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Hadronization is a complex quantum process whereby quarks and gluons become hadrons. The widely
used models of hadronization in event generators are based on physically inspired phenomenological
models with many free parameters. We propose an alternative approach whereby neural networks are
used instead. Deep generative models are highly flexible, differentiable, and compatible with graphical
processing units. We make the first step towards a data-driven machine learning-based hadronization
model. In that step, we replace a component of the hadronization model within the Herwig event generator
(cluster model) with HADML, a computer code implementing a generative adversarial network. We show
that a HADML is capable of reproducing the kinematic properties of cluster decays. Furthermore, we
integrate it intoHerwig to generate entire events that can be compared with the output of the publicHerwig
simulator as well as with eþe− data.
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I. INTRODUCTION

Simulations are essential tools for nearly all aspects of data
analysis at particle colliders (see e.g., Ref. [1]). These
simulations are rooted in particle and nuclear physics and
must model a large range in energy scales. At the smallest
distance scales, various forms of perturbation theory offer
accurate, first-principles descriptions of hard-scatter particle
reactions and collinear parton shower radiation. The con-
version from quarks and gluons to hadrons is performed
using hadronization models. Such approaches are physically
inspired but are ultimately phenomenological models with
many parameters that must be fit to data. There are currently
two main hadronization models, each inspired by a different
description of strong dynamics in the low-energy region. The
linear confining potential motivated the string model [2,3]
implemented in Pythia [4,5] and preconfinement [6,7]
inspired the cluster model [8] in Herwig [9–12] and
Sherpa [13,14]. In both models, there is an intermediate
object between quarks/gluons and hadrons. This intermediate
object (string or cluster) takes, as input, the kinematic and
flavor information from quarks and gluons and then has an

approximately universal fragmentation into different hadron
species that carry some fraction of the object’s momentum.
While existing hadronization models have been used

successfully in a large number of phenomenological and
experimental studies at the Large Hadron Collider and
beyond, there is also significant room for innovation.
Existing models are not flexible enough to describe all
of the properties of hadronization needed for physics
measurements and searches (see e.g., Ref. [15]) and each
model has its own strengths and limitations. While the
string model offers a predictive framework of how its
space-time motion and breakup translate into an energy-
momentum distribution of the primary hadrons, its weak-
ness lies in the description of the flavor properties of
hadrons. The cluster model on the other hand has a simpler
energy-momentum description but better flavor composi-
tion [1]. In addition, the busy environment of high-energy
hadronic collisions leads to nontrivial collective effects
[16–19] that are currently not simulated in the basic
versions of either model. Even so, these models still have
a large number of parameters that need to be fit to data,
which are adjusted (‘tuned’) using semiautomated pro-
grams like Professor [20]. Existing tuning methods are not
able to process high-dimensional observables or simulta-
neously tune many parameters because they rely on
relatively simple surrogate models to approximate the
dependence of the data on the model. A number of recently
proposed automated tuning approaches employ sophisti-
cated surrogate models [21–23], but they all still require
approximating complex relationships in high dimensions

*Corresponding author.
andrzej.siodmok@uj.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 096020 (2022)

2470-0010=2022=106(9)=096020(12) 096020-1 Published by the American Physical Society

https://orcid.org/0000-0003-0819-1553
https://orcid.org/0000-0002-9745-1638
https://orcid.org/0000-0003-1024-0932
https://orcid.org/0000-0001-9614-7856
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.096020&domain=pdf&date_stamp=2022-11-28
https://doi.org/10.1103/PhysRevD.106.096020
https://doi.org/10.1103/PhysRevD.106.096020
https://doi.org/10.1103/PhysRevD.106.096020
https://doi.org/10.1103/PhysRevD.106.096020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and therefore are often limited to relatively low-
dimensional parameter spaces.
One natural alternative to the existing hadronization

simulations is deep generative modeling. Machine learn-
ing-based generators are highly flexible and differentiable
by construction, which can aid parameter tuning. Three
standard approaches to deep generative models include
generative adversarial networks (GANs) [24,25], (variational)
autoencoders (VAEs) [26,27], and normalizing flows (NFs)
[28,29]. While first proposed in high-energy physics (HEP) to
emulate an entire parton shower [30] or detector simulations
[31,32], deep-generative models have now been proposed for
many aspects of HEP simulations including matrix element
generation [33–39], parton showers [30,40–47], detector
simulation [31,32,48–81], and more (see Ref. [82–84] for
reviews). Using neural networks for modeling nonpertruba-
tive inputs has a long history in the context of parton
distribution functions (PDFs) (Ref. [85] through Ref. [86]).
Similarly to hadronization models, PDFs cannot be calculated
using perturbation theory. In contrast to hadronization, PDFs
are modeled as deterministic functions that are evolved in
energy scale using perturbation theory [87–89].
Building a complete machine learning-based hadroniza-

