
University of West Bohemia
Faculty of Applied Sciences

ALGORITHMS IN TRANSPORTATION

František Kolovský

doctoral thesis
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
in Geomatics

Supervisor: prof. Dr. Ing. Ivana Kolingerová
Department: Department of Geomatics

Pilsen 2021

Západoceská univerzita v Plzni
Fakulta aplikovaných věd

ALGORITMY V DOPRAVĚ

František Kolovský

Disertačnı́ práce
k zı́skánı́ akademického titulu doktor

v oboru Geomatika

Školitelka: prof. Dr. Ing. Ivana Kolingerová
Katedra: Katedra geomatiky

Plzeň 2021

Declaration

I declare that this thesis is my original work of authorship that I have created myself.
All resources, sources and literature, which I used in my thesis, are cited indicating the
full link to the appropriate source.

In Pilsen .
Frantǐsek Kolovský

1

Abstract

In the last years, the number of vehicles on the roads and in the city streets has
been increasing. This growing number of vehicles causes congestion on roads and
longer travel times, which can multiply increase during the rush hour. Long travel
times cause economic losses and make life in big cities uncomfortable. The increasing
number of vehicles also causes increased emissions and noise. Therefore, optimization
in transportation is gaining importance and significance.

The analytical traffic models are one of the cornerstones of traffic optimization
and aim to estimate the future traffic situation based on continuous vehicle flow. The
forecasted traffic volumes computed by these models are an important basis for long-
term and operational decision-making that tries to optimize the current and future
traffic and prevent traffic jams.

This work is focused on analytical traffic models, namely static traffic assignment and
dynamic traffic assignment that are widely used in practice for their speed compared
to microsimulations. This thesis describes a newly proposed solution method for
dynamic user equilibrium, macroscopic model of a node for dynamic network loading,
and improves the algorithms for time-dependent shortest path problem and origin-
destination matrix estimation.

2

Abstrakt

V posledńıch letech se stále zvyšuje počet vozidel na silnićıch a v ulićıch měst. Nar̊ustaj́ıćı
počet vozidel zp̊usobuje přet́ıžeńı komunikaćı a prodlužováńı dojezdových času, které
se mohou v dopravńı špičce až zněkolikanásobit. Dlouhé dojezdové časy zp̊usobuj́ı
ekonomické ztráty a znepř́ıjemňuj́ı život ve velkých městech. Nar̊ustaj́ıćı počet vozidel
také zp̊usobuje zvýšeńı emiśı a hluku. Optimalizace v dopravě nabývá na d̊uležitosti a
významu.

Jedńım ze základńıch kamen̊u v dopravńıch optimalizaćıch jsou analytické dopravńı
modely. Jejich ćılem je odhadovat budoućı dopravńı situaci na základě spojitého
toku vozidel. Budoućı hodnoty objemu dopravy, poč́ıtané těmito dopravńımi modely,
jsou d̊uležitým podkladem pro dlouhodobé a operativńı rozhodováńı, jehož úkolem je
optimalizovat aktuálńı a budoućı dopravu a předcházet dopravńım zácpám.

Tato práce je zaměřena na analytické dopravńı modely, zejména statické přidělováńı
dopravy (Static Traffic Assignment) a dynamické přidělováńı dopravy (Dynamic Traffic
Assignment), které jsou široce využ́ıvány v praxi, protože jsou rychleǰśı než mikrosimu-
lace. Tato práce dále popisuje nově navrženou metodu pro řešeńı dynamické uživatelské
rovnováhy (Dynamic User Equilibrium), makroskopický model pro křižovatky s využit́ım
v dynamickém nač́ıtáńı śıtě (Dynamic Network Loading) a vylepšuje algoritmy pro
časově závislé hledáńı nejkratš́ıch cest a kalibraci matice přepravńıch vztah̊u.

3

Acknowledgement

I especially would like to thank my supervisor Ivana Kolingerová for leading me in the
right direction during my studies. I would also like to acknowledge to Jan Ježek and
Taina Haapamäki for introducing me to the topic of transport modeling. My family
and girlfriend Šárka Štádlerová also supported me a lot during the study years.

This dissertation thesis was supported by the following projects:

• SGS-2016-004 – Application of Mathematics and Informatics in Geomatics III
University of West Bohemia (UWB)

• SGS-2019-015 – Application of Mathematics and Informatics in Geomatics IV
University of West Bohemia (UWB)

• CK01000096 – TRAFFO: Innovative Approaches to Mathematical Traffic Mod-
elling for Sustainable Development of Cities and Regions.
The Technology Agency of the Czech Republic

4

Contents

1 Introduction 8
1.1 Problem definition . 9
1.2 Summary of contributions . 9
1.3 Thesis structure . 11
1.4 Application . 11

2 Time-dependent shortest path problem 12
2.1 Definitions and preliminaries . 13

2.1.1 Problem definition . 15
2.1.2 Related work with exact problem 15

2.2 Approximation of the problem . 16
2.2.1 Related work with approximation 17
2.2.2 The proposed approximation . 17
2.2.3 e-LCA algorithm . 18
2.2.4 e-LCA-BS algorithm . 19
2.2.5 Heuristic improvements . 22

2.3 Experiments . 23
2.3.1 The ε-LCA-BS testing . 24
2.3.2 Splitting tests . 26
2.3.3 Summary . 27

3 The piecewise constant/linear solution for dynamic user equilibrium 29
3.1 Introduction . 29
3.2 State of The Art . 30

3.2.1 Dynamic Network Loading . 30
3.2.2 The formulations and solutions of dynamic user equilibrium . . 32

3.3 Main concept of the proposed solution 34
3.3.1 Definitions . 34
3.3.2 Solution scheme . 38

3.4 Dynamic network loading . 39
3.4.1 Extension . 39

5

3.4.2 Approximation . 42
3.5 The continuous-time all-to-one shortest path problem 43
3.6 The node distribution update . 44

3.6.1 Approximation parameters . 47
3.7 Numerical tests . 48

3.7.1 The Twins . 48
3.7.2 Weighted flow threshold . 50
3.7.3 The Braess network . 52
3.7.4 Comparison of PWL/PWC approach with discrete solution . . . 53

3.8 Summary . 55

4 Capacity based first-order node model for dynamic traffic loading 56
4.1 Introduction and State-of-the-art . 56
4.2 Problem Definition and Formulation 59

4.2.1 Notation and Requirements . 59
4.2.2 Proposed Model . 61
4.2.3 Models for DUE Formulations 63

4.3 Capacity Model . 64
4.3.1 Unsignalized . 64
4.3.2 Signalized . 66

4.4 Solution Algorithms . 67
4.5 Examples and Tests . 69

4.5.1 Performance of the Algorithms 69
4.5.2 Capacity-Constrained Intersection with Relaxed FIFO 70

4.6 Summary . 72

5 Origin-destination matrix estimation using bush-based user equilib-
rium algorithms 74
5.1 Introduction . 74
5.2 Problem definition and state-of-the-art 75

5.2.1 Origin-destination matrix estimation 75
5.2.2 User equilibrium . 76
5.2.3 Maximum Entropy User Equilibrium 77

5.3 Proposed solution . 78
5.3.1 The implicit computation of assignment matrix 79

5.4 Numerical tests . 82
5.4.1 Summary . 82

6 Future research directions 84

6

A Professional Activities 93
A.1 Publications . 93

A.1.1 Journals . 93
A.1.2 International Conferences . 93
A.1.3 Under review . 94

A.2 Participation in Scientific Projects . 94
A.2.1 Project publications . 95

A.3 Talks . 95

7

Chapter 1

Introduction

Increasing traffic in cities not only causes increased travel times but also other problems.
The congested roads bring higher production of greenhouse gasses and other emissions as
well as generate noise. The authorities and road managers responsible for the transport
network must solve these issues. The decision on how to improve the situation can be
divided into two categories: strategic and operational decisions.

Strategic decisions have long-term consequences and often are connected with an
initial investment. The relevant questions of the road managers are: Where should we
build a new road and with what capacity so that the effect will be as big as possible?
Can we allow some streets to be accessible only to pedestrians without a big impact on
congestion in the city? Where can we build new houses or an industrial complex and
how does the decision influence the traffic in the city?

Operational decisions try to optimize traffic only using the existing road infrastruc-
ture. The relevant issues are: How to coordinate the road reconstruction and closure
so that the impact on traffic will be as small as possible? How to set the intersection
signal timing plans?

The transportation models and optimization algorithms in transportation help us
to answer these questions and to make better decisions. The key properties of the
models are precision and computational performance. In general, a higher precision
causes a longer computational time. For strategical decisions, we have quite a lot of
computational time. On the other hand, operation decisions must be made as quickly
as possible, so computational performance is very important and limits the precision.
For example, if the forecast for five minutes ahead is computed ten minutes, than the
reality comes earlier than the model result. The computational performance is especially
important for Intelligent Transportation Systems (ITS).

In this thesis, the algorithms for selected problems in the shortest paths search and
suitable transport models are presented. The main goal is to develop more precise
models and faster algorithms for selected problems in transportation/traffic modeling.

The analytical transportation models can be divided into two basic categories:

8

Static Traffic Assignment (or Traffic Assignment Problem) (STA) and Dynamic Traffic
Assignment (DTA). This thesis mainly deals with the problems related to the dynamic
models where the simulation time plays the key role.

1.1 Problem definition

This thesis aims to improve the performance and precision of the analytical assignments
models as dynamic traffic assignment and static traffic assignment.

The first objective is the fast computation of the time-dependent shortest path
problem for all departure times with control of precision because the previous algorithms
are slow or do not guarantee the maximum error.

The second objective is to design a grid-free and near-time-continuous procedure for
the determination of the dynamic user equilibrium. Existing solution methods use time
discretization, but nowadays there are a few dynamic network loading procedures that
provide near-time-continuous travel times that can be also used with their advantages
in equilibrium procedure. Here, the acquired knowledge about the time-dependent
shortest path problem is used.

Part of the dynamic network loading procedure is also the node model. The precision
of the node model is the third objective. We try to incorporate the capacity of the
intersection movements into state-of-the-art models.

The last objective is to develop the method that effectively allows using the bush-
based algorithms for origin-destination matrix estimation.

1.2 Summary of contributions

Achieved contributions in this thesis are following:

• The ε-approximation of the label correcting modification of the Dijkstra’s algorithm.
The first contribution focuses on time-dependent shortest path search (TDSP) for
all departure times which is an inseparable part of dynamic transportation models.
This search consumes a significant part of computational time, therefore, making
this search faster brings a significant improvement of DTA model performance.
We speeded up the search by approximation of the problem. The continuous-time
algorithm that maintains the maximum relative error of the resulting travel times
was proposed. Compared to the exact algorithm, the proposed approach saves
97% of memory and 80% of the time in case that the relative error is set to 0.001.
The big advantage of our algorithm compared to other effective approximation
algorithms is that the error in the resulting travel time is bounded by a maximum
value. The algorithm can be also used as a part of precomputation steps of
time-dependent shortest path search algorithms as time-dependent contraction

9

hierarchies. The results were published in (Kolovský et al., 2019b) and (Kolovský
et al., 2019a). This contribution is presented in Chapter 2.

• The piecewise constant/linear solution for dynamic user equilibrium. The second
contribution presents a new solution approach for route-choice dynamic user
equilibrium (RC-DUE) where the event-based general link transmission model is
used for dynamic network loading (DNL). In the case of analytical DTA models,
the general approach is to use the dynamic user equilibrium (DUE) as a route-
choice (RC) model. The common approach for solving the RC-DUE problem is
to use classic time discretization. These grid-based solutions suffer from classical
disadvantages of discretization as non-adaptivity or poor performance in the
case of small-time steps. To remove these disadvantages and thus reduce the
computational time and increase precision, we designed a solution strategy based
on piecewise linear functions instead of time grids. Our proposed strategy is
grid-free, near-time-continuous, and computation can be potentially faster because
the method computes the results only for times with significant changes. Because
of adaptivity, also the memory demand is reduced. This contribution is presented
in Chapter 3.

• Capacity-based macroscopic node model. The third contribution deals with this
capacity-based first-order node model mainly for unsignalized intersections. The
dynamic network loading (DNL) provides the propagation of the vehicles through
the road network and thus determines the travel times. The important part of
DNL is the node model that transfers vehicles through nodes (intersections). The
performance and the precision of the node model highly influence the quality of
the whole loading procedure. In the case of macroscopic models, the node model
has to fulfill the requirements for the class of the first-order node models. Every
model belonging to this class takes into account selected factors that influence
the number of vehicles transferred by the node. Nevertheless, there are still some
situations where the already developed models are not too accurate. The proposed
approach reflects the conflicts of the intersections movements as well as the partial
first-in-first-out FIFO rule. This contribution is presented in Chapter 4.

• Origin-destination matrix estimation using bush-based user equilibrium algorithms.
The fourth contribution describes the static origin-destination matrix estimation
method that uses the bush-based flow. The key input that is needed for ODM
estimation, is the assignment matrix that provides the relationship between edges
and OD pairs. This assignment matrix is naturally provided by path-based
algorithms. In past years, several very effective bush-based algorithms for the
determination of user equilibrium were developed but the assignment matrix
is not provided directly by these algorithms. Our proposed approach does not
need to enumerate the paths and, therefore saves the memory requirements and

10

computational time. The savings are most significant in the case of very congested
networks. The results were published in (Kolovský and Kolingerová, 2021). This
contribution is presented in Chapter 5.

1.3 Thesis structure

Every chapter in this thesis has its introduction, state-of-the-art, and summary section
because all selected problems have only a few common parts, terminology, and definitions.
The notations are consistent only within one chapter because we try to follow the customs
in the individual area of research.

In the whole thesis, the road network is modeled as a directed graph G = (V,E)
where V is a set of nodes that represent the intersections and the E is the set of edges
that represent the roads and streets.

The approximation of the time-dependent shortest path problem for all departure
times and the solution algorithm are presented in Chapter 2. Chapter 3 describes
the grid-free and near-time-continuous solution approach for dynamic user equilibrium
and shows the advantages of this method. The first-order macroscopic node model for
dynamic network loading is proposed in Chapter 4. Chapter 5 presents the method
for origin-destination matrix estimation where the bush-based algorithms are used
for providing the user equilibrium. Also, the advantages of this implicit method are
discussed. Chapter 6 proposes the possible future research directions.

1.4 Application

The algorithm, method, and approaches that are the results of this thesis are incor-
porated into the software named Traffic Modeler (trafficmodeller.com) which has the
aim to provide transportation modeling as a service in your browser. This software is
developed together with companies EDIP s.r.o, RoadTwin s.r.o, and HELP SERVICE –
REMOTE SENSING s.r.o. in the framework of the H2020 projects OpenTransportNet,
PoloVisu (polivisu.eu), DUET (digitalurbantwins.com) and project TRAFFO funded
by Technology Agency of the Czech Republic. This solution is currently used by the
city of Pilsen for the coordination of road closures and reconstructions.

11

https://trafficmodeller.com
https://polivisu.eu
https://digitalurbantwins.com

Chapter 2

Time-dependent shortest path
problem

This chapter is focused on searching shortest paths from a source node to all other nodes
in a graph with time-dependent edge travel time. This problem is called time-dependent
shortest path problem (TDSP) and has a lot of applications in transportation. For
example, TDSP is one of the sub-problems in dynamic traffic assignment (DTA).

The TDSP can be split into two basic types:

• Compute the arrival time for one given departure time. This can be done using
small modification of Dijkstra’s algorithm.

• Compute the arrival time for a departure time interval (profile search).

In the upcoming text, we deal with the second type problem. More formally, given
a directed graph G = (V,E) and a source node s ∈ V , we want to know the travel
time between the source node s and all other nodes for every departure time (in some
literature the task is called a travel time profile). The main principle is that the
arrival time tu at the node u is used as the argument of the arrival time function f
corresponding to the edge that origins at u. The common approach is to use a piecewise
linear function as a realization of the arrival function.

As mentioned-described in Chapter 1, the main problem is that the searching
takes a lot of time and needs a lot of memory because the number of linear pieces of
arrivals functions highly increases with the length of paths. These properties were the
reason for moving to the approximation algorithms. There are two approaches how to
approximate the solution. The first group of algorithms directly simplifies the result
arrival functions that were computed by the exact label correcting algorithm. These
approaches guarantee only a maximal error of further computations dependent on the
level of approximation and do not fully remove the problem with the increasing number
of linear pieces. The second group of methods computes directly the approximation

12

of the exact solution with a guarantee of maximal allowed error but these methods
perform more than one static shortest path search per linear piece of all arrival functions
associated with edges. Our algorithms that are based on the label correcting algorithm
simplify the arrival function during the searching and thus prevent rising the number of
linear pieces. Using the appropriate dynamic choice of simplification level, the algorithm
also provides the solution with the maximally allowed error that was defined before
computation.

Section 2.1 formally defines the problem and presents the state-of-the-art exact
methods for solving it. The ε-approximation of the problem is defined in Section 2.2.
Section 2.3 shows the comparison of exact algorithms with proposed algorithms on real
road networks.

2.1 Definitions and preliminaries

Let G = (V,E) be a directed graph that represents a road network, where V is a set
of nodes and E is a set of edges. Each edge (u, v) ∈ E has an arrival function (AF)
f : R → R≥0 that for the given departure time at u returns the arrival time at v.
Alternatively, we can define a travel time function (TTF) that returns the time needed
to cross the edge. A relationship between the TTF g and the corresponding AF f is
defined as g(t) = f(t)− t.

It is assumed that every AF f fulfill the FIFO property: ∀t1 < t2 : f(t1) ≤ f(t2)
and the departure time td must be smaller then the arrival time ta (the travel time
must be positive). AFs are implemented as piecewise linear functions.

In Figure 2.1a you can see AFs (fsu, fsv, fud and fvd) for every edge in a small example
graph with four nodes V = {s, u, v, d} and four edges E = {(s, u), (s, v), (u, d), (v, d)}.

The points of AFs are called breakpoints. The number of breakpoints of AF f can
be written as |f |. The following operation must be defined for two AFs:

• There are two consecutive edges (s, u) and (u, d) with AFs fsu, fud. The operation
combination fud ∗ fsu : t 7→ fud(fsu(t)) represents AF from s to d. In Figure 2.1b
there are AFs as results of the combination along the paths (s, u, d) (solid red
line) and (s, v, d) (solid blue line).

• There are two parallel paths p1, p2 from s to d with AFs f 1
sd, f

2
sd. The operation

minimum min(f 1
sd, f

2
sd) : t 7→ min{f 1

sd, f
2
sd} represents the earliest AF from s to

d. In Figure 2.1a p1 = (s, u, d) and p2 = (s, v, d). In Figure 2.1c you can see this
earliest AF as a result of the operation minimum (green line).

13

s d

u

v

Figure 2.1: Example of calculation of the arrival function from node s to d

14

2.1.1 Problem definition

More precisely, TDSP can be defined as minimizing the travel time over the set Ps,d of
all paths in G from the source node s to the destination node d:

fd = min{fp(t)|p ∈ Ps,d} (2.1)

where fd is the function of the earliest arrival time (minimal AF) from s to d and fp is
AF of the path p ∈ Ps,d.

This chapter deals with one-to-all problem. The input data are the graph G, AF
fuv for every edge (u, v) ∈ G and the source node s. The output is the set F of the
earliest AFs from the source node s to all other nodes u: F = {fu|u ∈ V \ {s}}.

2.1.2 Related work with exact problem

In 1990, the Orda and Rom (1990) published the label correcting algorithm (LCA), see
Algorithm 1, that is the modification of the Dijkstra’s algorithm for time-dependent
networks. The modifications are:

• The node labels are AFs from s.

• The key of the priority queue is the minimum of AF (min f).

• The relaxation of the edge (u, v) is performed using fv = min(fv, fuv ∗ fu).

