the Schur Complement Method [24].

Following the Schwarz method [79] we divide the computational domain €2 into a set
of pairwise overlapping subdomains wq, ws, ... We choose the number of subdomains
equal to the number of computational nodes. Let us call the computational node

r T r

(O] (Q)%: : 23 [OF

Fig. 8.1: Partition of the domain 2 into three overlapping subdomains wi, we and w3 with
overlaps w2 and wa 3.
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corresponding to w; the i-th node. Each node performs an independent computation
on a different subdomain as illustrated in Fig. 8.1 As a result, the original linear
system (Azx = b) is split into smaller linear systems A®x(® = b(® each corre-
sponding to a single subdomain w;. After each iteration, the data from the intersection
w;; = w; Nwj is transferred between the i-th and the j-th node. This ensures that the
solution may propagate from one subdomain to another. The iterative procedure of
overlapping Schwarz method, which occurs at each time level, can be summarised in
the following four steps:

1. Set s =0 and gy, = 0.

2. Solve the linear system
AWy . =b® — AD Y. (8.1)

and set s = s + 1.

3. Exchange data with the adjacent subdomains and update y;, i.e.
Ys = Ys.

4. If the steady state is reached, i.e. ||gs|| < &, then set 9 = >°°_ g, and proceed
to the next time level, otherwise go step 2.

The iterative procedure of overlapping Schwarz method can stand by itself or may be
conveniently merged with Newton’s method (4.47)).

—wl_—Lwl,Q

VAN RAYAVAVANANYAv YA 74V
e
w1 w2

Fig. 8.2: Exemplary partition of the domain {2 into two overlapping subdomains. The
arrows illustrate data transfer between nodes. Elements on which we prescribe the
Dirichlet boundary condition are marked with dots.

In order to describe the data transfer (step 2) between among nodes more thoroughly,
we introduce some notation. Let w; denote the subdomain w; reduced by the overlap,
fe. w, = w;\ Uj wj, © # j. Let w; and w; be two overlapping subdomains. We
divide their overlap w; ; roughly in half, which forms two strips wfj and wfj as shown
in Fig. . Let wiLJ be the strip adjacent to w, and let wfj be the strip adjacent to
w; , see Fig. . The part of ® that corresponds to wiL,j is transferred from the i-th

computational node to the j-th computational node where it replaces the original data
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and analogously the part of ') that corresponds to wfj is transferred from the j-th
node to the i-th node. This transmission is illustrated by arrows in Fig. [8.2]

We still have not yet defined the boundary condition for the newly created boundary
of each subdomain w;. Let us remedy that just now. The boundary condition on
02 N dw; (on the part of the boundary shared by the domain Q and the subdomain
w;) is assumed the same as for the original problem. For the definition of boundary
condition on 0 see Chapter [3] We prescribe the Dirichlet boundary condition on
the rest of the boundary. In particular, we take the values of elements that lie on the
boundary (these elements are marked with dots in Fig. and use their values for
the Dirichlet boundary condition.

Due to performance, we would like to ideally reduce the number of iteration of the
Schwarz method to one. Although the linear solver converges faster during additional
iteration then during the first one since the changes in solution are rather small, it
still adds to the total computational time and so we wish to avoid it. In this thesis,
we propose one iteration of the Schwarz method under a restriction for the size of the
overlaps. Let sL denote the smallest distance between w,; and wg, let 6Rj denote the
smallest dlstance between wi; and w; and ﬁnally let ¢ = ming;(min{e};, €5}). In
vague terms, 5 . and 5 . are Wldths of strips w - and wi %, respectively, and € is the
minimum Wldth of all strlpes Since Navier- Stokes equations are close to a system
of hyperbolic differential equations, especially in cases with high Reynolds number,
the information propagates at a finite speed which equals to the maximum eigenvalue
Amax = |[Valla — V¥n4u| + a. Recall that v,n, is the normal velocity of the fluid and a
is the local speed of sound. If we set

€ > Amax Aty, (8.2)
where At,, is the time step, then the information cannot cross any strip w’ or w! in
a single time step. Equivalently, the overlapping Schwartz method with one iteration
can be thought of as locally implicit (within a single subdomain) and globally explicit
(among subdomains), where the criterion is analogous to the CFL condition for
classical explicit method. Just like the CFL condition, the criterion ({8.2) also restrict
the maximum time step that we can take in order to maintain stability. However, by
making overlaps wide, i.e. making ¢ large, we can make the condition very weak.

