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ABSTRACT
Computed tomography is an effective tool that can be used for the fast diagnosis of COVID-19.
However, in high case-load scenarios, there are chances of delay and human error in interpret-
ing the scan images manually by an expert. An artificial intelligence (AI) based automated tool
can be employed for fast and efficient diagnosis of this disease. For image-based diagnosis,
convolutional neural networks (CNN) which is a subcategory of AI has been widely explored.
However, these CNN models require significant computational resources for processing. Hence
in thiswork, theperformanceof two lightweight least exploredCNNmodels, namely SqueezeNet
and ShuffleNet have been evaluated with CT scan images. While SqueezeNet produced an accu-
racy of 86.4%, ShuffleNet was able to provide an accuracy of 95.8%. Later, in order to improve
the accuracy, a novel fused-model combining these two models has been developed and its
performance has been evaluated. The fused-model outperformed the two base models with an
overall accuracy of 97%. The analysis of the confusionmatrix revealed an improved specificity of
96.08% and precision of 96.15%with a better fallout and false discovery rate of 3.91% and 3.84%,
respectively.
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1. Introduction

The COVID-19 disease which broke out in Wuhan,
China, towards the end of 2019 has spread through-
out the world to infect more than 240,061,454 indi-
viduals and claimed 4,887,600 lives by mid-October
2021 [1]. Its outbreak has caused a major strain on the
already compromised healthcare systems of most of the
countries, where the healthcare personnel, especially
the nurses are subjected to unbalanced workloads or
undue stress [2]. The reverse transcription-polymerase
chain reaction (RT-PCR) test is considered to be the
gold standard for the diagnosis of COVID-19. Despite
that, it has limitations such as the need for qualified
technicians, time-consuming manual process, lack of
availability of test kits and higher test expenses. It also
suffers from a low detection rate and low sensitivity and
hence multiple tests are required for diagnosis [3–5].
Significant information for the diagnosis of COVID-19
can be obtained by investigating the radiological images
like X-rays and chest computed tomography (CT) scans
of the infected individuals [3]. Amajor advantage of CT
scan over chest X-ray is that it enables detailed visu-
alization of the organ in three dimensions and allows
examination of all types of tissues which can aid in bet-
ter diagnosis of the disease [6]. CT is also a sensitive
method for diagnosis of COVID-19 and it has been
widely used in conjunction with RT-PCR for improved

diagnosis of this disease [3]. Qualified radiologists and
physicians can apprehend these scan images and screen
out COVID-19 infected ones from the images pertain-
ing to other health conditions. Still, there are chances
for human error in interpretation mainly due to the
disparity in pathology [7–9]. It is at this juncture that,
artificial intelligence (AI) based interpretation of radi-
ological images finds a significant place in medical
diagnosis.

In the past, traditional machine learning algorithms
were explored by the researchers for the diagnosis
of various medical conditions [10–17]. This approach
requires carefully selected features for building an effec-
tive predictionmodel. Some of the research works, per-
taining to the use of machine learning techniques for
medical diagnosis, are furnished in Table 1. However, in
recent years, specifically for radiological image (X-rays,
CT scans, mammograms and MRI scans) based diag-
nosis, convolutional neural networks (CNN) are being
widely explored for various medical conditions from
Alzheimer’s to appendicitis [18–25].

Currently, the COVID-19 pandemic demands such
a breakthrough technology for rapid diagnosis using
CT scan images. Some of the earlier studies utilized a
limited number of CT scan imageswith a transfer learn-
ing approach (pre-trained models) for the diagnosis of
COVID-19.One of the studies byWang et al. [26] used a
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Table 1. Details of previous studies carried out involving machine learning techniques for medical diagnosis.

Work Methodology Medical condition Accuracy

Li et al. [10] Principle Component Analysis-Extreme Learning Machine Thyroid 97.73%
Singh et al. [11] Kohonen self organizing map- Least Squares Support Vector Machine Parkinson 99%
Shen et al. [12] Fruit fly Optimization Algorithm- Support Vector Machine Breast Cancer 96.90%

Diabetes 77.46%
Parkinson 96.90%
Thyroid 96.38%

Osman et al. [13] Support Vector Machine -K-means clustering Diabetes 99.90%
Wang et al. [14] Chaotic Moth-Flame Optimization Feature Selection- Kernel Extreme learning Machine Parkinson 97.45%

Breast Cancer 98.13%
Abdar et al. [15] New 2level Genetic optimizer-nu-Support Vector Machine Coronary artery disease 93.08%
Zhao et al. [16] Enhanced Grey Wolf Optimization- Extreme Learning Machine Paraquat-poisoning 93.89%
Wang et al. [17] Chaotic Multi-swarmWhale Optimizer Algorithm Feature Selection- Support Vector Machine Breast Cancer 97.58%

Diabetes 79.01%
Erythemato-Squamous 99.05%

total of 453CT scan images (195COVID-19 images and
258 non-COVID-19 images) for training themodel-M-
inception and obtained an overall accuracy of 82.9%.
Employing the classical ResNet model along with local
attention, Xu et al. [27] were able to achieve an over-
all accuracy of 86.7%. The researchers had used 219
COVID-19, 224 viral pneumonia and 175 healthy CT
scan images for this study.

In another study, making use of 360 COVID-19 and
397 non-COVID-19 CT scan images and employing
a decision fusion approach, Mishra et al. [28] were
able to detect COVID-19 with an accuracy of 88.34%.
The decision fusion approach consists of multiple CNN
models and individual predictions of each of these
models are combined by a majority voting approach to
improve the overall efficiency of the baseline models.
Ying et al. [29] produced an accuracy of 86%by training
777 and 708 CT scan images pertaining to COVID-19
and healthy subjects respectively using the DRE-Net.
Some of the notable works using the CT scan images
for the diagnosis of COVID-19 have been furnished in
Table 2.