tion model is a long-term program that will require a
number of intermediate milestones. The ultimate model
will take as input partons and output hadrons, with input/
output containing kinematic and flavor information. This
model will be trained directly on data so that it can be more
precise than existing models and is not bound by their
assumptions. On the path towards a fully flexible, data-
optimized, machine-learning based hadronization model,
we demonstrate the first step by training a GAN to mimic a
component of the cluster hadronization implementation in
Herwig. In particular, we replace part of the cluster decayer
insideHerwigwith a GAN using the Open Neural Network
Exchange (ONNX) [90] interface to call the neural network
inside the C++ code. This GAN-based cluster decayer,
HADML, is trained on Herwig. In particular, our contri-
butions are twofold; within the context of cluster hadro-
nization, we show that a neural network can mimic the
cluster fragmentation and that this model can be integrated
into a full parton shower Monte Carlo program to generate
full events. Future work will add additional complexity
(cluster to cluster decays, color reconnection of clusters
[91–93], etc.) and will ultimately lead to a model that can
be trained (tuned) on data. This ultimate model will benefit
from new, high-dimensional future measurements [94] that
will provide the necessary constraining power for the
flexible neural network approaches.
This paper is organized as follows. Section II briefly

introduces details of the Herwig Monte Carlo event
generator and how we interface a GAN in the hadronization
stage. Then, Sec. III presents the first numerical results with
the HADML hadronization model. The paper ends with
conclusions and an outlook in Sec. IV.

II. METHODS

A. Dataset

The training data was created using the hadronization
cluster model [8]. The cluster model is based on t’Hooft’s
planar diagram theory [95]; the dominant color structure of
quantum chromodynamics (QCD) diagrams in the pertur-
bation expansion in 1=Nc can be represented in a planar
form using color lines, which is commonly known as the
limitNc → ∞. The resulting color topology in Monte Carlo
events with partons in the final-state color features open
color lines after the parton showers. Following a non-
perturbative isotropic decay of any left gluons in the parton
jets to quark-antiquark pairs, the event finally consists of
color-connected partons in color triplet or antitriplet states.
These parton pairs form color-singlet clusters. This is the
so-called color preconfinement [6]; the tendency of the
partons generated in the parton shower to be arranged in
color singlet clusters (prehadrons) with limited extension in
both coordinate and momentum space. The principle of
color preconfinement states that the mass distribution of
these clusters is independent of the hard-scattering process
and its center-of-mass energy. The cluster mass spectrum is
not only universal but also peaked at low masses; therefore,
most of the clusters decay into two hadrons and some just
into one hadron. However, there is a small fraction of
clusters that are too heavy for this to be a reasonable
approach. Therefore, these heavy clusters are first split into
lighter clusters before they decay. Such decays of massive
clusters are beyond the scope of this publication, and we
will consider it in future work. Since the kinematics of a
cluster decaying into a single hadron is trivial, our training
data set only includes cases of decay into two hadrons. To
further simplify the training data, we consider only decays
into pairs of π0. Each decay in our data set was described
with the following information; the four-momentum of the
cluster, the four-momenta of the two hadrons together with
their flavor (encoded as a Particle Data Group (PDG) [96]
code), and the Pert flag. Pert ¼ 1 means that hadrons that
contain a parton produced in the perturbative stage of the
event remember the direction of the parton in the rest frame
of the cluster. To create the training data, we used eþe−

collisions at
ffiffiffi
s

p ¼ 91.2 GeV generated by Herwig version
7.2.1. The only modification to the default generator
settings was the change that the hadrons produced from
cluster decays were on the mass shell.1

B. GAN model and training

There has been a growing interest in training generative
networks to do particle physics simulations. However,
significant research work goes into finding algorithms that
work for such data. For example, prior work for simulating

