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Detecting peatland vegetation patterns with multi-temporal field spectroscopy
Yuwen Pang a, Aleksi Räsänenb, Viivi Lindholma, Mika Aurelac and Tarmo Virtanena

aEcosystem and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; 
bNatural Resources Institute Finland (Luke), Finland; cFinnish Meteorological Institute, Helsinki, Finland

ABSTRACT
Peatlands are one of the most significant terrestrial carbon pools, and the processes behind the 
carbon cycle in peatlands are strongly associated with different vegetation patterns. Handheld 
spectroradiometer data has been widely applied in ecological research, but there is a lack of 
studies on peatlands assessing how the temporal and spectral resolution affect the detectability of 
vegetation patterns. We collected field spectroscopy and vegetation inventory data at two north
ern boreal peatlands, Lompolojänkkä and Halssiaapa, between late May and August 2019. We 
conducted multivariate random forest regressions to examine the appropriate periods, benefits of 
multi-temporal data, and optimal spectral bandwidth and sampling interval for detecting plant 
communities and the two-dimensional (2D) %-cover, above-ground biomass (AGB) and leaf area 
index (LAI) of seven plant functional types (PFTs). In the best cross-site regression models for 
detecting plant community clusters (PCCs), R2 was 42.6–48.0% (root mean square error (RMSE) 
0.153–0.193), and for PFT 2D %-cover 53.9–69.8% (RMSE 8.2–17.6%), AGB 43.1–61.5% (RMSE 86.2– 
165.5 g/m2) and LAI 46.3–51.3% (RMSE 0.220–0.464 m2/m2). The multi-temporal data of the whole 
season increased R2 by 13.7–24.6%-points and 10.2–33.0%-points for the PCC and PFT regressions, 
respectively. There was no single optimal temporal window for vegetation pattern detection for 
the two sites; in Lompolojänkkä the early growing season between late May and mid-June had the 
highest regression performance, while in Halssiaapa, the optimal period was during the peak 
season, from July to early August. In general, the spectral sampling interval between 1 to 10 nm 
yielded the best regression performance for most of the vegetation characteristics in 
Lompolojänkkä, whereas the optimal range extended to 20 nm in Halssiaapa. Our findings under
score the importance of fieldwork timing and the use of multi-temporal and hyperspectral data in 
detecting vegetation in spatially heterogeneous landscapes.
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1 Introduction

Northern peatlands play a large role in global carbon 
circulation (Loisel and Yu 2013; Rastogi et al. 2019). 
Their carbon dynamics are linked to vegetation pat
tern and composition, such as the two-dimensional 
(2D, the projected) %-cover, above-ground biomass 
(AGB) and leaf area index (LAI) of plant functional 
types (PFTs) (Robroek et al. 2015; Lopatin et al. 2019; 
Rupp et al. 2019; Whitaker et al. 2021; Laine, 
Korrensalo, and Tuittila 2022). The 2D %-cover of 
different plant taxa or communities is the most 
straightforward and most often mapped vegetation 
parameter with remote sensing. In ecosystem studies, 
other parameters are also needed. The AGB, a metric 
for characterizing vegetation productivity and carbon 
accumulation, is defined as the total standing dry 
mass of living plants (Graf and Rochefort 2009; 
Berner et al. 2018). LAI describes the plant canopy 

structure and is closely related to photosynthesis 
capacity and energy balance (Chen et al. 1997; 
Juutinen et al. 2017). On the landscape scale, the 
ecosystem carbon balance is a vegetation commu
nity-specific phenomenon and is connected to the 
composition of plant communities (Räsänen et al.  
2021) and other environmental properties, such as 
temperature and wetness (Jonsson and Wardle 2010; 
Strilesky and Humphreys 2012; Robroek et al. 2015).

Peatlands are structurally heterogeneous, having 
different plant community clusters (PCCs) and fine- 
scale microtopography. For example, a northern bor
eal fen can consist of several different plant commu
nities: wet flarks dominated by sedges and wet brown 
mosses are found in the low-lying positions, lawns 
dominated by Sphagnum, some sedges and forbs in 
slightly more elevated locations, and in the most 
elevated locations, there are strings and hummocks 
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with bog-type shrub-dominated vegetation commu
nities (Heiskanen et al. 2021). Previous studies have 
suggested that in northern peatlands the use of ultra- 
high spatial resolution (< 0.5 m) and hyperspectral 
data increase the detectability of vegetation patterns 
(Räsänen and Virtanen 2019; Räsänen et al. 2020b). 
Hyperspectral remote sensing gives possibilities to 
differentiate or predict PCCs and PFTs (Schaepman- 
Strub et al. 2009; Kattenborn et al. 2019; McPartland et 
al. 2019) and allows the estimation of plant biophysi
cal metrics, such as AGB and LAI (Chasmer et al. 2020). 
As examples of hyperspectral studies, Schmidtlein 
(2004); Schmidtlein (2005) mapped vegetation gradi
ents and Ellenberg indicator values, Middleton et al. 
(2012) classified four peatland biotopes, Schmidtlein 
et al. (2012); Harris, Charnock, and Lucas (2015) 
detected structure of PCCs, and Schweiger et al. 
(2017) predicted PFTs and traits of PCCs in peatlands. 
Drone hyperspectral data has been used, for instance, 
by Räsänen et al. (2020b), who mapped peatland 
vegetation AGB and LAI. Field or simulated spectro
scopy has been used, for example, by Schaepman- 
Strub et al. (2009), who estimated the fractional 
cover and AGB of three peatland PFTs, Kattenborn et 
al. (2019), who distinguished functional types and 
traits, and McPartland et al. (2019), who characterized 
peatland PCCs.

