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ABSTRACT
This paper presents amethodology for state estimation and accuracy improvement of computer
simulations of computer aided engineering (CAE) models based on prediction and correction
state estimation techniques and sensing. The aim is to simulate the dynamic behaviour of a real
system, which can be sensed, and obtain values of states that are not measurable due to eco-
nomic or technical limitations. This methodology can be applied to both optimization of design
processes andon-line control of complex systems. Stateestimation techniques are currentlyused
only onmathematicalmodels, where the relationships among system variables are expressed by
means of mathematical language, making state observer implementation possible but leading
to limitations in system modelling and knowledge. Favoured over mathematical models, multi-
body CAEmodels (created bymeans of computer-aided engineering software) have become the
essential tool for complex system development, simulation, analysis, optimization and control,
such as multibody systems; one of their main advantages is the ease and flexibility in creating
and modifying them, allowing the faithful modelling of complex systems.
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1. Introduction

For a great number of applications, such as dynamical
control of systems or optimization of design processes,
the choice of suitablemathematicalmodel ormodelling
method is important [1,2]. State estimation techniques
allow knowing the value of the state variables of a
dynamical systemwhen themeasurement of these vari-
ables is not technically or economically feasible [3–7].
The feedback (correction phase) of state variables
improves the system control, but their estimation (pre-
diction phase) requires amodel that establishes the rela-
tionships among systemvariables. Currently usedmod-
els are mathematical ones, where these relationships
among variables are expressed by means of mathemat-
ical language, making state observer implementation
possible, which is also mathematically expressed. To
make complex system models compatible with state
observers, simplifications of the reality are required,
neglecting the effects that actually occur in the real sys-
tem and that may have relevance in system knowledge
and control [8–21].

Among the most current estimation techniques are
those listed in references [22–25]. A method of design-
ing a sliding interval mode observer for application to
non-linear systems is proposed in [22]. [23–26] pro-
pose newmethods for developing an Interval State Esti-
mator for different types of systems. These methods
have the advantage over previous designs in that they do

not require cooperativity of the system dynamics and
do not use observer gain with increased accuracy of the
results. But none of the above references are applica-
ble to the multibody CAE models that are the subject
of this paper. In all the formulations presented, the
explicit expression of the algebraic-differential equa-
tions defining the dynamical system is required. This
is not always possible in complex multibody models
that include non-linear effects of structural behaviour
analysed with finite element techniques.

Alternately, when the aim of the model of a system is
not state estimation, but instead simply the simulation
of the real system for its development, analysis, opti-
mization, or implementation of control techniques [27],
the use of computer aided engineering (CAE) is com-
mon. The use of specific software in the various fields of
engineering allows the real systems to bemodelled with
ease and flexibility, which involves the creation of mod-
els more complete and faithful to the real system. The
models generated by the computer-aided engineering
software are called CAE models [28–30].

Multibody systems is an example ofCAEmodels use.
Geometric, kinematic, dynamic, and generally non-
linear relationships exist between numerous rigid and
flexible interacting bodies in time and space, resulting
in large linear and angular displacements that become
extremely complex [31–34]. In fact, they require the
development of specific techniques to mathematically
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solving the equations generated to simulate the system
[35–37].

Because of this complexity in modelling and analy-
sing multibody systems, CAE has been applied to the
dynamics ofmultibody systems, resulting in software of
dynamic simulation of multibody systems or software
simulation ofmultibody systems (multibodyDynamics
simulation, MBD simulation, or multibody Simulation,
MBS), such as MSC.Adams R©, CarSim R©, RecurDyn R©,
SimMechanics R© or SIMPACK R©. Complex multibody
systems can be easily modelled in CAE, including the
use ofCAD tools for geometry and FEA (Finite Element
Analysis) [38–40] tools for flexible bodies and control
systems [41–46]. These models are parameterized and
can be intuitively modified. After the model simulation
is performed by an internal solver, CAE tools offer pow-
erful ways to analyse the system, not only via 2D and 3D
graphics but also by design and parameter optimiza-
tion, parameter identification, vibration analysis and
material fatigue, among others.

