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The Minimum Variance portfolio is subject to varying degrees of stability and robustness. We, there-
fore, propose a theoretical measure of its stability relative to a Marchenko–Pastur derived random
correlation matrix. We demonstrate its practical use on the S&P 400, the S&P 500, the S&P 600
and the Russell 1000. Using historic market data from 2002 to 2021, we perform an optimisation
on the empirical correlation matrix eigenvalue distribution to determine the implied variance ν(t)
for the underlying data-generating process. Through monitoring its change over time �ν(t), we pro-
vide a Stability Measure for the Minimum Variance portfolio and thereby help researchers measure
changes to estimation risk and manage rebalancing regimes.

Keywords: Stability Measure; Minimum Variance portfolio; Modern portfolio theory; Covariance
matrix; Marchenko–Pastur

1. Introduction

The Minimum Variance portfolio is that set of assets that
has the least risk. It is constructed by estimating an asset
return covariance matrix. This is easier than constructing a
Mean Variance portfolio which requires a forecast of mean
returns. We observe that properties of the correlation matrix
eigenvalue distribution can be used to measure the stability
of the Minimum Variance portfolio. We derive an implied
process variance value ν(t) from these properties which can
be monitored over time. It is, in effect, an eigenvalue dis-
tribution derived ‘signal-to-noise’ ratio at time t. We use
the Marchenko–Pastur theorem to separate eigenvalues for
‘signal’ from those for ‘noise’. Focusing on eigenvalues for
the noise we perform a similarity optimisation between the
empirical distribution and the analytic Marchenko–Pastur dis-
tribution. We demonstrate how the result of this optimisation,
ν, can be used as a Minimum Variance portfolio evaluation
tool by observing how it changes over time. This has practical
usage in determining rebalancing decisions.

The Minimum Variance portfolio lies on the Efficient Fron-
tier and was first identified by Haugen and Baker (1991). A
number of academics have subsequently conducted studies
on it (Merton 1980, Chopra and Ziemba 2013). They observe

∗Corresponding author. Email: w.smyth@ulster.ac.uk

that its construction is subject to sampling error. Klein and
Bawa (1976) point out that such estimation risk has impor-
tant considerations for optimal portfolio choice. As a result,
the asset weights are noisy and unstable over time. That said,
it has an important quality that allows us to evaluate its sta-
bility. Unlike the optimal portfolio, its covariance matrix is
the only unknown parameter. The former requires an esti-
mate of the mean of the risky asset returns, which is more
difficult than the estimation of the covariance matrix (Mer-
ton 1980). Although the Minimum Variance portfolio has less
estimation risk, it still has some instability. As such, we argue
that changes in implied process variance ν provide a use-
ful measure of stability over time. Our Stability Measure is
therefore based on the concept of portfolio-specific stationar-
ity, and determined by monitoring the temporal properties of
the signal-to-noise ratio of a portfolio’s empirical correlation
matrix.

The Stability Measure builds on the seminal work of
Marchenko and Pastur (1967). They derived an analytic form
for the probability density function of the eigenvalue distribu-
tion of a random covariance matrix. This is formed from a data
matrix whose elements are independent identically distributed
random variables drawn from a zero-mean process with finite
variance. In the case that the data-generating process has a
unit variance, the covariance and correlation matrices are one
and the same. The Marchenko–Pastur eigenvalue distribution
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is therefore well suited to be used as a basis for the calculation
of ν.

We demonstrate the efficacy of the Stability Measure using
historic market data and the associated empirical correlation
matrix eigenvalue distribution, based on the S&P 400, the
S&P 500, the S&P 600 and the Russell 1000 over the 20-year
period 2002–2021 inclusive. Our results show the evolution of
ν(t) over time �ν(t). They identify periods of, and breaks in,
portfolio-specific stationarity. Our findings have implications
for the efficacy of portfolio management generally. They have
methodological implications for scholars investigating Mod-
ern Portfolio Theory, the Efficient Frontier and the estimation
error. They also have practical relevance and implications for
the management of Minimum Variance index portfolios.

2. Minimum Variance portfolio

The Minimum Variance portfolio, unlike the Mean Variance
portfolio, is estimated without reference to forecast returns. It
amounts to the solution of a constrained optimisation which
can be represented as follows,

min
w

σ 2
p,w = w′Cw (1)

such that

w′1 = 1. (2)

σ 2
p,w represents the variance of portfolio p for a given weights

vector w, and C is the covariance matrix of the N portfolio
components. The Minimum Variance Portfolio is therefore the
portfolio on the efficient frontier which has the lowest possible
risk.

