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Nomenclature 
 
a10-index Performance index 
ANN(s) Artificial Neural Network(s) 

[bi] Bias matrix of the hidden layer 

[bo] Bias matrix of the output layer 
BPNN Back Propagation Neural Network 

CCC Concrete compressive Strength 

CFST Concrete Filled Steel Tube 
d Depth of structural element 

𝐸𝑑 The design value of the corresponding force for a 

fundamental combination of actions 

𝐸𝑓𝑖,𝑑  Design forces for fire situation 

f'c Concrete Compressive Strength 
fy Steel Yield Limit 

fu Steel Ultimate Strength 

FR Fire Resistance 
GP Genetic Programming 

GUI Graphical User Interface 

HTS Hyperbolic Tangent Sigmoid transfer function 
[IP] Matrix of the input parameters 

[Iw] Weight matrix of the hidden layer 
L Clear span of a simply supported beam 

Li Linear transfer function 

LS Log-Sigmoid transfer function 
[LW] Weight matrix of the output layer 

MAPE Mean Absolute Percentage Error 

MSE Mean Square Error 

𝑛𝑓𝑖  
Load Factor 

NRB Normalized Radial Basis transfer function 

PLi Positive Linear transfer function 

R Pearson correlation coefficient 
RB Radial Basis transfer function 

SL Span Length 

SM Soft Max transfer function 
SSE Sum Square Error 

SSL Symmetric Saturating Linear transfer function 

SYS Steel Yield Strength 
TB Triangular Basis transfer function 

 
1. Introduction 

Steel-concrete composite structures have several 

benefits compared with conventional steel or reinforced 

concrete structures. Amongst the main advantages of 

composite construction, their enhanced fire performance is 

of high significance, owing to the heat sink effect provided 

by the concrete. This effect delays the temperature rise in 

composite sections as compared with bare steel solutions. 

Steel-concrete composite flooring systems have been 

developed since 19th century in the form of jack arch floors 

(Ahmed and Tsavdaridis 2019, Maraveas et al. 2013), and 

new developments are presented up to today. These new 

developments include various types of slim floors including 

the Delta beams, Ultra Shallow Floor Beams, etc. (Ahmed 

and Tsavdaridis 2019). 

The fire resistance of these flooring systems is complex, 

given that the unprotected bottom flange develops high 

temperatures when exposed to fire. The rest of the steel 

cross section is protected by concrete and develops low 

temperatures even in longer exposure to fire. Therefore, the 

temperature distribution within the height of these beams is 

extremely nonlinear (Bailey 1999, Maraveas et al. 2014, 

Maraveas et al. 2017a), and bowing effects are developed 

both along the length as well as across the cross-section. 
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Abstract.  In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams 

based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are 

trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The 

proposed model was selected as the optimum from a plethora of alternatives, employing different activation 

functions in the context of Artificial Neural Network technique. The performance of the developed model was 

compared against analytical results, employing several performance indices. It was found that the proposed model 

achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the 

optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can 

prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this 

subject at an academic level. 
Keywords:  Activation Functions; Artificial Neural Networks; Slim-floor steel beams; Fire resistance; Soft Computing 

 



P.G. Asteris, C. Maraveas, A.T. Chountalas, D.S. Sophianopoulos and Naveed Alam 

Although research on the fire resistance of these 

flooring systems have been initiated many decades ago 

including these from the past (Bailey 1999, Walnman 1996, 

Ma and Mäkeläinen 2000, Bailey 2003, Mäkeläinen and Ma 

2000, Ma and Mäkeläinen 2006) and the recent ones 

included in the references (Ellobody 2011, Kim et al. 2011, 

Ahn and Lee 2017, Albero et al. 2019, Albero et al. 2020, 

Alam et al. 2021a, Alam et al. 2021b). In addition, several 

developments on the fire resistance evaluation have also 

been published (Both et al. 1997, Romero et al. 2015, 

Romero et al. 2019, Romero et al. 2020, Zaharia and 

Franssen 2012). Despite all these efforts, the fire resistance 

evaluation procedure remains complex as reviewed by 

Memarzadeh et al. (2021). 

As per EN1994-1-2, all methodologies propose a two-

step procedure, first the temperatures are calculated 

(according analytical or numerical methods) and second the 

moment capacity of the composite beam is calculated for 

the reduced material properties considering the higher 

temperatures expected to be achieved in a fire scenario. If 

the moment capacity is not found to be higher than the fire 

design moment, the procedure should be repeated for 

another cross section. Most methods focus on the 

simplification of temperatures calculation and EN1994-1-2 

proposed a method too. The accuracy of these methods is 

low (Alam et al. 2021b) and combination of these methods 

is needed to evaluate accurately the temperatures developed 

on different parts of these beams. Furthermore, practicing 

engineers are not familiar with temperatures and have 

difficulties to undertake these calculations. 

The increasing interest in steel-concrete composite 

structures, such as slim-floor asymmetric steel beams in 

contemporary buildings, highlights the necessity for a more 

thorough understanding of this valuable type of composite 

structural material. Taking into account the multiple 

geometrical and mechanical parameters of slim-floor 

asymmetric steel-concrete beams, which affect their fire 

resistance in a highly non-linear manner, soft computing 

techniques emerge as the tool that can be implemented to 

shed light on this composite structural element. This can 

assist in the better understanding of the material, as well as 

in design optimization processes in an integrated space, 

something that has not been possible until now. 

The use of soft computing techniques for the prediction 

of the mechanical characteristics has already been the 

subject of research for composite structures such as for the 

prediction of ultimate axial load of concrete-filled steel tube 

columns (Sarir et al. 2019, Le et al. 2021, Ly et al. 2021 

and Asteris et al. 2021a), the compressive strength of 

concrete materials (Özcan et al. 2009, Bilim et al. 2009, 

Duan et al. 2013, Asteris and Mokos 2020, Duan et al. 2020, 

Asteris et al. 2021b, Asteris et al. 2021c and Asteris et al. 

2021d) and for the prediction of cement mortar compressive 

strength (Apostolopoulou et al. 2019, Asteris et al. 2019, 

Apostolopoulou et al. 2020). The use of soft computing 

techniques has been highlighted in many studies in the field 

of civil engineering (Kechagias et al. 2018, Psyllaki et al. 

2018, Huang et al. 2019, Zeng et al. 2021, Zhang et al. 

2021). 

In the light of the above, a plethora of artificial neural 

networks has been trained and developed using a big Finite 

Element Method-based analytical database and ten different 

activations functions. Among them, the optimum ANN 

model for the Fire resistance prediction of slim-floor 

asymmetric steel beams is that which achieved the best 

performance indices. 

At this point, it is worth noting that the Artificial Neural 

networks models have been accused of acting as black 

boxes which, although they can predict a parameter of the 

problem under study for which they have been developed 

and trained, they do not allow the user to understand how it 

works and how the input parameters affect the value of the 

estimated parameter. In the present work, following 

previous recent work of the authors (Asteris et al. 2021a, 

Zeng et al. 2021, Le et al. 2021), based on the optimal 

artificial neural network, the authors extract and present a 

closed-form equation for the estimation of fire resistance 

based on the optimum ANN model. The derived equation 

can prove a useful tool for researchers and engineers,  as it 

reveals the strong linear nature of the fire resistance of slim-

floor asymmetric steel beams (Fig. 1) with the involved 

parameters, while at the same time can effectively support 

the teaching of this subject at an academic level. 