Given the advantages of multibody CAEmodels ver-
sus mathematical ones in creating, modifying, simulat-
ing and analysing a system, it seems interesting to apply
the techniques of state estimation to multibody CAE
models. However, despite the interest in the estimated
states and the advantages of multibody CAE models,
there is still only one bibliographic reference of the
combination of the two [47], where a particular case of
use of this combination of techniques is shown.

However, the CAE models are not always properly
defined. In these cases, it is necessary to correct the
simulation to compensate for the model error. This
limitation in the model definition can be corrected by
applying estimation techniques. The problem is that
the CAE software does not make the set of algebraic-
differential equations of the model explicitly available.
The availability of this set of equations is necessary for
the application of the state estimation techniques men-
tioned above. Therefore, this paper proposes a method
that allows the application of state variable simula-
tion strategies in CAE models where the equations are
not explicitly available, but the system response can
be known by performing a parallel simulation in the
estimation/correction stages.

The main contribution of this work is the presenta-
tion of a methodology for improving the accuracy of
poorly defined multibody CAE model simulation. This
methodology is based on state estimation strategies.

The remaining of the paper is structured as follows.
Section 2 presents the proposed methodology for CAE
models in similarity to those based on explicit mathe-
maticalmodels. In section 3 it is applied to a very simple
CAE model, but which allows to see the applicability
and potential of the proposed methodology. Section 4
presents the results obtained and discusses their appli-
cability. The conclusions of the work are presented in
section 5.

2. Methodology

Dynamical systems are defined by their state vari-
ables (�x(t)). Some of these state variables are imposed
by external systems and make the system change, i.e.
the inputs (�u(t)). Other state variables are observable,
measured or have influence on external systems, show-
ing how the system changes and propagates its conse-
quences, i.e. the outputs (�z(t)). States can be obtained
only by simulating the system: modeling it in a labora-
tory (keeping the measured states), elaborating a math-
ematical model and solving the equations, or using any
type of special simulation tool (such as CAE software).

In the case of mathematical models, the relation-
ships among variables are expressed in mathematical
language. For a dynamical system in the continuous
time domain, the model usually consists of a system of
algebraic-differential equations. As shown in Figure 1a,
the generic function �f calculates the state variables and
their derivatives from themselves and from input vari-
ables at each integration step in the continuous time
domain. Once the system is solved and the system state
is found, the generic function �h allows the values of
the output variables to be calculated from the state
variables.

Normally, the outputs obtained from this simulation
(̃�z(t),∼ denotes simulation) are not exactly the same as
the outputs measured from the real system (�z(t)), lead-
ing to a simulation error (̃�y(t) = �z(t) − �̃z(t)). This is
just because the model does not represent every prop-
erty of the real system. The value obtained in the sim-
ulation for the state variables will not coincide with its
real value �x(t), although this latter one is not known.

The state estimation is a process that takes input
variables and output ones measured in the real system
and, based on the system model and the state observer,
obtains the estimate of output (̂�z(t)) and state vari-
ables (̂�x(t)). In this manner, if the state estimation is
successful, the output variable values of the simulation
approach or converge to the values of the same output
variables measured in the real system. This means that
the simulation has been corrected and that the values
obtained from the state variables are good estimates of
their real values. State observers, such as mathematical
algorithms, are designed for use onmathematical mod-
els, so the model formulation is “accessible”, that is, the
original differential equation Equation (1) can be mod-
ified to integrate this algorithm, called the observer.
Thus, the resulting correction from applying the state
observer on the residual of the measure is included in
the equation system by multiplying it by a calculated
gain, for example, according to the Extended Kalman
Filter, Equation (2).

˙̃�x(t) = �f (̃�x(t), �u(t)) (1)

˙̂�x(t) = �f (̂�x(t), �u(t)) + KKalman(t) · �̃y(t) (2)
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Figure 1. (a) Mathematical model simulation of a real system. (b) State observer overview.

In the simulation of a multibody CAE model, equa-
tions do not exist explicitly. The calculation of state
variables and their derivatives, as well as output vari-
ables, is performed from input variables imposed on the
model. As in its application inmathematical modelling,
the state estimation of multibody CAE models should
also act on the calculation of the state variables to try
to converge the output variables calculated from them
with the same output variablesmeasured in the real sys-
tem. In a CAEmodel, it is not possible to act directly on
a state variable, only on the inputs, since the first ones
are only calculated depending on the system dynam-
ics, and they must be consistent with each other. In the
case of a multibody system, the position and velocity of
a body, for example, should be dynamically consistent,
the second one being the temporal derivative of the first
one, according to Eq (3).