8.1 Parallel implementation with shared memory

We have just presented a method suitable for parallel computing with distributed
memory. Each node in the computer network has typically multiple CPU cores avail-
able. These CPU cores share memory. It is therefore convenient to make use of all
the capability of each node. We propose the following local parallel implementation,
which makes use of shared memory.

On each node, a system of linear equations is solved by an iterative linear solver,
the GMRES solver with the block diagonal Jacobi preconditioner in particular. Here
the subject for parallelisation is the linear solver itself. A majority of the computa-
tional time during the execution of an iterative linear solver is spent on matrix-vector
multiplications Av, where A is a sparse matrix that appears in the linear system
and v is a given column vector. The parallel implementation lies in performing the
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8 Parallel implementation

products of rows of A with the vector v in parallel. Other vector operations involved
in the algorithm are parallelised in the same manner. This type of implementation is
inefficient for parallel computing among nodes in the computer network, as the data
transfer among nodes would be too frequent. On the other hand, it is suitable to be
performed among CPU cores of each computational node since the CPU cores share
memory.

8.2 Benchmarks

02 04 06 12 14 16 = 05 0 05 1 15

Fig. 8.3: Computational mesh. Fig. 8.4: Domain decomposition.
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Fig. 8.5: Mach contours. Fig. 8.6: Density contours.

As a performance demonstration of the presented algorithm for distributed comput-
ing, we choose a problem which we solve multiple times, each time with a different
number of nodes and compare the elapsed times. The number of CPU cores per node
stays fixes for all cases. Speedup and efficiency are two quantities that will help us anal-
ysed the performance. Speedup is the ratio of computational times of non-parallelized
and parallelized simulations and efficiency 7 is speedup divided by the total number of
threads. Note that the total number of threads is calculated multiplying the number
of nodes by the number of threads per node. Larger problems typically show higher
efficiency than smaller problems, since for larger problems the overhead such as data
transfer is less significant in comparison with the actual computation. A good mea-
sure of the size of the problems is the number of degrees of freedom (DOFs), which
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Fig. 8.7: Speedup vs. number of nodes.

is simply the number of unknowns in the system of linear equations . Since the
system of Navier-Stokes equations in 2D is a system of four equations, the number of
DOFs is equal to 4 x (number of local basis functions) x (number of elements).

Let us choose a transonic flow around the NACAO0012 aerofoil as the test problem
and let us prescribe the far-field boundary condition with

e the far-field Mach number Ma,, = 0.8 and
e the angle of attack a = 5°.

We perform three benchmarks with different numbers of iterations, two of which are
inviscid simulations and one is a laminar simulation. The parameters for the three
benchmarks are tabulated below.

# of Schwarz iterations  Re

Benchmark 1 1 00
Benchmark 2 2 00
Benchmark 3 2 10000

For all the three benchmarks, quadratic basis polynomial (which corresponds to 3rd
order of accuracy) and mesh with 69 389 elements (which corresponds to 1 665 336
DOFs) were used. The decomposition of the domain into subdomains was performed
by the software tool METIS.

