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Abstract: Dynamic inductive charging is a contact-free technology to provide electric vehicles with
energy while they are in motion, thus eliminating the need to conductively charge the batteries of
those vehicles and, hence, the required vehicle downtimes. Airport aprons of commercial airports
are potential systems to employ this charging technology to reduce aviation-induced CO2 emissions.
To date, many vehicles operating on airport aprons are equipped with internal combustion engines
burning diesel fuel, hence contributing to CO2 emissions and the global warming problem. However,
airport aprons exhibit specific features that might make dynamic inductive charging technologies
particularly interesting. It turns out that using this technology leads to some strategic infrastructure
design questions for airport aprons about the spatial allocation of the required system components.
In this paper, we experimentally analyze these design questions to explore under which conditions
we can expect the resulting mathematical optimization problems to be relatively hard or easy to
be solved, respectively, as well as the achievable solution quality. To this end, we report numerical
results on a large-scale numerical study reflecting different types of spatial structures of terminals
and airport aprons as they can be found at real-world airports.

Keywords: dynamic wireless charging; electric vehicles; airport apron; airport infrastructure planning;
electric busses

1. Introduction

A growing number of airports are electrifying their apron vehicle fleets to meet goals
for climate-neutral airports (Bopst et al. [1], Interreg CENTRAL EUROPE [2], Flughafen
München GmbH [3] and Royal Schiphol Group [4]). At Stuttgart Airport, for example, 40%
of apron vehicles are equipped with electric drives and apron buses are already exclusively
electrically powered (Bulach et al. [5]). Conductive charging is the state-of-the-art technol-
ogy for charging these vehicles. However, this technology results in long downtimes due to
vehicles charging and requires large batteries. A potential option for charging the vehicle
batteries is dynamic inductive charging: Vehicles are wirelessly charged while in motion on
a charging track installed below the road surface. This technology can substantially reduce
downtimes. In addition, the need to have special charging stations is eliminated as well as
the need for human involvement to plug in the charging cable. The objective of this paper
is to report on methodological questions related to the potential usage of that charging
technology for airport apron vehicles. We focus on the exemplary case of passenger buses
transporting passengers from and to aircraft standing at outside parking positions. Still,
we are convinced that the results hold for other types of service vehicles as well.

In order to charge apron vehicles with this technology, a dynamic inductive charging
infrastructure would have to be implemented on the airport apron. This infrastructure
consists of two components: the Power Supply Unit (PSU) and the Inductive Transmitter
Unit (ITU). The PSU provides an alternating current of the required frequency to the ITU.
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The ITU is installed below the road surface and charges the battery if a vehicle travels along
(Panchal et al. [6]). Since the infrastructure requires high initial investments, only a fraction
of the road network should be equipped with a charging track. At the same time, however,
it must be spatially allocated in such a manner that the vehicles’ batteries can be sufficiently
charged while they are operating.

We use mathematical optimization models to formally characterize the problem of
finding a spatial placement of the required infrastructure components such that the neces-
sary capital investment is as small as possible. First models for planning inductive charging
infrastructures on airport aprons have already been developed (Helber et al. [7] and Broi-
han et al. [8]). The standard approach to solving those models is to employ high-end
commercial mixed-integer linear programming solvers such as Gurobi or CPLEX. However,
Broihan et al. [8] have shown that solving real-world-sized test instances with standard
solvers to proven mathematical optimality in a reasonable time is very often not possible.

This leads to the research questions addressed in this paper: Which features tend to
make a particular instance of the infrastructure design problem of spatially allocating the
components of the charging infrastructure on the airport apron road system hard to solve?
Hard to solve in this context means that even within hours or days of computation time,
it is not possible to find an infrastructure allocation that is known to be optimal in the
mathematical sense of the underlying problem. If it turns out that this is indeed the case, a
second question arises: Can we at least make a statement about the potential “optimality
gap”, i.e., indicating how far away from the optimal solution quality we can be at most?
In order to answer these questions, we systematically generated a large-scale test bed of
synthetic problem instances that reflect different types of real-world spatial structures of
airport terminals as well as apron road networks and aircraft parking positions.

We will show that the proof of optimality takes a long time, although an admissible
solution can already be found quickly. We will also investigate the influence of the problem’s
size and certain parameter specifications on the computation times. We show that the
investments in the PSUs and ITUs, the vehicles’ energy consumption and the energy intake
can significantly impact the computation time.

To this end, we analyze the properties of the Dynamic Inductive Charging Problem
(DICP) experimentally to determine why this problem is difficult to solve for standard
solvers. In particular, we examine the problem properties that lead to high computation
times. The structure of the paper is such that we first provide a brief overview of the
inductive charging technology, characterize the resulting airport apron design problem and
report on related literature in Section 2. In Section 3.1, we formulate the model assumptions
based on the previously stated properties of airport aprons. The introduced model in
Section 3.2 is a variant of the optimization model presented in Broihan et al. [8]. Section 4
describes the generation of our instances that we use in the numerical study. We describe
the general instance generation process in Section 4.2 and characterize the properties of the
generated instance set for the analysis in Section 4.3. The results of the numerical study are
presented in Section 5. We analyze the properties of the different instances and relate them
to the computation time. Section 6 summarizes the results of this paper.