ṡ(t) = v(t) (3)

ṡ(t) �= v(t) + KKalman(t) · �̃y(t) (4)

The calculation of one of the two is acted on because
it is treated as an input system, and this restricts one
degree of freedom. Unlike state estimation on a mathe-
matical model, in a CAEmodel, the dynamic coherence
must be maintained so that the derivative of the posi-
tion cannot be calculated as the velocity plus another
component, as Equation (4) shows for the particular
Extended Kalman Filter case.

In a CAE model, the only way to act on the cal-
culation of state variables is, as explained above, by
system excitation. Because this excitation is not actu-
ally present in the system, it is called virtual excitation.
This virtual excitation must act on the system in the
sense of minimizing the residual of the measurement,
so it is controlled by feedback of this residual. The vec-
tor variable that designates the set of virtual excitations
is denoted by �υ. The system dynamics that determine
the influence of virtual excitations on state variables is
denoted by the function �ω. Figure 2a shows the diagram
of proposed state estimation on the model analogously
to the diagram presented for the state estimation on
the mathematical model in Figure 1b. Note that, in this
case, the proposed state observer does not act, adding
its result to the calculation of the state variables on the
model denoted by �f , but it is used for the calculation
of the virtual excitations �υ, which act on the model (�f )
through its own dynamics �ω. Thus, the effect of virtual
excitations is already included in the calculation of the
balance in each integration step for determination of
the state variables.

However, in the case of multibody CAE models,
equations denoted by vector functions �f , �h, and �ω, as
shown in Figure 2a, do not explicitly exist. For this rea-
son, Figure 2b shows with more accuracy the process
of state estimation in multibody CAE models, partic-
ularly for a vehicle model. It is interesting to note that
the calculations of the measurement residual and state

Figure 2. Proposed state estimation on CAE model as applied on mathematical model (a) and multibody CAE model.



AUTOMATIKA 19

observer, which calculates the virtual excitations, are
included within the dashed-line rectangle since these
calculations are done simultaneously to calculate the
balance in each integration step, thus affecting the val-
ues of the state variables such that the residual mea-
surement is minimized. Consequently, the CAE model
must take the output variables measured in the real
system, including the calculation of the measurement
residual and the virtual excitations from this residual
based on the state observer algorithm, and finally apply
the virtual excitations on the original model through
the dynamic system.

This virtual excitation should be able to correct the
deviation of the state variables regarding the real sys-
tem in view of the error of model output variables with
respect to the same variables measured in the real sys-
tem. That is, the virtual excitation complements the
erroneous effect from the defect model so that the com-
bination of both effects on the rest of the model is the
correct one. Therefore, the virtual excitation has a phys-
ical meaning of the same nature as the effect that it
tries to correct. On the other hand, the virtual exci-
tation must not remove any degree of freedom of the
system.

By contrast, state estimation on mathematical mod-
els adds to the equations of these an artificial correction
in the sense that it has no physical meaning. Only the
derivative values of the state variables are added. These
values are calculated from the error in the output vari-
ables measured according to an algorithm value that
does not take into account the dynamical system. The
consequence is that the dynamic coherence of the sys-
tem is lost since the equations are altered independently
of this consistency, and thereby variables lose the rela-
tionships the real system should have. In short, the pro-
posed methodology for state estimation in multibody
CAE models, unlike the existing ones in mathemati-
cal models, does not alter the dynamic coherence of the
system because the model is corrected through virtual
excitations with physical meaning.

3. Example of state estimation on a simple
CAEmodel

For easy application of the methodology proposed, the
mechanical system (shown in Figure 3a) is put for-
ward. This system consists of a single body (green) of
a certain mass supported by a set spring-damper (red)
that is fixed to the ground such that the body move-
ment is limited to the vertical direction (translational
kinematic restriction, cyan). The body acts on its own
weight (due to the gravity field, blue) and a variable
outer vertical force over time (magenta). In this sys-
tem, the vertical position of the body is measured, i.e.
its height above the floor and this coincides with the
length of the spring-damper. The initial position cor-
responds with the natural length of the spring, without

any elongation or compression. In this simple unidi-
mensional multibody system, the input is, therefore,
the force acting on the body and the measured output
vertical position. The state to be estimated is the force
exerted by the spring-damper assembly.