The seasonal development of vegetation is one of 
the main drivers of carbon dynamics in northern eco
systems, and it varies between AGB, LAI and different 
PFTs (Juutinen et al. 2017; Peichl et al., 2018). Several 
studies have examined the optimal temporal window 
for discriminating PCCs, such as Cole, McMorrow, and 
Evans (2014) within an upland peatland and Beamish 
et al. (2017) in tundra. Others, like Erudel et al. (2017) 
and Arroyo-Mora et al. (2018), have investigated the 
ability to detect vegetation by using seasonal spectra 
in peatlands but only in the early part of the vegetation 
growing season, from April to June. Several studies 
have indicated that multi-temporal spectral data 
boost vegetation detection performance (Dudley et 
al. 2015; Vuolo et al. 2018), although the optimal tem
poral window and the benefits of multi-temporal in situ 
spectroscopy data have rarely been explored (Vuolo et 
al. 2018; Cai et al. 2020; Bourgeau-Chavez et al. 2021).

In addition to the temporal issues, the spectral 
resolution also affects the success of spectral identifi
cation. Ustin and Middleton (2021) stated in their 
recent review that high spectral resolution 

characterized by a narrow bandwidth of 10 nm 
would be sufficient to identify and quantify plant 
and ecosystem properties, and other studies have 
gained acceptable results even with coarser spectral 
resolution (Chasmer et al. 2020). On the other hand, in 
Arctic tundra, Davidson et al. (2016) have shown that 
multispectral satellite data is not able to discriminate 
and map dominant PCCs, therefore highlighting the 
need to use hyperspectral data, and Thomson et al. 
(2021) have found that eight common Arctic plant 
species could be well distinguished with field spectro
scopy and drone multispectral data but not with 
Sentinel-2 data. Melville et al. (2018), and other exam
ples (Berhane et al. 2018; Bradter et al. 2020), have 
reported that broadband spectra are able to achieve 
acceptable classification accuracy for lowland grass
land communities; and the accuracy of multispectral 
data was similar to that of hyperspectral data when 
monitoring Antarctic vegetation (Turner et al. 2019). 
Thus, the optimal spectral resolution varies between 
study areas, ecosystems and analyzed vegetation 
characteristics, but there have been few studies in 
peatlands analyzing the optimal spectral resolution.

This study assesses how well peatland vegetation 
characteristics (PCCs and the 2D %-cover, AGB and LAI 
of PFTs) can be detected with time-series field spec
troscopy data and addresses the following specific 
questions: (1) What is the optimal temporal window 
for spectroscopy data acquisition? (2) Does multi-tem
poral whole-season spectroscopy data add regression 
model accuracy in vegetation pattern detection? and 
(3) What is the optimal spectral bandwidth and sam
pling interval, and how do the results differ when 
simulated multispectral S2 data is used?

2 Materials and methods

2.1 Study areas

Our study areas were two fens located in the boreal 
vegetation zone 125 km apart from each other (Figure 
1) and with distinctive vegetation and microtopogra
phy patterns. Although earlier studies of vegetation, 
remote sensing and, in particular, carbon exchange in 
these areas have been carried out (Haapala et al. 2009; 
Drewer et al. 2010; Li et al. 2016; Räsänen et al. 2020b,  
2021), none of the studies has used field spectroscopy 
data to detect vegetation characteristics in these 
peatlands.
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The Lompolojänkkä fen (67° 59.835′ N 24° 12.546′ E, 
270 m a.s.l., Figure 1) in Pallas has a flat land surface 
with major microforms being flarks and lawns (Räsänen 
et al. 2020a; Zhang et al., 2020). A small stream runs 
through the fen from south to north. The riparian areas 
are covered especially with willow shrubs (e.g. Salix 
lapponum) of approximately 60 cm in height. In the 
central area, a relatively dense vegetation field layer is 
dominated by Menyanthes trifoliata, Carex lasiocarpa 
and Carex rostrata, accompanied by Sphagnum and 
wet brown mosses in the ground layer. The margins 
and transition area between the fen and adjacent for
ests include hummocks that are oligotrophic and cov
ered by evergreen shrubs and Sphagnum spp. (Aurela 
et al. 2015). There are no trees in the central area of the 
peatland, but a few scattered pines with areal crown 
cover ≤ 10% are found in the peatland margins. 
Additionally, the study area included six plots from 
the adjacent forests on mineral and peat soils.