Generating a random covariance matrix consistent with the
Marchenko–Pastur theorem involves populating a data matrix
with a series of independent identically distributed random
variables drawn from a zero-mean random process of finite
variance. By contrast, the daily stock returns which pop-
ulate an empirical data matrix (T time-series observations
for each of N stocks) are not independent (diversification
depends upon this) or identically distributed (the underlying
data generation process is unknown and may not even be
well defined). Additionally, the derivation of the Marchenko–
Pastur theorem incorporates the use of finite fourth-order
moments which may not exist for the kind of fatter-tailed
distributions habitually encountered when dealing with asset
returns. Having said this, financial data matrices generally
have very low signal-to-noise ratios rendering them poten-
tially suitable for comparison with Marchenko–Pastur derived
matrices. Also, through Figure 2(c,d) we demonstrate that
for an appropriate choice of the Marchenko–Pastur quality
parameter q (defined in Section 4), the analytic probability
density function is a good fit for fatter-tailed distributions.
We also note increased instances of the application of this
theory in the financial literature (Laloux et al. 2000, Sharifi
et al. 2004, Bun et al. 2017, Lopez de Prado 2020). However,
our Stability Measure method is the first such approach to use
Marchenko–Pastur in this way in portfolio evaluation.

The analysis of portfolio constituents using the Marchenko
–Pastur approach delivers an asymptotic probability den-
sity function for the eigenvalue distribution of a random
correlation matrix. This property is central in our genera-
tion of a signal-to-noise ratio for empirical stock data. The
Marchenko–Pastur theorem facilitates a threshold separation
between those eigenvalues associated with noise and those
associated with signal. We apply this threshold to empirical
data and focus exclusively on the distribution of eigenval-
ues associated with noise. We then compare the latter discrete
distribution with the analytic Marchenko–Pastur probability
density function using a kernel density fit. The rationale for
this is to minimise the distance between the two using the sum
of squared differences as the distance metric. This amounts to
an optimisation over the Marchenko–Pastur process variance
parameter σ 2 where the distance-minimising value σ 2

opt may
be interpreted as the implied variance of the data-generating
process for the stock components comprising the portfolio.
We use the term implied variance because, as we are optimis-
ing over the M–P process variance parameter σ 2, the optimum
value tells us the equivalent M–P process variance value
which would produce the closest possible theoretical distri-
bution to our empirical distribution. Hence, we can interpret
the optimum value as an implied variance value for the under-
lying data-generating process we have passed to the process.
σ 2

opt is the parameter we refer to as ν.
Our results evaluating �ν(t) show that, during periods of

portfolio stability (which we make think of a period during
which the portfolio-specific data-generating process is sta-
tionary), ν changes in a predictable way. This observation
supports the case for monitoring Minimum Variance portfolio
stability in this way.

3. Estimation errors of the mean and covariance matrix

The literature on estimation errors in the Efficient Frontier is
extensive. In line with our thinking, Rao (1971) suggested
that variance should be minimised to obtain the best unbi-
ased estimators. Modern Portfolio Theory suggests a portfolio
manager can construct an optimal portfolio w from the covari-
ance matrix W and vector α of its expected excess returns. The
stocks in the investment universe are assumed to be station-
ary and Gaussian. The covariance matrix W is estimated from
the historical time series. This makes the matrix noisy. The
optimisation process magnifies this noise. The traditional way
to approach this is to increase the number of observations T
(Ledoit and Wolf 2003).

Gennotte (1986) pointed out that estimation error becomes
more of a problem in the case when distributional properties
are not observable. Bun, Bun et al. (2017) provide further
support for the use of random matrices with an emphasis on
the Marchenko–Pastur theorem. Shepard (2009) argues that
by using factors, N /T is substituted by K/T, where K is the
number eigenvalues. This makes the derived random portfolio
more robust, as K is a lower number than N.

DeMiguel and Nogales (2009) addressed the Minimum
Variance portfolio with a single non-linear solution to reduce
estimation error. This was due to its instability. This resulted



An eigenvalue distribution derived ‘Stability Measure’ 3

in their portfolio weights being more stable than those of the
traditional portfolios. We suggest the Stability Measure could
be used to further investigate this.

It was shown by Ledoit and Wolf (2003) that the covari-
ance matrix of two existing estimators, the sample covariance
matrix and single-index covariance matrix, can be addressed
by shrinkage in the following way,

�shrink = αF + (1 − α)�SCM, 0 ≤ α ≤ 1 (3)

where the convex combination �shrink has a shrinkage target
F and shrinkage estimator �SCM, with α being the shrinkage
intensity.

Statistical methods are required to deal with the large
dimensional datasets now routinely being generated in many
fields including finance. In many studies, the rationale for
using data in matrix form is to explain the joint dynamics of a
collection of N observables. In this paper that dynamic is the
connection between the daily returns of the various stocks that
make up an index portfolio such as the S&P 400, S&P 500,
S&P 600 and Russell 1000. A very natural way to quantify
the similarities between N observables is an N × N correla-
tion matrix. Its eigenvalues and eigenvectors may be used to
represent the most important dynamical modes of the system.
In principal component analysis (PCA), this amounts to those
linear combinations of the original variables with the greatest
variance.