Today, lightweight CNN models such as MobileNet,
SqueezeNet, ShuffleNet and so on are of great interest
among researchers as they enable its implementation in
devices with minimum computing resources. Ardakani
et al. [37] utilized 10 different CNN models including
both shallow and deep models. SqueezeNet, MobileNet
V2 and ResNet-18 reported an accuracy of 82.84%,
92.16% and 91.67%, respectively. But the deeper archi-
tectures, namely ResNet-50 and ResNet-101 produced
an accuracy greater than 98%. In another study, Pham
[35] evaluated the diagnosis of COVID-19 using 16
different CNN models which also produced a simi-
lar lower accuracy for shallow CNNs. For example,
SqueezeNet had an accuracy of 78.52% and AlexNet
had 74.50%. Silva et al. [31] employed EfficientNet-
B0 and utilized 1601 COVID-19 CT scan images and
1693 non-COVID-19 images to obtain a classification
accuracy of 87.68%. In a study by Polsinelli et al [30],
they developed their own CNN architecture inspired
by SqueezeNet architecture and reported an accuracy
of 85.03%.

Table 2. Details of previous studies carried out for the iden-
tification of COVID-19 using CT scan images employing deep
learning models.

Work Methodology and architecture Accuracy

Wang et al. [26] Training from scratch approach
using M-Inception

82.9%

Polsinelli et al. [30] Training from scratch approach
using a model based on
SqueezeNet

85.03%

Ying et al. [29] Training from scratch approach
using DRE-Net

86%

Xu et al. [27] Transfer learning approach using
ResNet-18

86.7%

Silva et al. [31] Transfer learning approach using
EfficientNet-B0

87.68%∗

Mishra et al. [28] Decision fusion approach 88.34%
Alakus et al. [32] Transfer learning approach using

CNNLSTM
92.30%

Shah et al. [33] Transfer learning approach using
VGG-19

94.52%

Javor et al. [34] Transfer learning approach using
ResNet 50

95.6%

Pham et al. [35] Transfer learning approach using
16 different CNNmodels

92.62%
(ResNet-50)

Ahuja et al. [36] Transfer learning approach using 4
different CNNmodels

99.40%
(ResNet-18)

Ardakani et al. [37] Transfer learning approach using
10 different CNNmodels

99.51%
(ResNet-101)

In this study, the authors are proposing a novel
fused-model that combines the layers of SqueezeNet
[38] and ShuffleNet [39] that utilizes the features from
both the models. This benefits the prediction per-
formance as it integrates the advantages of features
from these two distinct architectures. Other researchers
have also proposed similar fusion methods and have
reported an improved accuracy [40–42]. A custom clas-
sifier has been added for the diagnosis and the model
has been fine tuned for improved performance. The
paper is organized in such a way that Section 2 cov-
ers materials and methods which include the details
of the utilized original dataset, techniques employed
to increase the dataset, chosen CNN models and the
implemented modifications. The encouraging results
along with associated discussions are provided in
Section 3 followed by a brief discussion on the limita-
tions of the proposed model in Section 4. Conclusion
remarks are provided in Section 5.
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2. Materials andmethods

The CT scan dataset used for the study is publicly avail-
able (https://www.kaggle.com/plameneduardo/sarscov
2-ctscan-dataset). The dataset has 1252 and 1230 slices
of COVID-19 and non-COVID-19 categories, respec-
tively, obtained from a total of 120 patients [43]. Typi-
cally, deep learning models perform better with a large
number of images and hence the images in the dataset
have been increased using the augmentation approach.
The process of augmentation involves the introduction
of various transformations and uncertainties such as
blurring, shearing, flipping, and distortion in bright-
ness, rotation and translation to the images. This has
proved in the elimination of overfitting and better gen-
eralization of the deep learning models. In this study, a
random displacement in the range of ±10 pixels along
with a random rotation of ±5° and random intensity
value alteration in the range of ±20 have been carried
out. In addition, image blurring, shearing of ±20°and
image flipping operations have also been performed to
increase the dataset size. As a result, the total number
of images has been increased to 17,367 and the dataset
has been split into training, validation and test sets as
shown in Table 3.

Each of the selected model in this study perquisites
an input image of a specific dimension and hence
the images have been resized to 224× 224 for Shuf-
fleNet and 227× 227 for SqueezeNet. Also, the images
have been normalized with zero centre normalization
to have the input data on the same scale for efficient
learning.

The hardware used for the study consists of 8 GB
RAM and 4 GB NVIDIA 1050Ti graphics card. All
the training and analysis operations have been per-
formed usingMATLAB2020b. The entiremethodology
implemented for performing the experiment is shown
in Figure 1. Initially, the experiments have been car-
ried out with the two lightweight CNNmodels, namely
SqueezeNet and ShuffleNet using transfer learning. In
transfer learning, the deep learning models are already
loaded with pre-trained weight and bias parameters as
a result of training with a large dataset such as Imagenet
dataset. These pre-trained models have shown to con-
verge faster as the models tend to learn certain basic
features from the images of the Imagenet dataset.

Although SqueezeNet and ShuffleNet are lightweight
CNNmodels, the authors have followed an entirely dif-
ferent strategy to reduce the size and the computational

Table 3. Dataset created for the study.