 

 

 
Fig. 1 Typical asymmetric slim floor beam layout 

 

2. Materials and methods 
 

2.1 Brief Review on Artificial Neural Networks 
 

Artificial neural networks (ANNs) are based on the 

concept of the biological neural network of the human 

brain. The basic building block of ANNs is the artificial 

neuron, which is a mathematical model aiming to mimic the 

behavior of the biological neuron (Fig. 2).  

Information is passed into the artificial neuron as input 

and is processed with a mathematical function leading to an 

output that determines the behavior of the neuron (similar to 

fire-or-not situation for the biological neuron). Before the 

information enters the neuron, it is weighted in order to 

approximate the random nature of the biological neuron. A 

group of such neurons consists of an ANN, in a manner 

similar to biological neural networks. In order to set up an 

ANN, one needs to define: (i) the architecture of the ANN; 

(ii) the training algorithm, which will be used for the ANN’s 

learning phase; and (iii) the mathematical functions 

describing the mathematical model. 



 

 

 
Fig. 2 Schematic representation of the biological neuron structure (Asteris et al. 2019) 

 

 

 

The architecture or topology of the ANN describes the 

manner in which the artificial neurons are organized in the 

group and how information flows within the network. For 

example, if the neurons are organized in more than one 

layer, then the network is called a multilayer ANN. The 

training phase can be considered as a function minimization 

problem, in which the optimum values of weights need to 

be determined by minimizing an error function. Depending 

on the optimization algorithms used for this purpose, 

different types of ANNs exist. The gradient descent (GD) 

method is employed mainly in the back-propagation (BP) 

stage of the training process of the ANN model (Rumelhart 

et al. 1986). The main working principle of the GD is to 

adjust the weights of the ANN model iteratively while 

minimizing the error between the actual output and target 

(Du and Swamy 2013). However, using GD may results to 

convergence problems (Gupta et al. 2013) (i.e., time-

consuming training process). Many more training 

algorithms have been proposed to enhance the effectiveness 

of ANN training, one of them is the Levenberg-Marquardt 

(LM) method (Marquardt 1963), which has been commonly 

used in various studies of different fields (Raghuwanshi et 

al. 2006, Aqil et al. 2007, de Vos and Rientjes 2008, 

Taormina et al. 2012). The speed of convergence when 

using the LM technique has been improved due to the 

method that was developed by combining the GD and 

Gauss-Newton (GN) algorithms (Marquardt 1963). More 

recently, a number of training algorithms that use the 

second derivative have been proposed in the literature. 

These are the One-Step Secant (OSS) (Battiti 1992), the 

Gradient Descent with Adaptive Learning Rate (GDA) 

(Kayacan and Khanesar 2015), the Scaled Conjugate 

Gradient (SCG) (Møller 1993), and the Conjugate Gradient 

Backpropagation with Powell-Beale Restarts (CGB) 

(Powell 1977). However, second-order learning techniques 

require to be used in a batch mode due to the sensitivity of 

the numerical computation of second-order gradients 

(Akbar et al. 2011, Du and Swamy 2013). In addition, 

learning algorithms based on the first and second-order 

derivative may not have the required convergence ability if 

the starting point is located outside of the search domain 

(Brownlee 2016). The foresaid learning algorithms 

contributed to the progress in training ANN methods, for 

better performance of the prediction models. 

 
2.2 Performance Indices 
 

Three different statistical parameters were employed to 

evaluate the performance of the derived computational model 

as well as the available in the literature formulae, including the 

root mean square error (RMSE), the mean absolute percentage 

error (MAPE), and the Pearson Correlation Coefficient R
2
. The 

lower RMSE and MAPE values represent the more accurate 

prediction results. The higher R
2
 values represent the greater fit 

between the analytical and predicted values. The 

aforementioned statistical parameters have been calculated by 

the following expressions (Alavi and Gandomi 2012): 
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where n denotes the total number of datasets, and 𝑥𝑖 and 𝑦𝑖 

represent the predicted and target values, respectively. 

The reliability and accuracy of the developed neural 

networks were evaluated using Pearson’s correlation 

coefficient R and the root mean square error (RMSE). RMSE 

presents information on the short-term efficiency which is a 

benchmark of the difference of predicted values in relation to 

the experimental values. The lower the RMSE, the more 
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accurate is the evaluation. The Pearson’s correlation coefficient 

R measures the variance that is interpreted by the model, which 

is the reduction of variance when using the model. R values 

range from 0 to 1, however the model has healthy predictive 

ability when it is near to 1 and it is not predicting when near to 

0. These performance metrics are a good measure of the 

overall predictive accuracy.  

Furthermore, the following new engineering index, called 

a20-inex, has been proposed for the reliability assessment of 

the developed ANN models (Asteris et al. 2019, Asteris and 

Mokos 2020): 

𝑎10 − 𝑖𝑛𝑑𝑒𝑥 =
𝑚10

𝑛
 (4) 

 

where n is the number of dataset sample and m20 is the 

number of samples with value of rate Experimental 

value/Predicted value between 0.90 and 1.10. Note that for a 

perfect predictive model, the values of a10-index values are 

expected to be unity. The proposed a10-index has the 

advantage that their value has a physical engineering meaning. 

It declares the amount of the samples that satisfies predicted 

values with a margin ±10% compared to experimental values. 

 

2.3 Database used for the training of ANN models 
 

2.3.1 Need for reliable Data 

During the training process of developing a 

mathematical model to predict a parameter value as a 

function of a number of other variables, most researchers 

tend to focus on computational aspects, while at the same 

time paying less attention to the database to be used for the 

training and development of the mathematical model. 

However, the authors firmly believe that the main 

emphasis should be on the database to be used, as it is the 

database itself that describes the behavior of the problem to 

be modeled. The database, whether based on experimental 

or analytical data, is the available knowledge which must be 

properly utilized during the training process of the 

development of the mathematical model. In this regard, the 

database must be reliable with sufficient amount of data to 

adequately describe the problem under study.  

It should be noted that the term “sufficient amount of 

data” does not necessarily imply a high amount of data, but 

rather datasets that cover a wide range of combinations of 

input parameter values, thus assisting in the model 

capability to simulate the problem. The demand for a 

reliable database is particularly crucial in the case of 

experimental databases, which are databases compiled 

using experimental results. In this case, significant 

deviations between experimental values are frequently 

noticed, not only between experiments conducted by 

different research teams and laboratories, but even between 

datasets derived from experiments conducted on specimens 

of the same synthesis, produced by the same technicians, 

cured under the same conditions, and tested implementing 

the same standards and testing instruments. 

In light of the above discussion, for the training and 

development of the soft computing models for the 

prediction of the fire resistance of slim-floor steel beams an 

analytical database was compiled from FEM results.  

