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Abstract: With the rapid development of cloud computing and network technologies, large-scale
remote sensing data collection tasks are receiving more interest from individuals and small and
medium-sized enterprises. Large-scale remote sensing data collection has its challenges, including
less available node resources, short collection time, and lower collection efficiency. Moreover, public
remote data sources have restrictions on user settings, such as access to IP, frequency, and band-
width. In order to satisfy users’ demand for accessing public remote sensing data collection nodes
and effectively increase the data collection speed, this paper proposes a TSCD-TSA dynamic task
scheduling algorithm that combines the BP neural network prediction algorithm with PSO-based
task scheduling algorithms. Comparative experiments were carried out using the proposed task
scheduling algorithms on an acquisition task using data from Sentinel2. The experimental results
show that the MAX-MAX-PSO dynamic task scheduling algorithm has a smaller fitness value and a
faster convergence speed.

Keywords: remote sensing data; big data acquisition; task scheduling; PSO; CloudSim

1. Introduction

In recent years, with the rapid advancement of satellite remote sensing technology, the
number of satellites launched by various countries across the world has been increasing
year by year [1]. Low- and medium-resolution satellites used for ocean, atmosphere,
environment, social welfare, and scientific research form a large proportion among them
at the regional to global scale [2]. Research on massive remote sensing images utilizing
deep learning models plays a significant part in urban planning [3,4], environmental
observations [5,6], and energy development [7], especially with the recent increasing
interest. The collection of data is time-consuming, labor-intensive, and difficult. The
amount of data is undergoing explosive growth and increasing at a petabyte level. Taking
the Landsat 8 OLI/TIRS Level-2 data type in the United States Geological Survey (USGS) [8]
as an example, the China region alone generated about 1500 remote sensing data products
per month, each with a data capacity of 2G, in 2019. Remote sensing technology has
been unprecedentedly improved in terms of data acquisition capabilities and information
service capabilities. In order to realize the sharing service of satellite remote sensing
data, the National Aeronautics and Space Administration (NASA) [9] and European Space
Agency (ESA) [10] have established remote sensing data-sharing portals for the above
public satellites and provide each registered user with equal access to remote sensing
data. Therefore, these data-sharing portals have gradually become a popular data source
of large amounts of acquired remote sensing data for individuals, small, medium, and
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micro enterprises, and scientific research institutions. Although these data-sharing portals
provide each registered user with an equal opportunity to obtain remote sensing data, the
limitations on the access to IP, frequency, and bandwidth are becoming challenges in the
large-scale acquisition of remote sensing data for users. Google Earth Engine (GEE) is a
very useful resource for large-scale remote sensing data applications [11,12]. Although it is
free for research projects, it is limited in capacity for data export. It is also not suitable for
uploading private datasets to GEE for processing [13]. GEE cannot satisfy large-scale remote
sensing scientific research. Many remote sensing research activities, including remote
sensing observations and data assimilation for Earth system models, are not supported by
GEE. The rapid development of cloud technologies [14] can be used for processing and
integrating large-scale, heterogeneous resources, which provides further opportunities for
large-scale massive remote sensing data acquisition.

Early work on task scheduling with parallel computing was conducted by Sarkar in
1989 [15]. Task scheduling has always been a hot research topic in project production and
scientific research, and it is also a major research area of interest to researchers. This type of
problem is ultimately a non-deterministic polynomial problem (NP) for task scheduling.
Generally, task scheduling algorithms consist of traditional task scheduling and meta-
heuristic algorithms [16]. Traditional task scheduling algorithms include First Come First
Serve (FCFS) [17], Shortest Job First (SJF) [17], Max-Min [18], Min-Min [19], and polling
scheduling [20,21]. Maheswaran et al. [22] modified standard heuristics for task assignment
in predictable environments. Meta-heuristic task scheduling algorithms include Particle
Swarm Optimization (PSO) [23,24], a genetic algorithm (GA) [25], an ant algorithm [26],
BP algorithms [27,28], and an adaptive meta-heuristic-based method [29]. Recently, some
studies have focused on improved hybrid algorithms based on the above-mentioned
algorithms. Elmougy et al. [30] proposed a novel hybrid algorithm that combines SJF and
Round Robin (RR) schedulers considering a dynamic variable task quantum. Manasrah
and Ali [31] proposed a hybrid GA-PSO algorithm to reduce the makespan and balance the
load of dependent tasks over heterogeneous resources. Choudhary et al. [32] proposed an
efficient hybrid algorithm combining the gravitational search algorithm and heterogeneous
earliest finish time algorithm.