The Halssiaapa fen (67° 22.11′ N 26° 39.27′ E; 180 m 
a.s.l., Figure 1) in Sodankylä has fine-scale microform 
patterns, comprising flarks, lawns and strings. The wet 
surfaces (flarks) are dominated by wet brown mosses, 
and some vascular plants, Eriophorum species, 
Scheuchzeria palustris and M. trifoliata are found 
(Haapala et al. 2009; Morsky et al. 2012). The lawns 
are located in drier parts between flarks and strings 

and are dominated by different Carex spp. and 
Sphagnum species, such as Sphagnum lindbergii. The 
strings are narrow (1–5 m wide), interconnected ridges 
covered by shrubs (e.g. Betula nana, Andromeda poli
folia and Vaccinium oxycoccos). Additionally, there is a 
≤ 10% crown cover of 5–7 m tall trees, consisting of 
birches (Betula pubescens s.l.) and some pines (Pinus 
sylvestris) (Räsänen et al. 2020a) in the strings that 
cover approximately 20% of the fen area.

2.2 Field vegetation inventories and ecological 
analysis

The field inventory was carried out from late May to 
August 2019 (Table 1). Based on measurements of the 
nearest Finnish meteorological stations, temperature 
and precipitation conditions in 2019 were generally 
close to the average values for the period 2008–2021 
at both sites. However, the precipitation levels in July 
2019 were less than half of the averages of the refer
ence period (Table S1 in the supplementary material). 
There were some measurement days in June and 
August with marked precipitation events preceding 
the measurements (Table 1), but photographs taken 
in those measurement days do not show any obvious 
flooding which could have impacted to our spectral 
measurements.

Figure 1. Location of study sites. One example of study plots in both peatlands, and true-color drone images where field inventory 
plots are marked by red star points. Drone images were captured in July 2018 and 2016 in Lompolojänkkä and Halssiaapa, respectively.
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We sampled 39 and 43 plots with a 50 cm diameter to 
cover all main plant communities and identified 48 and 
37 plant species (see plant species lists in Table S2) in 
Lompolojänkkä and Halssiaapa, respectively. Plots were 
located near boardwalks, allowing access to these plots 
also in wet conditions. For the comparative analysis 
across PCCs, we sampled three repeat plots near each 
other that had similar environmental conditions.

In the field, we visually estimated the three-dimen
sional (3D, each layer estimated separately, summing up 
to ≥ 100%) and two-dimensional (2D, the projected 
coverage when looking directly down, summing up to 
100%) %-cover of each identified plant species. For 
shrubs, we further divided the 3D %-cover into green 
(the photosynthesizing part) and brown (the woody 
part) proportions during the survey. We also measured 
the height of vascular plants with a ruler and gave the 
mean value for each species. We categorized the species 
into seven PFTs, including deciduous shrubs, evergreen 
shrubs, forbs, graminoids, wet brown mosses, feather 
mosses, and Sphagnum (see details in Table S2), a PFT 
division slightly adapted from previous studies by 
Räsänen et al. (2020a) and Berner et al. (2018). To calcu
late AGB for vascular plants and mosses and LAI for 
vascular plants, we adopted empirical relationships 
based on harvested samples and measured AGB and 
LAI (given in Table S3) from earlier studies (Räsänen et al.  
2020b, 2021). The overall seasonal variation of PFT-spe
cific 2D %-cover, ABG and LAI at each study sites was 
presented in Figure S1 in the supplementary material.

We utilized the 2D %-cover data to extract the PCCs. 
Several studies confirmed that fuzzy c-means (FCM) 
clustering (Bezdek, Ehrlich, and Full 1984) provides a 
suitable framework for plant community delineation 
(De Caceres, Font, and Oliva 2010a; Bai and Zhang  
2018). It has also been discussed that fuzzy cluster 
membership values, which range between 0 and 1 

and quantify the probability of belonging to certain 
PCCs, represent ecological gradients more realistically 
than crisp PCCs (Harris, Charnock, and Lucas 2015; 
Räsänen et al. 2019). To recognize the PCCs, we firstly 
used the peak season vegetation inventories that were 
made in vegetation peak growing seasons as plant 
species was mostly visible, i.e. around the 20th of July, 
to conduct Wisconsin double standardization and 
square-root transformation (Oksanen et al. 2007) and 
calculate Bray–Curtis (BC) distances via vegan 2.5–7 
(Oksanen et al. 2020), which were used to measure 
the dissimilarity between plots (Ricotta and Podani  
2017). Secondly, with the package of cluster 2.1.1 
(Maechler et al. 2022), we applied the non-metric multi
dimensional scaling algorithm to the BC matrix by 
executing 20 random starts to ensure a scaling stress 
value below 0.1 and restricted the community charac
teristics to four ordination axes. Thirdly, we searched 
for the optimum cluster number between 1 and 10 by 
maximizing the silhouette width (Campello and 
Hruschka 2006) and then applied the optimal cluster 
number to FCM clustering with a membership expo
nent of 1.5 (Maechler et al. 2022). Finally, for each plot, 
we yielded the cluster membership value. To find out 
the representative species of identified PCCs, we used 
an extension of the original indicator value method (De 
Caceres, Legendre, and Moretti 2010b) with 999 ran
dom permutations by using the package of indicspe
cies 1.7.9 (De Caceres, Jansen, and De Caceres 2020). 
The analyses were implemented in the two study areas 
separately using R (Team 2020) packages.