In particular, an array of different types of slim-floor 

steel beams will be studied using the finite-element method, 

upon validating the FEM model used through simulating 

experimental data available in the literature.  

 

2.3.2 Analytical data based on FEM 

 

2.3.2.1 Analytical modeling 

Finite element modelling for the unprotected slim floor 

beams is performed using the two-phase method explained 

and presented by Maraveas et al. 2012. In the initial phase, 

temperature contours for the slim floors are obtained by 

performing the thermal analysis. The convection 

coefficients for exposed and unexposed surfaces are taken 

equal to 25W/m
2
K and 9 W/m

2
K, respectively. The 

radiation emissivity for the bottom steel flange and the 

composite floor is taken as 0.7 following the EN1994-1-2 

recommendations. Both concrete and steel are modelled 

using the 8-node linear brick elements, DC3D8 and the 

interface between the steel and the concrete is modelled as a 

perfect thermal contact allowing full heat transfer. Thermal 

analyses are performed for the standard fire exposure 

conditions (ISO 834 1999). This phase provides the thermal 

contours on the asymmetric slim floor beams. 

The second phase of the numerical modelling consists of 

the thermomechanical analysis and is performed in two 

steps. During the first step, external loads, representing the 

degree of utilization of slim floor are applied while in the 

second step, the specimens are heated using the thermal 

contours obtained during the first phase. The external loads 

applied were uniformly distributed along the length of each 

beam. The concrete part is modelled using 8-node linear 

brick elements (C3D8) considering the numerical 

instabilities associated with the inelastic behaviour of 

concrete. On the other hand, the steel parts are modelled 

using hexahedral elements with reduced integration 

(C3D8R). 

2.3.2.2 Validation against fire test results 

The used numerical simulation procedure have been 

developed by Maraveas et al. 2012, and used successfully 

for number of similar simulations (Alam et al. 2021a, Alam 

et al. 2021b, Alam et al. 2018a, Alam et al. 2018b, Alam et 

al. 2018c, Alam et al. 2018d, Alam et al. 2019, Maraveas et 

al. 2014, Maraveas et al. 2017a, Maraveas et al. 2017b, 

Maraveas et al. 2017c). The used methodology is validated 

against experimental (fire test) results in Maraveas et al. 

2012, Alam et al. 2021b and Alam et al. 2018a. 

The slim floor cross section used in this research is 

similar to the cross section used during a fire test of a 

simply supported beam with span 4,0 m presented by 

Walnman 1996. Fig. 3(a) shows the cross section of the 

tested slim floor beam and Fig. 3(b) shows the position and 

numbering of thermocouples at mid-span cross section. The 

experiment simulated according the proposed methodology 

and results in terms of temperatures and mid-span 

deflection are showed in Fig. 4 and Fig. 5 respectively, 

showing good agreement between analytical modelling and 

experimental results. 
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(a) 

 
 

(b) 

Fig. 3 Experimental setup: (a) Cross section of tested beam 

and (b) positions and numbering of thermocouples at the 

mid-span section (Walnman 1996) 

 

 

 
 

Fig. 4 Temperature histories from finite element analysis 

compared to experimental results (black curves show 

experimental results, colour curves show finite element 

analysis results). 

 

 
 

Fig. 5 Mid-span deflection, numerical vs experimental 

results (black curves show experimental results, colour 

curves show finite element analysis results). 

 

 

2.3.2.3 Load factor  

According EN1994-1-2 (2009), the design loads for the 

fire situation are given by the equation: 

 

𝐸𝑓𝑖,𝑑 = 𝑛𝑓𝑖𝐸𝑑 (5) 

 

where 𝐸𝑑  is the design value of the corresponding 

force for a fundamental combination of actions, 𝐸𝑓𝑖,𝑑  is the 

design forces for fire design and 𝑛𝑓𝑖 is the reduction factor 

of Ed or called for simplicity as load factor. The load factor 

nfi is a function of the reduction factor ψfi (ψ1,1 or ψ2,1) and 

of the ratio Qk,1/Gk and practically can take values between 

0.75 and 0.25. EN1994-1-2 (2009) (Fig. 6). In this research, 

values from 0.37 and up to 0.85 have been considered. 

 

 

 
Fig. 6 Reduction factor of the design value of the 

corresponding force for a fundamental combination of 

actions nfi as a function of the ratio Qk,1/Gk and ψ1,1 

(EN1994-1-2 2009) 
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2.3.2.4 Fire resistance  

The simulations conducted under various degrees of 

utilization are representing potential fire tests. Hence, the 

fire resistance is defined and analyzed as done for fire tests. 

The British Standards, BS 476–20 1987, provide the 

failure criteria in terms of the maximum mid-span 

deflection and the maximum rate of mid-span deflection. 

According to BS 476–20 1987, the failure is deemed to 

occur when the limits provided in Eqn. (6) and Eqn. (7) are 

exceeded. The units of the deflection in Eqn. (6) are in mm, 

while the units of rate of defection in Eqn. (7) are in 

mm/minute. It should be noted that the failure criterion in 

Eqn. (6) is only applicable when the deflection exceeds 

L/30. Similar performance criteria are also recommended 

by ASTM E119 2016. 

𝐿/20 (6) 

 

𝐿2/9000𝑑 (7) 

 

 

where, L is the clear span of the load-bearing horizontal 

element, in mm: d is the depth of the element, the distance 

from top to the bottom, in mm. 

2.3.2.5 Undertaken analyses 

The finite element analysis is performed for a slim floor 

beam of the cross section shown in Fig. 3(b). Four 

parameters were investigated including the span length, 

steel strength, concrete strength and the degree of 

utilization. The span lengths investigated were 4.5 m, 5.0 m, 

5.5 m, and 6 m. The yield strength of steel was taken as 235 

MPa, 275 MPa, 355 MPa, and 420 MPa, while the 

concrete’s strength considered during the investigation was 

25 MPa, 30 MPa, 35 MPa, and 40 MPa. The load factor was 

taken as 0.43, 0.48, 0.52 and 0.56 for the slim floor beam 

with span 4m, S355 and C30/37. When the span was 

increased the load was reduced to keep the applied moment 

constant. When the moment capacity was changing due to 

different applied steel or concrete grades, the new load 

factor was calculated, keeping the applied load constant. 

 
2.3.3 Statistical indices of database 
Following the above, a detailed database was created 

consisting of 256 datasets. Each dataset consists of five 

parameters, of which the input parameters are the length of 

the beam, the load factor, the steel yield strength and the 

concrete compressive strength, while the output parameter 

is the fire resistance of slim-floor steel beams. 

Table 1 reports a brief statistical analysis for all the 

datasets in the database, considering each input and output 

variable individually and presenting minimums, maximums, 

averages, and standard deviation.  