Algorithm 1: LCA in the exact form

1 PQ = minimum priority queue where key is min f
2 ∀u ∈ V : fu =∞
3 gs = 0
4 PQ.put(fs)
5 while queue is not empty do
6 fu = PQ.get()
7 foreach v : (u, v) ∈ E do

8 f v = fuv ∗ fu // combination

9 if ∃t : f v(t) < fv(t) then // compare

10 fv = min(f v, fv) // min

11 PQ.put(fv)

In Algorithm 1, the initialization is performed in the lines 1-4. All node labels (AFs)
are set to infinity in the line 2. The travel time at s is set to zero (line 3) and the node

15

label at s (fs) is added to the priority queue (PQ) (line 4). In the line 6 the algorithm
takes the node on the top of PQ and relaxes all edges that lead from this node. The
relaxation is represented by the lines 8-11. The line 8 performs the combination of
the node label at u (fu) and the edge AF (fuv). The condition in the line 9 checks for
update. Updates of the label at the node v are performed in the line 10. The line 11
puts the node v to the PQ. The time complexity of the LCA is O(|V ||E|Pmax), where
Pmax is the maximum number of linear pieces needed to represent the earliest arrival
time function.

Dean (1999, 2004) presents the Label setting algorithm that improves the worst-case
running time to O(|E|P ∗∗log|V |), where P ∗∗ is the total number of pieces of the results
functions. The running time is highly dependent on the number of pieces in the result.
This author also discusses the possibility of parallelization.

Very similar approach is used by Ding et al. (2008), the time complexity of their
algorithm is O((|V |log|V | + |E|)α(T)), where α(T) is is the cost required for each
function operation.

Dehne et al. (2012) use a different approach. The asymptotic time complexity of
their algorithm is O((Fd + γ)(|E|+ |V |log|V |)), where Fd is the number of the linear
pieces of the result functions and γ is the total number of the linear pieces needed to
represent the input arrival functions. This algorithm use forward and backward probes.
The forward probe computes the arrival time at the node d with the given departure
time at the node s. The backward probe solves the inverse problem. The arrival time at
d is given and we want to know the departure time at s. These probes can be computed
using the well-known Dijkstra’s algorithm.

This method recognizes two types of breakpoints. The V points represent points
that are created as images of the breakpoints that lie on the edge arrival functions
{fuv|(u, v) ∈ E}. The X points are created as an intersection of two AF in the minimum
operation. The algorithm consists of two steps:

• First, the V breakpoints are computed. For every breakpoint in the edge arrival
functions, two forward probes and one backward probe are performed.

• After that, the X breakpoints are computed using intersections. This step can
take a non-polynomial time (Foschini et al., 2014).

Foschini et al. (2014) proved that TDSP in the exact form is non-polynomial.

2.2 Approximation of the problem

Let us have two consecutive edges (e.g, the edges (s, u) and (u, d) in Figure 2.1a) then
the arrival time at the node d is the value of the arrival function fud in the arrival time
fsu(td) at the node u, where td is the departure time at the node s. In the exact case,

16

the combination f2(f1(t)) of two piecewise linear functions f1, f2 with |f1|, |f2| linear
pieces is also a piecewise linear function with up to |f1|+ |f2| linear pieces (Foschini
et al., 2014). It means that the arrival function at the end of the path with n edges
can have up to

∑n
i=1 |fi| linear pieces. For example, the path across the Pilsen city

has around 100 edges. If every arrival function on the path has 24 linear pieces, the
resulting arrival function has 2400 linear pieces. It can be seen that the computational
time and memory requirements strongly increases with the length of the paths.

2.2.1 Related work with approximation

There are two groups of methods that compute an approximation of the AF. The
first group uses the idea of forward and backward probes by Dehne et al. (2012). It
can be proved that the AF between two consecutive V points is concave or a line
segment (Foschini et al., 2014) (see Example in Fig.2.1c). The algorithms described
by Foschini et al. (2014) and Omran and Sack (2014) use this concavity. First the V
points are computed using one backward probe and two forward probes and then the
approximation of AF between the V points is determined. The main problem of this
approach is that the computation of V points requires 3

∑
(u,v)∈E |fuv| probes (Dehne

et al., 2012).
The second group of methods uses a label correcting modification of the Dijkstra’s

algorithm (LCA) (Algorithm 1). LCA has time complexity O(|V ||E|Pmax) (Orda and
Rom, 1990), but a real road network is far from the worst case. This technique is widely
used, see e.g, (Geisberger and Sanders, 2010; Batz et al., 2013; Geisberger, 2010). First
LCA is performed in the exact form and after that the resulting arrival functions F
are simplified and used for further computation (e.g, some query algorithm). Some
guarantees about the error of AF are presented by Geisberger and Sanders (2010), but
these guarantees give only a maximum error dependent on the degree of approximation.

The main task is to develop an algorithm which solves TDSP with the given
maximum relative error and is effective for a real road network. It follows that we
focused on the ε-approximation of the LCA.

2.2.2 The proposed approximation

The proposed algorithm is based on the so-called label correcting modification of
Dijkstra’s algorithm by Orda and Rom (1990). The main idea is to perform simplification
of the arrival functions during the computation with a suitable maximum absolute error
such that the relative error ε is maintained.

The ε-approximation of AF f l is understood as the ε-approximation of TTF f(t)−
εg(t) ≤ f l(t) ≤ f(t) + εg(t). So the ε-approximation of the set F is F l = {f lu |u ∈
V \ {s}}.

17

Let us present some useful theorems about the approximation that were derived for
a use in the proposed algorithm.

Theorem 1. Let gl be an ε-approximation of TTF g. Then it holds that

g↓ =
gl

1 + ε
≤ g ≤ gl

1− ε
= g↑

Proof. If the function gl is substituted by its extreme values (1 − ε)g, (1 + ε)g, the
expression is still valid.

Theorem 2. Let f
l
u be an ε-approximation of AF fu and f

l
v = fuv ∗ f lu . Let α ∈ [0, g

↓
v

g↓u
]

be the maximum slope of AF fuv, approx(f, δ) be a function that simplifies the AF

f with the maximum absolute error δ ≥ 0. Then f
l
v = approx(f

l
v, εg

↓
v − αεg↓u) is the

ε-approximation of AF fv.

Proof. The maximum absolute error of fv is εgv and the maximum absolute error of
the operation fuv ∗ f lu is αεgu. Then the result of the combination can be simplified
with the maximum absolute error:

δ = εgv − αεgu ≥ εg↓v − αεg↓u

Then δ must be ≥ 0

εg↓v − αεg↓u ≥ 0

α ≥ g↓v

g↓u

Theorem 2 can be also formulated in a local form for a given departure time. In
Figure 2.1b there are dotted lines that represent the approximation of AFs. In Figure
2.1d you can see the ε-approximation f

l
d of the earliest AF fd from s to d (solid green

line) and its upper bound f ↑d and lower bound f ↓d (green dashed lines).

2.2.3 e-LCA algorithm

The basic idea of the first proposed algorithm (ε-LCA) is that the simplification of AF
is performed after every edge relaxation (the operation combination). The degree of
the simplification is directed by Theorem 2.

18

Figure 2.2: Example of backsearch procedure

The ε-LCA computes AF with the maximum relative error ε assuming that

∀(u, v) ∈ E : αuv ∈
[
0,
g↓v

g↓u

]
(2.2)

where αuv is the maximum slope of AF fuv. The slope αuv must be bounded because
Theorem 2 is used in the ε-LCA and the theorem needs this assumption.

The ε-LCA differs from the exact LCA only in the computation of fv. The AF fv
in the line 8 in Algorithm 1 is simplified with the maximum absolute error δ (according
to Theorem 2). So the line 8 is replaced by 2 lines

δ(t) = ε((fuv ∗ f lu)↓(t)− t)− α(t)εg↓u(t)

fv = approx((fuv ∗ f lu), δ)
(2.3)

where α(t) is the maximum slope of fuv in the interval [f ↓u(t), f ↑u(t)]. The simplification
was performed using Douglas-Peucker algorithm or Imai and Iri algorithm (Imai and
Iri, 1986).

The main problem of ε-LCA is that if the assumption (2.2) is not complied, δ < 0
and the algorithm cannot ensure the given relative error ε. This occurs when the
maximum slope αuv is too large. This issue is resolved using the second algorithm that
is described in the upcoming section.

2.2.4 e-LCA-BS algorithm

The second proposed algorithm (ε-LCA-BS) is based on backsearch. It has no limitations
for the slope α. The pseudo-code of the ε-LCA-BS is in Algorithm 2. The basic idea is
that if the algorithm finds an edge (u, v) where α is too big in some departure time
interval [tm, tn] (δ < 0), it determines fv in [tm, tn] again with a higher accuracy (lines
11-15 of the Algorithm 2). The algorithm returns back to the point such that the edge
(u, v) can be reached from this point with sufficient precision using the exact LCA.

When the label at the node v (AF fv) is updated (the condition at the line 16 is
fulfilled), the edge (u, v) is added to the predecessor list pred(v) of the node v (lines
17-20). The set of predecessors form a graph R = (VR, ER) (red color in Fig. 2.2). We

19

Algorithm 2: ε-LCA-BS

1 PQ = minimum priority queue where key is min f

2 ∀u ∈ V : f
l
u =∞

3 g
l
s = 0

4 PQ.put(f
l
s)

5 pred(s) = null
6 while queue is not empty do

7 f
l
u = PQ.get()

8 foreach v : (u, v) ∈ E do

9 δ(t) = ε((fuv ∗ f lu)↓(t)− t)− α(t)εg↓u(t) // according equation 2.3

10 f v = approx(fuv ∗ f lu , δ+) // δ+(t) = max(δ(t), 0)
11 if ∃t : δ(t) < 0 then
12 find all intervals [tm, tn] where δ is negative
13 foreach [tm, tn] do
14 h = backSearch((u, v), [tm, tn])

15 substitute f v by h in interval [tm, tn]

16 if ∃t : f v(t) < f
l
v (t) then

17 if f v < f
l
v then

18 pred(v) = (u, v)

19 else
20 pred(v).add((u, v))

21 f
l
v = min(f v, f

l
v)

22 PQ.put(f
l
v)

assume that the graph R is acyclic. In general, the graph R may not be acyclic, but in
real case it is very unlikely.

We want to find nodes w such that if the exact LCA is performed from these nodes w,
the AF fv is an ε-approximation. The nodes w have to satisfy the following inequalities
in the interval [tm, tn]:

max

{∏
e∈p

αe|p ∈ Pvw

}
≤ min

(
g↓v

g↓w

)
(2.4)

where Pvw is the set of all paths from v to w in the graph R (the paths must contain
the edge (u, v)) and αe represents the maximum slope of AF fe corresponding with the
edge e. The set W is the set of all nodes w that meet the condition (2.4) and there is a

20

path p ∈ Pvw that does not contain any other node from the set W (W is the smallest
possible).

These nodes w can be found using a topological ordering of VR (Algorithm 3). The
node labels αb correspond to the left side of the inequalities (2.4). So the algorithm
finds maximal paths in R. First the labels are set to negative infinity (the line 2) and
the label at u is set to αuv (the line 3). The lines 4-5 ensure a topological ordering. If
the condition (2.4) in the line 6 is fulfilled, b is added to the W . The lines 9-12 ensure
updating of the node labels. The part of f v in the interval [tm, tn] is substituted by a
more accurate result of the exact LCA with the initial priority queue PQ that is created
by adding all fw ∈ {fw|w ∈ W} (the lines 13-16).

In Figure 2.2 there is an example of backsearch. The black color represents the
original graph G and the red color represents the acyclic graph R. The edge (u, v)
violates the condition 2.2. Then the algorithm starts backSearch procedure and finds
the set W (red nodes) using the graph R.

Algorithm 3: backSearch

1 W = {} // set of all w
2 ∀b ∈ VR : αb = −∞
3 αu = αuv
4 while ∃b : b ∈ VR \W ∧ deg−(b) = 0 do // topological ordering

5 b = some node that meets the conditions above

6 if αb ≤ min
(
g↓v
g↓b

)
then

7 W = W ∪ {b}
8 else
9 foreach a : (b, a) ∈ R do

10 if αbαba > αa then
11 αa = αbαba

12 VR = VR \ {b}

13 foreach w ∈ W do
14 PQ.put(fw)

15 run LCA on G with initial priority queue PQ on interval [tm, tn] // algorithm

1

16 return fv

When the graph R is not acyclic, it is necessary to modify the algorithm for searching
the set W .

If the condition (2.2) is fulfilled, the ε-LCA-BS is reduced to ε-LCA, because the
algorithm then does not perform any backSearch procedure.

21

2.2.5 Heuristic improvements

The proposed solution can be further accelerated on the basis of departure time interval
decomposition as follows. The profile search problem on the departure time interval
[a, b] can be decomposed in time to two subproblems on intervals [a, c] and [c, b] and
these subproblems are independent (Dean, 2004). It follows, the problem can be split
into N independent computation parts. This property enables effective parallelization
and distribution of the computation.

A surprising property is that the splitting of the problem often saves total computa-
tion time in the serial case, too. The ε-LCA-BS runtime on the interval [a, b] is often
higher than the sum of runtimes on the intervals [a, c] and [c, b]. In the following text,
the reasons why the decomposition is faster than the original problem are presented.
Some splitting strategies are also discussed.

The number of relaxations K (the number of iterations of the main loop) of ε-LCA-
BS is greater than or equal to the number of relaxations of the Dijkstra’s algorithm
(Orda and Rom, 1990). The aim is to approach as close to the Dijkstra’s algorithm as
possible. The condition at line 16 in Algorithm 2 controls adding to the priority queue
(PQ) and thereby controls the number of iterations. The condition compares two AFs.

The small piece of the f v under f
l
v is enough for adding to the PQ. It follows, a more

fluctuating TTFs indicate a higher K.
The fluctuation of the TTFs can be reduced by splitting the function to intervals.

The function on a shorter interval has smaller or equal difference between its maximum
and minimum. It means that in more cases the condition ∃t : f v(t) < f

l
v (t) is false. In

Figure 2.3 there is an example of splitting. The original function f v(t) on the interval
[a, d] is divided into 3 intervals [a, b], [b, c] and [c, d]. As you can see, for the intervals
[a, b] and [c, d] the condition at line 16 in Algorithm 2 is false. Thus, the node will not
be added to the PQ and K is reduced.

time of day

fv

f
l
v

tr
av
el

ti
m
e

a b c d

Figure 2.3: Splitting effect

The question is how to split the departure time interval so that the computation is
the most effective. In Figure 2.4 there is a visualization of speed profiles for the testing
dataset. The x-axis represents a time of day and the y-axis displays the average speed

22

in time on edges. In the visualization, all speed profiles from the tested dataset are
rendered in various colors. As you can see, the fluctuation in the night time (the first
part and the last part) is small. There are two main concepts for splitting:

• Split the origin interval into equal subintervals.

• Split the origin interval into inhomogeneous subintervals (e.g., longer at night and
shorter by day).

Which of these concepts is better strongly depends on the TTFs shape, as further
presented in experiments.

The splitting into intervals enables a very simple parallelization. Due to the
independence in the departure time intervals, we can set one interval equal to one
thread.

time of day

sp
e
e
d
 [

km
/h

]

0

20

40

60

80

100

120

140

12:006:00 18:00 24:00

Figure 2.4: Speed profiles vizualization for datset G1

2.3 Experiments

The real road network with real speed profiles that were computed from GPS tracks
was used for testing. These data represent part of Paris (Figure 2.5).

The algorithms were implemented using Scala programming language (OpenJDK
1.9, Debian 11). The testing was performed on a computer with Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz and with 16 GB RAM.

23

Figure 2.5: Route network for testing

2.3.1 The ε-LCA-BS testing

Only the ε-LCA-BS was tested because ε-LCA is only a special case of ε-LCA-BS. The
maximum allowed relative error ε was set to 10−2, 10−3, 10−4 and 10−5.

Four graphs (G1, G2, G3 and G4) were created to show the performance of the
developed algorithms. Every edge in the graphs has AF with 24 linear pieces. Every
graph represents different classes of roads. In Table 2.1 there are numbers of edges for
each graph and performance results of ε-LCA-BS: the relative time tr and the relative
number of breakpoints bps related to the exact version of LCA. The same results you
can see in Figure 2.6.

Figure 2.6: The relative number of breakpoints and the relative time related to exact
LCA (II - Imai and Iri, DP - Douglas Peucker)

The results in Table 2.1 show that the maximum relative error 10−4 brings only a
small improvement and the maximum relative error 10−5 is slower than the exact version
of the LCA, but this accuracy is too big for a real use. The maximum relative error
from 10−2 to 10−3 seems to be a good compromise between accuracy and performance.

24

Imai and Iri Douglas Peucker
dataset #edges ε tr [%] bps [%] tr [%] bps [%]

G 1 10 798 10−2 19.7 0.8 13.4 1.3
10−3 20.6 2.3 43.3 4.6
10−4 46.0 7.2 123.6 13.7
10−5 101.7 19.0 288.5 32.3

G2 33 354 10−2 13.3 0.8 11.6 1.3
10−3 15.0 2.1 34.9 4.1
10−4 33.4 6.4 107.3 12.4
10−5 76.8 17.0 262.7 30.1

G3 107 476 10−2 9.4 0.8 9.0 1.3
10−3 12.8 2.1 26.5 4.0
10−4 29.4 6.1 82.1 12.2
10−5 71.9 16.4 211.6 30.1

G4 160 092 10−2 9.2 0.8 10.2 1.3
10−3 11.4 2.2 27.9 4.1
10−4 24.8 6.3 84.8 12.4
10−5 58.1 16.6 215.0 30.3

Table 2.1: Results of testing ε-LCA-BS (tr - the relative time related to the exact
version of LCA, bps - the relative number of breakpoints, ε - the maximum allowed
relative error)

25

Imai and Iri Douglas Peucker
time [s] # bps time [s] # bps

G1 0.9 561 853 1.8 1 122 458
G2 3.0 1 429 080 5.6 2 779 762
G3 9.3 3 855 536 18.8 7 352 745
G4 14.1 5 298 280 28.8 10 057 055

Table 2.2: Absolute values of measured parameters for ε = 0.001

In Table 2.2 there are absolute values of measured parameters for the maximal
relative error 10−3. The column bps represents the number of breakpoints in the
resulting AFs.

The results show that the breakpoints savings are significant. It means that the ε-
LCA-BS saves a lot of memory. Let us assume a path that takes 1 hour, then the relative
error 0.1 % implicates the absolute error 3.6 s. In this case the epsilon approximation
saves more than 97% of memory and 80% of time. In case that ε is too small then the
algorithm can run slower than the exact version, because the simplification takes too
much time.

The main disadvantage of the ε-LCA-BS is that it is sensitive to values of the
maximum slope of AFs. If AFs have too big slope then the algorithm performs too
many calls of backSearch procedure and thereby makes the computation too slow. In
practice, the functions usually have small slopes. When it is certain that input data do
not violate the condition (2.2), the algorithm is more suitable.

Furthermore, the computation of V breakpoints was implemented. This computation
is the first step of the all algorithms presented by Foschini et al. (2014), Dehne et al.
(2012), Dehne et al. (2009), and by Omran and Sack (2014). As mentioned above,
the step needs 3

∑
(u,v)∈E |fuv| static shortest path computation. The V breakpoints

determination was performed on G1 and takes 21 minutes.

2.3.2 Splitting tests

The first test is focused on equal subintervals. The original departure time interval
was divided into 2 to 12 subintervals. The two datasets (G1 and G2) were used and
the maximum relative error was set to 10−2, 10−3, and 10−4. The more effective
simplification method by Imai and Iri was set for all tests in this section. The test was
performed only in serial (one thread was used only). In Figure 2.7 there are results of
the test. The chart shows the dependence between the speed-up and the number of
subintervals. The speed-up is defined as:

speed-up(N) =
runtime for 1 interval

runtime for N subintervals
(2.5)

26

As you can see, the speed-up is between 1.1 and 1.8 and is very variable, but never
under 1. For our testing data, 4 -10 equal subintervals are a good choice. In case when
the number of subintervals is too big (in our case more than 10), the overhead costs
override the benefits of splitting.

1 2 3 4 5 6 7 8 9 10 11 12
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

G1 0.01

G1 0.001

G1 0.0001

G2 0.01

G2 0.001

G2 0.0001

N

sp
ee

d-
up

Figure 2.7: Speed-up dependence on the number of subintervals N in serial case
(1 thread)

The inhomogeneous subintervals were also tested. Several methods for the departure
time interval splitting were tried, but the runtime was only a few percents better than
the splitting into equal subintervals. The conclusion is that the equal subintervals,
although also more simple, work better.