2.3 Spectroscopy data collection, processing and 
analysis

We carried out field spectral reflectance measurements 
concurrently with vegetation measurements (Table 1) 

Table 1. Schedule of vegetation field inventory and spectroscopy collection.
Site Date (2019) Vegetation growing season No. of spectral plot Precipitation during previous 5 days (mm)

Lompolojänkkä, 
39 vegetation plots, 48 plant species

28/05 Early season 36 9.9
12/06 Early season 38 27.2
28/06 Early season 36 6.2
09/07 Mid-season 39 8.2
24/07 Mid-season 35 5.2
06/08 Late season 39 0.5
20/08 Late season 39 39.4

Halssiaapa, 
43 vegetation plots, 37 plant species

30/05 Early season 42 14.7
13/06 Early season 42 24.5
27/06 Early season 43 5.7
15/07 Mid-season 43 1.4
26/07 Mid-season 43 0
08/08 Late season 43 0.8
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with an Analytical Spectral Devices Handheld II spec
troradiometer (Analytical Spectral Devices, Boulder, 
CO, USA), which assembles a wavelength range of 
325 to 1075 nm with a 1 nm interval and 3 nm band
width. Before measuring the actual plots, we optimized 
the integration time for illumination conditions and 
measured the Labsphere Spectralon white reference 
panel (assumed to have 100% reflectance), which was 
kept level on a maximum distance of 10 cm. When 
measuring the reflectance in the plots, we positioned 
the spectroradiometer 1 m above the land surface to 
cover the circular plot with a diameter of 50 cm (field of 
view 25°). We held the spectroradiometer in hand and 
pointed it directly down, checked by the laser pointer. 
We conducted the measurements with an arm out to 
the side reducing the reflection interference and 
avoided standing in front of the sun so that we did 
not shade the plot. We calibrated the device approxi
mately every 5 minutes or when illumination condi
tions changed, including optimization and 
measurement of the white reference panel. For each 
plot, we recorded three scans at one time. In total, we 
collected 786 and 768 spectral records in 
Lompolojänkkä and Halssiaapa, respectively (Table 1).

Before spectral preprocessing, the spectral data 
were transferred into reflectance on the software of 
ASD ViewSpec Pro, where the small discrepancies of 
assuming the 100% reflecting of reflectance panel 
were accounted for. We visually interpreted the three 
scans of each measurement to select the best one 
(Figure S2). If three scans were similar, the midmost 
one was chosen. If there was an obvious increase or 
decrease in lightning conditions, we selected the one 
which was taken immediately after the calibration. This 
latter criterion was used for 6% and 2% of the measure
ments in Lompolojänkkä and Halssiaapa, respectively.

Due to a small signal-to-noise ratio resulting from the 
systematic effect of the spectroradiometer and strong 
atmospheric absorption mainly resulting from the pre
sence of water vapor (Erudel et al. 2017), we removed 
spectral bands from 350 to 400 nm and 901 to 1050 nm 
and used only the wavelength region between 400 and 
900 nm in the analyses. Based on our data, the reflec
tance of vegetation ranged from 0.1 to 0.4, while the 
value dropped to below 0.1 when there was high sur
face water content, such as in the flark PCC. Besides 
spectral signature transformation measures, spectral 
normalization has been utilized to remove wave
length-independent magnitude differences between 

spectra and enhance wavelength-dependent effects 
(Siegmann et al. 2014; Philpot, Jacquemoud, and Tian  
2021), which therefore allows spectral comparison 
across sites and over seasons. A study by Cao et al. 
(2017) suggested that the normalization of spectra facili
tated hyperspectral classification. To this end, we calcu
lated the normalized spectra with the following 
equation: 

RnðλÞ ¼
RðλÞ

MaxðRÞ
(1) 

where λ is the wavelength ranging from 400 to 
900 nm, Rn(λ) is the normalized spectrum, R(λ) is the 
original spectrum, and Max(R) is the maximum reflec
tance of each original spectrum, independently. After 
normalization, we smoothed all spectra by using a 
Savitzky–Golay filter, which has been widely applied 
to field spectroscopy preprocessing (Zimmermann 
and Kohler, 2013).