With the significantly increasingly large amounts of data produced by satellites, more
studies have been conducted to address the challenges in remote sensing big data stor-
age [33,34] and the efficient and scalable processing of remotely sensed data [1,35–37]. PSO
is widely used for different remote task scheduling research. An et al. [38] used PSO in task
scheduling for unmanned aerial vehicle (UAV) swarm remote sensing in distributed photo-
voltaic array maintenance. Wu et al. [39] proposed a hybrid algorithm of PSO and a genetic
algorithm to improve the dynamic regional splitting planning of a remote sensing satellite
swarm. There is a growing need to develop an effective multi-objective scheduling frame-
work that jointly minimizes the task cost, task energy consumption, and execution time.
Alkayal et al. [40] developed a multi-objective PSO algorithm to minimize the waiting time
and maximize the system throughput. Gabi et al. [41] proposed a multi-objective Quality-
of-Service model to address customers’ expectations based on execution time and execution
cost criteria. Xing et al. [42] proposed a comprehensive multi-objective model to solve a task
scheduling sub-problem by using the Bayes belief model and learnable ant colony optimiza-
tion. Chen et al. [43] used an evolutionary computation scheduling method for satellite
periodic continuous observation task scheduling, and several constraints were considered
for the satellite working pattern. In a recent study by Sun et al. [44], an energy-efficient
solution for multi-objective task scheduling for the cloud implementation of hyperspectral
image classification was proposed. However, only execution time and energy consumption
were taken into consideration.

With the emergence of new types of Internet of Things (IoT) devices, the performance
service requirements for the network have increased. In addition to the traditional way
of using upgraded network bandwidth to avoid network congestion, it can also predict
the available performance level of the network by analyzing historical service data so as
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to select network resources and make adjustments according to actual conditions. Based
on the historical data of the network transmission of nodes, it is found that there are
relatively few methods to study the law of the network transmission of nodes. Especially
in the field of remote sensing data collection, there is little relevant research on predicting
the collection speed of each node, guiding dynamic task scheduling, and improving the
resource utilization of nodes. This paper mainly studies network-intensive task scheduling.
The research on network data transmission problems is mostly aimed at the transmission
of a large amount of task data or the higher requirements for network transmission data. In
order to reduce the impact of Coflow Completion Time (CCT) on applications in the data
parallel framework, in 2018, Yangming Zhao [45] changed the practice of pre-setting coflow
composing flow endpoints in traditional research work and proposed a joint online Reducer
Placement and Coflow bandwidth scheduling framework to minimize the average CCT in
the cloud cluster. In 2019, Duggan et al. [46] used the recurrent neural network sequence
prediction algorithm to realize the prediction of the central processing unit (CPU) utilization
and network bandwidth utilization of real-time migration in the cloud environment. In
order to monitor the network traffic of the network data center, network utilization must
be improved. The conventional approach is to modify the hardware or terminal host
to increase monitoring resources, but this will increase monitoring overhead and is not
conducive to long-term development. Chao et al. [47] proposed a fast, low-overhead image
flow monitoring and scheduling system called FlowSeer for data flow mining. The model
can accurately and quickly predict the speed and duration of any initial data flow and meet
the needs of the dynamic adjustment of data flow-routing strategies.