2. Characterization of the Problem Setting and Related Research
2.1. Dynamic Inductive Charging

Dynamic inductive charging means that the vehicle is charged wirelessly while in
motion. For the wireless power transfer, primary coils are installed below the surface at
selected elements of the airport apron road system (see Figure 1). Such a so-called ITU
is supplied with an alternating current of the desired frequency by the PSU, which in
turn needs a connection to the power grid. The PSU uses power electronics to modify
the frequency. SAEJ2954 defines the frequency for wireless power transfer for electric
vehicles in the range of 81.39–90 kHz (SAE International [9]). The electromagnetic field
is created locally below the pickup unit of the moving vehicle, say, a passenger bus. Via
the secondary coils within the vehicle’s pickup unit, an alternating current is induced
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by the electromagnetic field. This alternating current is rectified and used to charge the
vehicle’s battery and, eventually, power its electric engine. For further technical details on
the technology of dynamic inductive charging and example projects, we refer to Li and
Mi [10], Cirimele et al. [11], Lukic and Pantic [12], Panchal et al. [6], Ahmad et al. [13] and
Covic and Boys [14].

PSU
Power Supply

Rectifier

Inverter

Controller

Power Grid

PSU
Power Supply

Rectifier

Inverter

Controller

ITU

Pick Up

Figure 1. Components of the dynamic inductive charging system (Source: Broihan et al. [8]).

The efficiency of the system is strongly dependent on the gap between the primary and
secondary coil (Imura and Hori [15] and Moon et al. [16]). The smaller the gap between the
primary and secondary coils, the higher the power transmission efficiency. For this reason,
dynamic inductive charging systems are suitable for flat surfaces on which low-profiled
vehicles operate. This is exactly the situation on airport aprons and one of the reasons why
this charging technology might be interesting for airport aprons.

2.2. Energy Density, Trip Structures and Modeling of Battery Levels

The energy density of electric batteries is known to be low relative to that of diesel
fuel. Furthermore, the time required to transfer a certain amount of energy by charging
its batteries, either conductively or inductively, is large compared to the time required to
pump diesel fuel into the tank of a comparable vehicle with a combustion engine. Finally,
an electric battery is not only expensive but also heavy due to its relatively low energy
density. For all those reasons, the decision about the capacity of the battery of an electric
vehicle is delicate from both the economic and the operational perspective: Very large
batteries are not only expensive, but their transportation as part of the moving vehicle itself
also consumes energy. On the other hand, small batteries require frequent re-charging and
need to have ample spatially distributed charging facilities, again either for conductive or
inductive charging.

For those reasons, many researchers studying dynamic inductive charging infras-
tructure design problems decided to model allocation decisions for ITUs together with
battery size decisions for vehicles. The typical assumption is that a vehicle, say, a passenger
bus serving an urban bus line, starts with a full battery at some initial location A, travels
along a pre-defined route while serving a sequence of bus stations, and ends the tour at
some final destination B. The charging infrastructure has to be allocated in such a way that
the vehicle is never confronted with an empty battery while on its trip. To this end, the
State of Charge (SOC) of the battery is tracked meticulously, considering both phases of
de-charging and phases of charging (while passing ITU-equipped segments of the road
system). An underlying assumption is that if the bus reaches the end of its tour, all that
is needed is a battery that is not empty and that the battery will be fully charged before
the bus begins its next trip. Examples of those modeling approaches can be found in Ko
and Jang [17], Hwang et al. [18] and Ko et al. [19]. An important result of those studies is
that the optimal structure of the charging infrastructure depends on the number of vehicles
using it. Suppose only a small number of vehicles use the charging structure. In that case, it
is beneficial to equip those few vehicles with large (and expensive) batteries to need only a
few charging segments along the route the vehicles will travel. It is, however, not attractive
to have a very large number of those vehicles equipped with large and expensive batteries.
In this case, it is economically advisable to have a larger fraction of the road segments
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equipped with ITUs and to be able to operate with smaller (and, hence, less costly) battery
sizes in many vehicles.

When considering the question of how to allocate the ITUs and PSUs within the road
network of an airport apron, it turns out that the spatial structure as well the nature of the
trips driven by, say, passenger buses, differs substantially from those found in urban mass
transportation by public buses.

Figure 2 presents as an example a selected part of Vienna Airport. On the airport apron,
a road network connects the aircraft parking positions, equipment service areas, vehicle
depots and terminal buildings adjacent to the airport apron. The parking positions for
aircraft can be distinguished between gate positions and outside positions (Mensen [20]).
Passengers can reach an aircraft parked at a gate position via a boarding bridge, while
apron buses are used for transportation to the outside parking positions.