To address the first research question, we used only 
single-date spectra to predict PCC, AGB and LAI for 
relevant dates, respectively. Then, to answer the sec
ond question, we combined multi-temporal spectral 
and vegetation data (i.e. the whole season) to con
struct regressions, which were compared to single- 
date regressions accordingly. When answering the 
third research question, we resampled the whole-sea
son field spectroradiometer data with 1 nm sampling 
interval into four other spectral sampling interval 
options (i.e. 5, 10, 20 and 50 nm) by averaging the 
reflectance of the original spectrum in corresponding 
wavelength regions. We also simulated two types of 
Sentinel-2A (S2A) band options: 4 bands (blue, green, 
red and near-infrared, S2A-4) and 8 bands (4-band 
option and 4 vegetation red-edge bands, S2A-8) (the 
technical information for spectral resampling and 
visualized figures is given in Table S4 and Figure S3). 
This data processing was done with the hsdar package 
(Lehnert et al. 2019) in R (Team 2020).

The multivariate random forest (MRF) algorithm 
allows the use of multiple response variables simulta
neously and is able to yield a higher predictive rate 
than the univariate random forest (Segal and Xiao  
2011). With the package randomForestSRC 2.11.0 
(Ishwaran, Kogalur, and Kogalur 2022) in R (Team  
2020), we applied the MRF with 500 trees to establish 
regressions in which the spectral reflectance composed 
of the explanatory variables and vegetation character
istics (FCM membership of PCCs and the 2D %-cover, 
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AGB and LAI of PFTs) were response variables. In the 
PFT regressions, the following response variables were 
tested: (1) vascular plants, (2) mosses total, (3) ground- 
layer vegetation total and (4) seven separate PFTs.

To assess model performance, we calculated three 
validation parameters, the percentage of variance 
explained (random forest pseudo R2 = 1 − (mean 
square error)/variance(response)), the root mean 
square error (RMSE) and the normalized RMSE 
(nRMSE = RMSE/range(response)), with an out-of- 
bag evaluation in which two-thirds of the data in 
each tree is used for training and the rest for evalua
tion. It has been noted in earlier research that there is 
no need for separate cross-validation or independent 
test data when using OOB evaluation (Breiman 2003; 
Canovas-Garcia et al. 2017). To get robust regression 
results, we repeated the MRF regression 20 times and 
calculated the mean R2, RMSE and nRMSE. A flowchart 
of the materials and methods is presented in Figure 2.

3 Results

3.1 Peatland vegetation community cluster results

The optimal number of PCCs was six in both studied 
peatlands (Figure 3) by an ordination scale stress of 
0.084 in Lompolojänkkä and 0.1023 in Halssiaapa. 
These PCCs were named based on their vegetation 
properties and microtopography, resulting in one 
flark and three lawns at both sites, while two hum
mocks or strings in Lompolojänkkä or Halssiaapa, 
respectively. Most of the PCCs were separated well 
in the analyses, except LawnB and LawnC in 
Lompolojänkkä seemed to overlap (Figure 3). 
However, they had different indicator species 
(Table S5). Additionally, lawn clusters in 
Lompolojänkkä had different seasonal vegetation 
development patterns. LawnA had relatively high 
components of vascular plants and thus clear sea
sonality, LawnB had a %-cover peak around 20th of 

Figure 2. The flowchart of the study. 3D and 2D refer to three- and two-dimensional %-cover, respectively. FCM refers to fuzzy c- 
means; MRF to the multivariate random forest; Q1, Q2 and Q3 to the research question 1, 2, and 3, respectively.

Figure 3. Identified plant community clusters. In the figure, MDS 1 and 2 refer to the first two non-metric dimensional scaling 
coordinate, and Hum/Str to hummock (Lomplojänkkä) or string (Halssiaapa).
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July, while the %-cover of LawnC was mostly stable 
over seasons (Figure S4).

In general, the reflectance was higher in the visible 
wavelength region during the early season from May to 
mid of June (Figure 4). After that, the reflectance 
dropped, reaching the lowest values around 685 nm 
by late July. In the near-infrared region, between 700 
and 900 nm, opposite temporal progress is observed, 
with the lowest values typically taking place during early 
summer and increasing after that as vegetation 
increases. Seasonal variation also clearly differed 
between PCCs (Figure 4).

3.2 Seasonal differences in spectral regressions

3.2.1 Plant community clusters
For the whole-season spectral regressions of PCCs, 
the average R2 was 48.0% (RMSE 0.188, Table S6) 

and 42.6% (RMSE 0.155, Table S6) in 
Lompolojänkkä and Halssiaapa, respectively 
(Figure 5). Halssiaapa regressions yielded higher 
explanatory rates in single-date models than in 
Lompolojänkkä, in particular during late July and 
August (i.e. peak to late growing season), with R2 

ranging from 33.5% to 39.3% (RMSE 0.160–0.167, 
Table S6). The whole-season models had consider
ably higher R2 when compared with single-date 
ones, on average by 24.6%-points (RMSE dropped 
by 0.044, Table S6) and 13.7%-points (RMSE 
dropped by 0.020, Table S6) at Lompolojänkkä 
and Halssiaapa, respectively. None of the single- 
date regression models had as high a regression 
performance as the whole-season models.