Disease Original Augmented
Training
dataset

Validation
dataset

Test
dataset

COVID 1252 8764 6315 1579 870
NON-COVID 1230 8603 6188 1547 868
Total 2480 17,367 12,503 3126 1738

resources required for execution. For example,
SqueezeNet has a fire module block which consists of
squeeze layers with 1× 1 filters and expand layers of
1× 1 and 3× 3 filters, whereas ShuffleNet uses shuf-
fling of channels and point-wise grouped convolutions.
SqueezeNet has shown to produce an accuracy equiv-
alent to AlexNet but with reduced parameters from 60
million to 0.4million, which reduces thememory space
requirement from 240 to 4.8 MB and execution speed.
ShuffleNet has shown to produce lower classification
error compared to AlexNet with the reduced multi-
plication operation that reduces the need for higher
computing power.

Before performing the training operation, a few lay-
ers have to be modified for the diagnosis of COVID-19
from chest CT scan images. In the ShuffleNet model,
the last layers i.e. the fully connected, softmax and
classification layers have been replaced with new lay-
ers suitable for the diagnosis. The parameters in the
fully connected layers have been randomly initialized
and require a higher learning rate compared to the
pre-trained layers for faster convergence. The models
have been fine tuned to follow hyperparameters set-
ting, namely minibatch size of 32, 5 epochs, learning
rate of pre-trained layers 0.00001, L2 regularization
0.1, the weight learning rate of new layers 0.00003 and
momentum 0.9.

Similarly in SqueezeNet, the last 5 layers i.e. convolu-
tion, ReLU, average pooling, softmax and classification
layers have been replaced with new convolution (fil-
ter size corresponding to the number of classes), ReLU,
average pooling (same filter size of 14× 14), softmax
and classification layers respectively. The hyperparam-
eter configuration fine tuned for this study has been
chosen to have aminibatch size of 32, 5 epochs, a learn-
ing rate of pre-trained layers 0.00001 and momentum
0.9. The result obtained using the above models has
been presented, analysed and discussed in Section 3.

In the second experiment, the two pre-trained CNN
models, namely SqueezeNet and ShuffleNet have been
fused together to form a hybrid model for improving
the diagnosis of COVID-19 using CT scan images as
shown in Figure 2. The two CNN models were used as
a feature extractor and the features obtained have been
combined to provide it to a classifier for classification.
In order to implement the proposed architecture, the
feature maps resulting from the last feature extraction
layers must be of the same dimension and concatenated
in the depth dimension to combine the features.

To facilitate the implementation, the fused-model
has two input streams 1 and 2 for providing the input
image to the SqueezeNet and ShuffleNet. Initially, the
images of dimension 227× 227 are provided as input
which are then resized to 224× 224 using a maxpool-
ing layer with a filter size of 4× 4 and stride 1 for
the ShuffleNet model. In the case of SqueezeNet, as
the input dimension matches with the provided input

https://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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Figure 1. Methodology implemented for the study.

image, it is directly fed to the subsequent layers for fea-
ture extraction. As the features need to be combined
from both the models using the activation maps result-
ing from the last ShuffleNet block and the fire mod-
ule block, the dimension of the maps should be the
same. The activation map resulting from SqueezeNet
is of dimension 14× 14 which is then downsampled
to 7× 7 using a maxpooling filter of dimension 2× 2
and stride 2. Hence, the resulting activation maps
from ShuffleNet and SqueezeNet have dimensions of
7× 7× 544 and 7× 7× 512, respectively. A depth con-
catenation layer has been added to combine the maps

along the depth direction. Finally, two hidden fully
connected layers, each of 1024 neurons have been
added to the fused-model for the efficient classifica-
tion of the CT scan images. The last fully connected
layer has a number of neurons proportional to the
number of classes which then ends with the soft-
max and classification layer. The fused-model archi-
tecture created for this study is shown in Figure 3.
The pseudo-code for the implemented algorithm is
presented in Table 4. The hyperparameters fine tuned
for the training of the fused-model are furnished in
Table 5.
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Figure 2. Proposed approach by fusion of SqueezeNet and ShuffleNet.

Table 4. Pseudo-code for the proposed model.

Algorithm: Fusion of ShuffleNet and SqueezeNet

Initialization:
if size of input image (m× n) not equal to 227× 227 then

Resize image to 227× 227
Perform Normalization

else
Perform Normalization

end
Channel splitting:
for k = 1:3
Pass image through convolution layer k of 1×1 with weights and bias
set to 1
Learning rate = 0;
Concatenate output of the convolution layer k for stream 1

end
for l = 1:3
Pass image through second set convolution layers l of 1×1 with weights
and bias set to 1

Learning rate = 0;
Concatenate output of the convolution layer l for stream 2

end
Input stream 1:
Perform maxpooling operation to reduce the size to 224 × 224 for

ShuffleNet
Extract features through the ShuffleNet layers
Input stream 2: Extract features through the SqueezeNet layers
Fusion of two input streams:
Performmaxpooling operation from the output map of stream 2 to match
with stream 1

Concatenation of features to stream 1
Fed it to two hidden layers (1024 neurons) followed by output classification
layer

The trained and validated models have been tested
with an augmented test dataset. Further, classification
accuracy has been analysed using the confusion matrix
and performance metrics. In addition, the features
which significantly influence the classification process
have been visualized using Class Activated Mapping
(CAM) [44]. The obtained result and analysis using the
fused-model have been discussed in Section 3.

3. Results and discussion

The three models, namely ShuffleNet, SqueezeNet and
fused-model have been trained using the training
dataset with the validation frequency of 100 iterations.
The training progress with the minibatch accuracy and

Table 5. Hyperparameter configuration.