Many research methods on network performance prediction and network-intensive
task scheduling are discussed above, but most of these methods aim to improve the internal
execution efficiency of the network, avoid data collisions by scheduling time slots, and
achieve the purpose of reducing the network data delay. In order to improve the resource
utilization of the collection nodes of remote sensing data collection users and effectively
improve the collection speed of a large amount of remote sensing data, this paper uses
the backpropagation (BP) neural network algorithm to predict the collection speed of the
remote sensing data collection node. The dataset used in this work was obtained from
Sentinel2, and the selected area is the whole China Region in 2019 [10]. According to the
difference in the speed of the collection task performed by each node at different times, a
two-stage combined dynamic task scheduling algorithm (TSCD-TSA) is proposed to match
the task set and the resource node set, making dynamic adjustments to achieve the aim of
improving the utilization of resource node sets. Comparative experiments were designed
to evaluate the performance of applying different improved dynamic task scheduling
algorithms, including FCFS-PSO, SJF-PSO, MAX-MAX-PSO, and PSO. In order to evaluate
the effectiveness of the proposed optimized task scheduling algorithms, the CloudSim
platform was used to evaluate the algorithms. The execution results of different task sets
were analyzed.

The rest of this paper is organized as follows: In Section 2, methods for task scheduling
and our proposed optimized task scheduling algorithms are introduced. In Section 3,
the experiment design to compare the performance of the different proposed optimized
task scheduling algorithms is described, and the experimental results are presented and
discussed. Finally, the conclusion is drawn in Section 4.

2. Methods

Given the massive amount of public remote sensing data collected using limited
resource nodes, this paper is mainly focused on studying the large-scale public remote
sensing matching problem between data collection tasks and collection nodes. First, a
model of multi-objective task scheduling is proposed with the consideration of time limit
constraints, energy consumption constraints, cost constraints, and the task scheduling
objective function. Then, an improved multi-objective PSO optimization algorithm is pro-
posed to further improve the allocation efficiency. Finally, multiple groups of simulations
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for comparative experiments were designed to compare the task execution time, energy
consumption, and cost of various allocation schemes under various task scheduling.

The task scheduling architecture for conducting public remote sensing data collection
is shown in Figure 1. A web crawler is used to obtain remote sensing data task Uniform
Resource Locators (URLs) in batches from public remote sensing data sources and add
them to the task pool. The scheduler selects a task set of an appropriate size from the
task pool to match the execution resource set and outputs the corresponding scheduling
scheme. Each executor selects related tasks for execution in strict accordance with the
respective task sequence in the scheduler’s output task scheduling plan, and the prediction
module predicts the future execution speed based on the historical execution records of
each executor. The scheduler dynamically adjusts the current task scheduling scheme
according to the prediction results of the prediction module and the task execution of each
actuator (it only reassigns the tasks that have not been executed in the task set; the tasks
that have been executed in the task set are not within the scope of rescheduling). For tasks
completed by each actuator, for example, the quality of remote sensing data collected by
each actuator needs to be verified. Qualified data will then be entered into the storage
center, while unqualified tasks need to be re-collected.

Figure 1. Task scheduling architecture diagram.

According to the scheduling architecture of the open remote sensing data acquisition
task in Figure 1, the following assumptions are made during the execution of the task:

• The actuators perform tasks independently and do not interfere with each other.
• The choice of the task set size in the task pool is defined by the user, and the number

of task sets is usually much larger than the tasks being executed. Users can select an
appropriate number of task sets according to the size of each task in the task set and
the execution speed of each actuator so as to avoid some time-limited tasks being in a
waiting state for a long time.

• If the task URL has not been validated, each task URL will only be executed by an
executor and only once; that is, there is no execution conflict in the task.

• In order to speed up the training, the prediction module adopts the strategy of incre-
mental learning of the execution history.
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• The update frequency of the scheduling algorithm in the scheduler is similar to that of
the prediction module. After the prediction module produces new prediction results,
task rescheduling is started immediately.

2.1. Task Scheduling Model
2.1.1. Problem Statement

It is assumed that the task set is T = {t1, t2, . . . , tm} and the node set is
W = {w1, w2, . . . , wn}. Each task in set T is expressed as ti(1 ≤ i ≤ m), and the task
scheduling algorithm will match task ti with node wj(1 ≤ j ≤ n) according to the collection
ability of each collection node in collection node set W. The result of static task scheduling
can be expressed by

{
< t1, w1 >,< t2, w2 >, . . . ,< ti, wj >

}
. Dynamic task scheduling

aims to dynamically adjust the matching sequence of tasks and nodes, of which the sched-
uler dynamically reschedules tasks that have not yet been executed according to the current
task execution speed of each node.