The objective is to estimate the population correlation
matrix whose elements are the correlations between pairs of
observables. In our case, pairs of stocks. The major difficulty
in practice is that this matrix is rarely computable because the
underlying data generation process is unknown and is often
what the study is attempting to determine. Empirically, the
approach used is often to collect a large number T of real-
isations of the process for each of the N observables. For
instance, a large number of daily returns for all the compo-
nents of the S&P 500. For sufficiently large T, it appears
natural to use the sample correlation matrix to estimate the
population correlation matrix. In the case where N � T , it
is well known that the sample correlation matrix E (almost
surely) converges to the population correlation matrix C (Van
der Vaart 2000).

A common measure of estimation risk in high-dimensional
problems such as Minimum Variance portfolio selection for
index portfolios is given by the quotient TrE−1/TrC−1, where
Tr is the matrix trace operator representing the sum of the
elements along the main diagonal and E−1 is the inverse of
E. This quotient takes a value very close to unity when T is
sufficiently large for a given N, i.e. when q = T/N → ∞.
However, when the number of observables N is sufficiently
large relative to T so that q is not large, this relationship
becomes (El Karoui 2010)

TrE−1

TrC−1
= q

q − 1
(4)

which holds for a wide class of processes. As can be seen, the
out-of-sample risk TrE−1 can far exceed the true optimal risk
TrC−1 when q is not very large, diverging as q → 1. So, the
estimation process becomes problematic if T is not very large

compared to N. This is precisely the region of parameter space
that defines many financial matrices. In particular, correlation
matrices for index portfolios. In the case of the S&P 500 for
instance, with N = 500, setting T = 2500 would correspond
to ten years of daily data. At q = 5 this clearly does not satisfy
the requirement that N � T , and yet 10 years of daily data
represents a time period over which it would seem unrealistic
to make assumptions of stationarity.

The first result on the behaviour of sample covariance
matrices in the large dimensional limit came from the seminal
work of Marchenko and Pastur (1967) in which they obtained
a self-consistent equation for the spectrum of E given C as
N → ∞. The influence of the quality ratio q appears explic-
itly. Anderson (1963) showed that in the classical limit T →
∞ and N fixed that the sample eigenvalues converge to the
population eigenvalues, a result recovered by the Marchenko–
Pastur formula in the limit q → ∞. However, when q =
O(1), the same formula shows that all the sample eigenvalues
become noisy estimators of the true (population) counterparts
no matter how large T is. Such a situation is referred to as the
curse of dimensionality. More precisely, the distortion of the
spectrum of E compared to the true one becomes increasingly
pronounced as q → 1+ (see Figure 1(a)). This phenomenon
may be explained by observing that when the sample size T
is very large, each individual coefficient of the covariance
matrix C can be estimated with negligible error (provided
one can assume that C itself does not vary with time (i.e.
the underlying data-generating process is stationary). How-
ever, if N is also large and of the order of T, as is the case
in many situations, the sample estimator E becomes inadmis-
sible (Bun et al. 2017). The large number of noisy variables
creates systematic errors in the computation of the correlation
matrix eigenvalues.

4. The role of the Marchenko–Pastur theorem in
determining portfolio stability

The application of random matrix theory to the study of finan-
cial correlation matrices dates back to Laloux et al. (1999)
and Plerou et al. (1999). Since then, the Marchenko–Pastur
theorem (Marchenko and Pastur 1967) has been used in
several investment and portfolio optimisation studies, includ-
ing: Sharifi et al. (2004), Urama et al. (2017) and Bruno
et al. (2018).

For instance, Bruno et al. (2018) use a Marchenko–Pastur
adjustment to reduce the effect of portfolio similarity between
different fund managers, reducing what they call crowding
by between 14% and 60%. Sharifi et al. (2004) approach the
problem of estimation with specific regard to portfolio sta-
bility. They determine the noise percentage present in the
correlation matrix, C, and propose a technique for filtering C
which takes account of stability more precisely than a stan-
dard cleaning technique. These publications present results
that are consistent with and supportive of our approach. We
are not aware of any studies which implement a rolling mon-
itor for portfolio stability in the high-dimension regime in the
way we have presented in this paper.
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Figure 1. (a) Marchenko–Pastur eigenvalue probability density function for σ 2 = 1 and a range of values of the quality parameter q. (b) as
(a) but for fixed q = 1.5 and a range of values of σ 2.