1This setting can be achieved by adding the command:
setClusterDecayer : OnShellYes in the input file.
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calorimeters and particle four-momenta have found that
new innovations are needed to force the generative net-
works to reproduce certain important physics distributions
well, like energy and the mass of a particle [34,97,98].
Recent work has also studied the tradeoffs between
accurate models and models that are fast to evaluate [80]
and the sensitivity analysis of GAN hyperparameters to
guide users on how to optimize a GAN [99]. Scaling to
larger input sizes is another active area of research [71,98].
The model described below is optimized for the hadroni-
zation task, and the output structure, preprocessing, and
postprocessing were optimized to make the learning easier
and more stable and prevent the network from generating
certain unphysical results. The architecture was chosen so
as to allow fast evaluation after integrating it into Herwig.
We trained a conditional GAN to simulate the cluster

decays. In a GAN, there is a Generator neural network
(Generator for short) and a Discriminant neural network
(Discriminator for short). Inputs to the Generator are the
cluster’s four vectors (E, px, py, pz), and N features
sampled from a Gaussian distribution. The N numbers
are called noise. N is a hyperparameter and tuned to be 10.
Outputs2 of the Generator are the polar angle, θ, and
azimuthal angle, ϕ, of the leading hadron’s momentum in
the spherical coordinate system in the cluster frame, in
which the two hadrons are created back to back. With the
two angular variables, θ and ϕ, and the cluster’s four vector,
we reconstruct the four vectors of the two outgoing hadrons
as a postprocessing step. Inputs to the Discriminator are just
the two angular variables coming from either the Generator,
labeled as background, or those from the Herwig, labeled
as signal. The output of the Discriminator is a score that is
higher for events from the Herwig and lower for events
from the Generator. The Discriminator is trained to separate
signal from background. However, the Generator is trained
to yield a signal-like Discriminator score.
The GAN is based on multilayer perceptrons (MLPs).

Both the Generator and the Discriminator are composed of
a two-layer perceptron. Each perceptron consists of a
sequence of KERAS [100] modules; a fully connected
(dense) network of a hidden size of 256, a batch normali-
zation layer, and a LEAKYRELU activation function [101].
These parameters were not extensively optimized.
To help train a GAN, we preprocess the training data.

The incoming cluster’s four vector is scaled so that their
values are between −1 and 1; so are the two angular
variables (ϕ and θ). In this way, all inputs and outputs are
within the same scale. Finally, we use the tanh activation
function as the last layer of the Generator. The
Discriminator and the Generator are trained separately
and alternately by two independent ADAM optimizers

[102], both with a learning rate of 10−4, for about 1000
epochs.
Figure 1 shows the evolution of the Discriminator loss,

which is divided by two for visualization purposes, the
Generator loss, and the progressive best total Wasserstein
distances3 [103,104] for training a GAN with events where
two partons are with Pert ¼ 0. The total Wasserstein
distance summing over the distances of all variables,
is calculated after training for one epoch and only the
smallest value is plotted. At the beginning of the training
(epoch < 70), even though the Generator loss is going up,
we see a rapid drop in the Wasserstein distance until the
Generator loss is beyond 0.8. For more than 100 epochs,
the Discriminator keeps outperforming the Generator as
seen by the increasing Generator loss and the decreasing
Discriminator loss. This situation is changed around epoch
200 and finally, the two networks reach an equilibrium
around epoch 250. Beyond epoch 600, we only see about
0.002 improvements in the Wasserstein distance. The best
model for events with partons of Pert ¼ 0, is found at the
epoch 849 with a total Wasserstein distance of 0.0228.

FIG. 1. Generator loss and discriminator loss and progressive
best Wasserstein distance as a function of the training epochs for
training a GAN with events where two partons are with Pert ¼ 0.
Both Generator and Discriminator loss are the binary-
crossentropy loss, and the Discriminator loss is divided by
two for visualization purposes. The progressive Wasserstein
distance is gauged by the right side of the y axis.

2We also tried other outputs such as the four vector of the two
hadrons and found the Generator could not preserve the mo-
mentum conservation.

3This is a common metric in machine learning that quantifies
the minimal “work” required to transform one density into
another, where work, in this case, is defined as the integral of
the density multiplied by the distance moved.
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A similar analysis was performed when training events
with at least one parton with Pert ¼ 1.

C. Integration into Herwig

Each part ofHerwig is implemented as aCþþ class that
contains the implementation of theHerwig physics models,
inheriting from an abstract base class in ThePEG [105].
The ClusterHadronizationHandler is the class that controls
the cluster hadronization model. Our ultimate goal will
be to replace the entire ClusterHadronizationHandler with
its ML counterpart. However, since in these studies, we
concentrate on the decay of clusters into two hadrons, it was
sufficient to modify ClusterDecayer—a helper class of the
ClusterHadronizationHandler that controls this process. The
generative model trained in Python using TensorFlow is
converted into theONNX format [90] and integrated into the
Herwig chain using the C++API of ONNX Runtime [106].
The advent of the ONNX format makes it possible to train a
model in one software and hardware environment and then
apply it in a completely different environment. ONNX
Runtime is well suited for running fast neural network
inference as part of a large C++ workflow, and by using it,
we avoid having to integrate and maintain TENSORFLOW

[107] within the Herwig framework.