The last test demonstrates the suitability of parallelization. The dataset G1 with
ε = 0.001 was used. The algorithm was performed with 3 settings: without splitting into
subintervals, with 4 subintervals in the serial case (1 thread) and with 4 subintervals in
4 threads. The code was performed on one computer with multi-core processor. The
following runtimes were measured (Table 2.3):

1 interval, 1 thread 4 intervals, 1 thread 4 intervals, 4 threads
8.6 s 7.6 s 2.6 s

Table 2.3: Paralellization runtimes on G1 with ε = 0.001

The testing shows that the parallelization is suitable so it is recommended.

2.3.3 Summary

The algorithms significantly reduce the memory use. When the maximum relative error
is a sufficiently large value (in our case 10−3), the algorithms save the computational
time, too. From this point of view, the algorithms are suitable for precomputing the

27

TTFs for the next use (e.g., time-dependent distance oracles, time-dependent contraction
hierarchies). In a real road network the maximum slopes of AFs are not too big Strasser
(2017). So the main disadvantage (too many calls of back search procedure) is not a too
big problem. It has been shown that the splitting into departure time subintervals can
further reduce the runtime and this splitting is suitable for parallelization or distribution
because the subproblems are independent.

28

Chapter 3

The piecewise constant/linear
solution for dynamic user
equilibrium

This chapter presents the method that tries to increase the precision of the solution of
dynamic user equilibrium (DUE) assuming that the computation takes a reasonable
time so that the solution is useful in practice. The proposed method replaces the
classical grid-based solution by a near continuous-time solution based on piecewise
linear/constant functions that removes a lot of disadvantage of discretization. The
important part of DUE computation is searching of time-dependent shortest paths. For
this purpose, we use the continuous algorithm that was described in Chapter 2. The
presented method was sent for publication in Networks and Spatial Economics journal.

3.1 Introduction

The predicted traffic situation is the output of the models. It includes information such
as the traffic volume and the travel time. The goal is to make the model precise enough
so that it takes into account the behavior of a real route network and drivers. To be
used in the Intelligent Transportation Systems (ITS), the result should be determined
within a reasonable time. The approach that tries to meet these requirements is called
Dynamic Traffic Assignment (DTA).

The DTA model consists of two submodels. The dynamic network loading (DNL)
maintains the flow propagation through the road network. The second submodel deals
with the user route choice. The classical approach is to load the network using DNL
and after that to update the information about the route choice using the travel time.
These two procedures are repeated until the precision of the result is sufficient.

This whole scheme uses the time discretization, so it is a grid-based solution. The

29

common problem of the grid-based solutions is that in some cases the algorithm repeats
the same computation and stores redundant data. If there is a long time interval where
nothing happens, the grid solution computes and stores the same values again and
again. On the other hand, small changes are ignored. It follows that the optimal time
step for discretization is hard to estimate.

Another problem is the discretization itself. Nowadays the common approach for
DNL is to use the first-order macroscopic traffic model that is extended to a network.
The most used DNL model is Link Transmission model (LTM) and its derivatives. In
the case of LTM, the size of the time step is very restricted, e.g., the shortest edge in
the graph must be longer than the time step.

In the last years several papers that provide a grid-free continuous-time solution for
the DNL within a reasonable time were published. So the DNL submodel is ready for a
continuous-time DTA. The problem is that the route choice procedure is still grid-based
and thus it does not take advantage of the continuous-time solution of grid-free DNL.
In this chapter the method that tries to solve this issue is proposed.

This chapter defines and solves the continuous-time route-choice (RC) dynamic user
equilibrium (DUE) based on piecewise linear and constant functions. It follows that
all the parts of the solution are continuous-time and also grid-free. These parts are a
time-dependent shortest path search (profile search) and an update of the route choice
information. The exact continuous-time solution based on piecewise function is very
demanding so the approximation and simplification of the solution are also discussed
here.

Section 3.2 presents the relevant state-of-the-art about DNL and DUE. The main
concept of the proposed solution and basic definitions are in Section 3.3. Section 3.4
presents the developed adjustments and extensions for event-based dynamic network
loading algorithm that are necessary for intersection-movement-based formulation of
the problem. The piecewise linear solution for time-dependent shortest path problem is
discussed in Section 3.5.

3.2 State of The Art

The following text contains a preview of the previous work and discusses existing
solutions for DNL and DUE models. The DUE in this chapter is understood as a
route-choice (RC) DUE because this model is the simplest and is widely used in practice.

3.2.1 Dynamic Network Loading

The Dynamic Network Loading is a procedure that ensures the propagation of vehicles
through the network. The input is a time-dependent origin-destination matrix (ODM)
and output is a travel time function for every edge. The DNL is sometimes called a

30

Lighthill-Whitham-Richards (LWR)

CTM LTM

grid-based event-based

metamodeling

FD FD FD FD

Figure 3.1: Categorization of the DNL methods

delay operator. The DNL should respect the properties of the real road network as
queues and spillback. According to Hoogendoorn and Bovy (2001), the flow models
can be subdivided into three categories: microscopic, mesoscopic and macroscopic. For
DNL purposes these flow models must be extended to the network.

The macroscopic Lighthill-Whitham-Richards (LWR)-based models (Lighthill and
Whitham, 1955), (Richards, 1956) are used in most analytical DTA solutions. In Figure
3.1 there is a categorization of these methods. The models based on LWR kinematic
wave theory are: Cell Transmission Model (CTM) by Daganzo (1994, 1995) and the
Link Transmission Model (LTM) family.

The LTM family can be divided into four groups according to the shape of Funda-
mental Diagram (FD) and to the solution method.

• The grid-based solution with a triangular FD is the classical approach repre-
sented by Yperman’s LTM (Yperman, 2007) and its modification and extensions.
Nowadays, this approach is used in a lot of solutions, e.g., (Nezamuddin and
Boyles, 2015), (Han et al., 2018). The LTM is also a special case of a solution of
differential algebraic equations by Han et al. (2016). Main disadvantage is that
the size of the time step is very restricted. This issue was solved by the Iterative
Link Transmission Model (ILTM) by Himpe et al. (2016) that allows longer time
steps, thereby reducing time and memory requirements, but other disadvantages
of discretization persists.

• The grid-based solution with a non-triangular FD moves the model closer to reality.
This model is called General LTM (GLTM). The linear parts of the triangular
FD are replaced by continuous concave parts. A dual quadratic FD is used most
often. The GLTM is used by Gentile (2015, 2016) and van der Gun et al. (2017).
Himpe (2016) also presented a solution with non-linear FD for one link. The
disadvantages are the same as in the previous category.

• The event-based solution with a triangular FD is a completely different approach.
The main idea of this approach is to track every flow change how it is propagated
through the network. Every flow change in the network is called an event.

31

DUE

RC-DUE SRDT-DUE

explicit path implicit path

path-based link-based destination-based intersection-movement-based

algorithms for DUE

projection-based route swaping other

Figure 3.2: Categorization of the DUE formulations and algorithms

Early works that deal with explicit event-based methods (Wu and Liu, 2011)
track shockwaves in space and time. The extension of these methods to the
network is very difficult (Raadsen and Bliemer, 2019). The implicit event-based
algorithms track shortwaves only on link boundaries. The idea of the implicit
event-based method was used by Raadsen et al. (2016). This algorithm removes
the disadvantages of discretization.

• The event-based solution with a non-triangular FD was published by Raadsen
and Bliemer (2019) and Bliemer and Raadsen (2019). It turns out that the use of
GLTM has the positive influence on the smoothness of convergence to the DUE.
On the other hand, the implementation is difficult.

The metamodeling is the next technique how to speed up the DNL procedure. The
metamodel is the ’model of the model’. The aim is to create an approximation model
that improves the computational performance of the DNL. A representative of this
method is the statistical metamodeling by Song et al. (2017) that uses the method
known as Kriging. The disadvantage is a huge preprocessing but after that the query is
fast.

3.2.2 The formulations and solutions of dynamic user equilib-
rium

The dynamic user equilibrium (DUE) is the state of the network, where there is no faster
alternative (path) for any user at any time to the destination. This model assumes
that all users choose the fastest alternative. The user equilibrium model was published
by Wardrop (1952) and it is called Wardrop’s first principle. In Figure 3.2 there is a
categorization of the DUE formulations and algorithms for solution.

There are two basic types of the dynamic equilibrium: route-choice (RC) DUE
and simultaneous route-and-departure-time (SRDT) DUE by Friesz et al. (1993). The
RC-DUE model is the simplest dynamic extension of the traffic assignment problem
(TAP) and solves only the user route choice. Moreover, the SRDT-DUE model selects
the optimal departure time.

32

There are two basic groups of RC-DUE formulations: with explicit path and with
implicit path enumeration. The first group is represented by a classical path-based
formulation. This approach divides the flow into the paths from the origin to the
destination. Most of the path-based formulation needs to know the set of the used
paths for every origin-destination pair before the computation and needs to store them.
This is the main disadvantage of this approach. The second disadvantage is the fact
that the paths in the path set are overlapped a lot and therefore the paths influence
one another. This leads to problems in reaching the equilibrium.

The second group includes the link-based (Ran et al., 1996), intersection-movement-
based (Long et al., 2013) and destination-based formulation (Gentile, 2016), (Himpe,
2016). These three methods are very similar and have the same idea. They do not
store the paths so they are less memory demanding, on the other hand, they store the
distribution matrix for every node. The shortest path search is needed.

The algorithms that solve the DUE can be split into three categories.

• The projection-based algorithms are derived from the basic projection algorithm
(Facchinei and Pang, 2004) for solving monotone Variational Inequalities (VI)
or from Gradient Projection (GP) methods. It should be noted that the delay
operator does not have to be monotone and continuous due to spillback, therefore,
the convergence is not guaranteed. This approach is most commonly used and
provides reasonable performance. The convergence is not too smooth. The
representatives are: the fixed-point algorithm by Friesz et al. (2011), alternating
direction by Lo and Szeto (2002), descent method by Han and Lo (2004) and
Szeto and Lo (2004), extragradient algorithm by Long et al. (2013), and project
methods (Jang et al., 2005; Ukkusuri et al., 2012; Gentile, 2016).

• The route swapping algorithms shift the flow from more expensive paths to cheaper
paths. The approach is very similar to the projection-based algorithms and the
performance is also very similar (Kolovský et al., 2019c). The representatives are
(Huang and Lam, 2002), (Tian et al., 2012) and (Szeto and Lo, 2006).

• The last two algorithms, self-adaptive and proximal-point, were used by Han et al.
(2015). These algorithms provide smoother convergence but the performance
(convergence rate) is very poor, therefore, they are not usable in practice.

A lot of mentioned algorithms is formulated for SRTD-DUE but the RC-DUE is a
special case of SRDT-DUE, so the algorithms can be easily adjusted. In this chapter,
the Quasi Gradient projection by Gentile (2016) was used because all the methods
provide very similar performance.

33

3.3 Main concept of the proposed solution

In this chapter, the Rasdsen’s event-based GLTM is used as a DNL (Raadsen and
Bliemer, 2019) because this method provides a continuous-time solution and the precision
of the DNL can be driven easily. More precisely, the input is PWC time-dependent
ODM and the output is the PWL travel time function for every edge in the graph. The
algorithm expects that every flow in the network is PWC. As equilibrium, the classical
RC-DUE is used because it is used widely in practice and the computation is much
faster. In the end the RC-DUE is a special case of the SRDT-DUE. In this chapter,
as the equilibrium formulation, the intersection-movement-based formulation is used
because it does not need to store the paths.

In Section 3.3.1 the definitions are precisely introduced. In Section 3.3.2 the whole
proposed solution is described.

3.3.1 Definitions

Let G = (V,E) is a directed graph, where V is a set of nodes (vertices) and E ⊂
{(i, j) : i, j ∈ V } is a set of directed edges. This graph represents a road network.
Z = {1, 2, . . . |Z|} ⊂ Z is a set of zones that represents the places where the vehicles
enter the graph and leave the graph.

The route-choice (RC) DUE model is used in this chapter. The input is time-
dependent origin-destination matrix (ODM), defined as

ODM = {hij(t) : ∀(i, j) ∈ W} (3.1)

where hij(t) is the flow of vehicles (departure rate) between the zone i ∈ Z and the zone
j ∈ Z at the time t and W = Z × Z = {(1, 1), (1, 2), . . . , (2, 1), (2, 2), . . . , (|Z|, |Z|)} is
a set of origin-destination pairs. The ODM must meet conditions∫ tmax

tmin

hij(t)dt = Qij (3.2)

hij ≥ 0 (3.3)

where Qij is the total number of vehicles corresponding with the OD pair (i, j) ∈ W
and [tmin, tmax] represents the simulation time interval.

The simplified intersection-movement-based DUE formulation by Long et al. (2013)
is described here. The set of all incoming edges to the node n is denoted In ⊂ E and
the set of outgoing edges Jn ⊂ E, then the basic notations are:

34

i = 0

i = 1

j = 0

j = 1

α00

d

α
d
11

gd
11

In = {0, 1}

Jn = {0, 1}

A = [αij]

n

Figure 3.3: Node distribution notation

αij(t) the proportion of flows that leave the edge i ∈ In and want to continue
to the edge j ∈ Jn

αdij(t) the proportion of flows that leave the edge i ∈ In, want to continue to
the edge j ∈ Jn and travel to the destination d ∈ Z

md
i (t) the proportion of flows that leave the edge i ∈ In and travel to the

destination d ∈ Z
md
j (t) the proportion of flows that enter the edge j ∈ Jn and travel to the

destination d ∈ Z
gdi (t) the minimum travel time from the target node of the edge i ∈ In to

the destination zone d
gdij(t) the minimum travel time from the target node of the edge i to the

destination zone d using edge j ∈ J
A = [αij] node distribution matrix
Ad = [αdij] node distribution matrix for the destination zone d
ααα = [Ad] vector of proportions, the result of RC-DUE

In Figure 3.3 there is an example of an intersection with two incoming edges
In = {0, 1} and two outgoing edges Jn = {0, 1}. There are also all intersection
movements that connect the incoming and outgoing edges (arrows inside the circle).
The distribution matrix A is created by the proportions of flow α00, α01, α10 and α11

that are related to the intersection movements. The blue color represents the fastest
path gd11 from the target node of the incoming edge i = 1 to the destination d through
the outgoing edge j = 1.

One element of the distribution matrix of the node n ∈ V can be calculated as

αij =
∑
d∈D

αdijm
d
i (3.4)

where D ⊂ Z is a set of destinations. The distribution matrices and flow proportions

35

have to meet the following equations ∑
j∈Jn

αij = 1 (3.5)

∑
j∈Jn

αdij = 1 (3.6)

∑
d∈D

md
i (t) = 1 (3.7)

∑
d∈D

md
j (t) = 1 (3.8)

The sum of proportions in one row of the proportion matrices must be 1. The sum
of proportions of the flows entering or leaving the edge must be also 1. These equations
form the feasible set Λ for the proportion vector ααα. The feasible set is a set of all
possible proportion vectors.

According to Long et al. (2013), the user equilibrium occurs if

gdij(t)

{
= gdi (t) if αdij(t) > 0

≥ gdi (t) if αdij(t) = 0
(3.9)

It follows that if the outgoing edge j is used by users to travel to the destination αdij > 0
then the travel time through this edge gdij(t) must be equal to the minimal travel time
to the destination gdi , otherwise it is higher than the minimal travel time gdi to the
destination d. This must apply to all times t.

One of the options how to define and formulate the optimization problem of DUE is
to use the variational inequality (VI) problem. The vector α∗α∗α∗ represents the optimal
solution that satisfies equation (3.9). The VI for RC-DUE is (Long et al., 2013), (Gentile,
2016) ∑

n∈N

∑
d∈D

∑
i∈In

∑
j∈Jn

∫ tmax

tmin

gd∗ij (t)
(
αdij − αd∗ij

)
dt ≥ 0 ∀ααα ∈ Λ (3.10)

where D ⊂ Z is the set of destination zones, In ⊂ E is the set of incoming edges and
Jn ⊂ E is the set of outgoing edges for the node n ∈ V . If the inequality (3.10) is met
for all possible proportion vectors ααα ∈ Λ then the proportion vector α∗α∗α∗ is the optimal
solution that also satisfies (3.9) so the aim is to find this optimal vector.

Let f(t) is a piecewise linear (PWL) function. The number of linear pieces of f is
N(f). Let L(g) be a set of definition intervals of PWL function g. The set is

L(g) =
{[
t1lo, t

1
hi

)
,
[
t2lo, t

2
hi

)
, . . . ,

[
t
N(g)
lo , t

N(g)
hi

]}
(3.11)

36

t
1
lo = t0 t

2
hi = t

3
lo = t2 t

N(g)
hi = tN(g)t4

t
r
a
v
e
l
t
im

e

Figure 3.4: Example of PWC function (blue) and PWL function (red)

where tl−1hi = tllo subject to 2 ≤ l ≤ |L(g)| and N(g) is the number of linear pieces of
the function g.

Let the set of breakpoints of the function g is

T (g) = {tlo : [tlo, thi) ∈ L(g)} ∪
{
t
N(g)
hi

}
= {t0, t1, t2, . . . , tN(g)} (3.12)

It follows that |T (g)| − 1 = |L(G)| = N(g). In Figure 3.4 there is an example of the
PWL function (red color).

Let H = {h1, h2, . . .} is the set of PWL functions, then

T

(∑
i

hi

)
=
⋃
i

T (hi) (3.13)

It means that the set of breakpoints of a sum of functions is equal to the union of the
set of breakpoints of functions. It follows that

max
i
N(hi) ≤ N

(∑
i

hi

)
≤
∑
i

N(hi) (3.14)

It means that the number of breakpoints of the result can be up to the sum of all
breakpoints in the set H.

Now, let H = {h1, h2, . . .} be the set of piecewise constant (PWC) functions. In
Figure 3.4 there is an example of the PWC function (blue color). Everything that
has been written about a PWL function applies to the PWC function. Moreover, the
following equation holds:

T

(∏
i

hi

)
=
⋃
i

T (hi) (3.15)

This equation has the same meaning as (3.13). Only the sum is replaced by the
multiplication.

37

Table 3.1 summarizes the results of the operations in the cases when the function is
PWL or PWC function. Only the results of multiplication for PWL functions is not a
PWL function.

operation f is PWC f is PWL
f1 ± f2 PWC PWL
f1 ∗ f2 PWC is not PWL
f1(f2) PWC PWL
f1 ∗ c PWC PWL
f1 ± c PWC PWL

Table 3.1: Results of operations (c ∈ R)

3.3.2 Solution scheme

The main idea of the proposed solution is to use the PWL and PWC functions instead
of a grid (time discretion). The precision of the solution is set by approximation
parameters as a maximal relative or absolute error of the function instead of the size of
the time step. So the following steps have to be developed as continuous-time (PWL or
PWC):

• Dynamic network loading (DNL) - The event-based generalized link transmission
model (E-GLTM) by Raadsen and Bliemer (2019) and Bliemer and Raadsen
(2019) was used because it provides the continuous-time solution. The level of
approximation is set by a flow threshold δq and mixture propagation threshold δm.
The loading of the network can be performed in the exact form (except simplified
fanning). This part is described in Section 3.4.

• Time-dependent shortest path search (profile search) - We used the modified
version of ε-LCA-BS that was presented in Chapter 2 because it provides an
effective ε-approximation of the TDSP. The maximal relative error εs drives the
level of approximation. The exact result is also supported. This method needs
to be adjusted so that it computes the all-to-one problem. In Section 3.5 the
all-to-one modification of the ε-LCA-BS is described.

• Node distribution update (flow proportion update) - In this step, the proportion
of the flow αdij (node distribution) is updated using minimal travel time function
to the destination gdij(t). This update must be constructed so that it respects the
PWL input and is continuous-time. Here, the approximation of TTFs by PWC
functions is necessary because the node distributions are PWC. It follows that
this step cannot be exact. The maximal relative εg or absolute error δg is kept.