With regard to separate PCCs, the whole-season 
models mostly improved the explanatory rate com
pared with single-date ones (Figure 5). However, in 

Figure 4. Seasonal normalized spectra of six plant community clusters. Lom and Hal refer to Lompolojänkkä and Halssiaapa, 
respectively.
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certain PCCs, such improvement was not the case. For 
example, flark had the highest R2 and lowest RMSE in 
late May and August in Lompolojänkkä and Halssiaapa, 
respectively (Figure 5 and Table S7). The PCC-specific 
explanatory rates of individual date regressions over 
June to July were stable in Halssiaapa, even though R2 

from these dates was noticeably lower than that 
reported in the whole-season regressions. However, 
in Lompolojänkkä, there was a considerable variation 
in R2 among single-date models, resulting in a high SD 
(6.3–17.8%) (Table S6).

3.2.2 Plant functional types
When compared with single-date regression models, 
the whole-season models improved R2 by 10.2–32.1%- 
points, 15–23.7%-points and 23.7–33%-points for 
%-cover, AGB and LAI, respectively (Figure 6). The 2D 
%-cover regressions had higher R2 (53.9–69.1%) than the 
AGB (43.1–60.5%) and LAI (44.4–51.3%) regressions. In 
the single-date regressions, early growing season (late 
May to mid-June) models had the highest explanatory 
rates for estimating 2D %-cover (excluding the vascular 
plant total, which got the highest explanatory rates in 
the late season, i.e. late July and early August) and AGB, 
while the single-date regressions performed poorly for 
LAI. Total moss 2D %-cover and AGB were best detected 

in the early and late seasons when vascular plants were 
not covering them.

In most cases, the whole-season models had the 
best explanatory rates, and there were no consistent 
optimal temporal periods for several PFTs (Figure 6). 
Nevertheless, for some PFTs, some single-date models 
had comparable regression performance with the 
whole-season models, but the optimal temporal win
dow varied between sites. For instance, dates from 
July to August were optimal for estimating the 2D 
%-cover of PFTs other than feather mosses and the 
AGB and LAI of evergreen shrubs in Halssiaapa. In 
Lompolojänkkä, single-date models for specific PFTs 
had mostly low regression performance, while the 2D 
%-cover of deciduous shrubs, feather mosses and 
Sphagnum was best detected in late May to mid- 
June, and for graminoids, the optimal season was 
between June and July.

3.3 Impacts of spectral resolution on detectability

3.3.1 Plant community clusters
The best overall model performance was obtained at 
the sampling interval of 1–20 nm, with an R2 of 45.1– 
48.0% (RMSE 0.188–0.193, Table S9) in Lompolojänkkä 
and 42.6–44.1% (RMSE 0.153–0.155, Table S9) in 

Figure 5. Spectral regression explained rates in terms of overall and specific plant community clusters, in which Hum/Str refers to 
hummocks or strings. The hummocks exist only in Lompolojänkkä and strings only in Halssiaapa. The descriptions of communities are 
given in Table S5. In the legend, the former dates are for Lompolojänkkä and the latter ones for Halssiaapa. The root mean square error 
of regressions is reported in Tables S6 and S7.
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Halssiaapa (Figure 7). With S2A-4, R2 declined by 9.4 
and 9.6%-points from the best models in 
Lompolojänkkä and Halssiaapa, respectively. 
Specifically, a clear downward trend in the explanatory 
rate was found in most PCCs with coarser spectral 

resolution (Figure 7). In most PCCs, there were small 
changes in R2 between 1 and 20 nm, while R2 was 
substantially lower for 50 nm and the two S2A options, 
except for LawnB and HumA in Lompolojänkkä and 
LawnC in Halssiaapa.

Figure 6. Explained variance (R2) of two-dimensional (2D) %-cover, above-ground biomass (AGB) and leaf area index (LAI) in terms of 
various plant functional types by single-date and whole-season models. In the legend, the former dates are for Lompolojänkkä and the 
latter ones for Halssiaapa. The root mean square error of these regression models is reported in Table S8. Because the AGB or LAI 
component of several PFTs was not accurately estimated on certain dates, only some specific PFTs were examined by the single-date 
spectral regression models.