Hyperparameter Values

Minibatch size 32
Maximum epoch 5
Initial learn rate 0.00001
L2 regularization 0.0001
Learn rate drop factor 0.2
Learn rate drop period 3
Weight learn rate for fully connected layer 8
Bias learn rate for fully connected layer 2
Optimization algorithm SGDM
Momentum 0.9
Validation frequency 100 iterations

loss value for these models are shown in Figure 4.
The initial accuracy of the validation dataset before
training using the pre-trained features was 52.02% for
SqueezeNet whichwas higher than ShuffleNet (47.50%)
and the fused-model (49.49%). This shows that some
of the basic features required for diagnosis have been
already learned which significantly contributed to the
initial classification result. But, interestingly after 100
iterations in the first epoch, the validation accuracy of
the fused-model was the highest with 85.48% which
was followed by ShuffleNet (82.12%). The performance
of SqueezeNet was poor where the accuracy improved
only marginally (61.90%).

It is also evident that the deviations in both mini-
batch accuracy and loss value were much higher in
SqueezeNet compared to ShuffleNet and the fused-
model. This shows the ambiguity in the features
of SqueezeNet required for the correct diagnosis of
COVID-19. The ShuffleNet and fused-model resulted
in nearly identical training accuracy of 98.2% and
98.5%, respectively but, the accuracy saturated at 86%
for SqueezeNet which is relatively lower. At the end of
five epochs, the final validation accuracy obtained for
the above-mentioned models were 94.4% (ShuffleNet),
85.9% (SqueezeNet) and 94.2% (fused-model).

The trained and validated models were then tested
with a test dataset consisting of 1738 images of COVID-
19 and non-COVID-19 categories. In the case of the test
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Figure 3. Proposed architecture (a) Fused SqueezeNet and ShuffleNet models; (b) Shuffle block type1 and (c) Shuffle block type 2.
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Figure 4. Training progress curve (a) ShuffleNet; (b) SqueezeNet and (c) Fused-model.
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Figure 5. Confusion matrix for test dataset (a) ShuffleNet; (b) SqueezeNet and (c) Fused-model.

set, the accuracy of the fused-model was 97% which
is better than the ShuffleNet (95.8%) and SqueezeNet
(86.4%). The classification performance was further
analysed using the confusion matrix as shown in
Figure 5. Sensitivity and specificity are important met-
rics that can provide an insight into the performance of
the models. It can be estimated using the True Positives
(TP), True Negatives (TN), False Positives (FP) and
False Negatives (FN). For instance, the fused-model has
TP, TN, FP and FN of 851, 834, 34 and 19, respectively.
The estimated sensitivity and specificity of the fused-
model from the above values were 97.81 and 96.08,
respectively, based on the following equations:

Sensitivity = TP

TP + FN
(1)

Specificity = TN

TN + FP
(2)

In the case of SqueezeNet, sensitivity and specificity
are lower compared to the fused-model and ShuffleNet
since the number of FN and FP for the detection

of COVID-19 from CT scan images was higher. The
higher FN for the diagnosis would result in a signif-
icant delay in treatment. Similarly, many images in
non-COVID-19 category were falsely predicted to the
COVID-19 category compared to the other models,
namely ShuffleNet and the fused-model. This will also
result in an unwanted panic to the patient which will
increase the stress on the healthcare workers. In com-
parison, the fused-model has lower FN and FP and
hence the sensitivity, specificity and accuracy improved
significantly. Further, the assessment was carried out
using performance metrics estimated from the confu-
sion matrix as shown in Table 6.

From Table 6 it is evident that the fused-model and
ShuffleNet have approximately equal sensitivity values
but the former has better specificity and precision val-
ues of 96.08% and 96.15%, respectively. This is due to
the lower false prediction of CT scan images belong-
ing to the non-COVID-19 category and higher correct
prediction of the COVID-19 category. The fallout or
false positive rate (FPR) and false discovery rate were
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Table 6. Performance metrics of a confusion matrix for test dataset.

Models Sensitivity Specificity Precision
Negative

predictive value Miss rate Fall out
False

discovery rate
False

omission rate F1 score

SqueezeNet 81.83 90.89 90.01 83.31 18.16 9.10 9.98 16.68 85.70
ShuffleNet 97.49 94.12 94.32 97.38 2.52 5.87 5.67 2.62 95.87
Fused-model 97.81 96.08 96.15 97.77 2.18 3.91 3.84 2.22 96.98

Table 7. Comparison of performance with other CNNmodels.

Models Sensitivity Accuracy F1 score

Fused-model 97.81 97 96.98
GoogLeNet 85.17 92.17 91.59
MobileNetV2 89.77 93.84 93.58
NASNetMobile 92.98 96 95.90
EfficientNet-B0 93.50 96.3 96.20

also lower compared to the ShuffleNet and SqueezeNet
models. The fused-model produced a best F1 score
of 96.98% and hence it acts as an efficient model for
diagnosis compared to the original models. In addition
to this, the performance of the proposed model was
compared with other popular lightweight pre-trained
CNN models, namely GoogLeNet, MobileNetV2, Nas-
NetMobile and EfficientNet-B0 [45–48] (as shown in
Table 7). It shows that the proposed fused-model
depicted a better sensitivity for the detection of
COVID-19 with a higher F1 score and accuracy com-
pared to the other models.

The assessment of the confusion matrix using per-
formance metrics shows the diagnostic effectiveness
of the trained model. The change in the performance
of the model in terms of its prediction capability can
be assessed using the prediction score. It acts like a
confidence index that shows the probability of a CT
scan image belonging to COVID-19 or non-COVID-
19 categories. At first, the prediction score for the
correctly predicted COVID-19 category images was
analysed. The assessment of the prediction score was
performed for the SqueezeNet, ShuffleNet and the
fused-model. Among the three models, ShuffleNet pro-
duced the best average prediction score of 0.98 fol-
lowed by the fused-model and SqueezeNet with 0.97
and 0.87, respectively. Although the average predic-
tion score can provide a general picture of the model’s
ability, in this study it has been categorized in five dif-
ferent ranges as shown in Figure 6. The number of
images in each range is counted and the model’s per-
formance is assessed based on these numbers. Based
on the estimation, it has been found that the num-
ber of images having prediction scores greater than
0.95 was higher in the ShuffleNet model. But, more
number of images of the COVID-19 category have
been rightly predicted in the case of the fused-model.
This is due to the tradeoff between the beneficial and
non-beneficial features from SqueezeNet that lowered
prediction scores in a few cases but increased the
number of correct predictions of COVID-19 images for
the fused-model.