In this case, as in downstream applications, the
actual (real) system is an MSC.ADAMS R© model that
simulates the input variables, state and output to clearly
explain the methodology obtained.

Assuming the behaviour of the spring-damper, i.e.
the force as a function of the elongation and speed of
its elongation, is known, the calculation of this force
is very simple because it simply measures the position,
calculating its derivative in time and directly apply-
ing the performance curves to determine the resultant
force. In many cases, these behaviours are assumed to
be linear, i.e. the spring exerts force proportional to its
elongation, and the shock absorber (damper) produces
a force proportional to the speed of its displacement.
However, in reality, to precisely know the behaviour of
a spring, above all, a damper is complicated. While you
can performmeasurements on test facilities specifically
designed to determine these behaviours, they vary over
time and under the conditions of use. Thus, suppos-
edly known spring-damper behaviour included in the
model is a possible source of model error, especially if it
is simplified and assumed to be linear. Therefore, a state
estimator is applied here to compensate for the lack
of the real system and possible defects in a simulation
model.

If the force acting on the body is the system input,
it can be theoretically solved by applying Newton’s Sec-
ond Law on the body. The acceleration can be obtained
by deriving twice themeasure of the position to find the
force that makes the entire spring-damper. This is true
in this particular simple case, where the input and out-
put statuses are directly related and the only equation
of the system (one-dimensional system) is well known.
However, this is not possible in a more complex gen-
eral case where the technique presented is applicable.
Consequently, although this is an extremely simple sys-
tem and applying estimation technique states would not
be necessary, it is useful to simply explain the opera-
tion of state estimationmodels of CAE according to the
methodology proposed in this work.

Assume that the real system is initially defined by
the body mass (10 kg), elongation (0.5m) and spring-
damper force curves (Figure 4). Also, suppose that
the force acting on the body follows the function of
Equation (5):

F(t) = 100 · sin(10 · t)[N] (5)

The proposed methodology’s aim is to correct the
simulated dynamical behaviour of a poorly defined
model. In this example, the poorly defined model is
basically the same as that used as a real system. How-
ever, because the behaviour of the spring-damper is
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Figure 3. (a) Mass-spring-damper modelled in MSC.Adams R©. (b) Virtual force acting between the body and the ground.

Figure 4. Force vs deformation behaviour of spring and force vs deformation velocity behaviour of damper: Real system (red) and
poorly defined multibody CAE Model (blue).

not well-known in a real-life problem, as has already
been explained, simplified linear behaviour defined by
Kspring = 500N/m andCdamper = 100N/m is assumed,
which is totally different from the behaviours in the
actual system. In Figure 4, the actual behaviour of
the spring-damper is shown in blue, and the modified
behavior is shown in red.

With this model definition, and maintaining the
same entry as in the real system, the system output, i.e.
the body position, is totally wrong, as shown in Figure 5
(blue line). The vertical speed and acceleration in the
simulation also differ from the actual values since they
are time derivatives of position. Clearly, the force of the
spring-damper calculated by the model is also far from
reality, as shown in Figure 6.

Once the real system and model are defined and
the error of the latter (poorly defined, as indicated) is
demonstrated, it is interesting to apply the proposed

methodology to estimate states with the aim of know-
ing the force exerted by the spring-damper. To estimate
the force of the spring-damper, a virtual force paral-
lel to it as a virtual excitation, i.e. acting on the body
and the floor reaction (Figure 3b), is created. This vir-
tual force compensates the damper-spring error force.
This error is calculated by the model, based on erro-
neous behaviour curves (default model), so that the
displacement body in the model follows the measured
output.

In this particular case, a Proportional–Integral (PI)
observer is performed. The force is calculated using
the algorithm of a PI controller on the residual
of the measurement. The residual of the measure-
ment is the difference between the position of the
body depending on the model ẑ(t) and the measured
position z(t) in reality (from the simulation model
MSC.ADAMS taken as the real system), according to
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Figure 5. Vertical position of the body: Real system (red), poorly defined CAE Model (blue) and modified CAE Model with a virtual
excitation (green).