The correlation between all input and output variables in 

the database is revealed in Table 2 using the Pearson 

correlation coefficient R. In general, an R coefficient among 

input variables that approaches 1 or –1 indicates a strong 

linear relationship between them. The value of correlation 

factor between each input parameter and the output 

parameter indicates which one among the input parameters 

mainly affects the value of the predicted parameter, which 

herein is the fire resistance. Based on Table 2, the highest 

coefficient among input variables and output variable 

(bottom line), is –0.88, and corresponds to the load factor 

(LF). The second-highest correlation coefficient is 0.77, 

corresponds to steel yield strength (SYS). For all other 

cases, the correlation coefficient is quite lower. 

Figures 7 to 11 show the histograms for each of the five 

parameters involved in the problem under study. These 

figures are particularly useful, as they define the range of 

values of the five parameters for which the proposed 

optimal mathematical model can be applied reliably. In 

addition, certain ranges of parameter values are specified 

for which the reliability of the mathematical model is 

expected to be unreliable. This happens when ranges of 

parameter values exist in which there is not enough data to 

properly train the model. 

 

 

Table 1 The input and output parameters used in the development of BPNNs 

Variable Abreviation Symbol Units Category 
Data used in NN Models 

Min Average Max STD 

Length of Beam L L m Input 4.50 5.25 6.00 0.56 

Load Factor LF 𝑛𝑓𝑖  - Input 0.37 0.58 0.85 0.14 

Steel Yield Strength SYS fy MPa Input 235.00 321.25 420.00 71.67 

Concrete Compressive Strength CCS f'c MPa Input 25.00 32.50 40.00 5.60 

Fire Resistance FR FR min Output 13.20 50.48 92.00 16.28 

 

 

Table 2 Correlation matrix of the input and output variables 

Variables 
Input Output 

L LF SYS CCS FR 

Input 

L 1.00     

LF 0.00 1.00    

SYS 0.00 -0.90 1.00   

CCS 0.00 0.00 0.00 1.00  

Output FR -0.28 -0.88 0.77 0.15 1.00 
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Fig. 7 Histograms of the input parameter of Length of Beam 

 

 
 

 

Fig. 8 Histograms of the input parameters of Load Factor 

 

 
 

 

Fig. 9 Histograms of the input parameter of Steel Yield Strength 
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Fig. 10 Histograms of the input  parameters of Concrete Compressive Strength 

 

 

 

 
 

 

Fig. 11 Histograms of the output parameter of Fire Resistance 

 

 

2.4 Sensitivity Analysis of Fire Resistance 
It is especially important during the process of training 

and development of a computer model in order to predict 

the value of a parameter as a function of a series of other 

parameters affecting that parameter, to know which among 

them are the most important parameters. In fact, it is 

required to quantify the influence of each of these 

parameters so as to select the optimal number/combination 

of them in order to formulate the optimal computational 

mathematical simulation. In this regard, sensitivity analysis 

techniques on the predicted (output) parameter can be 

employed. 

In general, sensitivity analysis (SA) of a numerical model 

is a technique used to determine if the output of the model is 

affected by changes in the input parameters. This provides 

feedback regarding which input parameters are the most 

significant, and thus, by removing the insignificant ones, the 

input space will be reduced and subsequently the complexity 

of the model, as well as the time required for its training, will 

be also reduced. In order to identify the effects of model inputs 

on the outputs, the SA can be conducted on the database. 

Sometimes, the results of SA help researchers/designers to 

remove one or more input parameters from the database to 

obtain better analyses with a higher level of performance 

prediction. To perform the SA, the cosine amplitude method 

(CAM) is employed, which has been used by many researchers 

(Armaghani and Asteris 2021, Armaghani et al. 2015, 2020, 

Momeni et al. 2015, Asteris et al. 2021). In CAM, data 

pairs may be used to construct a data array, X, as follows: 

 

X = {x1, x2, x3, … , xi, … , xn} (8) 

 

Variable xi in array, X, is a length vector of m as: 

 

xi = {xi1, xi2, xi3, … , xim} (9) 

 

The relationship between Rij (strength of the relation) and 

datasets of Xi and Xj is presented by the following equation: 
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Rij =
∑ xikxjk

m
k=1

√∑ x2
ik ∑ x2

ik
m
k=1

m
k=1

 (10) 

 

The Rij values between the Fire Resistance of Slim-floor 

Steel Beams and the input parameters are shown in Fig. 12. 

This analysis in accordance with correlation matrix of the input 

and output parameters presented in a previous section, reveals 

that, the concrete and steel mechanical parameters crucial 

affect the fire resistance of steel beams. Specifically, the steel 

yield strength and the concrete compressive strength have the 

greatest influence on fire resistance values, with strength 

values of 0.98 and 0.94 respectively, followed by the length of 

beams (0.937. The parameter with the lowest influence on fire 

resistance seems to be the load factor with a strength value of 

0.86. 

 

 
Fig. 12 Fire Resistance Sensitivity analysis of Slim-floor 

Steel Beams 

 

3. Results and discussion 
3.1. Development of ANN models 
Based on the above, different architecture ANNs were 

developed and trained. More specifically, during the 

development and training of the ANN models the following 

steps (which are summarized in Table 3) were followed: 

 The 256 datasets in the database, used for the training 

and development of the ANN models, were divided 

into three separate sets. Specifically, 171 of 256 

(66.80%) datasets were designated as Training 

datasets, 42 (16.418%) as Validation datasets, while 43 

(16.80%) datasets were used as Testing datasets. 

 During the training of the ANNs, the above datasets 

were used with and without normalization. When 

normalization of the data was conducted, the minmax 

normalization technique in the range [0.10, 0.90] and 

[-1.00, 100) as well as the Zscore were implemented. 

 The Levenberg–Marquardt algorithm (Lourakis 2005) 

was used for the training of the ANNs. 

 10 different initial values of weights and biases were 

applied for each architecture (Table 6). 

 ANNs with only one hidden layer were developed and 

trained. 

 The Number of Neurons per Hidden Layer ranged 

from 1 to 30, by an increment step of 1. 

 Two functions, the Mean Square Error (MSE) and 

Sum Square Error (SSE) functions were used as cost 

functions, during the training and validation process. 

 10 functions, as presented in Table 6, were used as 

transfer or activation functions 

The above steps resulted in the development of 240.000 

different ANNs. It is worth noting that only the use of 10 

different transfer function results in 100 different ANNs, for 

each architecture with the same number of neurons, as a result 

of 100 (=10
2
) different dual combinations of the 10 transfer 

functions investigated. 

 

3.2. Optimum ANN model 
The above developed 240.000 ANNs were ranked based on 

the value of the RMSE performance index, for the case of 

Testing Datasets, and the top 20 architectures are presented in 

Table 4. Among them, the optimum ANN model, based on the 

value of RMSE of Testing Datasets, is the BPNN 4-9-1 model. 