Gates in Pier Concept Gates in Satellite Concept

Transport Concept to Outside Parking Positions Road System

ITU PSU

Figure 2. Selected part of the apron at Vienna Airport. Source: Vienna Airport [online], 48◦07′03.39′′ N
16◦33′52.75′′ E, Height 785 m, Google Earth © GeoBasis-DE/BKG 2009, URL: http://www.google.
com/earth on 19 April 2022.

The layout of the terminal buildings determines the location of gate parking positions
and the passenger gates. There are different terminal layout concepts, such as the pier, the
satellite and the linear design. Figure 2 shows that these three layout concepts co-exist at
Vienna airport.

At each terminal, several gates are available. Some gates are used exclusively to let
passengers (un-)board their aircraft via a passenger bridge or to use passenger buses to
transport the passengers to or from an outside aircraft parking position. In contrast, other
gates can operate both with passenger bridges or passenger transportation buses.

During the turnaround of an aircraft, apron vehicles travel to and from the specific
parking position, as well as gates or depots. A passenger bus, the exemplary type of vehicle
considered in this paper, could pick up passengers at an aircraft and transport them to a
terminal gate. Afterward, the bus could travel to another gate to pick up passengers and
transport them from that gate to the parking position of their respective aircraft.

If we compare the operational elements of trips driven by passenger buses on airport
aprons to those in urban public transport, we see three important differences:

http://www.google.com/earth
http://www.google.com/earth
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• The distance and duration of a passenger bus trip on an airport apron are typically
relatively short compared to those in public urban transportation.

• Most trips either start or end at one of the terminals or other dedicated airport areas.
• The number of different possible routes driven to serve the many possible service

requests can be relatively large if we combine the different starting points, say, at
the different terminal gates, with the many different destinations, for example at the
outside aircraft parking positions.

Due to the third point, it seems impractical to follow the very detailed modeling
approach introduced in Ko and Jang [17] and track at a very fine-grained resolution the
SOC for the potentially extremely large number of conceivable service requests.

For this reason, we decided in this paper, as in Helber et al. [7] and Broihan et al. [8], to
use a fundamentally different modeling approach. We require that the energy intake must
be higher than the energy consumption for every service request. Therefore, the battery
charge level at the end of a service request cannot be lower than at the beginning. As a
result of that modeling decision, we do not need to model the SOC of the vehicles’ battery
in detail.

2.3. Modeling the Spatial Allocation of ITUs and PSUs

In Figure 2, we show in red a part of a fictitious allocation of ITUs and PSUs on some
of the roads (in black) used by passenger buses for the Vienna Airport. Each ITU has to
be part of a contiguous structure which is in turn connected to a PSU. Some locations, in
particular those close to buildings, might be natural candidates to establish a PSU. On the
other hand, there may be parts of the apron road network where installing ITUs could be
impossible or unattractive due to interference with aircraft or the nature of road surfaces.

To represent the airport apron in the mathematical optimization model, we model the
road network as a directed graph, as shown in Figure 3. Gates, parking positions and road
intersections are modeled as nodes. The lanes of the airport apron roads are represented as
links (directed arcs) in the graph. We assume that, on these links, the ITUs can be installed.
If there are multiple adjacent edges, each with an installed ITU in the graph, they represent
one contiguous ITU structure on the real airport apron. An example is given in Figure 3,
where the ITU is installed between the nodes g2, i6, i5, i14 and i15. This contiguous ITU
structure can then be powered by one PSU, which is installed at node g2 in the example.
A consistent connection from each ITU segment to a PSU is required. This connection
can be set up directly if the ITU is directly adjacent to a PSU node or indirectly via other
ITU segments (e.g., the ITU segment between i5 and i6 is connected via the ITU segment
between g2 and i6 to the PSU at node g2).

We are now in the position to state in a non-technical manner the infrastructure
allocation problem. The overall objective is to minimize the investment in ITUs and PSUs.
The selection of links to be equipped with ITUs as well as the installation of PSUs must be
such that:

• Each link equipped with an ITU is either connected directly to a PSU or indirectly via a
neighboring ITU-equipped link on the shortest route to their respective common PSU;

• For each service request, the vehicle can take up at least as much energy while driving
along the relevant links as it needs.

This modeling approach relieves us from the need to track the SOC of the vehicles’
batteries. Figure 4 illustrates this. It shows an example SOC curve for a service request. The
service request consists of the links l1 to l6. At links l2 and l5, an ITU is installed. When
the vehicle passes over an ITU, it absorbs energy and the curve increases. In all other cases,
the SOC decreases. According to our assumption, the vehicle must absorb at least as much
energy as it consumes for the service request. For this reason, the SOC at the end might be
greater than at the beginning. Of course, it may happen that the vehicle cannot absorb the
energy because the battery is already full. In that case, the SOC can be lower at the end. We
assume the battery is large enough to survive a longer part of the service request without
energy intake. This results in the SOC never falling below zero.
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g1 g2 g3 g7 g8 g9

i5 i6 i7 i11 i12 i13

i14

i15 i21

p3 p4

Gate Intersection Aircraft Parking Street

PSU Lane Equipped with ITU

Figure 3. Representation of an airport as a directed graph. (Source: Adapted from Broihan et al. [8]).
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Figure 4. Exemplary SOC. (Source: Adapted from Broihan [21]).