Figure 6. Force in spring-damper set the CAE system corrected related to the real system.

Equation (6).

υ(t) = Fv(t) = Kp · (z(t) − ẑ(t))

+ Ki
∫ t

0
(z(t) − ẑ(t)) · dt (6)

Where Fv(t) is the virtual force, time varying, z(t)
vertical position of the body, ẑ(t) the estimated value of
the vertical position of the body, andKp , Ki the propor-
tional and integral constants of the PI Observer. Com-
paring the corrected system with the original system, it
is found that the corrected force of the spring-damper is
indeed the sum of the calculated on the corrected plus
the virtual force Equation (7) system strength. That is,
this is the force that sets the behaviour of the spring to
the actual output. Therefore, this force, F̂k−c(t), thusly
calculated is the estimate of the actual force exerted by

the spring-damper.

F̂k−c(t) = F̃k−c

(
ẑ(t), ˙̂z(t)

)
+ Fv(t) (7)

Where ˙̂z(t) represents the estimation of the vertical
velocity of the body and F̃k−c

(
ẑ(t), ˙̂z(t)

)
is the force

exerted by the spring-damper according to the cor-
rected simulation model. Note that the notation F̃k−c
is used to denote that it is calculated by the model,
i.e. the force of the spring-damper calculated from an
erroneous parameter value. However, this calculation is
performed on the corrected system since ẑ(t) and ˙̂z(t)
are themselves corrected.

Thus, the virtual force acquires, over time, the
required value for the solution of the new equation
matching the resolution of the original equation, i.e. so
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that the corrected system output is the same as the orig-
inal system. The value of the virtual force is added to the
force by the spring-damper, with the physical meaning
of the error calculated by the model force.

4. Results and discussion

In practice, the parameters of the PI Observer must be
set until the position of the resulting bodymodel resem-
bles the body’s position in the real system. After a few
iterations, it is reached by trial and error, with the values
Kp = 1.0e5 and Ki = 1.0e4, with no intention of seek-
ing the best, only those that yield a satisfactory result
and demonstrate the operation of state estimation.

With all this, the output variable (vertical position)
can be obtained in the corrected simulation model.
The values effectively converge to the same values mea-
sured in the real system (Figure 5). The error-corrected
output is, in any case, less than 2.5mm over 600mm
maximum height of body, a 0.42% error. The estimated
spring-damper force, calculated as the sum of that
obtained by the model and the virtual force strength,
is similar to the actual force (Figure 6). The error in
the estimation can be fixed in 5 N (although it has, at
some point of instability, reached 10 N) with 440 N on
the actual force. This represents a 1.14% error. Obvi-
ously, the vertical speed and acceleration of the body are
also corrected and consistent with the position between
them.

In conclusion, the force from the spring-damper set
was estimated by correcting the model used in the sim-
ulation thanks to a virtual force. This virtual force is
governed by the difference between the vertical posi-
tion of the body as in the real system and that obtained
in the simulationmodel, and it acts on it in an attempt to
minimize the difference, as stated in Equation (6). Con-
sequently, the model in view of the output variables is
corrected to obtain the correct value of the state variable
in the real system.

The proposed state estimation methodology has a
fully satisfactory operation since the state is estimated
and the behaviour of the model is similar to that of the
real system. The proposed methodology based on state
estimation techniques has been successful since it is
possible to build a multibody CAE model while admit-
ting that some features of reality are unknown, and
through the technique presented, its effect is corrected
for the actual value of the state, making the simulation
results converge with reality.

In the shown example, the operation of the virtual
drive to correct the model globally has been demon-
strated. Not only can the values of states be extracted,
i.e. to estimate them, but it is also possible to extract
the value of any variable system since the entirety is
consistent. In addition, since the virtual drive as a cor-
rection has a physical meaning, it is also possible to
draw conclusions from this variable.

Because the real system is a simulated multibody
CAE model, the value of all variables in the system can
be obtained, which validates the estimation. In this case,
in which there is no measurement noise or uncertainty,
the convergence of the estimation is indisputable.