The optimum model utilizes for data normalization the 

MinMax function, which converts the input and output values 

within the [0.10, 0.90] range. Also, it employs the Hyperbolic 

Tangent Sigmoid transfer function (HTS) for the input layer 

and Symmetric saturating linear transfer function (SSL) for the 

output layer, while its cost function is the Sum Square Error 

(MSE) function. Fig. 13, illustrates graphically the neuron 

layout and the overall architecture of the optimum, BPNN-4-9-

1 model. In Table 5, the performance of the optimum model is 

presented, for both the training and testing datasets and in 

terms of all five performance indices. It is noted that the 

selected optimum model achieved the best performance, 

among all alternative architectures, for every one of the five 

indices. Its performance both for the training and testing 

datasets is expectedly improved, particularly in terms of a10-

index, where it achieves 100% of the samples to match of the 

analytical values, within a ±10% margin. 

In Figs. 14 and 15 the scatter plots of the analytical vs 

predicted values, by the optimum BPNN-4-9-1 model, are 

presented for the training and the testing datasets. In these 

diagrams, except for the diagonal line that indicates an ideal 

prediction, two more lines are drawn marking a ±10% error 

margin, which correspond to the limits defined by the a10-

index. Also, the ratio of experimental to predicted values for 

the same datasets are shown in Figs. 14 and 15. 

At this point, it is worth noting that among the 20 best 

architectures of the developed ANNs, as presented in Table 4, 

the dominant position regarding the normalization technique is 

held by Minmax in the range [0.1, 0.90] (15 of the 20 best 

architectures), followed by Minmax in the range [-1.00,1.00] 

(4 of the 20 best architectures), and finally Zscore 

normalization technique (1 of the 20 best architectures), which 

is in fact ranked in 14th place. The top 20 architectures for 

each of the four normalization techniques used are presented in 

Tables A2 to A5 of the appendix. 

 

  



 

 

 

Table 3. Training parameters of ANN models 

 

 

Table 4. Best twenty optimum architectures of ANN models based on Testing datasets RMSE index 

Ranking Normalization Technique 
Cost 

Function 

Transfer Function 

A
rc

h
it

ec
tu

re
 

E
p

o
ch

s 
Datasets 

Input 

Layer 

Output 

Layer 

Testing 

R RMSE 

1 Minmax [0.10, 0.90] 'SSE' tansig satlins 4-9-1 100 0.9981 0.9502 

2 Minmax [-1.00, 1.00] SSE logsig satlins 4-5-1 81 0.9981 0.9547 

3 Minmax [0.10, 0.90] SSE tansig satlins 4-4-1 100 0.9981 0.9776 

4 Minmax [-1.00, 1.00] MSE tansig tansig 4-5-1 81 0.9980 0.9941 

5 Minmax [0.10, 0.90] MSE logsig tansig 4-7-1 84 0.9978 1.0299 

6 Minmax [0.10, 0.90] MSE tansig logsig 4-6-1 84 0.9979 1.0313 

7 Minmax [0.10, 0.90] SSE logsig logsig 4-6-1 84 0.9979 1.0444 

8 Minmax [0.10, 0.90] SSE logsig satlins 4-9-1 84 0.9978 1.0472 

9 Minmax [0.10, 0.90] MSE tansig tansig 4-6-1 100 0.9977 1.0485 

10 Minmax [0.10, 0.90] MSE logsig satlins 4-10-1 84 0.9978 1.0493 

11 Minmax [0.10, 0.90] SSE logsig purelin 4-10-1 100 0.9977 1.0537 

12 Minmax [-1.00, 1.00] SSE tansig tansig 4-6-1 81 0.9977 1.0537 

13 Minmax [0.10, 0.90] MSE logsig poslin 4-7-1 100 0.9978 1.0555 

14 Zscore SSE tansig purelin 4-9-1 18 0.9977 1.0571 

15 Minmax [-1.00, 1.00] MSE tansig tansig 4-4-1 81 0.9977 1.0577 

16 Minmax [0.10, 0.90] SSE logsig logsig 4-6-1 100 0.9977 1.0607 

17 Minmax [0.10, 0.90] SSE tansig poslin 4-7-1 100 0.9977 1.0629 

18 Minmax [0.10, 0.90] MSE logsig tansig 4-7-1 84 0.9977 1.0630 

19 Minmax [0.10, 0.90] SSE logsig purelin 4-4-1 100 0.9977 1.0646 

20 Minmax [0.10, 0.90] SSE logsig poslin 4-4-1 100 0.9977 1.0646 

 

  

Parameter Value Matlab function 

Training Algorithm Levenberg-Marquardt Algorithm trainlm 

Normalization 
Minmax in the range [0.10 – 0.90] and [-1.00-1.00] 

Zscore 

Mapminmax 

zscore 

Number of Hidden Layers 1  

Number of Neurons per Hidden 

Layer 
1 to 30 by step 1  

Control random number 

generation 
10 different random generation 

rand(seed, generator), where 

generator range from 1 to 10 by 

step 1 

Epochs 200  

Cost Function 
Mean Square Error (MSE) 

Sum Square Error (SSE) 

mse 

sse 

Transfer Functions 

Hyperbolic Tangent Sigmoid transfer function (HTS) 

Log-sigmoid transfer function (LS) 

Linear transfer function (Li) 

Positive linear transfer function (PLi) 

Symmetric saturating linear transfer function (SSL) 

Soft max transfer function (SM) 

Competitive transfer function (Co) 

Triangular basis transfer function (TB) 

Radial basis transfer function (RB) 

Normalized radial basis transfer function (NRB) 

tansig 

logsig 

purelin 

poslin 

satlins 

softmax 

compet 

tribas 

radbas 

radbasn 
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Table 5. Summary of prediction capability of the optimum BPNN 4-9-1 model against existing methodologies 

Model Datasets 

Performance Indices 

a10-index R RMSE MAPE VAF 

1 BPNN 4-9-1 
Training 1.0000 0.9968 1.3139 0.0167 99.3546 

Test 1.0000 0.9981 0.9502 0.0146 99.6178 
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Fig. 13 Architecture of the optimum BPNN 4-9-1 model 
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Fig. 14 Experimental vs predicted concrete compressive strength for Training datasets, using the developed BPNN-4-9-1 

model. 
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Fig. 15 Experimental vs predicted concrete compressive strength for Testing datasets, using the developed BPNN-4-9-1 

model. 
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3.3. Closed form equation for the estimation of fire 
resistance based on the optimum ANN model 

 

In a great number of research studies investigating the 

training and development of artificial neural networks, the final 

weights and biases of the ANN model are generally not 

reported. As a result, it becomes difficult, if not impossible, for 

other researchers or engineers in design practice, to implement 

the proposed model in their computers, reproduce the results or 

further improve upon it. To remove such an obstacle, this work 

presents the explicit mathematical equation, along with the 

values of weights and biases of our proposed model. Therefore, 

it can be readily implemented in a spreadsheet environment, by 

anyone interested, even without prior expertise in the field of 

Artificial Neural Networks.  