The computational mesh, a sample domain decomposition and Mach and density
contours of the steady state for an inviscid-fluid flow are show in Figs. [8.3] [8.4], [8.5] and
respectively. The results of the benchmarks are tabulated in Tables [8.1] - 8.3 and
plotted in Fig. 8.7 We also included measures speedup, and efficiencys, which are the
same as speedup and efficiency, except that they are related to the computation with
two nodes. The speedup and efficiency related to one node may be misleading because
the transfer time is negligible, due to the fact that there are no overlaps, hence no data
to send. The transfer time we see in the case of one node is only the communication
delay (requests and responses) between master and slave.
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Table 8.1: Benchmark |1| — inviscid simulation with 1 Schwarz iteration.

# of nodes CPU (s) transfer (s) speedup (-) efficiency (%)

1 1333 0.1 1.0 100
2 678 0.9 2.0 98
4 345 1.9 3.9 96
8 197 4.1 6.8 84
16 105 10.4 12.6 78

Table 8.2: Benchmark [2[ — inviscid simulation with 2 Schwarz iterations.

nodes CPU (s) transfer (s) speedup (-) effic. (%) speedupy (-) effic.o (%)

1 1333 0.1 1.0 100 - -

2 1041 1.7 1.3 64 1.0 100
4 539 4.0 2.5 61 1.9 96
3 309 8.5 4.3 53 3.4 84
16 178 21.9 7.5 46 5.8 72

Table 8.3: Benchmark [3| — laminar simulation with 2 Schwarz iterations.

nodes CPU (s) transfer (s) speedup (-) effic. (%) speedupy (-) effic.o (%)

1 1225 0.1 1.0 100 - -

2 860 2.0 1.4 71 1.0 100
4 448 3.1 2.7 68 1.9 95
8 262 6.8 4.7 58 3.3 82
16 145 204 8.4 52 5.9 73
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9 Conclusion

The discontinuous Galerkin method has been theoretically studied in the local de-
partment for over ten years and also has been applied to many practical problems
of aerodynamics with great success. As a consequence, there has been an increasing
interest to apply the method to solve FSI problems. For this purpose, we designed
and implemented two different structure solvers and coupled them with the fluid solver
based on the discontinuous Galerkin method. One of the main requirements for the
coupling algorithm was to achieve a high level of modularity. In other words, we de-
manded that the structure solver can be swapped for a different solver with relative
ease. The reason is that we might want to use a specialised structure solver developed
by other research groups for some specific tasks. This will hopefully improve interdisci-
plinary cooperation between research groups on FSI problems in the local department
and beyond. Moreover, we suppose the meshes for the fluid and the structure may be
nonconforming on the fluid-solid interface.

For these reasons, we use the partitioned approach with the option of both weak and
strong coupling. We used two different mathematical models for the structure, namely
a mass-spring-damper model for a system of rigid bodies and nonlinear equations of
elastodynamics for an elastic structure with large deformations. We use different
mesh-deformations algorithm for each of the mathematical models. We designed a
computationally-efficient mesh deformation for a system of rigid bodies, which is a
coordinate-smoothing algorithm based on solving an elliptic equation for each of the
bodies. The elliptic equations are solved only once before the FSI computation starts,
thereby saving a plenty of computational time.

This strategy could easily be used for a boundary with an elastic rather than rigid
motion, if the mesh for the elastic structure was aligned with the mesh for the fluid.
However, to sustain the aforementioned modularity, we consider nonconforming meshes
at the fluid-solid interface. One option is to interpolate the displacement at the fluid-
solid interface, using for example radial basis functions, and then apply the discussed
approach for mesh deformation. Another option is to use radial basis functions to
both interpolate and deform the mesh at the same time. In this thesis, we used the
latter approach for FSI problems with elastic structures. The former approach, which
contains separate interpolation and mesh deformation, could be worth studying for
reasons of computational efficiency. For a large scale F'SI problems, solving the linear
system that arises form the RBF interpolation of the displacement along the whole
boundary (not just fluid-solid interface) at each iteration might be too computationally
demanding.

The elastic-structure solver that was implemented in this thesis is based on a stan-
dard finite element method with implicit time marching and Newton’s iterative pro-
cedure. The interpolations of the stress tensor between fluid and structure integration
points is achieved again with the use of radial basis functions.