38

∑
j h

ij

inflow to origins nodes

PWC

node distribution

α
d
ij

PWC

Dynamic Network Loading TTFs

convergence check
approximation of
PWC function

profile search

PWL

distance trees (TTFs)

distribution
update

PWL

PWL → PWC

Figure 3.5: The general solution scheme

After the update, the node distribution is simplified with the maximal absolute
proportion error δp. This procedure is described in Section 3.6.

In Figure 3.5 there is the solution scheme for DUE. The red color represents the
procedures that loss the information but do not have to. It means that the maximum
allowed error can be set to the zero. The blue color represents the step where the
approximation parameters cannot be zero. Here some information must be lost. In this
case it is the approximation of the PWL function by a PWC function.

3.4 Dynamic network loading

This section contains a description of the used DNL method. The event-based general
link transmission model by Raadsen and Bliemer (2019) was used. This model use
the dual-quadratic fundamental diagram that is defined by five parameters that are:
capacity qmax, maximum jam density kmax, maximum speed γmax, minimum backward
wave speed γmin, and critical speed γcrit.

This model had to be extended by a node events that represent the changes in node
distribution, due to the intersection-movement-based formulation of RC-DUE. A new
approximation approach that improves precision is proposed.

In this section, the original method by Raadsen is described with high abstraction.
More details can be found in the original paper.

3.4.1 Extension

Due to intersection-movement-based DUE formulation, the changes in the node distri-
bution αij has to be take into account during the simulation. Therefore, in this section
we propose a modification which reflects these changes in the node distribution.

The whole loading procedure by Raadsen and Bliemer (2019) is designed as an
event-based simulation. Every change in the network is implemented as an event. If the
inflow to the edge is changed, a new constant piece is added to the inflow function and

39

a new event that ensures the propagation of the change to the target node of the edge
is released. This event is called a forward event. The time, when the change (event)
reaches the target node, is estimated and it is called a predicted time. If the predicted
time of the event is equal to the time of the simulation, the flow demand in the target
node of the edge is changed. It follows that the inputs to the node were also changed
and thus the node model must be recomputed. The node model triggers the changes of
the inflow to the outgoing edges and the outflow of the incoming edges. The change
of the outflow from the incoming edge triggers a backward event that implements the
backward kinematic wave that is propagated in the opposite direction than the forward
event and it carries the information about the change of the flow supply at the source
node of the edge.

For DNL, it is also important to track the proportion of the flow related to the path
or the destination (in our case md

i and md
j). These proportions are called a mixture

(e.g., 30% of flow go to the destination 1 and 70% of flow go to the destination 2). If the
mixture at the source node of the edge is changed, the event that represents this change
is released and it is called a mixture event. As for the forward and backward event, the
predicted time is estimated and the event is propagated through the edge to the target
node. The change of the mixture at the target node also influences the node model.

As mentioned above, there are three basic types of event: forward, backward and
mixture. This original procedure assumes that the distribution (matrix A) is not
driven by parameters of node model. But in our case the node distribution matrix is
time-dependent because

A = A(t) = [αij(t)] (3.16)

Therefore, in comparison with the original algorithm, a node event that represents the
change of the distribution matrix, was added. The predicted time of the node event
is the time of distribution change. The event is created for every breakpoint in the
proportion functions related to the node n ∈ V . The set of breakpoints for the node n
is

Tn =
⋃

i∈In,j∈Jn,d∈D

T (αdij) (3.17)

where In is a set of incoming edges, Jn is a set of outgoing edges and D ⊂ Z is a set of
destination zones. The predicted time of the event is set to the time of the breakpoint.

To make the algorithm simpler, an origin event, which implements the change of
the inflow to the network and change of the mixture at the origin node, was also added.
The inflow to the origin node i ∈ V is

hi =
∑
j∈D

hij (3.18)

and, according to (3.13), the origin event should be created for every breakpoint in the

40

inflow function. The set of breakpoints for the origin i ∈ Z is

T i =
⋃
j∈D

T (hij) (3.19)

The predicted time of the origin event is also set to the time of the breakpoint.

Algorithm 4: Adjusted E-GLTM algorithm

1 PQ = minimum priority queue of events where key is predicted time
2 ∀n ∈ N : add all node events related to node n to PQ according to (3.17)
3 ∀o ∈ O : add all origin events related to origin o to PQ according to (3.19)
4 t = 0
5 while PQ is not empty and (t < tmax) do
6 e = remove the event with the earliest predicted time from PQ
7 t = predicted time of event e
8 if e is forward event then
9 process the event and change the demand at the end of the edge

10 recompute the model of the target node

11 else if e is backward event then
12 process the event and change the supply at the beginning of the edge
13 recompute the model of the source node

14 else if e is mixture event then
15 process the event and change mixture at the end of the edge
16 recompute the model of the target node

17 else if e is node event then
18 recompute the node model corresponding with the node event

19 else if e is origin event then
20 change demand and mixture at the origin
21 recompute the node model corresponding with the origin event

22 Inflow to the outgoing edges is changed and forward events are released;
23 Outflow from the incoming edges is changed and backward events are

released;
24 Mixture at the beginning of the outgoing edges is changed and the mixture

events are released;

The adjusted loading procedure that used in this chapter is shown in Algorithm 4.
The key element of the algorithm is a priority queue (PQ) of the events where the key is
the predicted time of the event. In the initialization part (line 1-4), all origin and node
events are added to the PQ and the simulation time t is set to zero. The main loop

41

is repeated as long as the simulation time t is smaller than the maximum simulation
time tmax or the PQ is not empty. First, the event e with the earliest predicted time is
removed from the PQ and the simulation time t is set to this predicted time. The event
is processed according to its type and the corresponding node model is recomputed. In
the end, the inflow to the outgoing edges, the outflow from the incoming edges, and
mixture at the beginning of the outgoing edges are changed and the forward, backward,
and mixture events are added to the PQ.

3.4.2 Approximation

As mentioned above, every event modifies the inputs to the node model and thus triggers
the creation of new events that also generate additional events. The number of events
in the simulation highly increases and this increases computational time. It follows that
the approximation of the exact solution is needed. The basic idea is that all events are
not equally important so some of these can be thrown out (discarded).

The original method by Raadsen and Bliemer (2019) uses the approach based on a
flow threshold δq. It means that if the size of flow change, which is called a flow step
∆q, is smaller than the threshold, the flow step and the corresponding event are thrown
out. This method has a problem with small flow steps that are valid for a long time
(e.g., flow change 1 veh/h valid for 1 hour). This small long step is thrown out but
it would be valid for a long time so the total error in the number of vehicles is quite
big. The method has the same problem with very short steps. The step has very small
influence but it is propagated further and may cause numerical problems.

Our weighted flow threshold method tries to eliminate these disadvantages. The
main idea is very simple. The flow step is weighted by the time length of the step. This
idea is presented in Figure 3.6. The thick green line represents the exact departure
rate (flow) and the color dashed lines are the simplified departure rates. The red is the
result of flow threshold simplification by Raadsen. The blue color is the product of
weighted flow threshold simplification. As you can see, the light blue error areas are
smaller than the light red areas.

The main problem of the proposed method is that the time length of the step is
not available in every case because the future state of the simulation is not known.
The flow PWC function is known only up to the current simulation time t. Another
approximate approach is proposed to solve this issue. The main idea is to find the next
scheduled event that can influence the departure flow (flow function). In the case of
node or origin event, the next scheduled event can be found simply because all the
events are known before the simulation starts. In other cases, with high likelihood, the
next scheduled event will be connected to some income or outcome edge. If there is no
event on neighboring edges, the time length of the step is estimated as the minimum
travel time of these edges (or actual travel time).

The estimated time length of the step is used as the weight for the flow step. The

42

flow threshold

fl
o
w

time

flow threshold error

weighted flow threshold errorvehicle threshold

Figure 3.6: Comparison of two types of threshold

flow step is propagated if
δwq < ∆q ∗∆t (3.20)

where δwq is the weighted flow threshold, ∆q is the flow step, and ∆t represents the time
length of the step. This proposed method of weighted flow threshold also eliminates
the fluctuations of the precision of the TTFs. In the same way, the propagation of the
mixture can be approximated. The change of the mixture

∆m = max
d∈D
|md

j (t)−md
j (t− 1)| (3.21)

is also weighted by the time length of the step. The md
j (t) is the mixture in the

current simulation time and md
j (t− 1) represents the previous mixture. The mixture is

propagated if
δwm < ∆m ∗∆t (3.22)

where δwm is a weighted mixture threshold.

3.5 The continuous-time all-to-one shortest path

problem

The information about the travel time is necessary for finding the equilibrium in the road
network. The time-dependent shortest path searches are performed in every iteration of
the proposed solution after the DNL. Based on this travel time the information about
route choice is updated.

In our case, the RC-DUE is formulated as intersection-movement-based (see to
Section 3.3.1). Therefore, the PWL time-dependent shortest path search for all departure
times (profile search) is necessary for providing the continuous travel time functions
gdij. Specifically, the minimal travel time function from all nodes to the destination is
needed. This variant is called the all-to-one earliest arrival (EA) time problem.

43

In this Section, the g represents the travel time function (TTF) and f is a arrival
function (AF). As was defined in Chapter 2, the relationship between the functions are

f(t) = g(t) + t (3.23)

As the basic algorithm, the ε-LCA-BS, which was modified so that it solves the
all-to-one EA problem, was used, because the original algorithm solves the one-to-all
problem.

First, the exact version of the all-to-one EA Label Correcting Algorithm (LCA) is
presented, because ε-LCA-BS is only an approximation version of LCA. The changes
compared to the classical LCA by Orda and Rom (1990) are:

• The searching starts at the destination node and uses the reverse graph Gr =
(V, {(j, i) : (i, j) ∈ E}).

• The relaxation of the original edge (u, v) ∈ E is performed using the following
equation

fu = min(fu, fv(fuv)) (3.24)

where fu is the arrival function to the destination node from the node u and fuv
is the arrival function to the node v from the node u (so called the edge arrival
function).

The ε-approximation of the all-to-one EA LCA is implemented in the same way as in
ε-LCA-BS. The approximation helps us maintain a reasonable number of linear pieces
in the resulting TTFs. The maximal relative error εs for the searching should be set to
a smaller value than the required relative gap of the RC-DUE.

3.6 The node distribution update

The continuous-time update of the node distribution is an important part of the whole
solution. The aim is to update the node distributions αdij using the travel time functions
from the current node to the destination so that the solution will converge to the
RC-DUE. This update should be also continuous-time but the input TTFs are PWL
and the proportion functions αdij are PWC, so some approximation of PWL function by
PWC must be performed here.

The algorithm that updates the node distribution αdij is designed so that various
updating method that are known from the state-of-the-art, can be used (e.g., fix-point
method, gradient methods, route-swapping method), see Algorithm 5.

First, all-to-one ε-LCA-BS to a destination d ∈ D is computed with maximum
relative error εs and than for all n ∈ V the proportion of flow αdij that travel to

44

destination d is updated. The functions gdij have to be determined according to following
equation

gdij(t) = fkd(fj(t))− t (3.25)

where k ∈ V is the target node of the edge j ∈ Jn, fj is the edge arrival function of the
edge j and fkd represents the arrival function from node k to destination d computed
by ε-LCA-BS. At this point, the function gdij can be also simplified according to the
mechanism that is used in the ε-LCA-BS and the maximal relative error εs of the
travel time function will be still maintained. Now, the functions gdij are still PWL. The
proportion of flow αdij is PWC so the gdij must be approximated by PWC with maximum
absolute error δg or with maximum relative error εg. This operation can be performed
optimally by the method according to Konno and Kuno (1988).

Algorithm 5: The update procedure

1 for all d ∈ D do
2 perform all-to-one ε-LCA-BS
3 for all n ∈ N do
4 for all i ∈ In do
5 ∀j ∈ Jn : compute gdij according to (3.25)

6 approximate gdij by PWC function with maximum absolute error δg
or relative error εg

7 for all t ∈
⋃
j∈Jn T (αdij) ∪

⋃
j T (gdij) in chronological order do

8 update αdij(t) by suitable method (e.g., QG method)

9 adjust (project) αdij(t) so that
∑

j α
d
ij(t) = 1

10 simplify αdij with maximum absolute error δp

Now both functions are PWC, so the update of the proportion can be performed.
According to the (3.13), the update must be performed for every breakpoint of the
involved functions. The set of breakpoints for which the update have to be applied is⋃

j∈Jn

T (αdij) ∪ T (gdij) (3.26)

In this chapter the Quasi gradient (QG) method by Gentile (2016) is used for the
updating. Let Bd

i ⊂ Jn be a set of outgoing edges with non zero probability αdij
connected with destination d and incoming edge i. According to QG, the distribution
shifts are:

∆αdij(t) =
gdavg(t)− gdij(t)

γdij(t)
, ∀j ∈ Bd

i (3.27)

45

∆αdij(t) = 0, ∀j ∈ Jn \Bd
i (3.28)

where

gdavg(t) =

∑
j∈Bd

gdij(t)

|Bd|
(3.29)

and γdij(t) represents a gradient of travel time but this gradient cannot be determined
easily so in this chapter the value was set globally as γdij(t) = γ. The γ can be understood
as a step. The set Bd

i must be determined iteratively by Greedy algorithm. See Gentile
(2016). Finally, the distribution is updated as

αdij(t) = αdij(t) + βdi ∆αdij(t) (3.30)

where βdi is shorter coefficient maintaining that αdij(t) ≥ 0 and can be computed as

βdi = min

(
1,−

αdij(t)

∆αdij(t)
,∀j ∈ Bd : ∆αdij(t) < 0

)
(3.31)

According to (3.6), the sum of probabilities must be one so the updated node
distributions from the previous step must be projected to feasible set Λ. The projection
is

αdij = αdij + k, ∀j ∈ Bd
i (3.32)

where k =
1−
∑

j α
d
ij

|Bd
i |

.

In the end the updated PWC proportions αdij are simplified with the maximum
absolute error δp. This simplification can be also performed optimally in linear time by
Konno and Kuno (1988). The simplification must also respect the condition (3.6).

The approximation of the gdij by PWC function is the only step where the maximum
error cannot be set to zero. The other approximation parameters δq and εs can be zero.

In Figure 3.7 you can see example of distribution update. In this case, there are
two alternatives. First is represented by TTF g00 and by probabilities α00. The second
alternative is represented by TTF g01 and by probabilities α01. In Figure 3.7a there
are the TTFs for both alternatives as was obtained from DNL. Both TTFs have five
linear pieces (six breakpoints). Figure 3.7b shows the TTFs approximated by PWC
functions with maximal absolute error δg = 4.0. Now the TTF g00 has 13 constant
parts (14 breakpoints) and the g01 has 7 parts (8 breakpoints). Initially, the node
distribution is set to 0.5 for the whole simulation interval. According to (3.26), for every
breakpoint from g00, g01, α00, and α01, the QG projection was applied. Figure 3.7c
shows these result functions. The γ was set to 30.0. According to (3.14), the updated
distribution PWC function have up to 21 constant pieces. The last step is simplification
of probabilistic functions α00 and α01 with the maximal absolute error δp = 0.1. The
final results is in Figure 3.7d. Both final probability functions have 6 constant pieces (7
breakpoints).

46

0 20 40 60 80 100
time

100

110

120

130

140

150
tra

ve
l t

im
e

g00
g01

(a) PWL travel time functions

0 20 40 60 80 100
time

100

110

120

130

140

150

tra
ve

l t
im

e

g00
g01

(b) approx. of TTFs by PWC func. δg = 4.0

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

00
01

(c) node distribution after update by QG

0 20 40 60 80 100
time

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y
00
01

(d) node distr. after simplification δp = 0.1

Figure 3.7: Example of node distribution update

3.6.1 Approximation parameters

As mentioned above, the precision of the solution and thus the speed of calculation is
driven by five parameters:

• The flow threshold δq or the weighted flow threshold δwq for DNL,

• the mixture threshold δm or the weighted flow threshold δwm for DNL,

• the maximum relative error εs for the continuous-time TDSP,

• the maximal absolute δg or relative εg error during approximation PWL functions
by PWC functions,

47

• the maximal absolute error δp for simplification of the node distribution αdij.

These parameters should be coordinated. For example, if the DNL is precise, the relative
absolute error εs for the shortest path search must be also set to a small value, otherwise
the DNL accuracy would be useless. The coordination process is not straightforward so
for the purposes of this chapter, the parameters are coordinated empirically. Automatic
smart coordination can be part of future research.

3.7 Numerical tests

The whole solution was written in Scala programming language and has more than
11500 lines of code. The tests were performed on a laptop with 16 GB of memory and
with four-core processor (Intel(R) Core(TM) i5-8250U CPU @1.60GHz). One thread
was used only.

For the testing, three data sets were used: Twin network, Braess network, and the
real traffic models of Anaheim and Eastern Massachusetts by Transportation Networks
for Research Core Team (2021).

For measuring, how close the solution is to the exact equilibrium, the definition of a
relative gap is necessary. The average relative gap in this section is understood as

χ =

∑
n∈N

∑
i∈In

∑
d∈D χ

d
ni

|D|
∑

n |In|
(3.33)

where

χdni =

∫ tmax

t0
g − gdi

(tmax − t0)gmax
(3.34)

g = max
j∈Jn

gdij (3.35)

gmax = max
t∈[t0,tmax]

g(t) (3.36)

Let us recall that gdi is minimum travel time from the target node of the edge i to the
destination d and gdij(t) is minimum travel time from the target node of the edge i to
the destination zone d using edge j ∈ J .

This formulation assumes that all paths to every destination are used. In case that
some path from edge i to destination d using edge j is not used, this path must be
eliminated from the computation.

3.7.1 The Twins

The Twin network consists of two parallel edges with different fundamental diagrams.
In Table 3.2 there are parameters of the edges. The inflow starts at 1000 vehicles per

48

edge γmax [km/h] qmax [veh/h] kmax [veh/km] γcrit [km/h] γmin [km/h]
1 100 2000 222 52 -17
2 110 1500 166 63 -17

Table 3.2: Parameters of the edges in Twin network

hour (veh/h) and every 6 minutes is increased by 100 to 1500 veh/h and after that
every 6 minutes is decreased by 100 veh/h. The simulation time was set to 1.2 hours. In
Figure 3.8 you can see the resulting travel time functions and the proportional functions.
The average relative gap 3 · 10−4 was achieved using the following settings: δp = 10−4,
δq = 0.49 veh/h. As you can see, the travel time functions almost overlap. That is the
result we wanted to achieve. This simple test was the aim to confirm that the solution
scheme can work. This reached accuracy is perfectly sufficient for practical use.

0.0 0.2 0.4 0.6 0.8
Time [h]

0.0090

0.0095

0.0100

0.0105

0.0110

Tr
av

el
 ti

m
e

[h
]

edge 1
edge 2

(a) travel time functions

0.0 0.2 0.4 0.6 0.8 1.0
Time [h]

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

edge 1
edge 2

(b) proportion functions

Figure 3.8: Results for twin network

Also for testing the approximation parameters this network was used. First, the
dependence of reached average gap to the approximation level of DNL was examined.
For testing purposes, the flow threshold was set to 0.49 multiple of the fan step. So if
the fan step is 10 veh/h, the flow threshold is set to 4.9 veh/h. The fan step was set to
1, 5, 10 and 20 veh/h. In Figure 3.9a there are the convergence charts for each setup.
As you can see, the reached relative gap is highly dependent on the flow threshold. The
reached relative gaps are 3 · 10−4, 5 · 10−4, 8 · 10−4 and 14 · 10−4.