2.4. Related Literature

For an overview of related literature on planning dynamic inductive charging in-
frastructure, we refer to Jang [22], Majhi et al. [23] and Yatnalkar and Narman [24]. They
provide a comprehensive review of research articles and pilot projects. Most of these
projects consider implementing a dynamic charging infrastructure for public bus systems.
Many papers also consider battery capacity in the planning. Jang et al. [25] formulate a
model in which the battery size is determined in addition to the placement of the charging
infrastructure. The SOC is also considered in the model. The route is divided into segments
that are either fully equipped with an ITU or not equipped at all. Ko and Jang [17], on
the other hand, consider the route continuously. However, the model presented for this
purpose is nonlinear. Both papers consider only one bus route at a time. In contrast, Hwang
et al. [18] describe a multi-route environment. The model presented here has the special
feature that the vehicles’ capacities can be different. Liu and Song [26] consider stochastic
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elements in their model formulation for planning a charging infrastructure. They first
present a deterministic model and then a model with uncertain travel time and energy
consumption. The reason why particularly public buses are considered is that the tours
are known in advance. The papers often consider so-called closed environments. That
means systems where the influence of traffic and other external factors is small. In this
case, the tour’s energy consumption and intake can be easily determined. Some papers
consider other environments, e.g., Schwerdfeger et al. [27] looks at planning a charging
infrastructure for highways.

Only Helber et al. [7] and Broihan et al. [8] considered the optimal placement of wire-
less charging infrastructures on airport aprons. Helber et al. [7] studied the characteristics
of dynamic inductive charging on airport aprons and introduced the first mathematical
optimization model for planning such an infrastructure. Broihan et al. [8] presented a
reformulation and extension of this model considering multiple vehicle types and a service
level restriction. In a numerical study, they analyzed test instances based on real airport
aprons. For most of the instances, they could not prove optimality within a time limit of
seven days with a standard solver. The resulting optimality gaps ranged from 8% to 15%.
However, with the analyzed instances, they could not identify the reasons behind high
computation times and the problem properties that lead to those. It is exactly this open
question that we address in this paper.

3. The Dynamic Inductive Charging Problem
3.1. Notation and Assumptions

To formally define the DICP, we now present the modeling assumptions as well as the
notation summarized in Table 1. Note that assumptions and notation are closely related to
those described in Helber et al. [7] and Broihan et al. [8], as the DICP is a generalization of
the Dynamic Inductive Charging Problem considering Multiple Vehicle Types (DICP-MV)
introduced in Broihan et al. [8].

Table 1. Notation used in the DICP model.

Indices and Sets

v ∈ V vertices V := {1, . . . , V}
l ∈ L links L := {1, . . . , L}
r ∈ R service requestsR := {1, . . . , R}
P ⊆ V set of vertices v ∈ V qualified to host a PSU
Pl ⊆ V set of PSU candidates able to supply link l ∈ L
Lv ⊂ L set of links l ∈ L qualified to be powered by a PSU candidate at v ∈ P
Lr ⊆ L set of links l ∈ L included in service request r ∈ R
LPv ⊂ L set of links l ∈ L directly neighboring a PSU candidate at v ∈ P
Γlv ⊂ L set of predecessors l′ ∈ L of link l ∈ L in a direct connection on the

shortest path to a PSU candidate at v ∈ P
Parameters

cpsu
v ∈ R≥0 investment in a PSU at vertex v ∈ P

citu
l ∈ R≥0 investment in an ITU at link l ∈ L

eil ∈ R≥0 energy intake by traveling on link l ∈ L
ecr ∈ R≥0 energy consumption by serving request r ∈ R
Decision Variables

Xlv ∈ {0, 1} 1, if link l ∈ L is equipped with an ITU and powered by PSU at vertex
v ∈ P , 0 else

Yv ∈ {0, 1} 1, if a PSU is installed at vertex v ∈ P , 0 else
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• We model the road system of the airport apron as a directed and weighted planar
connected digraph G(V ,L) composed of a set of vertices v ∈ V and a set of directed
edges or links l ∈ L (see Figure 3).

• A vertex v ∈ V defines a particular geographic location on the airport apron. This in-
cludes, for example, gate positions, aircraft parking positions, depots or fixed positions
in the road system to split road sections.

• We define a subset P ⊆ V , which denotes the set of vertices v ∈ V qualified to host
a PSU. Installing a PSU at a candidate vertex v ∈ P requires a fixed investment
cpsu

v ∈ R≥0.