In this thesis, the greatest attention is given to the modelling of the fluid flow, as
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it tends to be the most complicated part of any FSI problem. We discretised the
Navier-Stokes equations by the discontinuous Galerkin method. This method, though
complicated and computationally demanding, has also a number of advantages, such as
conservativity, stability, high order of accuracy and it satisfies the geometric conserva-
tion law. The last characteristics is especially useful for FSI problems. This document
contains a thorough description of the discontinuous Galerkin method, including its
derivation for the system of Navier-Stokes equations, its implicit integration with the
BDF method and a description of a suitable fine-tuned damping, see Chapter [dl To
validate the DG scheme for stationary boundary, we performed a few simulations of
flows over the NACAO0012 aerofoil with different Reynolds numbers, Mach numbers
and angles of attack. The first benchmark consists of two test cases that confirm
rather high accuracy of the discontinuous Galerkin method on a steady subsonic lam-
inar flow. The results were benchmarked against the finest results of NASA, which
were produced by a finite volume solver with over 8 million cells. The developed dis-
continuous Galerkin solver was supplied with an unstructured mesh with around 34
thousand cells and gave similar results to those of NASA, including the recirculation
behind the trailing edge. Furthermore, for a transonic turbulent flow, the results ob-
tained by the DG solver with the use of Spalart-Allmaras turbulence model agree well
with experimental results conducted in a transonic pressure tunnel by NASA.

The DG solver show good results also on benchmarks with moving boundary. In par-
ticular, we performed two test cases on flows around an aerofoil with prescribed pitch-
ing and compared the hysteresis loops of the lift and drag coefficients with published
results in Section . The first test case involves high Reynolds number (Re = 5.5-109)
and low maximum incidence angel (pax = 2.526°). We therefore decided to approxi-
mate the real flow with an inviscid flow. The results show a very good agreement with
both experimental and numerical results by other authors, see Fig. [5.10] The second
test case involved lower Reynolds number (Re = 10°) and a high maximum incidence
angle (amax = 18°). As a consequence, we had no choice but to model the flow as tur-
bulent. In Fig. [5.11] a qualitative and quantitative agreement with numerical results
by other authors is evident. However, the experiment has somewhat different tendency
than all the numerical results. The most apparent difference is seen at the end of the
upstroke, where the numerical simulations overestimate the maximum drag and lift.
Nevertheless, the value of the lift and drag coefficients predicted by the simulations
roughly agrees with the experiment for the majority of the cycle. In fact, during the
upstroke, the lift and drag coefficients predicted by the present DG solver follow the
measured values at the experiment much more closely than the other simulations. We
also investigated weather the DG solver satisfies the geometric conservation law. For
the designed test case, the law was satisfied almost to machine precision, see Tables
6.1l and B.21

One of the motivation for the present thesis is to be able to investigate flow-induced
phenomena such as vortex-induced vibration and more importantly flutter. We there-
fore validated the developed FSI solver on interesting problems of flow-induced vibra-
tion, rather than artificial problems that have no practical significance. One such prob-
lem is the investigation of torsional flutter in a blade cascade using the energy method
(Section [5.5). We validated the developed CFD solver on this problem against ex-
perimental measurement conducted at the Institute of Thermomechanics of the Czech
Academy of Sciences. The experiment and the CFD solver predicted flutter for the
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same interblade phase angle. Moreover, the experiment and the CFD simulation show
qualitative agreement, see Fig. [5.16] The energy method involves only the one-way
coupling. The first benchmark with fully-coupled FSI (Section involves vortex-
induced vibration of a circular cylinder in a fully laminar flow regime (Re: 90 — 130).
We observed the lock-in phenomenon around the point for which the vortex-shedding
frequency matches the natural frequency of the structure. The Fig. gives us confi-
dence in the FSI solver as our results agree with the numerical results by Dettmer [27]
perhaps surprisingly well. Although the experimental results are quantitatively differ-
ent from the numerical results, the qualitative behaviour is similar. Another perhaps
more relevant benchmark for aeroelatic applications is the benchmark where we inves-
tigated occurrence of flutter for a wing. Our findings agreed very well with numerical
results from other authors. The agreement with the studies by other authors on these
complex task give us great confidence in the FSI solver. One of the main goals of this
thesis was thus achieved, and that is to design and implement a FSI solver capable of
modelling complex aeroelastic phenomena.