The second test measures the dependence of the reached relative gap on maximal
absolute error δp. The δp was set to 1 · 10−4, 2 · 10−4, 3 · 10−4 and 4 · 10−4. The δq = 0.98
and fan step was set to 2.0. In Figure 3.9b there are the convergence curves. The
reached relative gaps are 4 · 10−4, 10 · 10−4, 14 · 10−4 and 25 · 10−4. The conclusion is

49

0 50 100 150 200
Iteration

10 3

10 2
Av

er
ag

e
re

la
tiv

e
ga

p
1.0
5.0
10.0
20.0

(a) various settings of δq and fan step

0 50 100 150 200
Iteration

10 3

10 2

Av
er

ag
e

re
la

tiv
e

ga
p

0.0001
0.0002
0.0003
0.0004

(b) various settings of δp

Figure 3.9: Dependence of convergence on approximation for twin network

the same as in the previous test. The maximal proportion error highly influences the
reached relative gap. The oscillation is caused by the simplification of the functions
and occurs at the limit of precision.

In both dependence cases the speed of convergence for all parameter settings is very
similar until the value of the simplification parameter begin to influence the precision.

3.7.2 Weighted flow threshold

The method of weighted flow threshold was tested on a 4x4 grid network with one OD
pair. In Figure 3.10 there are the settings for the grid network. Every node proportions
in the grid are set to 0.5 in order to eliminate the influence of equilibrate process.
The edges have length between 1000m and 1040m. The relationship between the flow
threshold and fan step was set to

fanStep = 2.5 δq (3.37)

and the inflow to the network simulates the peak hour. The level of approximation
(values of δq and δwq) was set so that the computation of both methods takes similar time.
First, the near-exact solution was computed. During the computation of near-exact
solution, the simulation released 175 274 events and takes 3190 ms. After that, the
precision of the computation was incrementally decreased, so that the run time of both
methods was similar, and the average absolute error was measured. In Figure 3.11 there
is the result of the test. The run time of the proposed weighted method is smaller than
of the original method in all cases. In most cases, the average absolute error of the
proposed method is smaller about a few orders of magnitude.

50

s

d

0.5 0.5 0.5

.5 .5 .5

Figure 3.10: The grid network

0 20 40 60 80 100
level of approximation

101

102

103

104

ru
n
ti

m
e
 [

m
s]

10 3

10 2

10 1

a
v
e
ra

g
e
 a

b
so

lu
te

 e
rr

o
r

runtime (Raadsen)

runtime (proposed)

error (Raadsen)

error (proposed)

Figure 3.11: Comparison of weighted method with flow threshold method

51

0

1

2

3

1

2

3

4

5

α
3

00
= 0.5

α
3

00
= 0.5

α
3

01
= 0.5

α
3

01
= 0.5

Figure 3.12: Braess network with initial settings for αdij. The nodes and edges are
labeled by numbers.

3.7.3 The Braess network

The Braess network is the classical testing use case. In Figure 3.12 there is the network
with initial proportions in nodes. Every edge has length 1 km and the same FD. There
is one OD pair between nodes 0 and 3 with inflow 0 veh/h until t = 50s, 3000 veh/h
until t = 100s, and 500 veh/h until t = 200s. From these settings it follows that there
are queues.

0.00 0.02 0.04 0.06 0.08
Time [h]

0.009

0.010

0.011

0.012

0.013

0.014

Tr
av

el
 ti

m
e

[h
]

Edge 1
Edge 2
Edge 3
Edge 4
Edge 5

(a) TTFs for initial settings

0.00 0.02 0.04 0.06 0.08
Time [h]

0.009

0.010

0.011

0.012

0.013

0.014

Tr
av

el
 ti

m
e

[h
]

Edge 1
Edge 2
Edge 3
Edge 4
Edge 5

(b) TTFs for final solution

Figure 3.13: Travel time functions for Braess network

In Figure 3.13 there are the travel time functions for the initial solution and final
(equilibrated) solution. After 1000 iterations the reached relative average gap was
3.4 · 10−4. This test had the aim to confirm that the solution scheme works also for
networks with queues. As you can see, the flow at the edge 3 is eliminated and the
travel time functions at the edge 1 and 2 (4 and 5, respectively) are very similar. The
precision of the solution is perfectly sufficient for practical use.

52

3.7.4 Comparison of PWL/PWC approach with discrete solu-
tion

This test aims to compare the discrete solution with PWL/PWC approach on real
networks. For this purpose the Anaheim network and Eastern Massachusetts by
Transportation Networks for Research Core Team (2021) were used. The Anaheim
network has 38 zones, 914 links and 416 nodes. The Eastern Massachusetts network
has 74 zones, 258 links and 74 nodes.

For the comparison, the discrete version of the solver has been implemented. The
discrete solver uses the same dynamic network loading procedure by Raadsen and
Bliemer (2019) with the same setting and also uses the same implicit DUE formulation
as is described in Section 3.3.1. The difference is only in the implementation of node
distribution that is implemented in a classic discrete way with a defined time step. The
all-to-one time-dependent shortest path problem is realized also in a discrete way for
every time interval.

For both networks and for different time steps, we computed the discrete solution.
The proposed PWL/PWC solution was computed using appropriate settings such that
the solution provides comparable precision with the discrete case.

In Figures 3.14 and 3.15 there are the convergence curves for each setting. The
solid blue color represents the proposed PWL/PWC solution and the dashed lines
represent the discrete solutions. As you can see the PWL/PWC solution has the fastest
convergence rate except the Anaheim with 3 min time step.

It should be noted that the relative gaps are not computed exactly in the same way
because there is the influence of discretization in time-dependent shortest path search
in the discrete case and in PWL TDSP case there is the influence of approximation.

0 20 40 60 80 100 120 140 160
runtime [s]

0.00002

0.00004

0.00006

0.00008

re
la

tiv
e

ga
p

PWL/PWC
3 min
1 min
30 s
15 s

Figure 3.14: Convergence chart for Anaheim network. The time interval was set to 3
min, 1 min, 30 s and 15 s.

53

0 20 40 60 80 100 120 140
runtime [s]

0.00002

0.00004

0.00006

0.00008

0.00010

re
la

tiv
e

ga
p

PWL/PWC
6 min
3 min
2 min
1 min

Figure 3.15: Convergence chart for Eastern Massachusetts network. The time interval
was set to 6 min, 3 min, 2 min and 1 minute.

The last test tries to compare the representation of the result function αdij . The test
was performed on the Anaheim network with more accurate settings for DNL than in
previous tests. In Table 3.3 there are reached gap and the average number of constant
pieces of the result functions αdij . There is also the comparison with the discrete version
where the time interval/step was set to 15s, 1m, 2m, and 3m. The last column shows
the size of the serialized solution on the disk. As you can see, the proposed PWL/PWC

method χ [×10−6] # pieces size of solution [Mb]
Discrete 8.7 480 367

PWL/PWC 5.5 19 56
Discrete 10.9 120 96
Discrete 14.4 60 50
Discrete 10.5 40 35

Table 3.3: The number of pieces/intervals that are needed for representation of result
function αdij.

method needs on average only 19 constant pieces for representation of the result.
We also tried to compare the proposed PWL/PWC solution with the classical

approach that uses the LTM with the triangular diagram and the path-based formulation
of DUE. We conclude that this comparison does not make any sense because the values of
relative gaps and runtimes were uncomparable due to different shapes of the fundamental
diagram and due to very different solution methods. The relative gaps differed about
three order of magnitude.

54

3.8 Summary

We propose a new grid-free near continuous-time solution for the dynamic user equilib-
rium, that uses the approximated continuous ε-LCA-BS presented in Chapter 2. Only
the simplified fanning in E-GLTM and the approximation of TTFs by PWL functions
during the update phase broke the possibility of a fully continuous-time solution.

The comparison with the grid-based approach was performed and showed that the
proposed solution can save computational time. Especially, these savings are significant
in the case of precise discretization (short time intervals).

In the future, it would be useful to develop the marginal sequential updating of
E-GLTM DNL using by Corthout et al. (2014). This should help with the convergence
to equilibrium. The automatic coordination of approximation parameters and gradually
increasing precision during computation is also a future research direction.

55

Chapter 4

Capacity based first-order node
model for dynamic traffic loading

One of the submodels of dynamic network loading is the node model which can be very
precise but also complex. Therefore, the choice of the model has a significant impact
on the quality and performance of the whole loading procedure. This chapter tries to
move the first-order macroscopic node model closer to reality by taking into account
the capacity of intersection movements (internal node supply constraints) together
with a relaxed First-In-First-Out rule at incoming edges such that the model stays as
macroscopic as possible. We formulate the proposed model as a fixed-point problem and
provide an effective algorithm that solves the problem faster than fixed-point iteration.
Further, the example of the capacity model based on well-known German highway
capacity manual is provided.

4.1 Introduction and State-of-the-art

As mentioned previous chapters, the analytical DTA consists of two basic models:
Dynamic User Equilibrium (DUE) and Dynamic Network Loading (DNL). The DUE
model defines the route choice strategy and DNL ensures vehicle propagation through
the road network. The node model is a sub-model of DNL together with the link
and the origin model. The link model maintains the propagation of vehicles through
edges and the node model deals with propagation through the node. The common
approach is to use the macroscopic first-order Lighthill-Whitham-Richards traffic model
(LWR) Lighthill and Whitham (1955); Richards (1956) as the link model. In this
case, the first-order node is needed because the correct propagation of flows has to be
ensured. The first-order models consider only one independent variable. In our case,
the independent variable is flow.

As mentioned above, the first-order node model is part of the DNL procedure which

56

is the most demanding part of the DTA models. There are only a few efficient state-of-
the-art methods for the DNL. In particular, there are the iterative link transmission
model (ILTM) by Himpe et al. (2016), the event-based link transmission model (E-
LTM), and the event-based general link transmission model (E-GLTM) by Raadsen
et al. (2016); Raadsen and Bliemer (2019). In the case of an inaccurate or slow node
model, these high-end propagation methods are useless. It follows that the balance
between computing efficiency and model precision is very important.

The model input is a demand at incoming links, a supply on outgoing links, and
the information about route choice. The demand is the number of vehicles that want
to enter the intersection and the supply represents the number of vehicles that can
drive to the outgoing link. The model returns the number of vehicles that enter the
intersection from incoming links (inflow) and the number of vehicles that leave the
intersection by outgoing links (outflow). The basic requirements for the model are:
the sum of vehicles entering the intersection must be equal to the number of vehicles
leaving the intersection and the resulting flows must be smaller than the demand and
supply (Han et al., 2018). These are expected natural constraints for flow as in the case
of the maximum flow problem.

The information about the route choice has different forms depending on DUE
formulation so the general formulation of the node model is needed. This formu-
lation/definition is presented by Tampère et al. (2011) who also defined additional
requirements for the first-order node models and thus a whole class of models was
defined.

According to Wright et al. (2017), the methods can be divided into two epochs:
pre-Tampère and post-Tampère. We mainly focus on the post-Tampère epoch. The
requirements for Tampère’s class of the first-order node model are fulfilled for all models
mentioned below. Tampère et al. (2011) themselves published the model that, in case
of congested outgoing edges, distributes the supply proportionally to the incoming
capacities and presented the solution algorithm. The mechanism of supply distribution
is called supply constraint interaction rule (SCIR). The possibility of the internal node
supply constraints is also basically discussed. Flötteröd and Rohde (2011) builds on top
of Tampère’s work and proposed incremental node model (INM). The extension of INM
is constrained INM (INMC) which incorporates the internal node supply constraints
and is formulated as the fixed-point problem. Flötteröd and Rohde (2011) also pointed
that the solution, in this case, does not have to be unique. The non-unique flows are
discussed in detail by Corthout et al. (2012). The model by Gibb (2011) estimates the
consumption of incoming capacity by vehicles that wait for crossing the intersection
into the outgoing link. This approach agrees well with microsimulations and thus
shifts the model close to reality. The solution method is also based on fixed-point.
Smits et al. (2015) formulate the family of models as based on turn delays and publish
two new models: a single server and an equal delay at the outgoing link. One year

57

later, Jabari (2016) shows that the maximization of the flow, as defined in (Tampère
et al., 2011; Flötteröd and Rohde, 2011), is not the same as a holding-free solution.
The flow maximization is a sufficient but not necessary condition. Jabari (2016) also
partially resolved the problem with non-unique flows for signalized intersections using
the decomposition to phases where the conflicting flows do not proceed through the
intersection simultaneously. All these models mentioned above assume conservation
of turning fractions (CTF) which implicates the First-In-First-Out (FIFO) rule at
the incoming edges. Wright et al. (2017) pointed that this strict rule can lead to
unrealistic congestion and proposed the concept of the relaxed FIFO condition which is
a compromise between full FIFO conditions at incoming links and the models with no
FIFO conditions. This model by Wright et al. (2017) does not deal with internal node
supply constraints.

All the models mentioned above are relevant node models and can be used during
network loading. For every intersection, a different model can be used. The credibility of
the model, computing efficiency, and uniqueness of the flows are the basic properties of
the model and should be balanced. In Table 4.1 there is a comparison of state-of-the-art
models.

This chapter has the aim to incorporate the internal node supply constraints (INSC)
into the model by Wright et al. (2017) and propose the effective solution algorithm.
The next goal is to maintain the model as macroscopic as possible so we deal with
whole edges instead of lanes. The motivation for this decision is availability of datasets
that contains detailed road information as number of lanes. In this work, the internal
node supply constraints are represented by a general capacity model which can take into
account the conflicts between movement flows and/or traffic lights signal timing plans.

model SCIR rel. FIFO INSC solution unique sol.
TAM incoming capacities no no direct yes
INM priorities no no direct yes

INMC priorities no yes fixed-point no
CCE - no no fixed-point yes
SSP - no no direct yes
EDP - no no fixed-point yes
WRI priorities (zero is possible) yes no direct yes

Table 4.1: Comparison of the models: single server (SSP) and equal delay at outgoing
(EDP) by Smits et al. (2015), incremental node modem (INM) and constrained INM
(INMC) by Flötteröd and Rohde (2011), capacity consumption equivalence (CCE) by
Gibb (2011), model by Wright et al. (2017) (WRI), model by Tampère et al. (2011)
(TAM).

The remainder of this chapter is structured as follows. Section 4.2 contains notations,

58

definitions, problem definition, and formulation of the proposed node model. The
proposed capacity model is described in Section 4.3. In Section 4.4, there is a description
of three algorithms that compute the proposed model. Section 4.5 shows the examples
of intersections and the solution for them.

4.2 Problem Definition and Formulation

In this section, the proposed node model is defined on the top of models by Wright et al.
(2017), Tampère et al. (2011), and Flötteröd and Rohde (2011). First, definitions and
notations are introduced. Then, the transformations formulas between the universal
node model and the node model for the given DUE formulation are derived.

4.2.1 Notation and Requirements

Let I be the set of all incoming edges to the intersection and J the set of all outgoing
edges. The set of all intersection movements is defined as M ⊆ I × J . In Figure 4.1
there is an example of an intersection with two incoming and two outgoing edges.

More precisely, the model inputs are a demand Sij between an incoming edge i and
an outgoing edge j for all i ∈ I and j ∈ J , a supply Rj for all outgoing edges j ∈ J .
The model output is a flow qij for every intersection movement ij ∈M . All the inputs
and outputs can be understood as vectors: S = {Sij : ij ∈M}, q = {qij : ij ∈M}, and

i = 0

i = 1

j = 0

j = 1

00

11

I = {0, 1}
J = {0, 1} 1001

R0

M = {00, 01, 10, 11}

C1

Figure 4.1: Example of intersection with two incoming and two outgoing edges

59

R = {Rj : j ∈ J}. In the whole chapter, we use the following notation:

qi =
∑
j∈J

qij; Si =
∑
j∈J

Sij

qj =
∑
i∈I

qij; Sj =
∑
i∈I

Sij

The node model can be expressed as a vector function as

q = θ(S,R) (4.1)

According to Tampère et al. (2011), all first-order macroscopic node models θ should
keep the following conditions:

1. General applicability for any intersection with any number of incoming and
outgoing edges.

2. The maximal flow through the node assuming the flow respects the defined
constraints. This is a sufficient condition for the holding-free property described
by Jabari (2016).

3. Non-negativity of the flow.

4. Equality of the sum of inflow to the intersection to the sum of outflow from the
intersection. This condition is called a conservation law.

5. Respect to demand and supply constraints. The inflow must be smaller or equal
to the demand and the outflow must also be smaller or equal to the supply. Then,
qij ≤ Sij and

∑
i qij ≤ Rj

6. Respect to the route choice. The vehicles should pass the intersection according
to their route choice. The constraint is called conservation of turning fractions
(CTF) and can be expressed as

qij∑
j qij

=
Sij∑
j Sij

(4.2)

The FIFO requirements are also included in CTF. In the model by Wright et al.
(2017), this condition is not fulfilled and is replaced by a partial FIFO rule.

7. Compatibility with link flow dynamic. The model should satisfy the invariance
principle, i.e., assuming the constant demand and supply, the flow should be
invariant. This condition avoids the discontinuous changes in the flow. More
information see in Lebacque (2005).

Another question is how to distribute the supply into intersection movements in case
of a congested outgoing link. This mechanism is called a supply constraint interaction
rule (SCIR).

60

4.2.2 Proposed Model

The aim is to develop a model which takes into account the general movement capacity
model (or INSC) together with the relaxed FIFO condition by Wright et al. (2017) in
order to move the model closer to reality and maintain the macroscopic properties.

The main idea of the relaxed FIFO is that for every incoming edge i, the set of
mutual restriction intervals ηij′j ∈ [0, 1], which represents the degree of involvement of
the FIFO rule, is defined. The interval ηij′j means that the congestion in the outgoing
edge j′ affects a |ηij′j| portion of the flow directed from the edge i ∈ I to the outgoing
edge j. It follows that the interval [0, 1] affects it in full (strict FIFO rule, CTF) and
the interval [0, 0] does not affect it at all. This approach replaces condition six in the
first-order macroscopic node model conditions that are defined in Section 4.2.1.

In order to satisfy the general movement capacity model providing the maximal
capacity for every intersection movement, the eighth condition is added.

8. The movement flow qij must be smaller or equal to the movement capacity cij.
Mathematically, qij ≤ cij ∀ij ∈M .

The capacities cij can be constant or provided by some sophisticated capacity model
C = (cij : ij ∈M) which can be function of the flow q.

The model by Tampère et al. (2011) distributes the supply proportionally to capaci-
ties of incoming links. On the other hand, the Wright et al. (2017) and Flötteröd and
Rohde (2011) distribute the supply proportionally to priorities pi where i ∈ I. For our
model, we use the second more general SCIR model based on priorities of incoming
edges. Then, the oriented priorities of the movements are computed as:

pij = pi
Sij
Si

(4.3)

Without a loss of generality, in contrast with Wright et al. (2017), only one commodity
is considered because multi-commodity issue can be resolved using simple post processing.
In Section 4.2.3, this problem is discussed in detail. The proposed node model is defined
as a constrained maximization problem which is

max
∑
i∈I

∑
j∈J

qij (4.4)

61

subject to

qij ≥ 0 ∀ij ∈M (4.5)∑
i∈I

qij ≤ Rj ∀j ∈ J (4.6)

qij ≤ cij ∀ij ∈M (4.7)

qij ≥
pij∑
i′∈I pi′j

Rj, ∀i ∈ {i : Wi 6= ∅}, ∀j ∈ Wi (4.8)

qij ≤ Sij −A

 ⋃
j′∈Wi\{j}

Qij′j

 ∀ij ∈M (4.9)

where rectangle

Qij′j = ηij′j ×
[
qij′

Sij′
Sij, Sij

]
(4.10)

and according to Wright et al. (2017), Wi = {j : Rj > Sij > 0,∃i′ 6= i : pi′jqij ≥ pijqi′j}
is the set of restricting output edges for the incoming edge i ∈ I, ηij′j is the mutual
restriction interval, A represents the area of two-dimensional object, and finally ’×’
makes rectangle defining by two intervals.

The inequalities (4.5)-(4.6) correspond with requirements 3 and 5 from Section 4.2.1.
The constraint (4.7) maintains that the resulting flow is not higher than movement
capacities. The SCIR (priority constraints), where the supply is distributed proportion-
ally to the intersection movement oriented priorities, pij is expressed in (4.8). Finally,
the (4.9) ensures the relaxed FIFO mechanism. Here, the area of rectangles union is
computed. The (4.8) and (4.9) are taken from Wright et al. (2017). For a detailed
description of the equations see the original paper.