All preprocessing and postprocessing steps performed
for training are repeated within Herwig for inference. The
entire simulation chain, including the GAN, is then run in
Herwig in order to produce the final comparisons and
results.

III. RESULTS

Section III A provides low-level results of individual
cluster decays while Sec. III B includes full event simu-
lations and comparisons to eþe− data.

A. Low-level validation

Since the training data contained only clusters produced
in eþe− collisions at

ffiffiffi
s

p ¼ 91.2 GeV that decayed into π0

pairs, we begin by comparing the π0 kinematic variables
generated by HADML and Herwig precisely in such
decays. The data generated by Herwig, with which we
compared the results of HADML in this section, were not
used for training. In Fig. 2 we show the distribution of the
pseudorapidity (left panels) and transverse momentum
distribution (right panels) of π0 from the decays of the
Pert ¼ 0 (upper panels) and Pert ¼ 1 (lower panels) clus-
ters. As expected, we see that the transverse momentum
spectra of pions coming from clusters containing

FIG. 2. Pseudorapidity (left panels) transverse momentum (right panels) distribution of π0 from decays of Pert ¼ 0 (upper panels) and
Pert ¼ 1 (lower panels) clusters produced in eþe− collisions at

ffiffiffi
s

p ¼ 91.2 GeV.
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“perturbative” quarks (Pert ¼ 1) are harder compared to
those containing only nonperturbative partons (Pert ¼ 0).
However, the most important observation from Fig. 2 is that
Herwig7þ HADML (labeled on figures asH7þ HADML)
matches the pseudorapidity of the pions generated by
Herwig7 with the cluster model (labeled as H7 on figures).
Transverse momentum spectra that extend over several
orders of magnitude are also well approximated by
H7þ HADML. Taking a closer look at these distributions,
we see minor differences for low transverse momenta in the
case of clusters that have a memory of perturbative quarks
(bottom-left panel in Fig. 2). Such small differences are,
of course, acceptable, especially since the information
about the four-momentum of partons that make up the
clusters were not used for training. Taking this additional
information into account in the training process will likely
eliminate these minor differences. However, this is beyond
the scope of this publication, and wewill leave this problem
for future work.
It is crucial that the hadronization model is universal, i.e.,

that it works independently of the hard process or collision
energy. As we described in the Sec. II A the cluster model
has this property. To test whetherHADML also is universal,
we decided to repeat the comparison made at the beginning
of this section, but this time generating events with collision
energies twice as high as those used in the training data.

In Fig. 3 we show π0 kinematic variables generated by
H7þ HADML and Herwig7 in eþe− collisions at

ffiffiffi
s

p ¼
192 GeV. We can see that all distributions are described
very similarly by both models, which reassured us that the
HADML model is also universal.
The last thing we need to check before using HADML

to simulate the decay of all clusters into hadron pairs in
Herwig is whether the model is able to describe the
kinematics of other hadrons than π0. In Fig. 4 we present
the pseudorapidity (left panels) and transverse momentum
(right panels) distribution of π� and π0 (first row), kaons
(second row), and lambdas (third row). We see that the
distributions differ for the various hadrons, but they are all
described almost identically by both models. This encour-
aged us to perform a comparison with experimental data
in which the kinematics of all hadrons4 in Herwig are
generated by HADML model.

B. Full-event validation

In this section we generate full events using HADML
integrated into Herwig and compare the results also to data

FIG. 3. Pseudorapidity (left panels) transverse momentum (right panels) distribution of π0 from decays of Pert ¼ 0 (upper panels) and
Pert ¼ 1 (lower panels) clusters produced in eþe− collisions at

ffiffiffi
s

p ¼ 192 GeV.

4Except for a small number of hadrons that come from the
decay of a cluster into a single hadron for which the kinematics
is trivial.
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from LEP.5 In particular, we consider an analysis from
DELPHI with data collected at

ffiffiffi
s

p ¼ 91.2 GeV [108]
using RIVET6 [109]. These events correspond to hadronic
Z boson decays with a number of event shape and identified
hadron spectra. These data have been used for hadroniza-
tion parameter tuning [108,110].
Figure 5 shows histograms of various event shapes.