The derived equation for the prediction of the fire 

resistance (FR) of slim-floor steel beams, using the length of 

beam (L), the load factor (LF), the steel yield strength (SYS) 

and the concrete compressive strength (CCS), is expressed by 

the following equation: 

 

FR =  98.50( tansig([LW][satlins([IW] × [IP] + [bi])]
+ [b0]) − 0.10) + 13.20 

(11) 

 

where satlins and tansig are the Symmetric saturating linear 

transfer function (SSL) and the Hyperbolic Tangent Sigmoid 

transfer function (HTS), respectively which are presented in 

details both their equations and graphs in Table A1 of the 

Appendix. [IW] is a 9×4 matrix containing the weights of the 

hidden layer; [LW] is a 1×9 vector containing the weights of 

the output layer; [IP]  is a 4×1 vector with the 6 input 

variables, [bi] is a 9×1 vector containing the bias of the 

hidden layer; and [b0] is a 1×1 vector containing the bias of 

the output layer. Equation 8 describes the developed ANN 

model in a purely mathematical form, making it more 

accessible for engineers/researchers to use in practice. 

The [IP]  vector that contains the 4 normalized input 

variables (LB, LF, SYS and CCS ) is expressed as: 

 

[IP] =

[
 
 
 
 
 
 
 
 0.1 + 0.8 (

L − 4.50

1.5
)

0.1 + 0.8 (
𝐿𝐹 − 0.37

0.48
)

0.1 + 0.8 (
SYS − 235

185
)

0.1 + 0.8 (
CCS − 25

15
) ]

 
 
 
 
 
 
 
 

 
(12) 

 

The above equation normalized the real values of the four 

input parameters using the minmax normalization technique in 

the range [0.10, 0.90] 

The values of final weights and biases that determine 

matrices [IW], [LW], [bi] and [b0] are expressed by: 

 

 

[IW] =

[
 
 
 
 
 
 
 
−0.6237
0.6215

−0.0268
8.7540

−0.2488
0.0100

−5.0755
0.1277

−0.5299

−0.1035
−1.1838
1.8713
16.1192
2.5341

−21.1124
−2.4906
−6.1910
−2.0332

0.6121
8.8462
0.0038
6.8662

−11.6123
−0.4000
−6.7115
0.2944

−2.1176

0.5620
−0.5082
0.0928

−4.2710
8.0673
0.6697

−0.3496
−0.2218
1.9457 ]

 
 
 
 
 
 
 

  (13) 

 

 

[LW]T =

[
 
 
 
 
 
 
 

1.8104
−0.0415
−0.8002
−0.0511
0.0204
5.1046
0.0319
0.2102
0.3131 ]

 
 
 
 
 
 
 

  (14) 

 

[bi] =

[
 
 
 
 
 
 
 

1.9905
−1.7174
0.0551

−16.8653
2.0195

−0.4379
8.6494
7.1678

−1.8636 ]
 
 
 
 
 
 
 

 (15) 

 

and 

[b0]  =  4.4149 (16) 
 

 

3.4 Validation of the optimum ANN model regarding 
the overfitting problem 

Although the statistical performance of the developed 

optimum model is always a matter deserving constant focus, it 

is also important to verify its prediction capacity employing 

engineering insight, and taking into account the expected 

physical behavior. Under this process it should be confirmed 

that no “overfitting” takes place, and that the model indeed 

approximates the governing laws of the problem in question 

(Armaghani and Asteris 2021). Thus, it was decided to conduct 

a verification of the optimal neural network, utilizing a 

selection of FEM analytical results. Specifically, in Figs. 16 to 

19, the FEM analytical results are plotted against the respective 

curves predicted from the optimal neural network, for the same 

input parameters.  

Figs. 16 to 19 clearly demonstrate that the proposed ANN 

model best fit the analytical FEM results. In addition, the 

smooth derived curves indicate that no overfitting problem 

takes place (in the case of overfitting the derived curves are 

characterized by curly shapes).  
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Fig. 16 Validation of the optimum BPNN 4-9-1 model with 

analytical FEM results for beam length 5.00 and 6.00 m 

while the yield compressive strength and concrete 

compressive strength are 275 and 25 MPa 

 

 

 
 

Fig. 17 Validation of the optimum BPNN 4-9-1 model with 

analytical FEM results for beam length 5.00 and 6.00 m 

while the yield compressive strength and concrete 

compressive strength are 275 and 40 MPa 

 
 

Fig. 18 Validation of the optimum BPNN 4-9-1 model with 

analytical FEM results for steel yield strength 235 and 420 

MPa while the concrete compressive strength and the beam 

length are 25 MPa and 5 m respectively 

 

 

 
 

Fig. 19 Validation of the optimum BPNN 4-9-1 model with 

analytical FEM results for steel yield strength 235 and 420 

MPa while the concrete compressive strength and the beam 

length are 25 MPa and 6 m respectively 
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Specifically, Fig. 16 presents the fire resistance predicted 

values of slim-floor steel beams for two different values of 

beam length 5.00 and 6.00 m respectively, while the yield 

compressive strength and concrete compressive strength are 

275 and 25 MPa. Fig. 17 presents the fire resistance predicted 

values of slim-floor steel beams for two different values of 

beam length 5.00 and 6.00 m respectively, while the yield 

compressive strength and concrete compressive strength are 

275 and 40 MPa. Fig. 18 presents the fire resistance predicted 

values of slim-floor steel beams for steel yield strength 235 and 

420 MPa, while the concrete compressive strength and the 

beam length are 25 MPa and 5 m respectively. Finally, Fig. 19 

presents the fire resistance predicted values of slim-floor steel 

beams for steel yield strength 235 and 420 MPa, while the 

concrete compressive strength and the beam length are 25 MPa 

and 6 m respectively. 

Figs. 16 to 19 clearly demonstrate the strong nonlinear 

relation among the load factor and the fire resistance of slim-

floor steel beams. Furthermore, for all presented cases, an 

increase of load factor results in a decrease of fire resistance. 

Fig. 16 and Fig. 17 show that an increase in beam span length 

yields a nonlinear decrease of fire resistance. The larger the 

load factor, the greater the reduction in fire resistance. An 

analogous remark holds for the quality of steel: an increase in 

the steel yield strength, yields a nonlinear decrease of fire 

resistance (Fig. 18 and Fig. 19). The larger the steel yield 

strength, the greater the reduction in fire resistance. 

The optimal neural network, BPNN 4-9-1, exhibits 

excellent convergence to the experimental results, even though 

it was trained with only 66.7% of the database datasets. 

Overfitting, typically manifested with highly anomalous 

prediction curves, is avoided, since the obtained curves reveal a 

smooth interpolation of the concrete strength in the space 

between the experimental data.  

Furthermore, based on the developed and presented 

optimum BPNN 4-9-1 model, a plethora of fire resistance 

curves can be obtained for different values combinations of the 

input parameters of steel beam length, load factor, steel yield 

strength, and concrete compressive strength.  

 

3.5. Revealing the nonlinear nature of slim-floor steel 
beams fire resistance 

The complexity of the prediction of the fire resistance of 

slim-floor steel beams is attributed to the nonlinear nature of 

this composite structure, regarding its fire resistance as a 

function of the geometrical and mechanical parameters. In 

order to highlight this complexity, and to demonstrate that the 

optimum ANN model developed herein can reproduce these 

phenomena, a relevant analysis has been undertaken, 

showcasing the model predictions in a number of typical value 

ranges of the input parameters. Specifically, in Fig. 20, six fire 

resistance contour maps, derived by the optimum BPNN 4-9-

1 model, for three different steel yield strengths (235, 275 

and 355 MPa) and two different concrete compressive 

strengths (20 and 40 MPa) are presented. 