Similarly, in the case of non-COVID-19 category
images, the prediction scores for a few images have
dropped, but the number of correct predictions has
increased, which is evident from Figure 7(c). When
the prediction scores for the incorrectly predicted
COVID-19 category were analysed for the fused-
model, there was a reduction of 50% of images in
the range of 0.95–1, 75% of images in the ranges of
both 0.9–0.95 and 0.8–0.85 compared to the ShuffleNet
as shown in Figure 8. For the ranges 0.51–0.8 and
0.85–0.9, there was an increase in the number of images
as prediction scores for the false category has dropped
from the higher ranges. This shows the improvement
in the performance of the fused-model compared to
ShuffleNet and SqueezeNet.

The prediction scores for incorrectly predicted non-
COVID-19 to COVID-19 categories (as shown in
Figure 9)with the fused-model show that the number of
images in the ranges of 0.95–1, 0.9–0.95, 0.8–0.85 and
0.51–0.8 dropped by 60%, 50%, 40%, 18%, respectively,
compared to ShuffleNet. This shows that the prediction
capability improved in the case of the fused-model as
the prediction score for the falsely predicted category
has dropped. Even though the scores for the correctly
predicted category reduced slightly, they still remained
greater than 0.8 for 94.4% and 93.1% of images belong-
ing to COVID-19 and non-COVID-19 respectively.

In order to understand and visualize the reason for
misclassification, CAM has been utilized. This can pro-
vide information regarding the features of the images
that significantly influenced the decision process of
the deep learning models. Sometimes, the features
in the background might influence the prediction of
the model or other reasons that can be inferred from
the visualization. A visualization of sample image of the
COVID-19 category for the three models is shown in
Figure 10.

From Figure 10 it can be observed that there are
several areas in redwhich are the strongest areas of acti-
vation that influence the prediction of the deep learn-
ing models. In the case of SqueezeNet, as shown in
Figure 10(a), several areas of the lungs which do not
have the symptoms for COVID-19 depict a strong acti-
vation. This clearly shows the inability of the model
in learning the specific features of COVID-19. But,
in the case of ShuffleNet, it reveals that the features
confined to the symptomatic areas of COVID-19 in
the lungs depicted higher activation compared to the
SqueezeNet. Still, a significant portion of the strongest
activation area is spilled outside the lungs. In the case
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Figure 6. Number of correctly predicted COVID-19 category images in test dataset with prediction scores (a) SqueezeNet; (b)
ShuffleNet and (c) Fused-model.

Figure 7. Number of correctly predicted non-COVID-19 category images in test dataset with prediction scores (a) SqueezeNet; (b)
ShuffleNet and (c) Fused-model.
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Figure 8. Number of incorrectly predicted COVID-19 category images in test dataset with prediction scores for non-COVID-19
category (a) SqueezeNet; (b) ShuffleNet and (c) Fused-model.

Figure 9. Number of incorrectly predicted non-COVID category images in test dataset with prediction scores for COVID-19 category
(a) SqueezeNet; (b) ShuffleNet and (c) Fused-model.

of the fused-model, the areas of strongest activation are
more focused compared to ShuffleNet. When the visu-
alization for a few of the incorrectly categorized images
was analysed for the best performing fused-model, the
area of strongest activation was found outside the lung
area. This was mainly due to insufficient quantity of

pixels for lungs in the particular slice and distortion
of symptoms beyond recognition due to the performed
augmentation.

The diagnosis of COVID-19 using CT scan images
can be performed using the CNN models which
are being widely investigated. But, most studies have
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Figure 10. CAM visualization for sample image of COVID-19 category in test dataset (a) SqueezeNet; (b) ShuffleNet and (c) Fused-
model. (Colour online.)

focused on using the CNN models with more depth
which demands a significant requirement of comput-
ing resources and GPU for processing. Contrastingly,
lightweight CNNmodels are not being explored widely
especially SqueezeNet and ShuffleNet for diagnosis of
COVID-19 using CT scan images. These lightweight
models can be executed in devices such as smartphones
with limited computing capacity instead of using cloud-
based platforms. Although these shallow CNN models
are efficient in using computing resources, some com-
promises in terms of diagnosis accuracy have to be
accepted. To counteract this problem, two lightweight
CNN models have been fused in this study to pro-
duce an improved performance that can be used for the
diagnosis of COVID-19.

In an earlier study by Polsinelli et al. [30], with
their own lightweight CNN model inspired from the
SqueezeNet architecture were able to produce an accu-
racy of 85.03%whereas in our study an accuracy of 97%
was achieved with the fusion of SqueezeNet and Shuf-
fleNet. Another study by Pham [35], explored 16 dif-
ferent CNNmodels which included both shallower and
deeper architectures. Interestingly, the dataset without
augmentation produced an improved accuracy com-
pared to the one with the augmented dataset. This is
in contrast to this study and many other studies which
always depicted an improved performance with data
augmentation [6,30,31,34]. In addition, the studies of
Pham [35] did not analyse the regions of the image
which influenced the classification process. The assess-
ment on the prediction score has not been performed
by many previous studies which motivated the authors
to focus on understanding the variation in performance
of the original and fused-models. Although the classi-
fication performance from the SqueezeNet was lower,
some of the essential features which were not cap-
tured by ShuffleNet have been utilized in the fused-
model that resulted in the improved performance of the
fused-model. This enhancement in the performance
was evident from the confusion matrix and feature
visualization. Especially the fusion was effective in the

non-COVID-19 category where the number ofmisclas-
sification dropped significantly that decreased the false
positives.