2.1.2. Multi-Objective Optimization Model

Multi-objective optimization, also known as multi-criteria optimization, whose aim
is to optimize multiple sub-objectives at the same time, is considered to be a hot research
topic in the field of mathematics and multi-criteria analysis. When a sub-objective is being
optimized by multiple objectives, it may affect the target performance of other sub-objectives.
Therefore, there is a nonlinear relationship among multiple optimization sub-objectives,
which makes it difficult to optimize multiple sub-objectives at the same time.

According to the Pareto optimal solution principle, when there are multiple opti-
mization objectives in a problem at the same time, there are conflicts and incomparable
phenomena between standards for the multiple sub-objectives. The solution of the problem
may be optimal for one goal, but not for other goals. When solving the objective function of
this type of problem, it will inevitably weaken the solution for other objectives. Therefore,
this principle is called the non-dominated solution or Pareto solution. The solution to this
kind of problem is to convert the corresponding mathematical model to a problem with
multi-objective function solutions. The maximal problem with an m-dimensional decision
vector and n optimization objectives is usually defined as:

Min{F(x) = [ f1(x), f2(x), . . . , fn(x)]} (1)

in which there is a decision space Q and a target space R, and there are m-dimensional decision
variables x = (x1, x2, . . . , xm) ∈ Q and an n-dimensional target vector ( f1, f2, . . . , fn) ∈ R.
The solution process is to map the decision space through the objective function to project
into the target space, that is, Qm → Rn . For the multi-objective task scheduling based on the
time limit, energy consumption, and cost in this work, the problem is transformed into an
optimization problem for these three mutually influencing objectives. The solution to this
problem is a set of Pareto optimal solutions, and a set consisting of each solution represents a
task scheduling scheme.

2.1.3. Multi-Objective Task Scheduling Based on Task Publisher

When the task publisher uses the crowdsourcing model to conduct large-scale public
remote sensing data collection, the collection is released on a crowdsourcing platform. It
is necessary to select different scheduling strategies according to the needs of different
remote sensing data to determine the matching between tasks and nodes. Three task
scheduling strategies, namely, the time limit priority, energy priority, and cost priority, are
common scheduling strategies. Time-limited task scheduling is activated for particularly
urgent task assignments. For normalized task assignments without time requirements,
energy and cost constraint task scheduling can be utilized. Suppose m collection nodes are
P = {P1, P2, . . . Pm }; the resources available for each collection node are represented as
Pi = {Mipsi, Energyi, Costi }, among which Mipsi represents the execution speed of node
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i in node set W for a certain type of task, Energyi represents the energy consumption of
node i per unit time, and Costi represents the cost of executing unit tasks for node i.

The expression B[i][ j] represents the matching relationship between task i(i = 1, 2, . . . , n)
and node j(j = 1, 2, . . . , m), and the assignment of B[i][ j] is shown in Equation (2):

B[i][ j] =
{

0 Task i is not assigned to node j
1 Task i is assigned to node j

(2)

In Equation (2), the expression B[i][ j] represents the task execution matrix and is
defined in Equation (3):

B =

B[1][1]
...

B[n][1]

· · ·
. . .
· · ·

B[1][m]
...

B[n][m]

 (3)

In Equation (3), each row represents a collection task, and each column represents
a node resource. When ∑m

j=1 B[i][ j] = 1, it indicates that a task can only be assigned to
one node.

Considering the large amount of public remote sensing data, the large data capacity,
and the different execution speeds of different collection nodes for different types of tasks,
the execution time of each task is determined by the length of the task assigned to the
node and the execution speed of the node. For task set T = {t1, t2, . . . , tn}, the purpose
of dynamic task scheduling in this paper is to find an optimal task scheduling scheme
to assign all tasks to the corresponding collection nodes in order to make the total task
completion time the shortest. Since the execution speed of different tasks on the node is
different, the execution speed of the task on the node can be represented using the execution
time matrix in Equation (4):

ExecuteTime =


Time11
Time21

...
Timen1

Time12
Time22

...
Timen2

· · ·
· · ·
. . .
· · ·

Time1m
Time2m

...
Timenm

 (4)

In Equation (4), the symbol Timeij(1 ≤ i ≤ n, 1 ≤ j ≤ m) represents the execution time
of task i on node j, and its calculation equation can be expressed in Equation (5):

Timeij =
Lengthi
Mipsj

(5)

The symbol Lengthi represents the task length of task i, and Mipsj represents the
execution speed of collection node j.