• Each directed link l ∈ L represents a lane segment of the airport’s road system. It
connects a pair of adjacent vertices v ∈ V . The direction of each link l ∈ L corresponds
to the direction of travel on this lane segment.

• We assume every link l ∈ L to be a candidate to host an ITU. To supply such an ITU
with electricity, it must be connected to a PSU, either directly or indirectly, via some
other link. We define a set of links Lv ⊂ L which are qualified to be powered from a
PSU installed at vertex v ∈ P .

• Similarly, we define Pl ⊆ V as the set of vertices that could be equipped with a PSU
powering link l.

• To ensure a physical connection from each ITU to its power-supplying PSU, we define
a set of links l′ ∈ Γlv ⊂ L for each combination of link l and PSU candidate v as
Γlv = {l′ ∈ Lv | l′ precedes l on a shortest path to v ∈ P}.

• LPv ⊂ L defines a set of links l directly neighboring a PSU candidate v ∈ P .

• The installation of an ITU at link l ∈ L requires a fixed investment denoted by citu
l .

• We define service requests r ∈ R that represent the apron vehicles’ potential service
tasks, e.g., passenger transfers from a gate to an aircraft or baggage transportation.

• Serving request r ∈ R requires the vehicle to move along a set of links l ∈ Lr.

• We denote the consumed energy for a particular request r ∈ R by traveling along the
links in Lr ⊆ L by ecr.

• As the vehicle serving request r travels along an ITU-equipped link Lr ⊆ L, it can
take up to eil units of energy and charge its battery.

• For each request r, the sum of the potential energy intakes eil by traveling along the
links in Lr ⊆ Lmust be at least as large as the energy consumption ecr for that request.
This assumption relieves us from the need to model the battery’s SOC.

To describe the arrangement of charging infrastructure across the airport apron,
we introduce two binary decision variables. The variable Yv ∈ {0, 1} takes a value of 1
if a PSU is installed at the node v ∈ P and 0 otherwise. Likewise, Xlv ∈ {0, 1} equals
1 if an ITU is installed at link l ∈ Lv and connected to a PSU at vertex v ∈ P and 0
otherwise.

3.2. Model Description

Based on the previous assumptions, we introduce the DICP, which is a generalization
of the DICP-MV presented in Broihan et al. [8], as a linear program in binary variables
as follows:

min F = ∑
v∈P

(
cpsu

v ·Yv + ∑
l∈Lv

citu
l · Xlv

)
(1)
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such that

∑
v∈P

∑
l∈Lr∩Lv

Xlv · eil ≥ ecr r ∈ R (2)

Xlv ≤ Yv v ∈ P , l ∈ Lv (3)

∑
v∈Pl

Xlv ≤ 1 l ∈ L (4)

∑
l′∈Γlv

Xl′v ≥ Xlv v ∈ P , l ∈ Lv \ LPv (5)

Xlv, Yv ∈ {0, 1} v ∈ P , l ∈ Lv (6)

The objective function (1) minimizes the total investment in the components of the
dynamic-inductive charging infrastructure. Constraint (2) ensures a sufficiently large
energy intake while serving a request r ∈ R. According to constraint (3), ITU and PSU
installation decisions are connected. Restriction (4) ensures that each link can be equipped
at most once with an ITU, in which case it is connected to exactly one installed PSU.
Restriction (5) enforces a connected ITU infrastructure from the furthest ITU along a
shortest path to the powering PSU.

4. Generating a Set of Instances for Dynamic Charging Infrastructures Problems
4.1. Purpose and Objective of the Instance Generation Process

Our previous and preliminary numerical results (see Helber et al. [7] and Broihan et al. [8])
showed that any attempt to use a high-end commercial mixed-integer programming solver
like Gurobi or CPLEX to solve the DICP shows very mixed results with respect to computa-
tion times and solution quality. In particular, we observed that when the instances

• tended to have a relatively small number of links l and vertices v in the graph repre-
senting the road network on the airport’s apron and, hence, also

• tended to have a relatively small set of service requests r to be considered,

is then those commercial solvers could often solve the resulting instances of the DICP to
proven optimality within a few seconds or minutes.

However, real-world airports often have large and complex apron road networks,
many passenger gates and many aircraft parking positions. As one consequence, the opera-
tional variance of the possible routings of the vehicles (passenger buses in our example)
can be substantial. As we aim at obtaining a charging infrastructure allocation that is
robust over a wide variety of such service requests, many of them have to be considered
simultaneously in the infrastructure design decision, which is one factor leading to large
model instances that tend to be hard to solve, i.e., having intolerably long computation
times as well as potentially large optimality gaps.

A further problem of dealing with larger real-world airports is that the length of road
segments, say, between terminals and aircraft parking positions, can be substantial. It
could be desirable to equip only small fractions of those long road segments with the
ITUs. However, to represent those fractions of the road segments in our model, we have
to subdivide those road segments into sub-segments by adding additional vertices to the
graph. An example of this problem aspect is depicted in Figure 5. Here, between the two
nodes denoted as i44 and i51, two long road segments exist, one for each direction and each
having a length of 300 m. By introducing two or even five further vertices, link lengths of
100 m or even 50 m are created, respectively.
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i44 i51

i44 i51

i44 i51

Figure 5. Extending an initial graph with link length maximum (top), 100 m (mid) and 50 m (bottom).