4. Limitations

The focus of this study was to detect COVID-19 from
CT scan images incorporating deep learning tech-
niques. Hence, the proposed model will not be suitable
for the detection of other viral or bacterial pneumo-
nia having features similar to COVID-19. As a conse-
quence, the proposed trained model may predict the
CT scan images of a few subjects with other viral
or bacterial pneumonia to COVID-19. Hence, it is
always desirable to use this tool in conjunction with the
RT-PCR test for fool-proof diagnosis of COVID-19. On
the other hand, researchers like Xu et al. [27] performed
experiments using CT scans of other pneumonia and
COVID-19 related pneumonia but reported a lower
accuracy of 86.7% which may be due to the similarity
of symptoms.

Another limitation of the proposed model is its
inability to determine the severity of the symptoms
which may be crucial in the clinical diagnosis for deter-
mining the effective treatment methods. In addition to
these, insufficient pixels of lungs in a few CT scan slices
and a limited number of parameters of lightweight
CNN models, resulting in compromise of diagnostic
accuracy. Despite these limitations, the deep learning
tool in existing conditions can act as a supportive aid in
the diagnosis but needs further improvement as well as
analysis before actual deployment.

5. Conclusion

In this study, the performance of two lightweight CNN
models – SqueezeNet and ShuffleNet and a novel fused-
model developed by combining the layers of these
two base models have been evaluated to diagnose
COVID-19 from CT scan images. A total of 2480
publicly available chest CT scan images (COVID-19:
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1252 and non-COVID-19: 1230) have been used in the
study and the number of images has been increased to
17,367 (COVID-19: 8764 and non-COVID-19: 8603)
employing data augmentation. With the test set, when
SqueezeNet and ShuffleNet produced an accuracy of
86.4% and 95.8%, respectively, the novel fused-model
was able to classify COVID-19 and non-COVID-19 CT
images with an overall accuracy of 97%. The fused-
model out performed SqueezeNet and ShuffleNet with
higher sensitivity (97.81%), specificity (96.08%), preci-
sion (96.15%), Negative Predictive Value (97.77%) and
F1 score (96.98%). Hence this study suggests that the
novel fused-model derived from SqueezeNet and Shuf-
fleNet is a promising model for diagnosing COVID-19
from CT scan images making use of limited comput-
ing resources. Healthcare systems should make use of
AI-based systems which blend such predictive models
with conventional radiological imaging for substan-
tially low cost, fast, reliable and accurate assessment of
COVID-19 risk.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

References

[1] WHO. (2020). WHO coronavirus disease (COVID-
19) dashboard [cited 2021 Oct 18]. Available from:
https://covid19.who.int/

[2] Abadi MQH, Rahmati S, Sharifi A. HSSAGA: designa-
tion and scheduling of nurses for taking care of COVID-
19 patients using novel method of hybrid salp swarm
algorithm and genetic algorithm. Appl Soft Comput.
2021;108:107449. DOI:10.1016/j.asoc.2021.107449

[3] Ozturk T, Talo M, Yildirim EA, et al. Automated detec-
tion of COVID-19 cases using deep neural networks
with X-ray images. Comput BiolMed. 2020;121:103792.
DOI:10.1016/j.compbiomed.2020.103792

[4] Ucar F, Korkmaz D. COVIDiagnosis-Net: deep Bayes-
SqueezeNet based diagnosis of the coronavirus disease
2019 (COVID-19) from X-ray images. Med Hypothe-
ses. 2020;140:109761. DOI:10.1016/j.mehy.2020.10976

[5] Wang L, Lin ZQ, Wong A. COVID-Net: a tailored deep
convolutional neural network design for detection of
COVID-19 cases from chest X-ray images. Sci Rep.
2020;10:19549. DOI:10.1038/s41598-020-76550-z

[6] Ahuja S, Panigrahi BK, Dey N, et al. Deep trans-
fer learning-based automated detection of COVID-19
from lung CT scan slices. Appl Intell. 2021;51:571–585.
DOI:10.1007/s10489-020-01826-w

[7] Shen D, Wu G, Suk H. Deep learning in medical image
analysis. Annu Rev Biomed Eng. 2017;19:221–248.
DOI:10.1146/annurev-bioeng-071516-044442

[8] Ardakani AA, Acharya UR, Habibollahi S, et al.
COVIDiag: a clinical CAD system to diagnose COVID-
19 pneumonia based on CT findings. Eur Radiol.
2021;31:21–130. DOI:10.1007/s00330-020-07087-y

[9] Rangarajan AK, Ramachandran HK. A preliminary
analysis of AI based smartphone application for diag-
nosis of COVID-19 using chest X-ray images. Expert

Syst Appl. 2021;183:115401. DOI:10.1016/j.eswa.2021.
115401

[10] Li LN, Ouyang JH, Chen HL, et al. A Computer aided
diagnosis system for Thyroid disease using extreme
learning machine. J Med Syst. 2012;36:3327–3337.
DOI:10.1007/s10916-012-9825-3

[11] Singh G, Samavedham L. Unsupervised learning based
feature extraction for differential diagnosis of neu-
rodegenerative diseases: a case study on early-stage
diagnosis of Parkinson disease. J Neurosci Methods.
2015;256:30–40. DOI:10.1016/j.jneumeth.2015.08.011

[12] Shen L, Chen H, Yu Z, et al. Evolving support vec-
tor machines using fruit fly optimization for medical
data classification. Knowl Based Syst. 2016;96:61–75.
DOI:10.1016/j.knosys.2016.01.002