When all tasks are distributed and executed, the tasks are executed independently and
in parallel on each node. Therefore, the total execution time of the task set is expressed as (6):

SumTime = max{
n

∑
i=1

B[i][ j]× Time[i, j](1 ≤ j ≤ m)} (6)

When all tasks in task set T have been executed, if all nodes obtain tasks at the same
time, and the total task execution time is determined by the node with the slowest execution
speed, the optimization goal of task scheduling is to find an optimal task allocation scheme
to minimize SumTime.

Due to the differences in the machine configuration of each task execution node, there
must be a difference in the energy consumption per unit time when the task is executed. It
is known that the power of hardware such as motherboards, processors, graphics cards,
hard drives, memory, and monitors is the main factor affecting the energy consumption of
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the machine. The total power is the sum of the power of the above hardware. Therefore,
when the task scheduling of energy consumption constraints is carried out in this paper,
each node is used for a period of time. The energy consumption of running tasks is used
as an index to evaluate the energy consumption of each execution node. The total energy
consumption of node set P to complete task set T can be expressed as:

SumEnergy =
m

∑
j=1

n

∑
i=1

B[i][j]× Energy[i][j] (7)

in which Energy[i][j] = Energyj × Time[i][j], and it represents energy consumption for the
total execution time of task set Tj on node set Pj. Energyj represents the energy consumption
on node Pj in unit time, that is, the total power of the node. Time[i][j] represents the task
execution time of Tj on node Pj. The task scheduling of energy consumption constraints
aims to find a set of optimal task allocation schemes to minimize SumEnergy.

Since each node participating in the collection of public remote sensing data is obtained
through crowdsourcing, the task initiator needs to pay remuneration to crowdsourcing
users. According to the different abilities of each node to perform tasks, the unit task cost
obtained is different. The total cost of the task publisher using node resource set P to
complete a batch of tasks T can be expressed as:

SumCost =
m

∑
j=1

n

∑
i=1

B[i][j]× Cost[i][j] (8)

In the equation above, Cost[i][j] = Costj × count represents the total cost of executing
task set Tj on node set Pj, where Costj represents the unit task cost of node Pj, and count
represents the number of tasks allocated to node Pj. The task scheduling of bundles aims to
find a set of optimal task assignments that minimize SumCost.

From the task issuer’s perspective, in this work, when carrying out multi-objective
task scheduling of the time limit, energy consumption, and cost, the goal of task scheduling
is to map the task set to the appropriate collection node so as to achieve the purpose of
realizing the lowest energy consumption and lowest cost. Therefore, the task scheduling
objective function can be expressed as:

Min(SumTime, SumEnergy, SumCost) (9)

SumTime represents the total task execution time, SumEnergy represents the total
energy consumption of the task, and SumCost indicates the total cost of the task.

2.2. PSO Optimization Algorithm and PSO-BP Algorithm
Improved PSO Optimization Algorithm

In order to solve the problem of slow particle optimization speed when the traditional
PSO optimization algorithm uses the random initialization of particles, this paper proposes
the use of the FCFS, SJF, and MAX_MAX (maximum resources required allocated to maxi-
mum capacity) algorithms to initialize the particles, which changes the traditional random
initialization method. The specific method is to first use the FCFS, SJF, and MAX_MAX
algorithms to perform task scheduling ahead of the PSO optimization algorithm and then
execute the PSO optimization algorithm based on the scheduling results.

The pseudo-code of the improved PSO optimization algorithm (Algorithm 1) is
as follows:
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Algorithm 1: Using FCFS algorithm, SJF algorithm, or MAX_MAX algorithm to initialize the
particle population.