These contour maps clearly depict the nonlinear nature of 

this composite structural element. Fig. 20 (a) presents the fire 

resistance contour map for steel yield strengths of 235 MPa 

and concrete compressive strengths of 25 MPa. As shown in 

this figure, a highly nonlinear relation between the fire 

resistance of slim-floor steel beams and both the length of 

beam and the load factor is revealed, whereas the maximum 

fire resistance is attained for low values of load factor and low 

values of beam length. These observations are confirmed also 

in all six presented maps. Regarding the strength of concrete, it  

can be seen that an increase in concrete compressive strength 

leads to an increase in fire resistance (three left column maps 

that correspond to concrete compressive 25 MPa vs the three 

right column maps that correspond to concrete compressive 40 

MPa). 

All of the above demonstrates that the proposed 

mathematical model can reliably reveal the complex and 

highly nonlinear behavior of fire resistance of slim-floor steel 

beams as a function of the parameters involved in this problem. 

In addition, it presents a useful tool for the practicing engineer, 

while at the same time can effectively support the teaching of 

this subject at an academic level.  

 

 

4. Conclusions 
 

In the work presented herein, a new soft computing 

model for the fire resistance prediction of slim-floor 

asymmetric steel beams using single hidden layer was 

presented. The model is based on the ANN technique, 

employing a number of 30 neurons in a single hidden layer. 

Its development employed ten different activation functions 

and normalization techniques and it was selected as the 

optimum from 240000 alternative configurations tested and 

compared with several performance indices. The following 

points are the main conclusions from the development 

procedure: 

 

 The proposed model predicts the fire resistance 

in a quite satisfactory manner offering 10% 

error margin for 100% of the specimens, both 

for testing and training datasets.  

 For the optimum ANN model, it was found that 

the minmax normalization technique of the 

data in the range [0.10,0.90] provided better 

prediction capability compared to other 

normalization techniques used. Regarding 

transfer activation functions the Hyperbolic 

Tangent Sigmoid transfer function (HTS) proved 

more effective for the hidden layer, while the 

Symmetric saturating linear transfer function 

(SSL) was more effective for the output layer. 

 According to the results from sensitivity 

analysis, among the several input variables, the 

most influencing one proved to be the steel 

yield strength, followed by the concrete 

compressive strength. 

 Based on the optimum developed ANN model, 

a closed-form equation for the estimation of 

fire resistance is derived, which can prove a 

useful tool for researchers and engineers, while 

at the same time can effectively support the 

teaching of this subject at an academic level. 
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(e) 
 

(f) 

Fig. 20 Fire resistance contour maps for three different steel yield strengths (235, 275 and 355 MPa) and two different 

concrete compressive strengths (20 and 40 MPa). 

 



 

 

 

 Furthermore, using the optimum developed and 

proposed ANN model, a first attempt has been 

undertaken producing maps in order to reveal the 

strongly nonlinear and complex mechanical 

behavior of these complex composite structures. 

Based on the derived maps, it seems that all these 

nonlinear phenomena can be totally revealed in a 

reliable and robust manner. 

Despite the significant findings of the present study which 

demonstrate the effectiveness of the proposed ANN model and 

the associated closed-form equation for the fire resistance 

prediction of slim-floor asymmetric steel beams, it is deemed 

necessary to update and enrich the database with more data in 

order to develop a new mathematical model aiming at a 

holistic approach to the problem of fire resistance prediction, 

which significantly influences the design of these structures. 

 

 

Appendix 
 

Table A1. Tranfer functions of the optimum BPNN 4-9-1 
Nr. Tranfer Function/Equation/Matlab Function Graph 

1 

Hyperbolic tangent sigmoid transfer function 

 

a = 𝑓(𝑛) =
2

1 + exp (−2 ∗ n)
− 1 

a = 𝑓(𝑛) = tansig (n) 

2 

Symmetric saturating linear transfer function 

 

𝑎 = 𝑓(𝑛) = {
−1,
𝑛,
−1,

  𝑛 ≤ −1
 −1 < 𝑛 < 1

  𝑛 ≥ 1
 

𝑎 = 𝑓(𝑛) = satlins (𝑛) 

 

 

Table A2. Best twenty optimum architectures of ANN models based on Testing datasets RMSE index for the case without 

any normalization technique of datasets 

Ranking Normalization Technique 
Cost 

Function 

Transfer Function 

A
rc

h
it

ec
tu

re
 

E
p

o
ch

s 

Datasets 

Input 

Layer 

Output 

Layer 

Testing 

R RMSE 

1 Without Normalization MSE tansig purelin 4-9-1 85 0.9977 1.0968 

2 Without Normalization MSE tansig poslin 4-28-1 85 0.9972 1.1578 

3 Without Normalization MSE logsig poslin 4-17-1 100 0.9972 1.1645 

4 Without Normalization MSE logsig purelin 4-24-1 100 0.9973 1.1659 

5 Without Normalization MSE logsig poslin 4-24-1 100 0.9973 1.1659 

6 Without Normalization MSE tansig poslin 4-30-1 93 0.9972 1.1814 

7 Without Normalization MSE logsig poslin 4-15-1 100 0.9971 1.1911 

8 Without Normalization MSE logsig purelin 4-18-1 99 0.9970 1.2038 

9 Without Normalization MSE logsig purelin 4-26-1 85 0.9970 1.2055 
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10 Without Normalization SSE tansig poslin 4-20-1 85 0.9969 1.2171 

11 Without Normalization MSE logsig purelin 4-18-1 85 0.9968 1.2255 

12 Without Normalization MSE tansig poslin 4-27-1 99 0.9969 1.2260 

13 Without Normalization SSE tansig poslin 4-29-1 85 0.9968 1.2310 

14 Without Normalization MSE logsig purelin 4-18-1 100 0.9968 1.2425 

15 Without Normalization MSE tansig purelin 4-25-1 85 0.9967 1.2485 

16 Without Normalization MSE tansig purelin 4-21-1 100 0.9968 1.2506 

17 Without Normalization MSE logsig purelin 4-12-1 85 0.9967 1.2547 

18 Without Normalization MSE logsig purelin 4-9-1 93 0.9967 1.2600 

19 Without Normalization SSE tansig poslin 4-26-1 85 0.9968 1.2635 

20 Without Normalization MSE logsig purelin 4-14-1 85 0.9967 1.2653 

 

 

Table A3. Best twenty optimum architectures of ANN models based on Testing datasets RMSE index for the case with 