We test the algorithm for the fluid-flow and elastic-structure interaction on a set
of benchmarks proposed by Turek and Hron [89] in Section These test problems
consists of an inviscid laminar flow around a fixed cylinder, which sheds vortices that
induce vibration in an elastic cantilever embedded in the cylinder. Apart from the FSI
benchmarks, the proposal contains separate test problems for fluid-flow and elastic-
structure solvers. These benchmarks proved extremely helpful during the development
and testing. The present FSI solver gives similar results to the results obtained by
Turek and Hron.

CFD and FSI problems that are encountered in practice are often very complex
and require plenty of computational power. To decrease computational time needed,
we employ parallel computing on two different levels - on the level of a single node
in a computer network, where the computation is carried out in parallel by multiple
CPUs with shared memory, and on the level of a computer network, where the task
is distributed among nodes in the network. Parallel computing with shared memory
is fairly straightforward to implement and standard for CFD and FSI problems. We
therefore focused more on distributed computing in Chapter[8, We use the overlapping
Schwarz method for this purpose, i.e. we divide the computational domain into n
overlapping subdomains, where each subdomain is solved on a different node in a
computer network. In general, subiterations with exchange of data from overlaps is
required. Based on the hyperbolic nature of the Navier-Stokes equations, we propose
a condition for a minimum overlap size analogical to CFL condition, which allows for
only one Schwarz iteration at each time step. This increases efficiency of parallelisation.
The scalability and efficiency of the presented parallelization approach is demonstrated

on three test cases, see Fig. [8.7 and Tables [8.1] [8.2] and [8.3]

Let us recap the major objectives of this thesis in the following three points:

e Develop and implement an FSI algorithm for both rigid and elastic structures.

e Validate the fluid solver, the structure solver and the fully-coupled FSI solver on
various problems.

e Apply the FSI solver to investigate flow-induced vibration.

We performed plenty of benchmarks for the separate as well as coupled solvers. These
benchmarks include problems of flow-induced vibration, such as vortex-induced vibra-
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9 Conclusion

tion of a rigid cylinder, vortex-induced vibration of an elastic structure, investigation
of classic flutter of a swept-back wing or investigation of coupled torsional flutter of
blades in a blade cascade. All the main objectives of this thesis have been therefore
successfully accomplished.

9.1 Future work and recommendations

The elastic-structure solver implements linear basis functions. Implementing higher
order basis function is fairly straightforward task that would increase computational
efficiency of the structure solver. We have thoroughly tested the developed fluid-
flow solver in this thesis and it has proven to be very robust and accurate. It would
therefore be interesting to couple it with a specialised elastic-structure solver developed
by other research groups. After all, one of the requirement for the FSI algorithm that
was stressed throughout the thesis was modularity.

The mathematical description in this thesis as well as the actual implementation
was designed in such a way that the fluid-structure solver can be extended to 3D
domains with relative ease. Although the fluid solver has already been applied to
3D problems with satisfactory results, testing and consequent benchmarking of the
coupled fluid-structure solver on 3D problems is yet to be carried out.

Another interesting topic of research is to extend the mesh-deformation algorithm
based on blending function for elastic movement of the boundary. For this purpose,
we used an algorithm based on radial basis function instead, since it is well established
and has proven to be effective by many researches. However, the radial-basis-function
approach is much more computationally expensive that the proposed algorithm. There
might, therefore, be a great potential in the blending-function approach.
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