DO
FOR Particle i

Use Equation (10) to calculate the fitness value of the particle
IF The fitness value of the particle at the current position is better than the historical best

value of the local particle
Update the local best individual with the current particles

END
IF The current local particle is better than the global best particle of the population

Update the global particles with the current local particle fitness value
FOR Particle i

Update the position and velocity of particles according to Formula (12)
END

WHILE Achieve the maximum number of iterations

The advantage of using the above-mentioned improved PSO optimization algorithm
is that after applying FCFS, SJF, and MAX_MAX algorithm scheduling, it optimizes the
scheduling results of the PSO algorithm, which can speed up the optimization of the entire
algorithm. Among them, the fitness function can be expressed as Fitness:

Fitness = α·Makespanposition + (1 − α)·Makespanposition (10)

In Equation (10), the expression Makespanposition represents the total task completion
time of the particles under the current allocation plan, which can be expressed as follows:

Makespanposition= Max(p1, p2, . . . , pm) (11){
vk+1

i = w·vk
i + c1r1

[
pi − xk

i ] + c2r2[ pg − xk
i ]

xk+1
i = xk

i + vk
i , i = 1, 2, . . . , N

(12)

The position and velocity of particles in the PSO algorithm are updated using
Equation (12). The current iteration number of the particle is represented by k, and the
inertia weight coefficient is represented by w. The larger the value of the inertia weight, the
stronger the global search ability of the particle; otherwise, the stronger the local search
ability. c1 and c2 are learning factors. c1 describes whether the particle is affected by the
individual extreme value, and it enables the particle to have a global search ability to avoid
falling into a local solution. c2 represents whether the particle is affected by the global
extreme value. r1 and r2 are random numbers in the range (0,1). w, c1, and c2 jointly deter-
mine the space-searching ability of the particle. The position of the optimal fitness value
calculated by the particle in the iterative process is represented by the individual extreme
value, which is expressed as pi = (pi1, pi2, . . . , piD), i = 1, 2, · · · , N. The position of the
optimal fitness calculated by all particles in the population during the iteration process is
represented by the global extreme, which is expressed as pg = (pg1, pg2, . . . , pgD).

2.3. TSCD-TSA Dynamic Task Scheduling Algorithm

Taking into account the differences in the network performance of each task execution
node, it has different speeds when performing public remote sensing data collection tasks.
In order to realize the prediction of the execution speed of each node task and to provide the
basis for the node task execution ability for dynamic task scheduling, TSCD-TSA, combining
a node network transmission speed prediction algorithm and a task scheduling algorithm,
is proposed. The principle of TSCD-TSA is as follows: Firstly, the BP neural network
algorithm is used to assist the timer in dynamically predicting the network transmission
capacity of the node, and then the prediction results are used in the dynamic FCFS_PSO
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algorithm, dynamic SJF_PSO, dynamic MAX_MAX_PSO, and dynamic PSO algorithms to
achieve dynamic task scheduling.

The TSCD-TSA dynamic task scheduling algorithm has the following rules dur-
ing execution:

• The update frequency of the BP neural network algorithm and dynamic task schedul-
ing algorithm needs to be consistent.

• The BP neural network algorithm is used to adopt a data incremental prediction
strategy when predicting; that is, the training data of the algorithm are always taken
from the dataset within the most recent period of time to avoid the excessively long
training time of the algorithm when the historical collection of data of the node is
too large.

• When the dynamic task scheduling algorithm is executed, the scheduling result is
updated, and tasks are only reallocated if they have been allocated but the node has
not yet started execution. (That is, the result of dynamic task scheduling is the dynamic
reallocation of those tasks that have been pre-allocated but not executed.)