In the case of an unsignalized intersection (intersection without any traffic lights
and any other controls) and partially also for a signalized intersection, the capacity of
movement cij is generally dependent on the flow at other movements. The movement
capacities cij are the result of a capacity model that can be generally written as

c = C(q) (4.11)

If the capacity model is included into the node model, the node model can be written as

q = θ(S,R, q) = θ(q) (4.12)

As can be seen, the resulting flow q is also an argument of the model. This formulation
corresponds with the fixed point problem (FPP). This fact complicates the solution.
The same formulation is used by Flötteröd and Rohde (2011).

62

4.2.3 Models for DUE Formulations

As mentioned above, the inputs for the node model are: the demand between the
incoming and the outgoing edges Sij and the supply at the outgoing edges Rj that can
be directly obtained from the link model.

However, the demand Sij must be computed based on the dynamic user equilib-
rium (DUE) formulation. There are two basic DUE formulations. One is a classical
formulation with an explicit path enumeration (path-based) and the other is with
an implicit path formulation (link-based Ran et al. (1996), destination-based Gentile
(2016), intersection-movement-based Long et al. (2013)). In the next two subsections,
the computation of demand for different formulations is presented.

Implicit Formulation

All the implicit DUE formulations are similar. The key variable driving the route choice
is node distribution matrix Ad = {αdij : i ∈ I, j ∈ J}. The distribution αdij gives the
proportion of flows which direct to the destination d through the outgoing edge j. It
follows that

∑
j αij = 1.

Next important variable is the proportion of flow md
i at the target node of incoming

edge i that directs to the destination d. This variable is called a mixture. Then one cell
of the total node distribution matrix A = {αij : i ∈ I, j ∈ J} can be written as

αij =
∑
d

md
iα

d
ij (4.13)

The αij gives the proportion of flows on the incoming edge i which direct to outgoing
edge j. Now the demand can be simply calculated as

Sij = Siαij (4.14)

Now the flow qij can be computed using some node model θ.
The computation of mixture at the outgoing edges is also a task for the node model.

Based on variables defined above, the mixture can be written as

md
j =

∑
i

md
i α

d
ij

αij
qij

qj
(4.15)

where qij is resulting flow and qj =
∑

i∈I qij.
The destination d can be understood as a commodity. In this case, this mechanism

solves the multi-commodity issue.

63

Path-based Formulation

The key variable that tracks the mixture is a proportion of flow µpi at the incoming
edge i associated with the path p, see Han et al. (2018). All flows which direct to the
same outgoing edge from the given incoming edge must be summed. Then

Sij = Si
∑
p3i,j

µpi (4.16)

After the node model is performed, the path proportion at the outgoing edges should
be calculated based on the node model results as

µpj =
Siµ

p
i
qij
Sij

qj
(4.17)

This proportion µpj will be used by the link model in the next time intervals. The
described operations can be understood as a kind of transformation between the DUE
formulation and the universal node model that is defined in Section 4.2.1.

4.3 Capacity Model

Let the function C : Rn → Rn be the capacity model that represents the capacity of
the movements. Generally, the capacity of movement from the incoming edge i to the
outgoing edge j can be dependent on all other movements flow. So

cij = Cij(q) (4.18)

This dependence can be caused by movement conflicts. In the next two sections, the
capacity model for the signalized and the unsignalized intersection is described.

4.3.1 Unsignalized

The rules on the unsignalized intersection are defined by traffic signs ”Stop”, ”Give
way”, or ”Priority road” and priority of the right. The major and minor roads can be
defined in this type of junction based on the traffic signs.

For example, the T-shaped intersection with two incoming edges and one outgoing
edge is considered. There is one major movement from the edge i = 0 to j = 0 and one
minor movement from the edge i = 1 to the edge j = 0. The vehicles incoming from
the minor edge i = 1 must give way to cars that cross the intersection by the major
road. It follows that the capacity of the minor movement is dependent on the flow at
the major movement.

Generally, according to (4.18) the capacity cij can depend on all superior movements.
The question is how to resolve the dependencies. The dependence of the intersection

64

movement ij on kl can be understood as an edge of the graph where the movements
are the nodes of the graph. Formally, the set of edges is defined as

E = {kl→ ij : ij depends on kl ∀ij, kl ∈M} (4.19)

then the graph can be defined as G = (M,E). The nodes (movements) of the graph
must be ordered so that each node depends only on the nodes in the order before it.
The following lemma says under what conditions the movements can be sorted.

Lemma 3. Let G is an acyclic graph then the capacity of movements can be directly
resolved using topological ordering.

The lemma says that if the graph G contains a cycle, the movements cannot be
sorted. This situation occurs for example if movement ij depends on kl and kl depends
on ij. These dependencies create the cycle with length two. In reality, the graph has to
be acyclic because the traffic rules define who has priority of driving.

Example of a Capacity Model

This section introduces the capacity model that is based on Czech technical norms
(Technické podmı́nky Ministerstva dopravy) (TP188, 2018) and German Highway
Capacity Manual (Forschungsgesellschaft für Strassen und Verkehrswesen, 2001).

First, the superior movement flow qHij that represents the sum of conflicts flow, is
defined as

qHij =
∑
kl∈M

βklij qkl (4.20)

where βklij ∈ [0, 1] is a level of dependence ij ∈M on kl ∈M . If βklij = 0 then there is
no dependence. Based on the level of dependence, the set of edges E of the graph G
can be written as

E = {kl→ ij : βklij > 0 ∀ij, kl ∈M} (4.21)

Using the superior movement flow qHij , the capacity of the movement from the
incoming edge i to the outgoing edge j is defined as follows (TP188, 2018; Forschungs-
gesellschaft für Strassen und Verkehrswesen, 2001)

cij = Cij(qHij) =
3600

tf
e
−

qHij
3600

(
tg−

tf
2

)
(4.22)

where tg [s] is the critical time interval, tf [s] is the next time interval. The parameters
tg and tf should be set according to Table 4.2. If the capacity is smaller than the initial
flow qij then the flow between i and j is updated as

qij = min(cij, qij) (4.23)

65

intersection movement tg [s] tf [s]
”Give way” ”Stop”

left turn from the main road tg = 3.4 + 0.021v 2.6 2.6
right turn from minor road tg = 2.8 + 0.038v 3.1 3.7
straight passage from the minor road tg = 4.4 + 0.036v 3.3 3.9
left turn from the minor road tg = 5.2 + 0.022v 3.5 4.1

Table 4.2: Critical time interval and next time interval values by TP188 (2018). The
variable v, v ∈ [30, 90], is speed on main road in km/h.

The solution algorithm is straightforward. First, the topological ordering of movements
is performed and then the capacities are gradually calculated.

The values tg and tf in Table 4.2 are calibrated for rules and driver behavior in
the Czech Republic. To be used in different countries, the recalibration should be
performed.

4.3.2 Signalized

The signalized intersection can be decomposed into phases (cycles). According to Jabari
(2016), within one phase, the flow can be solved separately, and thereby the solution is
simplified and with additional assumptions leads to a unique solution. As is mentioned
above, we aim to maintain the model as macroscopic as possible. We are focusing on
the continuous modeling of a signalized intersection.

The capacity of the movement depends on the time length of the phase and on
conflicts between movements within phase. In the case of no conflict, the capacity can
be computed by TP188 (2018) as

cij = qSij
z

tc
(4.24)

where z represents the length of the green time window, tc is the time length of cycle
(phase), and qSij is the saturated flow for movement ij ∈ M . In case of conflict, for
example, a left turn is often in conflict with a major movement stream1, the capacity is
further reduced by mechanisms from the previous section.

The detailed description of continuous modeling of a signalized intersection is out of
the scope of this work. We refer to Yahyamozdarani et al. (2019) for further reading.

1We assume that cars drive on the right side of the road.

66

4.4 Solution Algorithms

This section contains a description how to solve the first-order macroscopic node model
that is proposed in Section 3.3.1 and represented by expressions (4.4)-(4.9). We denote
the proposed model as constrained Wright’s model (WRIC). We use the idea that was
proposed by Flötteröd and Rohde (2011). First, the demand S is bounded by demand
constraint function using movement capacities cij and then a standard algorithm which
does not take into account the INSC is used. In our case the algorithm is the Wright’s
MIMO algorithm (WRI).

If the CTF (full FIFO) is assumed, the bounded demand is determined as

Ŝij = Sij min

(
1,min

j′∈J

cij′

Sij′

)
(4.25)

The most constrained intersection movement affects all other movements that origins
at the same incoming edge. The demand on other movements is bounded by the same
most restricting reduction coefficient.

In the case of relaxed FIFO, the demand constraint function is not so straightforward.
From the model definition, we know that the inequality (4.9) drives the relaxed FIFO
mechanism. The demand on intersection movement ij must be bounded by capacity cij
and possibly is partially affected (bounded) by reductions on other movements leading
from the same incoming edge i. The level of reduction depends on mutual restriction
intervals. So we can write:

Ŝij ≤ cij (4.26)

qij ≤ Sij −A

 ⋃
j′∈Wi\{j}

Qij′j(qij′)

 ≤ Sij −A

 ⋃
j′∈Wi\{j}

Qij′j(cij′)

 ≥ Ŝij (4.27)

where

Wi = {j : cij < Sij, j ∈ J} (4.28)

Qij′j(qij′) = ηij′j ×
[
qij′

Sij′
Sij, Sij

]
(4.29)

The most restricted constrain is selected so we get the bounded demand which is

Ŝij = min

cij, Sij −A
 ⋃
j′∈Wi\{j}

Qij′j(cij′)

 (4.30)

In case of no-FIFO (∀i, j, j′ : |ηij′j| = 0), the (4.30) is reduced to Ŝij = min(cij, Sij)
and in case of full-FIFO it is reduced to (4.25). Together with (4.12) and (4.11), the
fixed-point problem is

q = θ(Ŝij(S, C(q))) (4.31)

67

According to Flötteröd and Rohde (2011), the fixed-point problem (4.31) has at least
one solution and according to Corthout et al. (2012), there can be multiple solutions.
Wright’s algorithm provides the maximal solution and from (4.26), (4.27), and (4.30),

it directly follows that the bounded demand Ŝ is also maximal.
This formulation is identical with equation (27) by Flötteröd and Rohde (2011)

who also proposed two algorithms for how the problem solve: exact and approximate
solution procedure. The exact solution algorithm assumes that the incoming edges can
be ordered such that the edge i is independent of edges i+ 1, . . . , |I|. This assumption
can not be fulfilled for various intersections including also very simple ones. The second
algorithm provides an approximate solution that is computed using the linearization
between two working points. We incorporated this approximate approach to a fixed-
point iteration procedure and thus we can obtain the exact solution. In the following
text, this method is noticed as Flotterod’s algorithm (FL).

The simplest way is to use the fixed-point iteration (FP) or some acceleration method
directly to equation (4.31). The root-finding algorithms can be also used. We provide
solution algorithm base on Steffensen’s algorithm (ST) (Algorithm 6) by Steffensen
(1933). The idea is to apply the Aitken’s ∆2 method (Aitken, 1927) to every movement
flow separately. It follows that the algorithm do not take into account cross movement
dependencies.

Algorithm 6: Steffensen’s algorithm based solution for proposed model

1 q = S first approximation
2 δ =∞ set current gap infinity
3 while δ > ε do

4 qa = θ(Ŝij(S, C(q))) run Wright’s algorithm for the first time

5 qb = θ(Ŝij(S, C(qa))) run Wright’s algorithm for the second time
6 for ij ∈M do

7 qk+1
ij =

(qaij−qkij)2

qbij−2qbij+qkij
Aitken’s delta squared method

8 δ = |qk − qk+1| compute gap
9 k = k + 1 increase iteration counter

First, the iteration counter k is set to zero and the gap of the solution δ is set to
infinity. As the first approximation (the starting point) of the flow q, the demand S can
be chosen. The algorithm is running until the gap δ is not smaller than the maximum
allowed gap ε. During the DNL computation, the node model is called many times so
the implementation of the algorithms must be as efficient as possible. However, we can
estimate the first approximation of the flow as the previous result and thus reduce the
number of iteration.

68

4.5 Examples and Tests

All the algorithms were implemented using Scala programming language and the codes
were included into a library that focuses on computing dynamic traffic assignment. The
tests were performed on a computer with a quad-core processor (Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz) and with 16GB memory.

4.5.1 Performance of the Algorithms

The aim of this test is to compare the performance of three algorithms: fixed-point
iteration (FP), iterative version of Flotterod’s algorithm (FL) and modified Steffensen’s
algorithm (ST).

We assume a classic X-shaped intersection. In Figure 4.2a there is a visualization of
the intersection with edge identifications. In this test, we assume the full FIFO rule,
this means that ∀i ∈ I, j ∈ J, j′ ∈ J : ηij′j = [0, 1]. Further, the dependencies between
movements must be determined. For this purpose, the methodology by TP188 (2018)
and Forschungsgesellschaft für Strassen und Verkehrswesen (2001) was used. In Table
4.4 there are the non-zero dependence coefficients βklij .

j = 1 i = 3

i = 1 j = 3

22

00

(a) main and minor road

1

1

22

3

3

00

(b) movements conflicts

Figure 4.2: Four incoming four outgoing intersection

For example, in Figure 4.2b, the movement 20 is in conflict with the straight
movements 13 and 31 (blue color) and turn movements 32, 30, and 10 (black color).
The turn 13 (green color) also influences the capacity of 20 but only halfway. In Figure
4.3 you can see the whole acyclic dependency graph. In case of the assumed intersection,

69

there are four levels of movements. First, the movements at the top are resolved and
then the capacities for the movements 21 and 03 are computed.

Figure 4.3: Dependency graph

We simulate a fully congested intersection, because, in this case, the algorithms
have the worst performance. We set R = (1000, 2000, 1000, 2000) and S is big enough
so that every incoming edge is congested. Due to the invariance principle, the changes
in demand do not affect the solution. For testing purposes, δ =

∑
ij∈M |qkij − q

k+1
ij | and

ε = 10−10 ε = 1.0
method # iter. δ [×10−14] # iter. δ

FP 1366 9 984 338 0.98
FL 17 4 289 6 0.10
ST 7 9 5 0.54

Table 4.3: The number of iterations and δ reached for two settings of maximal error ε

we set the maximal error ε to 1 and 10−10 veh/h. In Table 4.3 you can see that FP
method needs in comparison with the other two methods huge number of iterations.
It should be pointed out that the FL as well as ST algorithms need two evaluations
of WRI algorithm per one iteration. Despite that they are much faster. We received
similar results also for other intersections.

Raadsen and Bliemer (2019), in their continuous loading procedure, recommend
setting the flow threshold between 2 and 5 veh/h. It follows that the maximal error
ε = 1 veh/h is enough for this purpose.

4.5.2 Capacity-Constrained Intersection with Relaxed FIFO

The second test is focused on accuracy comparison of existing node macro models in
case that the intersection has multilane incoming edges and there are movement flow
conflicts. We assume the same intersection as in Section 4.5.1 with a few changes. The
incoming edges 1 and 3 are considered as two lanes and there are the traffic lights with

70

ij kl βklij ij kl βklij ij kl βklij ij kl βklij ij kl βklij ij kl βklij
10 31 1.0 01 31 1.0 20 10 1.0 02 10 1.0 21 10 1.0 03 13 1.0
10 30 1.0 01 30 0.5 20 32 1.0 02 32 1.0 21 32 1.0 03 12 0.5
32 13 1.0 20 13 1.0 02 31 1.0 21 13 1.0 21 01 1.0 03 10 1.0
32 12 1.0 20 12 0.5 02 30 0.5 21 12 0.5 21 02 1.0 03 32 1.0
23 13 1.0 20 31 1.0 02 13 1.0 21 31 1.0 03 31 1.0 03 23 1.0
23 12 0.5 20 30 1.0 02 12 1.0 21 30 0.5 03 30 0.5 03 20 1.0

Table 4.4: Coefficients for X intersection

signal timing plan that contains two phases. During the first phase, all intersection
movements originating at incoming edges 1 and 3 are open. The second phase contains
the rest of the movements originating at edges 0 and 2. Each phase takes 45 seconds
(35s green and 10s yellow). These phases are independent so we can model every phase
separately and then merge them into one result. In the following text, we are interested
in the first phase only. In Figure 4.4 there are open movements during the first phase
and the used demand.

180

180

360

180

360

180

Figure 4.4: First phase with demand [veh/h]

The capacity of the movements are determined by the capacity model from Section
4.3 with the fact that the input flow to the model was multiplied by coefficient κ = 2.5.
This is justified because the time length of red lights concentrates the number of vehicles
and thus increases the flow. The result capacities are also divided by this coefficient κ.
Mathematically, c = C(κq)

κ
.

The mutual restriction intervals are set as follows: η103 = [0, 0.35], η123 = [0.65, 1.0],
η102 = η120 = [0, 0], η301 = [0.65, 1.0], η321 = [0, 0.35], and η302 = η320 = [0, 0]. This means

71

that the movements 12 and 10 do not affect each other and affect the movement 13
partially. Symmetrically, the same applies to incoming edge 3.

To determine near-real result flow, we use the microscopic traffic simulation software
Eclipse SUMO - Simulation of Urban Mobility in version 1.9.2. (Lopez et al., 2018).
We compare the result flows provide by INMC, WRI and WRIC (proposed model). In
Table 4.5, you can see the differences for each movement compared to the flow computed
by SUMO. The ∆q represent the difference and δ =

∑
ij∈M |∆qij|.

movement flow [veh/h] movement flow error [veh/h] δ
q10 q12 q13 q30 q31 q32 ∆q10 ∆q12 ∆q13 ∆q30 ∆q31 ∆q32

SUMO 99 180 329 180 302 100 - - - - - - 0
INMC 132 132 265 132 265 132 -33 48 64 48 37 -32 262
WRI 180 180 360 180 360 180 -81 0 -31 0 -58 -80 250

WRIC 103 180 306 180 306 103 -4 0 23 0 -4 -3 34

Table 4.5: Model comparisons. INMC - constrained incremental node model by Flötteröd
and Rohde (2011), WRI - model with relaxed FIFO by Wright et al. (2017), WRIC -
proposed model (Wright’s model with INSC)

The model by Wright et al. (2017) does not take into account the INSC and thus the
flow is not constrained and is equal to demand. In contrast, the INMC model follows
strict FIFO, and thus the flow is too constrained. The proposed model (WRIC) is in
the middle between INMC and WRI. WRIC also has the smallest error compared to
SUMO flows. It should be pointed that this decomposition to the phases does not fulfill
the requirements proposed by Jabari (2016) so the solution does not have to be unique.

The proposed WRIC node model shifts the macro models closer to reality. However,
the model requires more computational time, because the fixed-point problem must be
solved. It follows that this model should be used for important intersections. For less
frequented intersections the existing models are precise enough.

4.6 Summary

We introduced the first-order macroscopic node model that takes into account the
internal node supply constraints and the relaxed FIFO rule at incoming edges. This
proposed model extends model by Wright et al. (2017) by the possibility of the general
capacity. An example of the capacity model that takes into account the conflict between
intersection movements is also provided. This example capacity model is based on
TP188 (2018) and Forschungsgesellschaft für Strassen und Verkehrswesen (2001). The
comparison with flow provided by micro-simulation software SUMO shows that the
proposed WRIC model fits well to this micro-simulation result.

72

The fixed point problem was used as a mathematical formulation. We compared
three algorithms for solving this problem and these algorithms are fixed point iteration
(FP), iterative version of algorithm by Flötteröd and Rohde (2011) (FC) and the
algorithm based on Steffenson’s method (ST). Our test shows that the ST method
provides better performance than the other two algorithms.

The disadvantage of the algorithms reflecting INSC is that they must be solved
iteratively and thus performance is poor. This issue can be solved by the strategy where
the previous result flow in simulation is used as the first approximation of the solution.
However, there are still problems with the uniqueness of solution.

73

Chapter 5

Origin-destination matrix estimation
using bush-based user equilibrium
algorithms

This chapter deals with origin-destination matrix estimation using traffic counts where
the traffic assignment subproblem is solved using modern bush-based algorithms that
are very powerful. Compared to the previous chapters, the static user equilibrium
is assumed here. The proposed algorithm tries to remove the disadvantages of the
path-based algorithms for the origin-destination matrix estimation. For this purpose,
the presented algorithm uses the well-known advantages of bushes (the origin-rooted
acyclic subgraph) so that the algorithm does not need to enumerate the paths between
origins and destinations.