The Marchenko–Pastur theorem can be expressed as fol-
lows. Let X be a matrix with dimensions T × N whose
elements are observations from a zero-mean random pro-
cess with variance σ 2 < ∞. In all that follows the quotient
q = T/N is an important parameter. In the limit N , T → ∞
such that 1 < q < ∞, matrix

M = 1

T
X ′X (5)

has eigenvalues whose distribution converges to the analytic
Marchenko–Pastur probability density function

p(λ) =
⎧⎨
⎩

q

√
(λ+ − λ) (λ − λ−)

2πλσ 2
, λ ∈ [λ−, λ+]

0, λ /∈ [λ−, λ+]
(6)

where λ± = σ 2(1 ± √
q)2. Figure 1(a) shows the form this

probability density function takes for a variety of values of
q for fixed σ 2 = 1. In the limit that q gets very large, the
eigenvalue distribution gets extremely narrow as shown in
the image indicating a distribution where all eigenvalues are
1. In terms of population dynamics, this is equivalent to the
form of the correlation matrix approaching that of the iden-
tity matrix. Within the context of portfolio analysis, the focus
of this paper, the T × N data matrix for which the correlation
matrix is determined is interpreted as N representing the num-
ber of stocks or portfolio components and T representing the
length of a time series of stock returns. In this study N will
account for the number of components in an index portfolio
such as the S&P 500 and so will be of the order of 500, while
the returns data will be daily returns and so T, the number of
observations or rows in the data matrix, will represent a series
of consecutive trading days.

With reference to Figure 1(a), as we will be operating with
fixed values for N, q is varied by varying T. When we later
deal with actual stock data we will, unless otherwise stated,

be using q = 1.5. Figure 1(b) depicts the effect of altering the
process variance for fixed q = 1.5.

Key to our approach is the need to quantify the simi-
larity between the analytic Marchenko–Pastur pdf and the
discrete distribution of eigenvalues coming from the eigen-
decomposition of an empirical correlation matrix. To that end,
we utilise a Gaussian kernel density fit on the empirical eigen-
value distribution and then measure the distance between this
KDE and the analytic pdf.

Based on our central premise that the Marchenko–Pastur
is a good fit for the distribution of those eigenvalues associ-
ated with noise, distinct from those associated with signal, we
perform an optimisation over the Marchenko–Pastur process
variance parameter σ 2. The value ν = σ 2

opt which maximises
the similarity (equivalently which minimises the distance)
between the analytic pdf and the empirical KDE is the key
parameter in our portfolio stability management proposal.
As we move through time ν can be measured at a suitable
frequency. In this paper, we measure it on a weekly basis.
Portfolio stability is determined by the change that occurs in
ν. We find that portfolio stability is characterised by periods of
time during which weekly relative change in ν occurs within
a well-defined boundary (±5%).

5. Random data (no signal)

In order to provide some context for our analysis we begin
by covering some basic facts and features of the situation.
We start by considering a basic process whereby the T × N
data matrix is populated using TN independent draws from
a known stationary data-generating process such as the stan-
dard normal distribution N(0, 1). Next, we standardise the
empirical data so that each column of the data matrix has
zero mean and unit variance. This will be standard proce-
dure for any empirical data matrix we utilise in this study. The
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Figure 2. Marchenko–Pastur eigenvalue probability density function and Gaussian KDE fit to simulated data for a selection of known
stationary processes and q = 1.5. (a) Gaussian (μ = 0, σ 2 = 1), (b) Uniform (μ = 0, σ 2 = 1), (c) Cauchy (x0 = 0, γ = 1), (d) t-dist (ν = 1).

correlation matrix of this column-standardised matrix is then
determined and eigen-decomposition performed. Where rel-
evant, the Marchenko–Pastur threshold for separating eigen-
values associated with noise from those associated with the
signal is utilised and the kernel density fit is applied to
those eigenvalues (the bulk component) that lie within the
Marchenko–Pastur boundaries for noise. The fit is optimised
by tuning the Marchenko–Pastur process variance parameter
in order to minimise the distance between analytic pdf and
empirical KDE. In the case of random data with no signal such
as in Figures 2 and 3, the optimisation occurs for σ 2

opt = 1.
This is as it should be since we are dealing with purely ran-

dom (no signal) data generated from a stationary zero-mean
parent process of unit variance (in the case of Gaussian and
Uniform generated data). Figure 2 shows the result of hav-
ing generated data (N = 500, T = 750, hence q = 1.5) from
each of four distinct probability distributions: a standard nor-
mal distribution; a uniform distribution of zero mean and unit
variance, a Cauchy distribution centred on zero with λ = 1
and a t-distribution with one degree of freedom. The latter
two are included as examples of distributions with fatter tails

than Gaussian processes. The only difference between Fig-
ures 2 and 3 is that, in Figure 3, q has been increased to q = 5.
The main point to note is that in Figure 2, i.e. for q = 1.5,
the process is shown to be much more agnostic to the source
data-generating process. As we move to Figure 3, and hence
to q = 5, it becomes clear that the process is not appropri-
ate for Cauchy and t-distribution sourced data. This drives the
choice of q when we come to work with market data and it
has the additional convenience that small q makes the calibra-
tion of our stability management system easier. It should be
noted that values of q ≈ 1 will produce erroneous behaviour
but q = 1.5 produces robust results whilst allowing us to avail
of practical design advantages.