Figure 7. Explained variance (R2) of spectral regressions in terms of regional overall and specific plant community clusters, in which 
Hum/Str refers to hummocks or strings. The hummocks only exist in Lompolojänkkä and strings in Halssiaapa. The root mean square 
error of regressions is reported in Tables S9 and S10. SpecRes = spectral resolution, i.e. the sampling bandwidth; S2A = Sentinel-2A.
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3.3.2 Plant functional types
The spectral sampling interval between 1 and 20 nm 
had the highest regression performance and, particu
larly for 2D %-cover and AGB, the regression perfor
mance decreased considerably with wider sampling 
interval (Figure 8). For LAI, changing the spectral 
bandwidth yielded relatively small changes in model 
performance, with the decrease in R2 being 1.9 and 
6.4%-points in Lompolojänkkä and Halssiaapa, 
respectively. Also, for separate PFTs, the sampling 
interval from 1 to 20 nm generated the highest expla
natory rates, but for LAI, the differences between 
intervals were small (Figure 8). For instance, the 
regression performance of the LAI of forbs exceeded 
or was close to that of 1 nm-based regressions with all 
wider spectral bandwidth.

4 Discussion

Our regression analysis results show that we were 
able to detect vegetation patterns most accurately 
with the whole-season data and spectral sampling 
interval below 10–20 nm. In most cases, poor regres
sion performance was reported for single-date mod
els (Figures 5 and 6). These findings are in line with 
prior research, emphasizing the benefits of multi-tem
poral data (Langley, Cheshire, and Humes 2001; 

Dudley et al. 2015; Vuolo et al. 2018; Wakulinska and 
Marcinkowska-Ochtyra 2020). For instance, Millard et 
al. (2020) and Rapinel et al. (2020) have shown that 
using the full growing season remote sensing data 
achieved higher peatland vegetation detection accu
racy than using a subset of a few dates. Moreover, our 
results exhibited the higher spectral detectability of 
certain PFTs, in particular Sphagnum, followed by 
shrubs and forbs, agreeing with conclusions in earlier 
studies (Schaepman-Strub et al. 2009; McPartland et 
al. 2019; Räsänen et al. 2020a, 2020b). Conversely, 
graminoids, due to their thin leaves, are known to 
be difficult to detect (Lopatin et al. 2017; McPartland 
et al. 2019; Räsänen et al. 2020b).

Some studies have shown that the best discrimina
tion of PCCs occurs when plant species have their 
maximum canopy during the seasonal peak season 
(Beamish et al. 2017; Arroyo-Mora et al. 2018; Palace 
et al. 2018). However, our results do not fully support 
this finding (Figure 5). In particular, the poor regres
sion accuracy was found in flark and hummcokB in 
Lompolojänkkä during June-July. Instead, we suggest 
that for certain PCCs, such as flarks and hummocks/ 
strings, May to mid-June (the early growing season) 
and July to August (the peak season) are the most 
appropriate periods for vegetation detection in 
Lompolojänkkä and Halssiaapa, respectively (Figure 

Figure 8. Explained variance (R2) of two-dimensional (2D) %-cover, above-ground biomass (AGB) and leaf area index (LAI) in terms of 
various plant functional types. The root mean square error of these regression models is reported in Table S11. SpecRes = spectral 
resolution, i.e. the sampling interval; S2A = Sentinel-2A.
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5). This could be due to differences in the plant com
position, the phenological development of dominat
ing PFTs (Dudley et al. 2015), and how these PFTs are 
layered in relation to each other by PCCs. For instance, 
in Lompolojänkkä, there was larger %-cover of water 
in flarks and less wet brown mosses than in 
Halssiaapa, and higher coverage of graminoids, and 
high %-cover of Sphagnum or wet brown mosses in 
hummocks below vascular plants. Additionally, a 
rapid variation of %-cover of the vascular plant was 
found in these two PCCs during July (Figure S4), 
possibly causing a large variation in the observability 
of PCCs during certain dates.

Some PFTs could not be predicted well at all; espe
cially in some single date models, AGB of deciduous 
shrubs and graminoids had low regression performance 
at both sites on certain dates (Figure 6). That is possibly 
caused by several reasons. Some PFTs are common only 
in certain PCCs (Figure S4). For instance, there is a high 
proportion of deciduous shrubs LawnA, while it is quite 
low in other PCCs. As for mosses, they were poorly 
predicted in single-date spectral regressions; in particu
lar the wet brown mosses got rather poor predictions 
accurancy in Lompolojänkkä (Figure 6). This is under
standable, as the wet brown mosses are covering only 
small part in Lompolojänkkä, but their %-cover is much 
higher in Halssiaapa (Figure S1). Additionally, in 
Halssiaapa, there is less vegetation above the wet 
brown mosses, especially in flarks (Figure S4), thus yield
ing a higher R2. In addition, PFTs with deciduous leaves 
are obviously not well detected in the early season when 
they have not yet fully developed. This also makes some 
other PFTs easier to detect in early vegetation growing 
seasons, like Sphagnum and other mosses growing 
below the deciduous vascular plants (Figure 5). The 
impact of wilting graminoids and deciduous shrubs 
and litter fall can be also considerable in some PCCs. 
There are differences in several seasonal development 
patterns PFTs, including leaf structure and foliar chem
istry, impacting the possibility of distinguishing between 
evergreen vs deciduous and high-growing vs low-grow
ing PFTs (Kattenborn et al. 2019). However, in most 
cases, the modeling accuracy of single-date regressions 
varied widely; thus, no appropriate temporal window 
was found.