5.1 Introduction

The origin-destination matrix (ODM) estimation (also called calibration) is a very
important step in transportation modeling. Unfortunately, it is also a very time-
consuming step. There is a lot of methods how to estimate the matrix , e.g., using
speed data, traffic counts, and partial path data (license plates). In this chapter, we
deal with ODM estimation using traffic counts. The input is observed traffic flow on
selected links and an initial ODM. The output is the calibrated matrix.

After the year 2000, the bush-based algorithms for solving user equilibrium (UE)
came. These algorithms provide the equilibrated flow on acyclic subgraphs called bushes
so these algorithms compute the UE implicitly without path enumeration and they
seem the most powerful class of algorithms for solving UE (Perederieieva et al., 2015).

In the classic formulations of ODM estimation, the flows on paths between origin-
destination pairs are needed to compute the search direction during the matrix esti-

74

mation. It is well-known that the solution of UE in the path space is not unique and
the maximum entropy UE (MEUE) should be computed (Xie and Nie, 2019). The
best-known method for solving MEUE is also bush-based and computes the solution
without the path enumeration.

Our proposed method builds on bush-based methods and estimates the ODM also
without path-enumeration and thus saves the memory and computational time.

In Section 5.2 there are definitions of the problem and all subproblems with a
literature survey. Section 5.3 introduces the proposed method for the determination of
the assignment matrix. The numerical tests are described in Section 5.4.

5.2 Problem definition and state-of-the-art

The task is to estimate (calibrate) the origin-destination matrix using the traffic counts.
The inputs are non-calibrated (target or initial) ODM and traffic counts on selected
edges in the road network.

Let G = (V,E) be a directed graph that represents the road network, where V is a
set of nodes and E is a set of edges. The set of zones Z ⊂ V contains all nodes where the
vehicles enter/leave the road network. The g = {gij : ij ∈ W} is the origin-destination
matrix (ODM) containing the number of trips between all zones, where W is a set of
all origin-destination (OD) pairs. The gij is the number of trips between the origin
zone i ∈ Z and the destination zone j ∈ Z. The Q = {g : gij ≥ 0} is a set of all feasible
ODMs.

5.2.1 Origin-destination matrix estimation

Let v̂ = (v̂a : a ∈ V̂) be a vector of observed traffic flows where Ê ⊂ E is a set of edges
where the traffic flow was measured. According to Lundgren and Peterson (2008) the
origin-destination matrix estimation problem is defined as bi-level optimization problem
as

min
g
F (g) = γ1F1(g, ĝ) + γ2F2(v(g), v̂) (5.1)

where ĝ is the initial (target) ODM and v(g) is a function that assigns the ODM to
the road network. This function provides the static user equilibrium (see next section).
The functions F1 and F2 return the distance between vectors and can be defined in
various way.

The formulation of the objective function F based on entropy maximization was
published by Van Zuylen and Willumsen (1980); van Zuylen and Branston (1982). The
maximum likelihood approach was presented by Spiess (1987). Cascetta (1984) used the
objective functions based on generalized least squares. The Bayesian inference approach
by Maher (1983) and Dey and Fricker (1994) provides a method for combining of two

75

sources of information. Solution based on classic least squares was published by Spiess
(1990), Lundgren and Peterson (2008), and Rostami Nasab and Shafahi (2020).

For our purpose, we simply choose γ1 = 0 and

F = F2 =
1

2

∑
a∈Ê

(va − v̂a)2 (5.2)

as in Spiess (1990). There is a lot of methods how to solve this bi-level problem.
The general approach is to use the steepest decedent with a long step (Lundgren and
Peterson, 2008; Spiess, 1990). A general solution strategy consists from three steps:

• Compute search direction. The simplest method is to take the negative value of
the gradient.

• Determine the size of a step so that the objective function is minimized.

• Update the ODM using the search direction and the step size.

The most difficult task is to compute the gradient of F2, namely, the value of ∂va
∂gij

(Lundgren and Peterson, 2008). For computation of these values there is several
heuristic methods (see Lundgren and Peterson (2008)). A common feature of these
methods is that they need the assignment matrix. The assignment matrix expresses the
relationship between the edge flow va and OD flow gij.

In this chapter we present an effective way how to compute the assignment matrix
implicitly without path enumeration. For this purpose, the origin-rooted flow provided
by bush-based algorithms, are used.

5.2.2 User equilibrium

Let the cost ca of the edge a ∈ E is dependent on the traffic flow va

ca = ca(va) (5.3)

It is assumed that the cost function ca(va) is monotonically increasing and convex. The
user’s route choice is dependent on travel costs. It follows that equilibrium must be
found. The user equilibrium is the state where every used path from the source zone
i to the destination zone j has an equal (minimal) cost. The problem of searching
user equilibrium is called Traffic Assignment Problem (TAP) and can be defined as
Variational Inequality problem (VI) (Dafermos, 1980; Smith, 1979). The optimal
solution v∗p must satisfy ∑

p∈P

cp(v
∗
p)(vp − v∗p) ≥ 0, ∀u ∈ Λ (5.4)

76

where vp is the flow on the path p, P is the set of all used paths in the road network, cp
is the cost of path p, u = (vp : p ∈ P) is a vector of all path flows, and Λ is the set of
all feasible solutions in the space of paths

Λ =

u > 0 :
∑
p∈Pij

vp = gij ∀ij ∈ W

 (5.5)

where Pij ⊂ P is a set of used paths for OD pair ij ∈ W . The relationship between the
solution in the path space and the edge space is

va =
∑
p∈P

δapvp (5.6)

where δap ∈ {0, 1} is equal to one if the edge a lies on the path p otherwise the δap is
zero. It should be noted that there is only one solution in edge space. In contrast with
this the solution in path space is not unique (Xie and Nie, 2019).

According to Perederieieva et al. (2015), there are three basic groups of algorithms
for solving TAP:

• Link-based algorithms compute the solution in the edge space. They have low
memory requirements but very poor convergence rate. A classic representative of
this group is Frank-Wolfe algorithm (FW). e.g., (LeBlanc et al., 1985).

• Path-based algorithms search the solution in the path space. They are much faster
than the link-based algorithms but generally need a lot of memory for the path
enumeration. e.g, (Xie et al., 2018; Babazadeh et al., 2020).

• Bush-based algorithms decompose the problem to acyclic sub-graphs called bushes.
These algorithms are fast and do not need to enumerate the paths. e.g., (Bar-Gera,
2002; Dial, 2006; Gentile, 2014; Bar-Gera, 2010).

As was shown by Perederieieva et al. (2015), the bushed-based algorithms generally
provide good performance.

5.2.3 Maximum Entropy User Equilibrium

As mentioned above, the assignment matrix and the flow on paths are necessary for
ODM estimation, but the solution in path space is not unique. We must choose
the solution with the most likely realization that is generally understood in terms
of maximum entropy. According to Xie and Nie (2019), the maximum entropy user
equilibrium (MEUE) is defined as

max
vp

= −
∑
ij∈W

∑
p∈Pij

vp log

(
vp
gij

)
(5.7)

77

subject to ∑
p∈Pij

vp = gij, ∀ij ∈ W (5.8)

∑
p∈P

δapvp = va, ∀a ∈ E (5.9)

vp ≥ 0, ∀p ∈ P (5.10)

In literature, two methods can solve the MEUE problem for real size networks. The first
method by Xie and Xie (2016) uses the paired alternative segments that are provided
by TAPAS algorithm (Bar-Gera, 2010). The second method by Xie and Nie (2019) uses
the flow on bushes and maximizes entropy on them so the method does not enumerate
the paths. As was shown in Xie and Nie (2019), the second method provides better
results.

5.3 Proposed solution

In this section, the implicit method for computing the assignment matrix is introduced.
For this purpose, the flow on bushes is used. This bush-based flow has to fulfill the user
equilibrium and maximizes the entropy. In this chapter, the B-algorithm by Dial (2006)
is used for providing the equilibrated bash-based flow. For entropy maximization, the
algorithm by Xie and Nie (2019) was implemented.

For purpose of this chapter, we build on the estimation approaches according to
Spiess (1990) because it is simple and effective for large networks (Lundgren and
Peterson, 2008). However, the idea of assignment matrix computation can be applied
to various estimation methods.

According to Spiess (1990) the gradient is computed as

∂F (g)

∂gij
=
∑
k∈Pij

pk
∑
a∈Ê

δak(va − v̂a) (5.11)

=
∑
a∈Ê

(va − v̂a)
∑
k∈Pij

pkδak (5.12)

where pk = vk
gij

is probability that user chooses the path k on the trip between origin i

and destination j. The δap ∈ {0, 1} is one if the edge a lies on path p else is zero. Let
us set

paij =
∑
k∈Pij

pkδak (5.13)

where paij is the probability that the user crosses the edge a on the trip between origin
i and destination j. The P = {paij : ij ∈ W, a ∈ E} is the assignment matrix. By

78

substitution (5.13) to (5.11) we obtain the negative value of search direction

dij =
∑
a∈Ê

(va − v̂a)paij (5.14)

According to Spiess (1990) the ODM update is performed as

gij = gij(1− λdij) (5.15)

where λ is the length of the step. Using the assignment matrix P, the optimal step
length can be rewritten as

λ =

∑
a∈Ê v

′
a(v̂a − va)∑

a∈Ê(v′a)
2

(5.16)

where

v′a =
∂va
∂λ

= −
∑
ij∈W

gijdijp
a
ij (5.17)

5.3.1 The implicit computation of assignment matrix

Let via be the flow on the edge a ∈ E that starts in the origin i ∈ Z. The edges where
via > 0 creates the acyclic sub-graph called a bush. For more precise definition see Nie
(2010). The source node of the edge a is noted as s(a) and the target node t(a).

According to Xie and Nie (2019), the path flow can be computed as

vk = gij
∏
a∈k

φia (5.18)

where

φia =
via∑

e∈I(t(a)) v
i
e

(5.19)

where I(n) is a set of incoming edges to the node n ∈ V . The φia represents the
proportion of all bush flow inflowing to the target node t(a) of the edge a. The s(a) is
the source node of the edge a. Combining (5.13) and (5.19) we have

paij =
∑
k∈Pij

δak
∏
e∈k

φie (5.20)

The implicit computation of the assignment matrix paij is based on Breadth First
Search (BFS). Let κn be a node label representing the probability that a driver crosses
the node n on the trip between zones i and j. It follows that

paij = κt(a)φ
i
a (5.21)

79

Algorithm 7: Implicit computation of the assignment matrix. The input is
the OD pair ij ∈ W and the feasible flow via on bush originated at i.

1 on = 0 ∀n ∈ V
2 U is the FIFO queue of nodes
3 U.add(j)
4 while |U | > 0 do // compute the number of outgoing edges on
5 n = U.remove()
6 foreach e ∈ I(n) do
7 if vie > 0 then
8 if os(e) = 0 then
9 U.add(s(e))

10 os(e) = os(e) + 1

11 κn = 0 ∀n ∈ V
12 κj = 1.0 // probability at destination node

13 U.add(j)
14 while |U | > 0 do // determine the peij for every link in the bush

15 n = U.remove()
16 compute φie ∀e ∈ I(n)
17 foreach e ∈ I(n) do
18 if φie > 0 then
19 peij = κnφ

i
e

20 κs(e) = κs(e) + peij
21 os(e) = os(e) − 1
22 if os(e) = 0 then
23 U.add(s(e))

80

and
κn =

∑
a∈O(n)

paij (5.22)

where O(n) is a set of outgoing edges from node n. Using the equations (5.21) and
(5.22) paij can be determined sequentially for all used edges a corresponding with the
OD pair ij.

In Algorithm 7 there is a pseudo-code that computes the assignment matrix for one
OD pair. The input of the algorithm is the origin node i ∈ Z, destination node j ∈ Z
and the feasible flow via on the bush originated at i. For whole assignment matrix, the
Algorithm 7 must be run for every OD pair.

First, it is necessary to determine how many outgoing edges from the node n lead
to the destination j. The edges with paij = 0 do not lead to the destination j. For this
purpose, the BFS on the reverse graph is used. The searching starts at the destination
node j. In Algorithm 7, the searching is represented by lines 4-10.

The second part of the algorithm sequentially determines paij values. The BFS started
at the destination node j is also used for this purpose. The origin and destination node
must cross all vehicles so κi = κj = 1.0. In every edge relaxation paij is determined
and the node label κs(a) is updated. The node s(a) is added to the queue only if κs(a)
was updated by all outgoing edges leading to the destination. In Algorithm 7, this
procedure is represented by lines 14-23.

0.4

1.0

0.6

0.5

0.5
1.0

1.0

0.4

0.6

0.4
1.0

1.0

0.6
i j

0.4

1.0

0.6

0.2

0.2
0.4

0.616

0.144

0.216

0.24
0.24

0.384

0.36
i j

paij

φia

Figure 5.1: Example bush with φia and paij values

81

In Figure 5.1 you can see an example bush with φia that are computed from the bush
flow and the result probability values paij. The dashed lines represent the edges leading
to other destinations. These edges are eliminated by the first part of the algorithm.

5.4 Numerical tests

The proposed method and the original method by Spiess (1990) for ODM estimation
were implemented in the Java programming language. The B-algorithm (Dial, 2006) for
solving UE and the algorithm by Xie and Nie (2019) for determining the MEUE were
also implemented in Java. All tests were performed on a laptop with four core processor
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz and with 16 GB RAM. For testing, the
real model of Pilsen (the city in the Czech Republic) was used. The model has 9036
edges, 3727 nodes, 316 zones, and 65411 OD pairs. The relative gap for B-algorithm
was set to 10−10. For a simulation of the high-congested (HC) situation, the original
ODM was multiplied by 2.0.

number of paths update runtime [ms] savings [%]
model initial target explicit implicit
Pilsen 66 109 69 179 19 467 9 691 50
Pilsen HC 71 083 124 346 26 241 10 041 62

Table 5.1: Testing results

In Table 5.1 there are results of the tests. The update runtime column represents the
time that the algorithm spends in the ODM update procedure. The initial number of
paths is counted before entropy maximization and the target is measured after entropy
maximization. In the case of the original model, there are only 1.06 paths for one OD
pair in average. Despite that, the time-savings in the update procedure compared to
the original method by Spiess (1990) are 50%. In high-congested case, there are 1.9
paths for one OD pair in average and the time-savings increase to 62%. It follows that
the proposed method is suitable in cases, where there is a lot of route choices.

The most time-consuming part of the ODM estimation is the computation of MEUE
so the total time savings are only 6% in the HC case. In most state-of-the-art approaches,
the entropy maximization is not taken into account. In this case, the time-savings are
17% for the HC model.

5.4.1 Summary

The tests show that the proposed method saves more than 50% of the time that is
needed for ODM updates. In the total computation time, the savings are in the order
of percent. The most time-consuming part is the computation of MEUE. It would be

82

interesting to determine how the precision of the MEUE solution influences the quality
of ODM estimation and possibly decreases the accuracy of MEUE computation.

83

Chapter 6

Future research directions

The algorithms presented in this thesis improve the computational efficiency but the
dynamic traffic assignment models are still too slow for use with huge road networks.
Calibration of these models can take months. From this work, several directions for
future research emerged.

It would be nice to use the idea of the piecewise linear/constant-based solution for
simultaneous route-and-departure-time dynamic user equilibrium (SRDT-DUE). This
could be done in two different ways. First, the equilibrium can be computed using one
optimization as is published by Friesz et al. (1993). The second approach is to use the
bi-level optimization where the RC-DUE is computed first and after that, the departure
times are adjusted.

As you can see in this thesis, dynamic network loading is very time-consuming. The
loading method by Raadsen and Bliemer (2019) that is used in this thesis was published
recently and therefore there are no optimization techniques developed yet. One of the
optimization techniques for repeated computations is marginal sequential updating
by Corthout et al. (2014). It would be nice to modify this technique for event-based
GLTM. Also, the ε-LCA-BS algorithm can be optimized for repeated computations,
e.g., using the ideas by Himpe (2016).

The effectiveness of the algorithms that determine the dynamic equilibrium is much
worse compared to the algorithms for static user equilibrium. In this area, some ideas
from the static one can be applied, e.g, to try to use the bushes or the technique of
paired alternative segments. These ideas were also published by Himpe (2016).

The route choice model based on user equilibrium by Wardrop assumes that every
user behaves rationally and chooses the fastest (generally cheapest) path. In reality,
this assumption is not fulfilled especially in cases when there are some changes in the
route network. Some drivers behave irrationally or just do not know which route is the
fastest. This is the big question for the future research.

84

Bibliography

Aitken, A. C. (1927). Xxv.—on bernoulli’s numerical solution of algebraic equations.
Proceedings of the Royal Society of Edinburgh, 46:289–305.

Babazadeh, A., Javani, B., Gentile, G., and Florian, M. (2020). Reduced gra-
dient algorithm for user equilibrium traffic assignment problem. Transportmet-
rica A: Transport Science, 16(3):1111–1135. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/23249935.2020.1722279.

Bar-Gera, H. (2002). Origin-Based Algorithm for the Traffic Assignment Problem.
Transportation Science, 36(4):398–417.

Bar-Gera, H. (2010). Traffic assignment by paired alternative segments. Transportation
Research Part B: Methodological, 44(8-9):1022–1046.

Batz, G. V., Geisberger, R., Sanders, P., and Vetter, C. (2013). Minimum time-dependent
travel times with contraction hierarchies. Journal of Experimental Algorithmics,
18:1.1–1.43.

Bliemer, M. C. J. and Raadsen, M. P. H. (2019). Continuous-time general link trans-
mission model with simplified fanning, Part I: Theory and link model formulation.
Transportation Research Part B: Methodological, 126:442–470.

Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data: a
generalized least squares estimator. Transportation Research Part B: Methodological,
18(4-5):289–299.

Corthout, R., Flötteröd, G., Viti, F., and Tampère, C. M. J. (2012). Non-unique
flows in macroscopic first-order intersection models. Transportation Research Part B:
Methodological, 46(3):343–359.

Corthout, R., Himpe, W., Viti, F., Frederix, R., and Tampère, C. M. (2014). Improving
the efficiency of repeated dynamic network loading through marginal simulation.
Transportation Research Part C: Emerging Technologies, 41:90–109.

85

Dafermos, S. (1980). Traffic Equilibrium and Variational Inequalities. Transportation
Science, 14(1):42–54.

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation Research
Part B: Methodological, 28(4):269–287.

Daganzo, C. F. (1995). The cell transmission model, part II: Network traffic. Trans-
portation Research Part B: Methodological, 29(2):79–93.

Dean, B. C. (1999). Continuous-Time Dynamic Shortest Path Algorithms. PhD thesis,
Massachusetts Institute of Technology.

Dean, B. C. (2004). Shortest paths in FIFO time-dependent networks: Theory and
algorithms. Rapport technique, Massachusetts Institute of Technology.

Dehne, F., Omran, M. T., and Sack, J.-R. (2009). Shortest paths in time-dependent
FIFO networks using edge load forecasts. In Proceedings of the Second International
Workshop on Computational Transportation Science, pages 1–6. ACM.

Dehne, F., Omran, M. T., and Sack, J.-R. (2012). Shortest Paths in Time-Dependent
FIFO Networks. Algorithmica, 62(1-2):416–435.

Dey, S. S. and Fricker, J. D. (1994). Bayesian updating of trip generation data: combining
national trip generation rates with local data. Transportation, 21(4):393–403.

Dial, R. B. (2006). A path-based user-equilibrium traffic assignment algorithm that ob-
viates path storage and enumeration. Transportation Research Part B: Methodological,
40(10):917–936.

Ding, B., Yu, J. X., and Qin, L. (2008). Finding time-dependent shortest paths over
large graphs. page 205. ACM Press.

Facchinei, F. and Pang, J.-S., editors (2004). Finite-Dimensional Variational Inequalities
and Complementarity Problems. Springer Series in Operations Research and Financial
Engineering. Springer New York, New York, NY.