[13] Osman AH, Aljahdali HM. Diabetes disease diagno-
sis method based on feature extraction using K-SVM.
Int J Adv Comput Sc Appl (IJACSA). 2017;8:236–244.
DOI:10.14569/IJACSA.2017.080130

[14] Wang M, Chen H, Yang B, et al. Toward an opti-
mal kernel extreme learning machine using a chaotic
moth-flame optimization strategy with applications in
medical diagnoses. Neurocomputing. 2017;267:69–84.
DOI:10.1016/j.neucom.2017.04.060

[15] Abdar M, Ksiazek W, Acharya UR, et al. A new
machine learning technique for an accurate diagnosis
of coronary artery disease. Comput Methods Programs
Biomed. 2019;179:104992. DOI:10.1016/j.cmpb.2019.
104992

[16] Zhao X, Zhang X, Cai Z, et al. Chaos enhanced
grey wolf optimization wrapped ELM for diagnosis
of paraquat-poisoned patients. Comput Biol Chem.
2019;78:481–490. DOI:10.1016/j.compbiolchem.2018.
11.017

[17] Wang M, Chen H. Chaotic multi-swarm whale opti-
mizer boosted support vector machine for medi-
cal diagnosis. Appl Soft Comput J. 2020;88:105946.
DOI:10.1016/j.asoc.2019.105946

[18] Guan B, Zhang G, Yao J, et al. Arm fracture detec-
tion in X-rays based on improved deep convolutional
neural network. Comput Electr Eng. 2020;8:106530.
DOI:10.1016/j.compeleceng.2019.106530

[19] Zhang B, Yu K, Ning Z, et al. Deep learning of lumbar
spine X-ray for osteopenia and osteoporosis screen-
ing: a multicenter retrospective cohort study. Bone.
2020;140:115561. DOI:10.1016/j.bone.2020.115561

[20] Gao XW, Hui R, Tian Z. Classification of CT brain
images based on deep learning networks. Comput
Methods Prog Biomed. 2017;138:49–56. DOI:10.1016/
j.cmpb.2016.10.007

[21] Park JJ, Kim KA, Nam Y, et al. Convolutional-neural-
network-based diagnosis of appendicitis via CT scans
in patients with acute abdominal pain presenting in
the emergency department. Sci Rep. 2020;10:9556.
DOI:10.1038/s41598-020-66674-7

[22] Polat H, DanaeiMehr H. Classification of pulmonary
CT images by using hybrid 3D-Deep convolutional
neural network architecture. Appl Sci. 2019;9(5):940.
DOI:10.3390/app9050940

[23] Ribili D, Horváth A, Unger Z, et al. Detecting and clas-
sifying lesions in mammograms with deep learning. Sci
Rep. 2018;8:4165. DOI:10.1038/s41598-018-22437-z

[24] AhmadiM, SharifiA,Hassantabar S, et al. QAIS-DSNN:
tumor area segmentation of MRI image with optimized
quantum matched-filter technique and deep spiking

https://covid19.who.int/
https://doi.org/10.1016/j.asoc.2021.107449
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.mehy.2020.10976
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1007/s10489-020-01826-w
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1007/s00330-020-07087-y
https://doi.org/10.1016/j.eswa.2021.115401
https://doi.org/10.1007/s10916-012-9825-3
https://doi.org/10.1016/j.jneumeth.2015.08.011
https://doi.org/10.1016/j.knosys.2016.01.002
https://doi.org/10.14569/IJACSA.2017.080130
https://doi.org/10.1016/j.neucom.2017.04.060
https://doi.org/10.1016/j.cmpb.2019.104992
https://doi.org/10.1016/j.compbiolchem.2018.11.017
https://doi.org/10.1016/j.asoc.2019.105946
https://doi.org/10.1016/j.compeleceng.2019.106530
https://doi.org/10.1016/j.bone.2020.115561
https://doi.org/10.1016/j.cmpb.2016.10.007
https://doi.org/10.1038/s41598-020-66674-7
https://doi.org/10.3390/app9050940
https://doi.org/10.1038/s41598-018-22437-z


184 A. KRISHNASWAMY RANGARAJAN AND H. K. RAMACHANDRAN

neural network. Biomed Res Int. 2021;2021:6653879.
DOI:10.1155/2021/6653879

[25] Ahmadi M, Sharifi A, Fard MJ, et al. Detection of brain
lesion location inMRI images using convolutional neu-
ral network and robust PCA. Int J Neurosci. 2021.
DOI:10.1080/00207454.2021.1883602

[26] Wang S, Kang B, Ma J, et al. A deep learning algorithm
using CT images to screen for Corona Virus Disease
(COVID-19). medRxiv. 2020. DOI:10.1101/2020.02.14.
20023028

[27] Xu X, Jiang X, Mac C, et al. A deep learning system
to screen novel Coronavirus Disease 2019 pneumonia.
Engineering. 2020;6(10):1122–1129. DOI:10.1016/j.
eng.2020.04.010

[28] Mishra AK, Das SK, Roy P, et al. Identifying COVID19
from chest CT images: a deep convolutional neural net-
works based approach. J Healthc Eng. 2020;2020:8843
664. DOI:10.1155/2020/8843664

[29] Ying S, Zheng S, Li L, et al. Deep learning enables accu-
rate diagnosis of novel coronavirus (COVID-19) with
CT images. medRxiv. 2020. DOI:10.1101/2020.02.23.
20026930

[30] Polsinelli M, Cinque L, Placidi G. A light CNN for
detecting COVID-19 from CT scans of the chest. Pat-
tern Recognit Lett. 2020;140:95–100. DOI:10.1016/j.
compbiomed.2020.103795