Having such finer granularity of the road system network in our model makes more
cost-efficient infrastructure solutions possible, which is attractive. However, this comes at
the price of operating again with larger models, i.e., models with a larger number of links
and vertices that tend to be numerically more difficult to solve.

Another element that affects the difficulty of solving the problem by using standard
commercial solvers to proven optimality is the cost ratio of the elements of the charging
infrastructure, i.e., the necessary investment per PSU relative to the investment per ITU
unit. If the PSUs tend to be relatively expensive, the resulting structures tend to operate
with smaller numbers of PSUs to which then relatively large ITU structures are connected.
In the opposite case of relatively inexpensive PSUs, larger numbers of ITU structures are
placed over the road network.

Finally, the ITUs’ power transfer also significantly impacts both the structure of the
solutions and the difficulties of finding them. Suppose the ratio of the energy that can be
picked up by a vehicle passing along a link is very large relative to the energy required to
pass along that link. In that case, it may be possible to equip only a relatively small but
well-chosen fraction of the apron road network with ITUs.

We know that all these factors affect:

• The spatial structure of solutions to the infrastructure design problems;
• The computational time to find those solutions when using a standard solver such

as Gurobi.

We also conjecture that there might be cross-effects between the influencing factors. In
order to be able to identify those effects and to explore the limitations of using a commercial
solver to solve the DICP, we systematically designed a full-factorial test bed consisting of
hundreds of instances. We then solved those instances numerically to obtain experimental
results shedding some light on the questions outlined above. Before we present the results
of those computations, we first describe the underlying system of creating the test instances
as well as their characteristic features.

4.2. Design of the Instance Generation Process

For our numerical study, we need to be able to create many instances systematically.
Therefore, we developed an instance generator that was implemented in Python 3.8. The
procedure to generate instances can be divided into the three main steps of (i) creating a
so-called initial graph, (ii) deriving from this initial graph a so-called instance graph, and
(iii) adding further sets and parameters to arrive at a complete description of a planning in-
stance.

In our case, the initial graph is created using the Python graph modeling package
NetworkX and based on real airport apron structures. With the help of a satellite image, as
presented in Figure 6 for a small part of Tokyo Airport Haneda, Japan, the graph nodes can
be set according to the real airport’s intersections, gates and parking positions. The weights
of the edges correspond to the road segment’s lengths of the real airport. An example of a
complete initial graph is given in Figure 7; Hamburg Airport, Germany, inspires this one.
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Figure 6. Comparison between excerpt of satellite image and excerpt of generated initial graph.
Source: Tokyo Airport Haneda [online], 35◦33′16.41′′ N 139◦47′17.42′′ E, Height 6 m, Google Earth ©,
URL: http://www.google.com/earth on 11 July 2022.

In the second step, we derived from the initial graph different instance graphs classes
by deleting and adding nodes and edges to create instances that differ concerning the
granularity of the modeled topology, resulting in instance classes denoted as “small”,
“medium” and “large”. Graphs of the small instance class have only a small number of
nodes and links. Thus, we must delete nodes and edges of the initial graph to adapt it
to the small instance class. For the large instance class, we need to add nodes and edges
to the initial graph. Within an instance class, the graphs derived from different initial
graphs should have a comparable number of nodes and links. Since the initial graphs have
different sizes, the number of links and nodes to be deleted or added differs for each initial
graph. In the following, we will explain the mechanisms for deleting and adding nodes to
create comparable instance graphs based on very different initial graphs.

Graph reduction is done by deleting gates, depots and parking positions and their
associated intersections. For this purpose, the user specifies the portion of these positions
to be deleted (deletion rate). The positions are then deleted at regular distances. Figure 8
shows an excerpt from the initial graph introduced in Figure 7 for different deletion rates.
The figure at the top shows the result of a deletion rate of 0% (i.e., the initial graph), in the
middle that of a deletion rate of 50%, and at the bottom the result of a deletion rate of 75%.

In addition to deleting nodes and edges, it is also possible and may be necessary to
add them as explained in Section 4.1 and Figure 5 to achieve a finer granularity of the
modeled topology and, hence, economically more efficient solutions.