Flötteröd, G. and Rohde, J. (2011). Operational macroscopic modeling of complex urban
road intersections. Transportation Research Part B: Methodological, 45(6):903–922.

Forschungsgesellschaft für Strassen und Verkehrswesen, K. (2001). Handbuch für die
Bemessung von Strassenverkehrsanlagen. Standard, FSGV Verlag GmbH.

Foschini, L., Hershberger, J., and Suri, S. (2014). On the Complexity of Time-Dependent
Shortest Paths. Algorithmica, 68(4):1075–1097.

86

Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., and Wie, B.-W. (1993). A
variational inequality formulation of the dynamic network user equilibrium problem.
Operations Research, 41(1):179–191.

Friesz, T. L., Kim, T., Kwon, C., and Rigdon, M. A. (2011). Approximate network
loading and dual-time-scale dynamic user equilibrium. Transportation Research Part
B: Methodological, 45(1):176–207.

Geisberger, R. (2010). Engineering Time-dependent One-To-All Computation.
arXiv:1010.0809 [cs]. arXiv: 1010.0809.

Geisberger, R. and Sanders, P. (2010). Engineering time-dependent many-to-many
shortest paths computation. In OASIcs-OpenAccess Series in Informatics, volume 14.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Gentile, G. (2014). Local User Cost Equilibrium: a bush-based algorithm for traffic
assignment. Transportmetrica A: Transport Science, 10(1):15–54.

Gentile, G. (2015). Using the General Link Transmission Model in a Dynamic Traffic
Assignment to Simulate Congestion on Urban Networks. Transportation Research
Procedia, 5:66–81.

Gentile, G. (2016). Solving a Dynamic User Equilibrium model based on splitting rates
with Gradient Projection algorithms. Transportation Research Part B: Methodological,
92:120–147.

Gibb, J. (2011). Model of Traffic Flow Capacity Constraint through Nodes for Dynamic
Network Loading with Queue Spillback. Transportation Research Record: Journal of
the Transportation Research Board, 2263(1):113–122.

Han, D. and Lo, H. K. (2004). Solving non-additive traffic assignment problems:
A descent method for co-coercive variational inequalities. European Journal of
Operational Research, 159(3):529–544.

Han, K., Eve, G., and Friesz, T. (2018). Computing Dynamic User Equilibria on
Large-Scale Networks: From Theory to Software Implementation. arXiv:1810.00777
[math]. arXiv: 1810.00777.

Han, K., Friesz, T. L., Szeto, W. Y., and Liu, H. (2015). Elastic demand dynamic
network user equilibrium: Formulation, existence and computation. Transportation
Research Part B: Methodological, 81:183–209.

Han, K., Piccoli, B., and Friesz, T. L. (2016). Continuity of the path delay opera-
tor for dynamic network loading with spillback. Transportation Research Part B:
Methodological, 92:211–233.

87

Himpe, W. (2016). Integrated algorithms for repeated dynamic traffic assignments. PhD
thesis, KU Leuven, Leuven.

Himpe, W., Corthout, R., and Tampère, M. C. (2016). An efficient iterative link
transmission model. Transportation Research Part B: Methodological, 92:170–190.

Hoogendoorn, S. P. and Bovy, P. H. L. (2001). State-of-the-art of vehicular traffic flow
modelling. 215:21.

Huang, H.-J. and Lam, W. H. (2002). Modeling and solving the dynamic user equilibrium
route and departure time choice problem in network with queues. Transportation
Research Part B: Methodological, 36(3):253–273.

Imai, H. and Iri, M. (1986). An optimal algorithm for approximating a piecewise linear
function. Journal of Information Processing, 9(3):159–162.

Jabari, S. E. (2016). Node modeling for congested urban road networks. Transportation
Research Part B: Methodological, 91:229–249.

Jang, W., Ran, B., and Choi, K. (2005). A discrete time dynamic flow model and a
formulation and solution method for dynamic route choice. Transportation Research
Part B: Methodological, 39(7):593–620.

Kolovský, F. and Kolingerová, I. (2021). Origin-destination matrix estimation using
bush-based user equilibrium algorithms. In Gervasi, O., Murgante, B., Misra, S.,
Garau, C., Blečić, I., Taniar, D., Apduhan, B. O., Rocha, A. M. A. C., Tarantino,
E., and Torre, C. M., editors, Computational Science and Its Applications – ICCSA
2021, pages 285–294, Cham. Springer International Publishing.

Kolovský, F., Ježek, J., and Kolingerová, I. (2019a). The e-approximation of the
Label Correcting Modification of the Dijkstra’s Algorithm. In Proceedings of the 5th
International Conference on Geographical Information Systems Theory, Applications
and Management - Volume 1: GISTAM,, pages 26–32. SciTePress.

Kolovský, F., Ježek, J., and Kolingerová, I. (2019b). The ε-Approximation of the
Time-Dependent Shortest Path Problem Solution for All Departure Times. IS-
PRS International Journal of Geo-Information, 8(12):538. Number: 12 Publisher:
Multidisciplinary Digital Publishing Institute.

Kolovský, F., Kolingerová, I., and Ježek, J. (2019c). Algorithms in transportation: The
State of the Art and Concept of PhD Thesis.

Konno, H. and Kuno, T. (1988). Best piecewise constant approximation of a function
of single variable. Operations Research Letters, 7(4):205–210.

88

Lebacque, J.-P. (2005). First-order macroscopic traffic flow models: Intersection
modeling, network modeling. In Transportation and Traffic Theory. Flow, Dynamics
and Human Interaction. 16th International Symposium on Transportation and Traffic
TheoryUniversity of Maryland, College Park.

LeBlanc, L. J., Helgason, R. V., and Boyce, D. E. (1985). Improved Efficiency of
the Frank-Wolfe Algorithm for Convex Network Programs. Transportation Science,
19(4):445–462.

Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves II. A theory of traffic
flow on long crowded roads. Proceedings of the Royal Society of London. Series A.
Mathematical and Physical Sciences, 229(1178):317–345.

Lo, H. K. and Szeto, W. Y. (2002). A cell-based variational inequality formulation
of the dynamic user optimal assignment problem. Transportation Research Part B:
Methodological, 36(5):421–443.

Long, J., Huang, H.-J., Gao, Z., and Szeto, W. Y. (2013). An Intersection-Movement-
Based Dynamic User Optimal Route Choice Problem. Operations Research, 61(5):1134–
1147.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y.-P., Hilbrich,
R., Lücken, L., Rummel, J., Wagner, P., and Wießner, E. (2018). Microscopic traffic
simulation using sumo. In The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE.

Lundgren, J. T. and Peterson, A. (2008). A heuristic for the bilevel origin–destination-
matrix estimation problem. Transportation Research Part B: Methodological,
42(4):339–354.

Maher, M. (1983). Inferences on trip matrices from observations on link volumes:
a bayesian statistical approach. Transportation Research Part B: Methodological,
17(6):435–447.

Nezamuddin, N. and Boyles, S. D. (2015). A Continuous DUE Algorithm Using the
Link Transmission Model. Networks and Spatial Economics, 15(3):465–483.

Nie, Y. M. (2010). A class of bush-based algorithms for the traffic assignment problem.
Transportation Research Part B: Methodological, 44(1):73–89.

Omran, M. and Sack, J.-R. (2014). Improved approximation for time-dependent shortest
paths. In International Computing and Combinatorics Conference, pages 453–464.
Springer.

89

Orda, A. and Rom, R. (1990). Shortest-path and minimum-delay algorithms in networks
with time-dependent edge-length. Journal of the ACM (JACM), 37(3):607–625.

Perederieieva, O., Ehrgott, M., Raith, A., and Wang, J. Y. (2015). A framework for
and empirical study of algorithms for traffic assignment. Computers & Operations
Research, 54:90–107.

Raadsen, M. P. H. and Bliemer, M. C. J. (2019). Continuous-time general link trans-
mission model with simplified fanning, Part II: Event-based algorithm for networks.
Transportation Research Part B: Methodological, 126:471–501.

Raadsen, M. P. H., Bliemer, M. C. J., and Bell, M. G. H. (2016). An efficient and
exact event-based algorithm for solving simplified first order dynamic network loading
problems in continuous time. Transportation Research Part B: Methodological, 92:191–
210.

Ran, B., Hall, R. W., and Boyce, D. E. (1996). A link-based variational inequality
model for dynamic departure time/route choice. Transportation Research Part B:
Methodological, 30(1):31–46.

Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4(1):42–51.

Rostami Nasab, M. and Shafahi, Y. (2020). Estimation of origin–destination matrices
using link counts and partial path data. Transportation, 47(6):2923–2950.

Smith, M. (1979). The existence, uniqueness and stability of traffic equilibria. Trans-
portation Research Part B: Methodological, 13(4):295–304.

Smits, E.-S., Bliemer, M. C. J., Pel, A. J., and van Arem, B. (2015). A family of
macroscopic node models. Transportation Research Part B: Methodological, 74:20–39.

Song, W., Han, K., Wang, Y., Friesz, T., and del Castillo, E. (2017). Statistical
metamodeling of dynamic network loading. Transportation Research Procedia, 23:263–
282.

Spiess, H. (1987). A maximum likelihood model for estimating origin-destination
matrices. Transportation Research Part B: Methodological, 21(5):395–412.

Spiess, H. (1990). A gradient approach for the OD matrix adjustment problem. 1:2.

Steffensen, J. (1933). Remarks on iteration. Scandinavian Actuarial Journal, 1933(1):64–
72.

Strasser, B. (2017). Dynamic Time-Dependent Routing in Road Networks Through
Sampling. In OASIcs-OpenAccess Series in Informatics, volume 59. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

90

Szeto, W. and Lo, H. K. (2004). A cell-based simultaneous route and departure time
choice model with elastic demand. Transportation Research Part B: Methodological,
38(7):593–612.

Szeto, W. Y. and Lo, H. K. (2006). Dynamic traffic assignment: properties and
extensions. Transportmetrica, 2(1):31–52.

Tampère, C. M., Corthout, R., Cattrysse, D., and Immers, L. H. (2011). A generic
class of first order node models for dynamic macroscopic simulation of traffic flows.
Transportation Research Part B: Methodological, 45(1):289–309.

Tian, L.-J., Huang, H.-J., and Gao, Z.-Y. (2012). A Cumulative Perceived Value-Based
Dynamic User Equilibrium Model Considering the Travelers’ Risk Evaluation on
Arrival Time. Networks and Spatial Economics, 12(4):589–608.

TP188 (2018). Posouzeńı kapacity všech druh̊u křižovatek a úsek̊u pozemńıch komunikaćı.
Standard, Ministry of Transport of Czech Republic.

Transportation Networks for Research Core Team (2021). Transportation networks for
research. https://github.com/bstabler/TransportationNetworks.

Ukkusuri, S. V., Han, L., and Doan, K. (2012). Dynamic user equilibrium with a path
based cell transmission model for general traffic networks. Transportation Research
Part B: Methodological, 46(10):1657–1684.

van der Gun, J. P. T., Pel, A. J., and van Arem, B. (2017). Extending the Link
Transmission Model with non-triangular fundamental diagrams and capacity drops.
Transportation Research Part B: Methodological, 98:154–178.

van Zuylen, H. J. and Branston, D. M. (1982). Consistent link flow estimation from
counts. Transportation Research Part B: Methodological, 16(6):473–476.

Van Zuylen, H. J. and Willumsen, L. G. (1980). The most likely trip matrix estimated
from traffic counts. Transportation Research Part B: Methodological, 14(3):281–293.

Wardrop, J. G. (1952). Road paper. Some theoretical aspects of road traffic research.
Proceedings of the Institution of Civil Engineers, 1(3):325–362.

Wright, M. A., Gomes, G., Horowitz, R., and Kurzhanskiy, A. A. (2017). On node models
for high-dimensional road networks. Transportation Research Part B: Methodological,
105:212–234.

Wu, X. and Liu, H. X. (2011). A shockwave profile model for traffic flow on congested
urban arterials. Transportation Research Part B: Methodological, 45(10):1768–1786.

91

https://github.com/bstabler/TransportationNetworks

Xie, J. and Nie, Y. M. (2019). A New Algorithm for Achieving Proportionality in User
Equilibrium Traffic Assignment. Transportation Science, 53(2):566–584.

Xie, J., Nie, Y. M., and Liu, X. (2018). A Greedy Path-Based Algorithm for Traffic
Assignment. Transportation Research Record, 2672(48):36–44. Publisher: SAGE
Publications Inc.

Xie, J. and Xie, C. (2016). New insights and improvements of using paired alternative
segments for traffic assignment. Transportation Research Part B: Methodological,
93:406–424.

Yahyamozdarani, R., Himpe, W., and Tampère, C. M. (2019). A continuum approach
for modeling signalized nodes in dynamic traffic assignment. In 8th Symposium
of the European Association for Research in Transportation (hEART 2019), Date:
2019/09/04-2019/09/06, Location: Budapest.

Yperman, I. (2007). The Link Transmission Model for Dynamic Network Loading.
Katholieke Universiteit Leuven, Belgium.

92

Appendix A

Professional Activities

A.1 Publications

A.1.1 Journals

Kolovský, F., Ježek, J., Kolingerová, I. (2019). The ε-Approximation of the Time-
Dependent Shortest Path Problem Solution for All Departure Times. ISPRS Interna-
tional Journal of Geo-Information, MDPI 8(12), 538.

Potužák, T., Kolovský, F. (2021). Parallelization of the B Static Traffic Assign-
ment Algorithm. Ain Shams Engineering Journal.

A.1.2 International Conferences

Kolovský, F., Kolingerová, I. (2021). Origin-Destination Matrix Estimation Using
Bush-Based User Equilibrium Algorithms. In International Conference on Computa-
tional Science and Its Applications (pp. 285-294). Springer, Cham.

Jedlička K., Beran, D., Martolos J., Kolovský F., Kepka M., Mildorf T., Sháněl,
J. (2020). Traffic modelling for the smart city of Pilsen. In 8ICCGIS PROCEEDINGS
VOL.1 (pp. 510-520). Chr. Smirnenski Blvd. Sofia, Bulgaria, 2020: Bulgarian Carto-
graphic Association, 2020.

Kolovský, F., Ježek, J., Kolingerová, I. (2019). The ε-approximation of the Label
Correcting Modification of the Dijkstra’s Algorithm. In 5th International Conference on
Geographical Information Systems Theory, Applications and Management (GISTAM)
(pp. 26-32). Heraklion, Crete - Greece

Kolovský, F., Ježek, J., Kolingerová, I. (2018). The Origin-Destination matrix estima-

93

tion for large transportation models in an uncongested network. In 2018 International
Conference on Mathematical Applications (pp. 17 - 22). Madeira - Portugal.

A.1.3 Under review

Kolovský, F., Kolingerová, I. The piecewise constant/linear solution for dynamic user
equilibrium.

Kolovský, F., Kolingerová, I., Martolos, J., Potužák, T. Capacity based first order node
model for dynamic traffic loading.

A.2 Participation in Scientific Projects

• Grant agreement ID 296282: Plan4business - A service platform for aggregation,
processing and analysis of urban and regional planning data, H2020, 2013-2014.

• Grant agreement ID 620533: OpenTransportNet - Spatially Referenced Data
Hubs for Innovation in the Transport Sector, H2020, 2014-2017.

• Grant agreement ID 769608: PoliVisu - Policy Development based on Advanced
Geospatial Data Analytics and Visualisation, H2020, 2017-2020.

• Grant agreement ID 870697: DUET - Digital Urban European Twins for smarter
decision making, H2020, 2019-now.

• Grant agreement ID 883522: S4AllCities - Smart Spaces Safety and Security for
All Cities, H2020, 2020-now.

• CK01000096: TRAFFO - Innovative Approaches to Mathematical Traffic Mod-
elling for Sustainable Development of Cities and Regions, The Technology Agency
of the Czech Republic, 2019-now.

• SGS-2016-004: Application of Mathematics and Informatics in Geomatics III
University of West Bohemia (UWB).

• SGS-2019-015: Application of Mathematics and Informatics in Geomatics IV
University of West Bohemia (UWB).

94

http://www.plan4business.eu
https://cordis.europa.eu/project/id/620533
https://www.polivisu.eu/
https://www.digitalurbantwins.com/
https://www.s4allcities.eu/

A.2.1 Project publications

Jedlička K., Hájek P., Ježek J., Kolovský F., Beran D., Mildorf T., Charvát K.,
Kozhukh D., Martolos J., Šťastný J., (2017). Otevřená dopravńı mapa pro Evropu.
Symposium GIS Ostrava 2017 Geoinformatika v pohybu Sborńık.

Jedlička K., Hájek P., Ježek J., Kolovský F., Mildorf T., Charvát K., Kozhukh
D., Martolos J., Šťastný J., Beran D., (2016). Open Transport Map: open, harmonized
dataset or road network. AutoCarto 2016 Proceedings (pp. 72-84).

Jedlička, K., Hájek, P., Cada, V., Martolos, J., Šťastný, J., Beran, D., Kolovský
F., Kozhukh, D. (2016). Open transport map—Routable OpenStreetMap. In 2016
IST-Africa Week Conference (pp. 1-11). IEEE.

Jedlička, K., Ježek J., Kepka M., Hájek P., Mildorf T., Kolovský F., Beran D.
(2015). Dynamic Visualization of Volume of Traffic. Papers ICC (pp. 1-13).

A.3 Talks

Origin-destination matrix estimation using bush-based algorithms. The 21st Inter-
national Conference on Computational Science and its Applications (ICCSA 2021).
Cagliari, Italy. 16.9.2021

Traffic modeling, monitoring and visualization. Norwegian University of Science and
Technology (NTNU). Trondheim, Norway. 12.6.2019

The ε-approximation of label correcting modification of Dijkstra’s algorithm. Joint
conference of ISAF & Geomatics in Projects & Plan4All in Pilsen. Plzeň. 4.10.2018

Rozd́ıly modelováńı dopravy v urbanizovaných oblastech a mimo ně. Joint conference
of ISAF & Geomatics in Projects & Plan4All in Pilsen. Státńı zámek Kozel, Šťáhlavy.
5.10.2017

Restricted Areas Obeying Path Search Algorithm without Preprocessing. 23rd ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems
(ACM SIGSPATIAL 2015). Seattle, Washington, USA. 3.11.2015

95

	Introduction
	Problem definition
	Summary of contributions
	Thesis structure
	Application

	Time-dependent shortest path problem
	Definitions and preliminaries
	Problem definition
	Related work with exact problem

	Approximation of the problem
	Related work with approximation
	The proposed approximation
	e-LCA algorithm
	e-LCA-BS algorithm
	Heuristic improvements

	Experiments
	The -LCA-BS testing
	Splitting tests
	Summary

	The piecewise constant/linear solution for dynamic user equilibrium
	Introduction
	State of The Art
	Dynamic Network Loading
	The formulations and solutions of dynamic user equilibrium

	Main concept of the proposed solution
	Definitions
	Solution scheme

	Dynamic network loading
	Extension
	Approximation

	The continuous-time all-to-one shortest path problem
	The node distribution update
	Approximation parameters

	Numerical tests
	The Twins
	Weighted flow threshold
	The Braess network
	Comparison of PWL/PWC approach with discrete solution

	Summary

	Capacity based first-order node model for dynamic traffic loading
	Introduction and State-of-the-art
	Problem Definition and Formulation
	Notation and Requirements
	Proposed Model
	Models for DUE Formulations

	Capacity Model
	Unsignalized
	Signalized

	Solution Algorithms
	Examples and Tests
	Performance of the Algorithms
	Capacity-Constrained Intersection with Relaxed FIFO

	Summary

	Origin-destination matrix estimation using bush-based user equilibrium algorithms
	Introduction
	Problem definition and state-of-the-art
	Origin-destination matrix estimation
	User equilibrium
	Maximum Entropy User Equilibrium

	Proposed solution
	The implicit computation of assignment matrix

	Numerical tests
	Summary

	Future research directions
	Professional Activities
	Publications
	Journals
	International Conferences
	Under review

	Participation in Scientific Projects
	Project publications

	Talks