Finally, to illustrate what we mean by stationarity, con-
sider the following idealisation. Suppose the underlying data-
generating process is Gaussian N(μ, σ 2). When we refer to
a period of stationarity, we mean that this process remains
the underlying data generating process throughout that period
of time, with fixed μ and fixed σ 2. The outworking of this
scenario is depicted in Figure 13(a). There is clear fluctua-
tion (sampling effect) but the fluctuation is confined within
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Figure 3. As Figure 2 but with q = 5.

a consistent vertical band, indicative of what we interpret as
stationarity and with a bandwidth typical of this particular
situation (N(0, 1) and q = 1.5). Similar effects are shown in
the other frames of Figure 13 for other known distributions.
This is the link between our stability measure and stationar-
ity. Stationarity, or a break in it, is manifesting through the
magnitude of the fluctuation in ν(t). Figure 13(a–d) are exam-
ples of behaviour for defined statistical processes, stationary
over the entire time period. Contrast this with Figure 12(a–
d) for empirical financial data. A more full explanation of the
features of Figures 12 and 13 will be provided in subsequent
sections.

6. Random data (with signal)

In the following section, we apply this procedure to real mar-
ket data and extend the treatment to provide a mechanism for
detecting potential non-stationarity. In order to bridge the con-
ceptual gap between considering data generated by a known
stationary random process, such as we have just considered,

and data that is generated by stock markets, we consider
something of a contrived go-between. Specifically, we gen-
erate a correlation matrix for data containing both noise and
signal. Signal is injected into a percentage of the channels; we
can tune the number of channels containing the signal and the
strength of the signal. The injected signal will be deliberately
weak, in-keeping with the actual market data we consider
subsequently. The purely random component comes from a
standard Gaussian source. Column-wise standardisation takes
place as before to ensure zero mean and unit variance for each
column.

Before presenting results associated with this section, it
is instructive to elaborate on what we mean by injecting a
signal into channels. To generate the signal carrying covari-
ance matrix, we first generate a factor matrix F of dimensions
N × f where f is the number of channels (we may think of
channels as factors) into which we wish to inject the sig-
nal and N is the number of assets (f < N). The columns of
this matrix are populated by random draws from a standard
Gaussian, N(0, 1). From this, we generate a covariance matrix
FF ′ which, by virtue of f < N, will be rank-deficient. Next,
we generate a diagonal matrix of dimensions N × N where
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Figure 4. Empirical correlation matrix eigenvalue distribution for a standard Gaussian data-generating process with signal injected into 10%
of channels.

Figure 5. Marchenko–Pastur eigenvalue probability density function and Gaussian KDE fit to eigenvalues located within the boundaries for
noise λ− < λ < λ+, for the process described in Figure 4.
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Figure 6. As Figure 4 except that signal is injected into 20% of channels.

the main diagonal is populated with random draws from a
Uniform distribution, U(0, 1). Summing these two matrices
produces a full-rank covariance matrix. This is our signal
matrix S. Finally, we add S to a random covariance matrix
Q (the latter is generated in the same way as in the previous
section) as follows

αQ + (1 − α)S (7)

producing a noise-with-signal-embedded covariance matrix
which is passed to our stability monitoring procedure. The
strength of the signal is controlled through α and the number
of channels into which the signal has been injected is deter-
mined by f. To simulate financial data, we use a very weak
signal, setting α = 0.995.

Figure 4 shows the result of applying the KDE to the
discrete eigenvalue distribution of the associated correlation
matrix in the case where the signal has been injected into 10%
of the channels (f is 10% of N). The distribution has the char-
acteristic feature of a bulk of eigenvalues separated from a
series of discrete eigenvalues representing the signal injected
as factors at the outset of the process.

The Marchenko–Pastur probability density function
describes the distribution of eigenvalues associated with noise
and so we will only consider eigenvalues in the main bulk
component. Strictly speaking, we consider only those eigen-
values λ falling below the threshold separating noise and
signal,

λ < λ+ = σ 2
(
1 ± √

q
)2

(8)

We perform the optimisation on this sea of eigenvalues. In
other words, we find ν the optimum value of the Marchenko–
Pastur process variance parameter,

σ 2
opt ≡ ν (9)

The resulting Stability Measure (12) maximises the similar-
ity between the analytic pdf and empirical KDE for the given
value of q. The distance metric we utilise in this study is sim-
ply the sum of squared differences. Figure 5 visualises the
result, showing the fit between the analytic pdf and the empir-
ical KDE. This produces a value ν = 0.675. We interpret this
as a measure of signal to noise in the original data. The lower
this value, the higher the ratio of signal-to-noise in the data. ν

is bounded above by 1 since we are performing an optimisa-
tion relative to pure random noise, generated by a zero-mean
unit variance process. An optimisation resulting in a value
of ν = 1 would be tantamount to observing data which con-
tained no signal and was simply noise. These are the cases we
considered in Figures 2 and 3.