3. Experiment and Results Analysis
3.1. Experimental Environment

CloudSim is a cloud simulation platform launched in 2009 by the University of Mel-
bourne’s GRIDS Laboratory [48]. The initial goal of the platform design is to provide a
cloud computing platform. Only simulation can complete the control and use of cloud
computing service resources, which is convenient for users aiming to complete the deploy-
ment of related services and strategies. It is an open-source project developed using the
JAVA language. It can run on multiple operating systems, such as Windows and Linux,
and users can change its source code or add related functions according to their needs. The
platform not only provides the definition of infrastructure in cloud computing but also
provides a simulation interface for resource management and task scheduling in cloud
computing. The simulation platform mainly has the following core classes: Cloudlet,
DataCenter, DataCenterBroker, Host, VirtualMachine, VMScheduler, VMCharacteristics,
VMMAllocationPolicy, and VMProvisioner, and the framework provides good interface
extension services that can meet task scheduling needs. The version of CloudSim used in
this work is 3.0.3. A number of scheduling algorithm classes have been developed under
the original framework, including FCFS-PSO, SJF-PSO, Max-Max-PSO, and PSO.

3.2. Simulation Experiment

The Sentinel2 acquisition task was used to realize the simulation algorithm experiment
of dynamic task scheduling. The task set was taken from one of the four resource nodes,
and detailed information about task length and task execution nodes is shown in Table 1.
The download power is the average download speed of the node performing this type
of task over a period of time. The energy consumption per unit time represents the total
power of the node when performing tasks, and the unit task cost represents the node’s cost
for this type of task.

Table 1. List of node resources.

Node Number Download Power (kB/s) Energy Consumption
per Unit Time (wh)

Unit Task Cost
(CNY)

1 2914.7 300 2
2 5049.45 330 4
3 4028.56 320 3
4 1531.6 285 1

In order to compare the task performance under different algorithms, FCFS-PSO,
SJF-PSO, MAX-MAX-PSO, and PSO were each implemented. The maximum iteration
number of each algorithm is 500, the number of particles is 20, the number of tasks is 50,
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100, and 150, and the number of task nodes is 4. The node network transmission capacity
prediction module adopts the BP neural network algorithm, and the update frequency of
the prediction algorithm and the task scheduling algorithm is set as 3 min. Table 2 lists
the total working hours of each node and the number of tasks assigned to each node for
different algorithm scheduling results.

Table 2. Task execution results of different algorithms.

The
Number
of Tasks

Algorithm

Node 1 Node 2 Node 3 Node 4

Time
(min)

The
Number
of Tasks

Time
(min)

The
Number
of Tasks

Time
(min)

The
Number
of tasks

Time
(min)

The
Number
of Tasks

50

FCFS_PSO 3544 14 2254 18 1861 14 5246 4
SJF_PSO 3027 14 1874 17 2426 14 5998 5

MAX_MAX_PSO 3152 14 1935 16 2349 14 5761 6
PSO 3543 13 2253 13 1861 12 5246 12

100

FCFS_PSO 5675 33 3858 31 3663 23 9776 13
SJF_PSO 5691 28 3166 34 4041 26 11,032 12

MAX_MAX_PSO 5586 30 3346 33 4117 22 10,439 15
PSO 5676 24 3858 32 3663 29 9776 15

150

FCFS_PSO 8951 45 6065 54 5805 33 14,807 18
SJF_PSO 8651 44 5128 47 6485 36 16,678 23

MAX_MAX_PSO 8764 37 5174 50 6427 42 16,464 21
PSO 8951 43 6065 50 5805 33 14,807 24

In Table 3, the scheduling results of different algorithms are compared on the
basis of the five indexes of the average task execution time, best fitness value, total
task execution time, total task energy consumption, and total task cost under different
scheduling algorithms.

Table 3. Task execution results of different algorithms.

The
Number of

Tasks
Algorithm

Average Task
Execution

Time (min)

Optimum
Fitness Value

Total Task
Execution

Time (min)

Total Task Energy
Consumption

(Wh)

Total Task Cost
(CNY)

50

FCFS_PSO 258 2766 12,905 3,897,650 146
SJF_PSO 266 2768 13,324 4,012,270 143

MAX_MAX_PSO 264 2657 13,196 3,977,715 140
PSO 258 2757 12,905 3,897,020 126

100

FCFS_PSO 230 4912 22,972 6,933,960 278
SJF_PSO 239 4876 23,930 7,189,320 282

MAX_MAX_PSO 235 4653 23,488 7,072,535 273
PSO 229 5768 22,972 6,934,260 278

150

FCFS_PSO 238 9365 35,629 10,764,345 423
SJF_PSO 246 8397 36,943 11,115,970 407

MAX_MAX_PSO 245 7844 36,830 11,085,500 421
PSO 237 8946 35,628 10,764,345 409

As shown in Figure 2, Node 4, with the weakest download force, had the least number
of tasks assigned but the longest working time. Node 2 and Node 3, with similar differences
in download power, basically maintained the same working time during the execution of
tasks. Nodes with similar download power had little difference in the number of tasks
assigned. Therefore, the download power of nodes is positively correlated with the working
time for executing tasks and the number of tasks assigned.
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Figure 2. The working state of nodes.