[31] Silva P, Luz E, Silva G, et al. COVID-19 detection in
CT images with deep learning: a voting-based scheme
and cross-datasets analysis. Informa Med Unlocked.
2020;20:100427. DOI:10.1038/s41598-020-74164-z

[32] Alakus TB, Turkoglu I. Comparison of deep learning
approaches to predict COVID-19 infection. chaos. Soli-
ton Fract. 2020;140:110120. DOI:10.1016/j.imu.2020.
100427

[33] Shah V, Keniya R, Shridharani A, et al. Diagno-
sis of COVID-19 using CT scan images and deep
learning techniques. Emerg Radiol. 2021;28:497–505.
DOI:10.1016/j.patrec.2020.10.001

[34] Javor D, Kaplan H, Kaplan A, et al. Deep learning anal-
ysis provides accurate COVID-19 diagnosis on chest
computed tomography. Eur J Radiol. 2020;133:109402.
DOI:10.1016/j.chaos.2020.110120

[35] Pham TD. A comprehensive study on classification of
COVID-19 on computed tomography with pretrained
convolutional neural networks. Sci Rep. 2020;10:16942.
DOI:10.1016/j.ejrad.2020.109402

[36] Ahuja S, Panigrahi BK, Dey N, et al. Deep trans-
fer learning-based automated detection of COVID-19
from lung CT scan slices. Appl Intell. 2021;51:571–585.
DOI:10.1007/s10140-020-01886-y

[37] Ardakani AA, Kanafi AR, Acharya UR, et al. Appli-
cation of deep learning technique to manage COVID-

19 in routine clinical practice using CT images:
results of 10 convolutional neural networks. Comput
Biol Med. 2020;121:103795. DOI:10.1007/s10489-020-
01826-w

[38] Iandola FN, Han S, Moskewicz MW, et al. Squeezenet:
AlexNet-level accuracy with 50x fewer parameters and
< 0.5MB model size. ArXiv. 2017. abs/1602.07360.

[39] Zhang X, Zhou X, Lin M, et al. Shufflenet: an
extremely efficient convolutional neural network for
Mobile devices. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition; 2018 Dec 17; Salt
Lake City, UT. p. 6848–6856.

[40] Suchy R, Ezekiel S, Cornacchia M. Fusion of deep
convolutional neural networks). 2017 IEEE Applied
Imagery Pattern Recognition Workshop (AIPR); 2017
Oct 10–12; Washington, DC. p. 1–6. DOI:10.1109/
AIPR.2017.8457945

[41] Khozeimeh F, Sharifrazi D, Izadi NH, et al. Combining a
convolutional neural networkwith autoencoders to pre-
dict the survival chance of COVID-19 patients. Sci Rep.
2021;11:15343. DOI:10.1038/s41598-021-93543-8

[42] Alam NA, Ahsan M, Based MA, et al. COVID-
19 Detection from chest X-ray images using fea-
ture fusion and deep learning. Sensors. 2021;21:1480.
DOI:10.3390/s21041480

[43] Soares E, Angelov P, Biaso S, et al. SARS-CoV-2
CT-scan dataset: a large dataset of real patients CT
scans for SARS-CoV-2 identification. medRxiv. 2020.
DOI:10.1101/2020.04.24.20078584

[44] Zhou B, Khosla A, Lapedriza A, et al. Learning deep
features for discriminative localization). IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion; 2016 Jun 27–30; Las Vegas, NV. p. 2921–2929.
DOI:10.1109/CVPR.2016.319

[45] Sandler M, Howard A, Zhu M, et al. Mobilenetv2:
inverted residuals and linear bottlenecks. IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition; 2018 Jun 18–23; Salt Lake City, UT. p.
4510–4520. DOI:10.1109/CVPR.2018.00474

[46] Zoph B, Vasudevan V, Shlens J, et al. Learning trans-
ferable architectures for scalable image recognition.
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition; 2018 Jun 18–23; Salt
Lake City, UT. p. 8697–8710. DOI:10.1109/CVPR.2018.
00907

[47] Szegedy C, Liu W, Jia Y, et al. Going deeper with con-
volution). IEEE International Conference on Computer
Vision and Pattern Recognition; 2015 Jun 7–12; Boston,
MA. p. 1–9. DOI:10.1109/CVPR.2015.7298594

[48] Tan M, Le QV. Efficient net: rethinking model scal-
ing for convolutional neural networks. ArXiv. 2019.
abs/1905.11946. https://arxiv.org/abs/1905.11946

https://doi.org/10.1155/2021/6653879
https://doi.org/10.1080/00207454.2021.1883602
https://doi.org/10.1101/2020.02.14.20023028
https://doi.org/10.1016/j.eng.2020.04.010
https://doi.org/10.1155/2020/8843664
https://doi.org/10.1101/2020.02.23.20026930
https://doi.org/10.1016/j.compbiomed.2020.103795
https://doi.org/10.1038/s41598-020-74164-z
https://doi.org/10.1016/j.imu.2020.100427
https://doi.org/10.1016/j.patrec.2020.10.001
https://doi.org/10.1016/j.chaos.2020.110120
https://doi.org/10.1016/j.ejrad.2020.109402
https://doi.org/10.1007/s10140-020-01886-y
https://doi.org/10.1007/s10489-020-01826-w
https://doi.org/10.1109/AIPR.2017.8457945
https://doi.org/10.1038/s41598-021-93543-8
https://doi.org/10.3390/s21041480
https://doi.org/10.1101/2020.04.24.20078584
file:10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2018.00474
file:10.1109/CVPR.2018.00907
file:10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1905.11946

	1. Introduction
	2. Materials and methods
	3. Results and discussion
	4. Limitations
	5. Conclusion
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