Figure 6 depicts the eigenvalue distribution for a case anal-
ogous to that in Figure 4 with the distinction that noise has
been injected into 20% of the channels. In this case, the
increased levels of signal produced a lower optimum param-
eter value of ν = 0.504. Consistent with higher levels of
signal-to-noise.

We do not attempt to infer much meaning from the abso-
lute value of ν but later we shall see that monitoring the
change in this parameter over time provides valuable insight
into the potential for detecting a stationarity break in the data
generation process. This has implications for any prediction
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Figure 7. Stability measure ν from 2006 to 2021 for a range of market indices with q = 1.5. (a) S&P 400, (b) S&P 500, (c) S&P 600,
(d) Russell 1000.

due to be made on the assumption of stationarity in the data-
generating process. In particular, this has connotations for
portfolio rebalancing, most notably for Minimum Variance
portfolio rebalancing since a correlation matrix, which is the
core component in our analysis, is the only thing required for
the allocation of weights in a Minimum Variance portfolio.

Clearly, any collection of stocks does not become a port-
folio until weights are allocated yet our stability monitoring
utilises the correlation matrix and its eigen-decomposition
without alluding to weights. However, a collection of index
stocks such as those of the S&P 500 are all large-cap stocks
and the correlations between these stocks are carrying infor-
mation about what may be happening in the market of specific
relevance to this genre of stocks. The correlation matrix
formed from S&P 500 stock returns is carrying the stability
flag for large-cap stocks and therefore to some extent, for the
stability of any portfolio constructed from a weighted combi-
nation of these stocks. An efficient frontier can be constructed
by varying the weight allocations and there are, of course,
some famous portfolios such as the maximum Sharpe Ratio
portfolio and the Minimum Variance portfolio.

Our analysis is less concerned with the various features of
this efficient frontier and more concerned with making predic-
tions on how this frontier might experience perturbation over
time, particularly the Minimum Variance point of the effi-
cient frontier. Moreover, it is focused on identifying whether
or not predictions are being made on the basis of data from
both (before and after) sides of a break in stationarity; data
that were generated, at least in part, by a process that is no
longer in place. Our analysis will have maximum efficacy in
the Minimum Variance region of the efficient frontier because
this portfolio is determined by alluding only to correlations.
Hence the stability of this point on the efficient frontier will
be most effectively managed through effective monitoring of
the stability of the correlation matrix which is precisely what
our analysis does.

Furthermore, we would not utilise the S&P 500 correlation
matrix to make stability predictions for an S&P 400 Mini-
mum Variance portfolio. There will inevitably be information
common across both correlation matrices since there will be
changes in the market that will affect both categories of stock
(large cap and small cap), but the correlations between stocks
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Figure 8. Distribution of values of ν for corresponding frames in Figure 7.

Figure 9. Comparison of frames (a) from Figures 7 and 8 corresponding to the S&P 400 index.
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Figure 10. Distribution of values of weekly percentage change in ν for zones identified in Figure 9. (a) Green zone, (b) magenta zone,
(c) orange zone, (d) all other zones.

of a particular genre will carry the most pertinent information
on index portfolios made up of stocks exclusively from that
genre.

A practical feature of portfolio management for index
investment is the need to rebalance, to account for stocks that
may have entered or left the index since the previous rebal-
ancing. In our analysis, we adopt a short stability monitoring
window, one week, which is not a practical frequency for the
purposes of rebalancing. However, our results show that we
do not need to take account of stocks leaving and entering the
index over a given period.

Our results hold for the correlations which exist and evolve
in only that core subset of stocks which are present over the
rebalancing period, indeed over much longer periods than are
typically associated with rebalancing. To be concrete, in the
extended period (2002–2021) over which we collected daily
returns data, our results hold for the core set of stocks which
were ever-present throughout this period. In the case of the
S&P 500 that equates to 389 stocks. This collection represents

the large-cap staple, carrying all vital correlation-derived sta-
bility information for the genre of large-cap stocks. This
makes weekly (or more frequent) stability monitoring emi-
nently practical and readily amenable to automation. Indeed,
whilst not reported upon in this study, we have demonstrated
that our results hold even for a subset of this subset but
since automation means a collection for all these stocks is
straightforward there is no real merit in shortening it further.
However, it should be noted that since we fix q = 1.5 in our
analysis, shortening the stock list from 500 to 389, perhaps
further to 300, means that the observation window can be
shortened from 750 to 450 days.