Thrust [111,112] is the quintessential eþe− event shape,

T ¼ max
n⃗

�P jp⃗i · n⃗jP jp⃗ij
�
; ð3:1Þ

where the sum runs over all final-state particle three-
momenta. The direction n⃗ that maximizes the argument
of Eq. (3.1) is called the Thrust axis. Thrust major is
defined similarly to Eq. (3.1) but with n⃗ replaced with
vectors transverse to the Thrust axis and Thrust minor is
the same, but with an optimization only over directions
perpendicular to both the Thurst and Thurst major axes.
The Sphericity is computed from the eigenvalues of the
quadratic momentum tensor

FIG. 4. Pseudorapidity (left panels) and transverse momentum (right panels) distribution of π� and π0 (first row), kaons (second row),
and lambdas (third row).

5Note that the data are for illustration only; given that the GAN
is trained on Herwig, we cannot expect it to outperform Herwig.
Tuning to data is a longer-term goal of this research (see Sec. IV).

6https://rivet.hepforge.org/analyses/DELPHI_1996_S3430090.
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Mαβ ¼
X

pα
i p

β
i ; ð3:2Þ

where α, β are the spatial momentum indices, and the sum
runs over the same particles as in Eq. (3.1). Sphericity is
defined as 3

2
ðλ2 þ λ3Þ for eigenvalues λi of the 3 × 3 matrix

defined in Eq. (3.2) and λ3 ≤ λ2 ≤ λ1. Hadronization shifts
event shapes (see e.g., Ref. [113]) and so these observables
are sensitive to hadronization modeling. Figure 5 shows
that HADML agrees with Herwig within 10% across most
of the spectra, which itself agrees with data at a similar
level. Individual particle spectra are shown in Fig. 6 for the
transverse momenta along the Thurst major and minor
directions. The level of agreement is similar to the event
shapes where there is sufficient statistical power.

IV. SUMMARY AND OUTLOOK

In this paper, we have established a first step on the
path towards a neural network-based hadronization model.
The cluster hadronization model from Herwig has been
emulated with HADML, a computer code implementing a
generative adversarial network. This model is designed to
reproduce the two-body decay of clusters into pions. The
HADML is integrated into the full Herwig program by
using all other hadronization components from the Herwig
default model. The kinematic properties of other hadrons
are emulated using the pion model and conservation of
energy. We have shown that the HADML is able to
reproduce Herwig’s light cluster decays and when inte-
grated with the full Herwig simulation, is able to reproduce
results from eþe− data as well.

FIG. 5. Normalized, differential cross sections of Thrust (top left), Thrust major (top right), Thrust minor (lower left), and Sphericity
(lower right) for Herwig, Herwig with HADML, and for data from DELPHI at LEP. Error bars on the predictions represent statistical
uncertainties.
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The ultimate goal of this research direction is to train the
ML model directly on data to improve upon the existing
hadronization models. A number of technical and meth-
odological steps are required to achieve this vision. First,
the deep generative model needs to be extended to directly
accommodate multiple hadron species and to model the
relative probabilities of the various final states. In this work,
we have modeled different hadron species using conserva-
tion of energy, but this means that the fragmentation is
assumed universal. Architectural modifications could allow
for perturbations on universality. Hyperparameter optimi-
zation, including the investigation of alternative generative
models, is an important component of future work. Once
the deep generative model has the capacity to reproduce all
of the physics of the Herwig cluster model, methodological
innovation is required to explore how to tune the model
to data. Traditionally, eþe− data are used for tuning.
Optimization with a large set of one-dimensional, binned
measurements will need to be explored. A nontrivial aspect
of this optimization is that while the hadronization model
would be differentiable, the parton shower input would not
be. Building in a model of uncertainty would also be a
central aspect of model tuning. It may also be possible to
tune with unbinned, and higher-dimensional results from
ep and pp data [94,114–118].
While we have focused on hadronization in the context

of collider physics, the ideas and concepts described in this
paper have broader implications. First of all, hadronization
is used across high-energy particles and nuclear physics
(see e.g., Ref. [119]) and perturbations on the collider
model may be required to accurately describe other

systems. Second, there are other physical systems where
first-principles input is combined with phenomenological
models. For example, a complete description of observa-
tional cosmology requires an N-body simulation of the
dark matter to be combined with a description of visible
matter around dark matter halos (see e.g., Ref. [120–124]).
While different applications call for domain-specific adap-
tations, some components and core methodology is
common. Further development in this research area will
enable important advances in simulation to improve infer-
ence in high-energy physics and beyond.
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axes for Herwig, Herwig with our HADML, and for data from DELPHI at LEP. Error bars on the predictions represent statistical
uncertainties.
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