Minmax [0.10, 0.90] normalization technique of datasets 

Ranking Normalization Technique 
Cost 

Function 

Transfer Function 

A
rc

h
it

ec
tu

re
 

E
p

o
ch

s 

Datasets 

Input 

Layer 

Output 

Layer 

Testing 

R RMSE 

1 Minmax [0.10, 0.90] 'SSE' tansig satlins 4-9-1 100 0.9981 0.9502 

2 Minmax [0.10, 0.90] SSE tansig satlins 4-4-1 100 0.9981 0.9776 

3 Minmax [0.10, 0.90] MSE logsig tansig 4-7-1 84 0.9978 1.0299 

4 Minmax [0.10, 0.90] MSE tansig logsig 4-6-1 84 0.9979 1.0313 

5 Minmax [0.10, 0.90] SSE logsig logsig 4-6-1 84 0.9979 1.0444 

6 Minmax [0.10, 0.90] SSE logsig satlins 4-9-1 84 0.9978 1.0472 

7 Minmax [0.10, 0.90] MSE tansig tansig 4-6-1 100 0.9977 1.0485 

8 Minmax [0.10, 0.90] MSE logsig satlins 4-10-1 84 0.9978 1.0493 

9 Minmax [0.10, 0.90] SSE logsig purelin 4-10-1 100 0.9977 1.0537 

10 Minmax [0.10, 0.90] MSE logsig poslin 4-7-1 100 0.9978 1.0555 

11 Minmax [0.10, 0.90] SSE logsig logsig 4-6-1 100 0.9977 1.0607 

12 Minmax [0.10, 0.90] SSE tansig poslin 4-7-1 100 0.9977 1.0629 

13 Minmax [0.10, 0.90] MSE logsig tansig 4-7-1 84 0.9977 1.0630 

14 Minmax [0.10, 0.90] SSE logsig purelin 4-4-1 100 0.9977 1.0646 

15 Minmax [0.10, 0.90] SSE logsig poslin 4-4-1 100 0.9977 1.0646 

16 Minmax [0.10, 0.90] MSE tansig tansig 4-4-1 100 0.9977 1.0702 

17 Minmax [0.10, 0.90] MSE poslin radbas 4-13-1 100 0.9976 1.0758 

18 Minmax [0.10, 0.90] MSE logsig purelin 4-7-1 100 0.9976 1.0761 

19 Minmax [0.10, 0.90] SSE logsig tansig 4-7-1 84 0.9975 1.0807 

20 Minmax [0.10, 0.90] MSE logsig satlins 4-4-1 100 0.9976 1.0818 

 

 

Table A4. Best twenty optimum architectures of ANN models based on Testing datasets RMSE index for the case with 

Minmax [-1.00, 1.00] normalization technique of datasets 

Ranking Normalization Technique 
Cost 

Function 

Transfer Function 

A
rc

h
it

ec
tu

re
 

E
p

o
ch

s 

Datasets 

Input 

Layer 

Output 

Layer 

Testing 

R RMSE 

1 Minmax [-1.00, 1.00] SSE logsig satlins 4-5-1 81 0.9981 0.9547 

2 Minmax [-1.00, 1.00] MSE tansig tansig 4-5-1 81 0.9980 0.9941 
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3 Minmax [-1.00, 1.00] SSE tansig tansig 4-6-1 81 0.9977 1.0537 

4 Minmax [-1.00, 1.00] MSE tansig tansig 4-4-1 81 0.9977 1.0577 

5 Minmax [-1.00, 1.00] MSE logsig purelin 4-4-1 81 0.9978 1.0702 

6 Minmax [-1.00, 1.00] MSE logsig satlins 4-6-1 81 0.9976 1.0753 

7 Minmax [-1.00, 1.00] SSE logsig purelin 4-10-1 81 0.9976 1.0788 

8 Minmax [-1.00, 1.00] SSE logsig purelin 4-5-1 81 0.9977 1.0813 

9 Minmax [-1.00, 1.00] MSE logsig satlins 4-8-1 81 0.9975 1.0820 

10 Minmax [-1.00, 1.00] SSE tansig purelin 4-12-1 81 0.9975 1.0830 

11 Minmax [-1.00, 1.00] SSE logsig satlins 4-7-1 81 0.9975 1.0835 

12 Minmax [-1.00, 1.00] MSE softmax purelin 4-7-1 81 0.9975 1.0860 

13 Minmax [-1.00, 1.00] MSE logsig satlins 4-6-1 100 0.9976 1.0863 

14 Minmax [-1.00, 1.00] MSE tansig purelin 4-10-1 81 0.9975 1.0880 

15 Minmax [-1.00, 1.00] SSE tansig satlins 4-5-1 81 0.9975 1.0914 

16 Minmax [-1.00, 1.00] SSE poslin tansig 4-11-1 81 0.9975 1.0921 

17 Minmax [-1.00, 1.00] SSE logsig satlins 4-6-1 81 0.9976 1.0979 

18 Minmax [-1.00, 1.00] MSE logsig satlins 4-4-1 81 0.9976 1.0981 

19 Minmax [-1.00, 1.00] MSE logsig tansig 4-4-1 80 0.9975 1.0983 

20 Minmax [-1.00, 1.00] SSE softmax tansig 4-7-1 81 0.9974 1.1075 

 

 

Table A5. Best twenty optimum architectures of ANN models based on Testing datasets RMSE index for the case with 

Zscore normalization technique of datasets 

Ranking Normalization Technique 
Cost 

Function 

Transfer Function 

A
rc

h
it

ec
tu

re
 

E
p

o
ch

s 

Datasets 

Input 

Layer 

Output 

Layer 

Testing 

R RMSE 

1 Zscore SSE tansig purelin 4-9-1 18 0.9977 1.0571 

2 Zscore MSE radbas purelin 4-7-1 58 0.9977 1.0736 

3 Zscore MSE logsig purelin 4-5-1 100 0.9977 1.0741 

4 Zscore MSE tansig purelin 4-6-1 18 0.9976 1.0742 

5 Zscore MSE softmax purelin 4-7-1 100 0.9976 1.0770 

6 Zscore SSE logsig purelin 4-8-1 58 0.9976 1.0806 

7 Zscore MSE tansig purelin 4-7-1 87 0.9975 1.0929 

8 Zscore SSE tansig purelin 4-5-1 87 0.9974 1.1170 

9 Zscore SSE logsig purelin 4-5-1 18 0.9974 1.1173 

10 Zscore MSE logsig purelin 4-13-1 18 0.9974 1.1189 

11 Zscore MSE logsig purelin 4-6-1 58 0.9974 1.1230 

12 Zscore SSE tansig purelin 4-5-1 18 0.9974 1.1246 

13 Zscore MSE tansig purelin 4-5-1 58 0.9973 1.1281 

14 Zscore MSE tansig purelin 4-12-1 18 0.9973 1.1323 

15 Zscore MSE softmax purelin 4-9-1 100 0.9974 1.1343 

16 Zscore MSE softmax purelin 4-7-1 18 0.9973 1.1374 

17 Zscore MSE tansig purelin 4-8-1 58 0.9974 1.1463 

18 Zscore SSE softmax purelin 4-6-1 100 0.9972 1.1480 

19 Zscore SSE logsig purelin 4-6-1 58 0.9972 1.1510 

20 Zscore MSE tansig purelin 4-5-1 18 0.9972 1.1515 
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