To perform perfect calibration of the monitoring process we
would ideally have access to a starting time-window where
stationarity is known to be true. Clearly, it is easier to ensure
this for a shorter window. However, offsetting that advantage
is the need to ensure that the time-window into which we look
back is sufficiently long to provide sample data truly repre-
sentative of the population process given that each column of
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Figure 11. Distribution of values of weekly percentage change in for known stationary processes and q = 1.5. (a) Gaussian (μ = 0, σ 2 = 1),
(b) Uniform (μ = 0, σ 2 = 1), (c) Cauchy (x0 = 0, γ = 1), (d) t-dist (ν = 1).

the empirical data matrix is standardised as part of a zero-
mean unit variance approach. Note, this window is an initial
calibration window which then becomes a rolling window.
Monitoring frequency is the step size that the rolling window
takes each time it moves forward. In this study, we use a step
size of one day as we move through the daily returns data.

Of course, the situation can change if we have access to
hourly data where rows in the data matrix would represent
trading hours rather than trading days. However, it is clear that
in the case of noisier hourly data a much longer window (in
relative terms) would be required to provide an empirical sam-
ple size large enough to be representative of true population
dynamics.

At a rate of six trading hours per trading day, it would have
to be more than six times longer before it would result in a
longer window in absolute time. Of course, it should be borne
in mind that as we increase the length of this observation
window, given a fixed number of stocks, we are altering the q-
value of the Marchenko–Pastur probability density function.
Recall, at the beginning of this paper, we demonstrated how

larger values of q are not a good choice for some kinds of ran-
dom processes, particularly fatter-tailed distributions, which
typically underpin stock returns generation.

7. Market data

We backtest this approach on market data to ascertain if
it uncovers known features with regard to how the market
unfolded over recent years and if these features are meaning-
fully evidenced by our optimisation. And, of course, to see if
our approach lends new insight into how we might consider
the concept of stationarity or stability as it pertains to specific
investment vehicles such as index portfolios.

The results show our approach accurately bears out major
market changes over the past two decades. Major events such
as the global financial crisis and the Coronavirus pandemic
impacted all the index portfolios we consider, with portfolio-
specific nuances.
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Figure 12. Evolution of �ν(t) between 2006 and 2021 for (a) S&P 400, (b) S&P 500, (c) S&P 600, (d) Russell 1000.

Outside these critical events the various indices we con-
sider evolved in different ways and thus stationarity (stability)
which exists for one of these index portfolios at a particular
point in time and for a particular period of time may not simul-
taneously exist for one or more of the others. This underpins
the central finding of this study that the stability of a Minimum
Variance index portfolio can be ascertained through the empir-
ical correlation matrix of core stocks making up that particular
index. The stability analysis applies only to the particular
index portfolio in question. We cannot infer the stability of
one index portfolio from the stability of another.

Through the concept of portfolio stability, we are able
to enhance portfolio risk management in a straightforward
way. This approach has the greatest applicability to the man-
agement of Minimum Variance index portfolios. In forming
a Minimum Variance portfolio, the estimation process is
limited to estimating the population correlation matrix of
the constituent components, whereas non-Minimum Variance
portfolios have additional estimation requirements.

Hence, when we assess the stability of the empirical corre-
lation matrix, we are assessing the stability of the associated

Minimum Variance portfolio. At the same time, if we are able
to distinguish a portfolio-specific period of stability from a
period of instability then we know that any statistical analy-
sis (hypothesis testing, regressions, statistical inference) using
data across this break in stationarity is potentially erroneous.
Being able to detect a break in stationarity provides the oppor-
tunity to take mitigation against such a break negatively
impacting the efficacy of predictive models.

Figure 7 shows the evolution of ν (the signal-to-noise ratio
of the empirical correlation matrix) over time for the S&P
400, 500, 600 and the Russell 1000 indices over the period
from the start of 2006 to the end of 2021. The figure has
some interesting features. There are clear similarities and
clear differences across indices. As indicated above the crit-
ical events of 2008 and 2020 are readily apparent across all
indices evidenced by large almost instant changes in ν.

Before and after these critical events ν experiences periods
of relative stability when there appears to be stationarity in
what we may think of as a portfolio-specific data-generating
process. This is different for each of the indices, they do not
all experience stationarity at the same time. Our claim for
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Figure 13. Evolution of �ν(t) between 2006 and 2021 (simulated) for (a) Gaussian (μ = 0, σ 2 = 1), (b) Uniform (μ = 0, σ 2 = 1),
(c) Cauchy (x0 = 0, γ = 1), (d) t-dist (ν = 1).

stationarity is empirically supported, and that will be con-
veyed in some of the visualisations to come. We find the
behaviour of ν during periods of stationarity is consistent with
comparable features of known stationary random processes.

Figure 8 depicts the distribution of ν for each of the
indices under consideration over the same time period used in
Figure 7. The image is characterised by discrete poles around
which we have a spread of values. Each pole marks the centre
value of a period of stationarity, and hence Minimum Variance
portfolio stability, whereas transitions between poles mark
breaks in stationarity.

Figure 9 illustrates this in greater detail by focusing on
the S&P 400 index and selecting three regions of stationar-
ity. Colour coding is used to link the periods from left to right
frames. It is instructive to consider how ν changes during each
of the periods identified in this image.