Figure 3 shows the optimal fitness value of the particle for different task scheduling
results when the task number is 50, 100, and 150. As can be seen in Figure 3, with the
increase in the number of tasks, the optimal fitness value of the MAX-MAX-PSO algorithm
presents a decreasing trend, which fully indicates that this algorithm is more suitable for
the scheduling of a large number of long tasks.
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Figure 3. Optimal fitness values of different algorithms.

After many experiments and statistical average calculations, Figure 4 presents the
convergence curve of four task scheduling algorithms. It can be seen in Figure 4 that the
MAX-MAX-PSO algorithm always has the fastest convergence speed.

Figure 4. Convergence of different algorithms.
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4. Discussion

Based on the optimization results, MAX-MAX-PSO is the best algorithm, which
has the fastest convergence speed and lowest optimal fitness value compared with the
convergence speed and optimal fitness value of the other proposed algorithms. In order
to make better comparisons between these four different algorithms, the details of the
task execution results are presented in Figure 5, where the total task execution time,
total task energy consumption, total task cost, average task execution time, average
task energy consumption, and average task cost are visualized and compared for three
different task numbers: 50, 100, and 150.

Figure 5. Cont.
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Figure 5. Results of task execution of different algorithms.

As shown in Figure 5, when the number of tasks is the same, no matter which task
scheduling algorithm is used, the total task execution time, the total energy consumption
of the task, and the total cost of the task change very little with the different proposed
algorithms. The values of the PSO algorithm are slightly lower than those of FCFS_PSO,
SJF_PSO, and MAX_MAX_PSO. In addition, under the condition of the same number
of tasks, the average time of the FCFS_PSO algorithm and the PSO algorithm is almost
the same. As the number of tasks increases, the average task time, the average energy
consumption of tasks, and the average cost of tasks show a decreasing trend.

5. Conclusions

This paper first reviews the research on network performance prediction and network-
intensive task scheduling. Due to the limitations of the service capabilities of data sources
and the constraints of data user node collection capabilities, large-scale public remote
sensing data collection has low efficiency and low user collection node utilization. In order
to solve these problems, we propose a task scheduling model for open remote sensing
data acquisition. An improved PSO-BP algorithm is proposed by improving the inertia
weight and learning factor and introducing the dynamic precision adjustment function.
In order to address the challenges in the dynamic task allocation of a large amount of
remote sensing data, especially to improve the resource utilization of the collection nodes
and collection speed, a multi-objective task scheduling model was established. With the
consideration of the difference in the speed of the collection task performed by each node
at different times, the TSCD-TSA dynamic task scheduling algorithm was developed to
improve the traditional PSO optimization algorithm by using FCFS, MAX-MAX, and
SJF algorithms. Comparative simulation experiments of four dynamic task scheduling
algorithms, namely, FCFS-PSO, SJF-PSO, MAX-MAX-PSO, and PSO, were carried out
on the CloudSim platform with the Sentinel2 acquisition task and the BP neural network
algorithm as the prediction algorithm of the acquisition node network transmission capacity.
The task execution of each node of various task scheduling algorithms was analyzed and
compared, and the fitness value and convergence of various algorithms were analyzed. The
experimental results show that with the increase in the number of tasks, the fitness value
of the MAX-MAX-PSO algorithm presents a decreasing trend, and the convergence speed
is obviously accelerated. In the future, we would like to establish a crowdsourced node
network transmission capacity prediction model and use deep-learning-based algorithms
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to compare with the current algorithms by analyzing the characteristic system of node
network transmission capability.
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