From a spectral resolution perspective, our results 
indicate that extremely high spectral resolution data, 
i.e. spectral sampling interval < 20 nm, is not neces
sarily needed to detect plant properties (Figures 7 and 

8). This result is in line with previous studies, which 
have emphasized the benefits of hyperspectral data in 
identifying specific absorption and reflection bands 
indicative of plant biophysics and identification of 
individual species (McPartland et al. 2019; Bradter et 
al. 2020; Oldeland et al., 2021), while some, such as 
Belluco et al. (2006); Pang et al. (2020), have noted 
that part of the spectral bands may be redundant. To 
this end, in the last decade, more researchers have 
shown that Sentinel-2 has sufficient spectral resolu
tion to explore vegetation characteristics (Arroyo- 
Mora et al. 2018; Bradter et al. 2020; Wakulinska and 
Marcinkowska-Ochtyra 2020). Our results only par
tially support this, since S2A yielded relatively high 
accuracies in some cases, such as in the detection of 
Sphagnum lawns (LawnB in Lompolojänkkä and 
LawnC in Halssiaapa, Figure 7) and estimation of 
four vascular PFTs (Figure 8), but lower accuracies in 
other cases.

It has been found in several studies that, in general, 
the 2D %-cover is easier to estimate than AGB and LAI 
(McPartland et al. 2019; Räsänen et al. 2020a, 2020b), 
and their explained rates vary among PCCs and PFTs 
(Bratsch et al. 2016, 2017; Kattenborn et al. 2019). The 
ability to predict different plant properties depends 
on how unique their spectral signal is but also how 
common they are in the landscape, and AGB and LAI 
detection depends also on how vegetation PFTs are 
layered. Moreover, canopies with a high LAI reflect 
more than canopies with a medium or low LAI. 
However, in peatlands, a high frequency of flooding 
and bare/peat ground occurs in several PCCs (i.e. 
hollows and flarks), and LAI was estimated only for 
vascular plants, which weakened the PFT-specified 
LAI derivation with the loss of high spectral resolution 
(Darvishzadeh et al. 2008; Adam, Mutanga, and 
Rugege 2010).

In addition, in our analyses, we used only ultra-high 
spatial resolution field spectroscopy data collected 1 
m above the ground, covering only about 0.15 m2 per 
plot, and no actual aerial or satellite-based data. 
During the last two decades, the field spectroradi
ometer has played a vital role in characterizing the 
reflectance of vegetation patterns and providing an 
approach to upscale measurement at both the field 
(canopy and leaves) and laboratory levels (Bratsch et 
al. 2016; Davidson et al. 2016; Melville et al., 2018; 
Pang et al. 2020; Yeo et al., 2020; Thomson et al.  
2021) but, in any case, some care is needed when 
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interpreting the results and applying them in studies 
based on remotely sensed data.

Generally, the more detailed the aim of the 
classification (i.e. the more PCCs or land cover 
classes), the less accurate it is (Räsänen and 
Virtanen 2019). In line with previous studies (e.g. 
(Rapinel et al. 2019; Wakulinska and Marcinkowska- 
Ochtyra 2020)), we got a relatively high R2 for PCC 
regressions by multi-temporal S2A options (Figure 
7). This suggests that multi-temporal satellite data 
could yield higher accuracy than a single date 
data. Nevertheless, when modeling biomass and 
LAI, our results were approximately on par with 
an earlier study using hyperspectral drone imagery 
in Halssiaapa (Räsänen et al. 2020b). To understand 
these issues better, future studies should examine 
how the results differ when multi-temporal hyper
spectral data is collected from drones or manned 
aircrafts. Also, higher regression accuracy was 
gained in moss-dominated PCCs, the relatively 
high R2 in lawns (LawnB and LawnC in both sites 
that are mostly dominated by Sphagnum, see Table 
S4 for details) and flarks (Figure 5), which followed 
other results which reported that the Sphagnum 
spp. type (Erudel et al. 2017; McPartland et al.  
2019) and mossy tussock tundra (Bratsch et al.  
2016) prediction models had high accuracy.

5 Conclusion

We compared the influence of temporal and spectral 
resolution on peatland vegetation pattern detection 
by using field spectroscopy data for two northern 
peatlands. Our results emphasized that the multi- 
temporal and high spectral resolution data increased 
model performance when compared with single- 
date data and coarser spectral resolution. 
Moreover, our results suggested that there is no 
single optimal temporal window but that the opti
mal timing varies between sites and studied vegeta
tion characteristics. Based on these findings, we 
propose that future research utilizing drone or satel
lite data should use multi-temporal data. Otherwise, 
the peak-season data should be used if all PFTs or 
overall cover, AGB or LAI are of interest, but for 
mosses, early-season data probably functions better. 
Finally, the optimal spectral sampling interval seems 
at 1 to 20 nm per band.
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