To that end, Figure 10 depicts the distribution of weekly
percentage change in ν. For each of the regions identified
as periods of stationarity, the modal weekly change is over-
whelmingly zero. Also, in each of these regions, the range of
values is contained within ±4% (the green zone has a single

anomalous daily value which can be identified as the spike
in Figure 9 causing the scale on the x-axis to broaden). The
fourth frame contains the distribution of values in all other
regions combined. The mean weekly percentage change for
all other regions is still zero but less overwhelmingly so.
Indeed, removing the spike at zero for each frame results in
values for the mean and variance of the distributions shown
which are twice as large for all other regions as for any of the
coloured regions whose first and second moments are very
similar.

In Figure 11 we display the results of having carried out
a structurally identical simulation using data generated from
known stationary distributions; specifically, a standard Gaus-
sian, a standard Uniform distribution, and a Cauchy and
t-distribution, with parameters as shown, to account for fatter-
tailed phenomena. These data were generated by populating
an original data matrix of 400 columns and 5000 rows. We
then used the same size rolling window as had been used for
S&P 400 data [N = 400 columns and T = 600 rows so that
q = 1.5]. This rolling window traversed 4400 steps to simu-
late transiting through 5000 trading days as was the case for
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Figure 14. ν(t) post-pandemic for q = 1.5 (a) S&P 400, (b) S&P 500, (c) S&P 600, (d) Russell 1000.

our market data. Note the width of the distribution in each of
the frames in Figure 11. Results for Gaussian and Uniform
generated stationary data are contained within ±2% of the
centre which is much narrower than for the market distri-
bution in the periods of stationarity. However, for instances
where the original data were generated by fatter-tailed sta-
tionary distributions, the outcome closely matches actual S&P
400 market results.

To provide an overview to facilitate a comparison between
actual market data analysis and simulated data from known
stationary processes we include Figures 12 and 13. Each
frame depicts the weekly percentage change in ν. Figure 12
depicts the backtest outcome for four market indices whereas
Figure 13 depicts simulation using known stationary pro-
cesses. The most obvious featural distinction between the
figures is the pulsing behaviour as we move through time for
the market data in Figure 12. This pulsing effect, which is
completely absent for the perpetually stationary processes of
Figure 13, is conveying periods of stationarity and breaks in
stationarity over time.

8. Discussion

We highlight the usefulness of the Stability Measure in port-
folio rebalancing by reference to an example. The most recent
clear break in stationarity occurred as a result of the global
Coronavirus pandemic, the effect of which is clearly evi-
denced in Figure 14 which depicts the evolution of ν through
the calendar years 2020–2021.

The pandemic produced an almost instant halt to a global
economic and conventional financial activity and hence we
have something approaching a discontinuity manifesting itself
in the same way and at the same time in all four index graphs.
Thereafter, however, we see rapid equilibration and the for-
mation of a new period of stationarity across all the indices.
As illustrated earlier, with a focus on the S&P 400, a period of
stationarity is typified by a distribution of weekly percentage
changes in the values of ν centred on zero and having a spread
of typically ±5%. Figure 15 supports this for all four indices
throughout these calendar years. This provides a sound basis
for analysis commencing in calendar year 2022 in terms of
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Figure 15. Distribution of values of post-pandemic weekly percentage change in ν for q = 1.5, (a) S&P 400, (b) S&P 500, (c) S&P 600,
(d) Russell 1000.

monitoring stationarity and hence Minimum Variance index
portfolio stability on a rolling weekly basis. This can, in turn,
inform decisions around rebalancing which is typically done
on a much less frequent basis. Weekly values of ν can be
determined for the index portfolio of interest and the empir-
ical percentage change distribution is incorporated as a basis
for assessing ongoing stability.

9. Conclusion

We present a mechanism through which the stability of the
Minimum Variance portfolio on the efficient frontier can be
measured. We call this the Stability Measure. It relies on
Marchenko–Pastur theory; specifically, on the distribution of
those eigenvalues associated with noise as distinct from those
associated with the signal. The measure arises as the prod-
uct of an optimisation to maximise the similarity between
the discrete distribution of the noise-related eigenvalues of
an empirical correlation matrix and a benchmark analytic
Marchenko–Pastur probability density function.

We apply the Stability Measure to a number of Minimum
Variance portfolios derived from key US equity indices. Our
central finding is that the stability of a Minimum Variance
index portfolio can be ascertained through the empirical corre-
lation matrix of core stocks making up that particular index. In
this context, portfolio stability may be thought of as analogous
to stationarity in a portfolio-specific data-generating process.
The fact that stability monitoring is effective for a core sub-
set of stocks means it is practical to implement it at much
higher frequencies than would ordinarily be associated with
rebalancing. By identifying a change in portfolio stability, or
breaks in stationarity of a portfolio-specific data generating
process, our stability monitoring approach can act as a signal
for the need to modify the rebalancing schedule.
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