In the third step, we generate the final instances for each instance graph. To this end,
different parameters and sets are required, as indicated by the notation in Table 1. Table 2
summarizes how we derived the sets and parameters of the DICP. The set of links L and
nodes V are directly taken from the instance graph. We consider all links to be candidates
to host an ITU. Limiting the consideration to heavily trafficked sections of the road network
would be possible. However, in this case, there is a risk that not all service requests can be
served. This is particularly true if service requests do not use these route sections. For this
reason, we consider all links as ITU candidates. We determine the PSU candidate positions
P from the set of all depots and gate positions to achieve a predetermined number of
candidate positions so that those positions are evenly spread over the set of depots and
gate positions. We assume that each PSU can supply each link. For this reason, Lv equals
L for all PSU candidates. Conversely, this also means that every PSU can supply every
link and, thus, Pl equals P for all links. Again, this is a simplified assumption. In reality,
it would be conceivable that PSUs could not supply ITUs at any distance. This could be
realized in our model if we consider in the set Lv only the ITUs within a certain distance
from the PSU v.

http://www.google.com/earth
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Figure 8. Reducing an initial graph with deletion rate 0% (top), 50% (mid) and 75% (bottom).

Modeling the service requests is a crucial aspect of setting up problem instances. In
all instances, we use the two-way request structure described in Broihan et al. [8]. Thus, a
request starts at a terminal position (gate or depot), takes the shortest path to an aircraft
parking position and ends again at a terminal position. All combinations of starting points
(terminal positions), aircraft parking positions and endpoints (terminal positions) form
the complete set of possible requests. Consequently, even in medium-sized instances, we
get a very large set of requests. For the case of the initial graph in Figure 7, we have
31 passenger gates plus one bus depot and 30 outside aircraft parking positions. As a
result, we have (31 + 1) × 30× (31 + 1) = 30,720 different two-way requests, leading
to 30,720 constraints (2) in the DICP (1)–(6). For other (larger) airports the number of
requests and corresponding model constraints may be substantially larger. However, these
service requests often overlap, so it can be sufficient to consider only a part of them. Hence,
we operate with different proportions of all possible requests. According to the given
proportion, the requests for the setR to be considered in the model are randomly selected
from all possible requests for the given instance graph. We assume that the vehicles take
the shortest path for each request and, hence, used shortest path algorithms to determine
the set Lr of links over which a vehicle travels as it serves request r. In addition, a set Γlv
represents the predecessor of a link l on the shortest path to a PSU p. This set is determined
using the Python package NetworkX in the preprocessing step to determine the shortest
paths for all the requests.

Table 2. Instance derivation from given data.

Input Graph, energy intake per meter, energy consumption per meter, investment per PSU,
investment in ITU per meter, percentage of requests, number of PSU candidates

Output: L, V , P , Lv, Pl ,R, Lr, Γlv, cpsu
v , citu

l , eil , ecr

Sets:
L given by instance graph
V given by instance graph
P given number of PSU candidates is selected from graph
Lv equals L for all v ∈ P
Pl equals P for all l ∈ L
R from all given two-way request structures a given percentage of requests is chosen
Lr derived from graph
Γlv derived from graph
Parameters:
cpsu

v equals given investment per PSU
citu

l link length (derived from graph) is multiplied with given investment in ITU per meter
eil link length (derived from graph) is multiplied with given energy intake per meter

ecr
request length (derived from graph) is multiplied with given energy consumption per
meter
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We assume that the investment cpsu
v in a PSU at node v is equal for all v ∈ P and

is provided by the user. The investment citu
l to equip link l with an ITU is derived by

multiplying the investment in ITU per meter with the link length. Similarly, the energy
intake eil is determined by multiplying the energy intake per meter with the link length
and the energy consumption ecr by multiplying the energy consumption per meter with
the request length. The length of the request is determined by adding the lengths of all
links contained in this request.

4.3. Description of the Generated Instances

For the numerical study conducted in this paper, we created a test instance set based
on three initial graphs. These graphs are based on sections of real airport aprons but
underwent minor modifications. Each graph in Figure 9 represents a certain apron layout.
We refer to them as structures A, B and C. General layout A (left part of Figure 9) is an
aggregate representation inspired by the conditions found at Hamburg airport, for which
the initial graph was already introduced in Figure 7. The other two structures B and C
(center and right part of Figure 9) were inspired by topologies found at other international
airports, again without actually being isomorphic representations. Note that in these
aggregate visualizations of Figure 9, an entry such as “G1” denotes an entire set of terminal
gates in close proximity. Likewise, an entry “P1” represents an entire group of aircraft
parking positions.

G1

G2
P1

P2

P3 P4

P5

(a)

G1

P1

P2

P3

D1

D2

D3

(b)

G1 G2

G3

G4

P1

P2 P3

D1

P4

D2

(c)

Figure 9. Aggregate Layout Structures. (a) Structure A. (b) Structure B. (c) Structure C.

We derived the initial graphs from satellite images. We set the positions for parking
positions, terminal positions and intersections according to these images. Additionally, we
placed intersection nodes at positions relevant to the structure (e.g., curves).

As mentioned before, we defined three instance classes of different sizes. Graphs of
the instance class “small” have 55 to 65 nodes, graphs of the instance class “medium” have
100 to 120 nodes, and graphs of the instance class “large” have 180 to 200 nodes. We used
different vertex (node) deletion rates and resulting link lengths to generate these instance
graphs from each initial graph for structures A, B and C. The link length always specifies a
maximum length since the links of the initial graph cannot always be divided without a
remainder. Suppose we consider an instance graph with a link length of 100. In this case, a
250 m link of the initial graph will be divided into two links with a length of 100 m and one
with a length of 50 m.