It should be noted that, although it has raised the
mathematical formulation of the system, i.e. the math-
ematical model, it has only been used to explain the
consequences of errormodel and the virtual drive (exci-
tation) needed. The model used to estimate states only
exists in the environment of multibody dynamic simu-
lation software (MSC.ADAMS R© in this case) and is fed
with the values of the output variables of the real sys-
tem. Although the actual system will also be a model
in the same software (MSC.ADAMS), this fact has no
relevance, and the numerical values could come from
experimentation or other simulationmodels. It is there-
fore not necessary to raise the system equations for the
implementation of state estimation, which is relatively
simple in this case but very complicated in other cases,
as previously explained.

Another important item is the result of the resolution
of the corrected dynamical system, i.e. simulation. It is
not, as in the case of estimating states on mathematical
models, to add an algorithm to the system equations. In
the multibody CAE model corrected, the virtual drive
is an integral part of the model, and the actual system
will play as long as it is fed with the values of the output
variables that are necessary. Accordingly, this spring-
damper system can become an integral part of a larger
system, as one of its subsystems, with the guarantee that
it will work faithfully to reality.

It should also be noted that, in these simple system
states, the proposed estimator uses the only available
output variable, the vertical position of the body. How-
ever, if more outputs, such as speed reading bodywould
not be necessary to use in estimating states to calculate
the virtual force. If the spring force is observable, only
one measurement is required. Extending this result to a
much larger system where the spring-damper is only a
subsystem, it would be necessary to consider the out-
puts from other subsystems or the global system for
estimating states or generating a matrix with zero as
many of its terms. The state observer would remain
one-dimensional, with the same performance and the
same parameters to be set by the designer.

The above two findings mean that the proposed
methodology for estimating states on multibody CAE
models has a modular nature: the corrected system can
be integrated into a larger system while maintaining its
independent functioning from the rest of the system.

However, if separately estimating the component
due to the spring and the shock instead of estimating
the entire force of the spring-damper, the result would
be two unobservable states. Because both forces act
between the same bodies in the same direction, there
are infinite combinations thereof such that their sum,
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combined with the force acting from the outside, are
consistent with body movement.

5. Conclusion

A methodology for the state estimation of multibody
CAEmodels has been presented, one thatmaintains the
conceptual and operational fundamentals of the state
estimation such as it has been raised thus far on math-
ematical models and extends them to these models.

Instead of altering the formulation of the model
by introducing corrections directly in the calculation
equations of states, such as the state observers do
on mathematical (explicit formulation) models, the
methodology presented intends to correct the system
through virtual excitations. These excitations are coher-
ent with the system dynamics and have physical mean-
ing. Due to that, the values of output variables of the
simulation converge to the values of the corresponding
variables measured in the real system.

As in the current state estimation, it is assumed that
if the output variables calculated on themodel converge
with the values measured in reality, then the corre-
sponding values of the state variables calculated on the
model are good estimates of their real values.

This methodology avoids the explicit modelling
approach using mathematical language. It uses the
power and flexibility of computer-aided engineering
software. This work allows conservation of cost and
time.

One important advantage is that the proposed state
estimation is modular, and its complexity is practically
independent of the model complexity. The proposed
methodology makes use only of those useful variables,
either states or outputs. A consequence of the above is
that the implementation of state estimation barely adds
computational cost to the simulation model.

Additionally the state observer acquires a physical
meaning for the system. Another advantage is that it
is possible to correct various errors in the model inde-
pendently if they are not connected to each other or
correct all of them at the same time if there is an
interrelationship.

As a disadvantage, the designer of state estimation
needs detailed knowledge and understanding of the real
system and the model to be able to implement this
methodology successfully. It is necessary to analyse the
potential errors of the model and their effects on the
system, similar to the relationships among system vari-
ables, to introduce the appropriate correction from the
right measures of the real system. In this case, it is not
sufficient to apply the mathematical algorithm of the
state observer on the system of equations; moreover, an
analytical understanding of the work is required.

The model faithfully represents the topology of the
real multibody system; however, the model is defective
because of the dynamic parameters of the real system,

such as the behaviour of a shock absorber or a tire.
This reproduces the existing problem when modelling
multibody systems. It is easy to measure the geometry
of the real system and reproduce it in the model (even
using CAD tools). Nevertheless, it is very complex and
expensive (even impossible) to measure certain param-
eters of the real system and their evolution over time,
including the conditions of use and their historical data.
The methodology presented here extends the state esti-
mation to multibody CAE models with the intent to
correct this disadvantage.
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