The values of deletion rates and link length are shown in Table 3. Excluding the initial
graphs, this led to three different graphs per instance class and, hence, a total of nine
different instance graphs.
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Table 3. Graph Adjustments.

Instance Class Structure Nodes Deletion Rate Link Length

Base A 138 0% max.
B 191 0% max.
C 293 0% max.

Small A 56 75% max.
B 57 85% max.
C 63 85% max.

Medium A 105 45% 100 m
B 114 65% 200 m
C 111 70% 200 m

Large A 189 0% 50 m
B 192 30% 100 m
C 194 40% 100 m

In the numerical analysis, we analyzed the influence of selected sets and parameters
on the computation time. Therefore, the following further attributes were varied when
creating the instances:

• %|R|: Proportion of considered service requests out of those potentially possible for
the given instance graph;

• |P|: Number of PSU candidates;
• cpsu/citu: Ratio of investment per PSU and investment in a meter of an ITU;
• ei/ec: Ratio of energy intake per meter and energy consumption per meter.

By modifying the size of the set |P| of nodes potentially hosting a PSU and the size
%|R| of the set of service requests to consider, we varied the size of the problem. Therefore,
we expected the computation time to increase for larger values for both attributes. However,
we wanted to examine how significant the increase is. For the investment and energy
parameters, only their ratios are relevant. As already explained, a high cpsu/citu ratio
means that PSUs are expensive relative to ITUs. Consequently, few PSUs are expected to
be built. Instead, more ITUs are built to connect all ITUs to the few installed PSUs. Thus,
some ITU segments are built not because of the energy requirements of the vehicles but to
produce a permissible (connected) charging infrastructure. A low cpsu/citu ratio can, on
the contrary, lead to significantly more PSUs and fewer ITUs. With an ei/ec ratio close to
one, energy intake and consumption are almost identical. As a result, nearly the entire
infrastructure must be equipped with an ITU. An energy ratio ei/ec significantly larger
than 1 indicates that the energy intake is significantly greater than the energy consumption.
In such a case, only relatively few ITUs will be built. The influence of the parameters on the
resulting infrastructure seems to be very clear. However, the influence on the computation
time is not obvious, which is why we considered them in our analysis.

We considered three different values for every attribute, as shown in Table 4. The
values were chosen to cover a wide range so that the influence of the attributes should be
visible. For example, for the energy ratio ei/ec, a very low value (1.2) was selected, a value
that may correspond to reality (3.24) and a particularly high value (10). We considered all
different attribute combinations for all graphs. We have four attributes with three different
values and thus have 34 = 81 instances for each graph of an instance class. Since we
considered nine graphs, we obtained a total number of 729 instances. We solved these
instances with Python 3.8 and Gurobi 9.1.0. Considering a strategic planning problem,
we used a time limit for the computation of 48 h for each of the 81 × 9 = 729 problem
instances of our numerical test bed. In other words, we allowed up to about four years (!) of
total Central Processing Unit (CPU) time for the entire study. All computations ran on the
Dumbo subcluster of Leibniz University Hannover compute facilities, which uses an Intel
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Xeon E5-4650v2 @2.40 GHz processor. Clearly, without such a cluster, the computations
would not have been possible.

Table 4. Attributes of generated instances.

Attribute Values

|P| 1, 4, 8
%|R| 30%, 70%, 100%
cpsu/citu 1, 25, 100
ei/ec 1.2, 3.24, 10

5. Numerical Results
5.1. Overview of Computation Times

Table 5 shows the average computation times (t̄), the median value (tmedian), the
minimum computation time (tmin) and the maximum computation time (tmax) for each
instance graph. Each row of the table gives the aggregate results over 81 different instances
stemming from the systematic combination of the parameter entries in Table 4.

As expected, the computing time increases for larger instance classes, up to the maxi-
mum of 48 h allowed for the Gurobi solution process. Thus, the size of the network has a
significant influence on the computation time. However, even within an instance class, the
computing times vary remarkably. Structure C has significantly higher computing times in
all instance classes, although the graph size is similar to the other structures. In addition,
even within a instance graph, the computing times fluctuate enormously, as indicated by
the wide range between minimum and maximum values.

Further, we observe that the median value is significantly smaller than the average for
the small and medium instance classes. This is because, within an instance graph, many
instances can be solved to proven optimality within seconds, minutes or a few hours, and
some instances could not be solved in the given time limit (48 h). The outliers lead to high
median values for these instance classes.

However, for large instances, the mean value is always smaller than the median value.
This is because most instances could not be solved to optimality within the time limit and
consequently have a reported computation time of 48 h.

Table 5. Computation Times.

t̄ tmedian tmin tmax

small
A 142 s 14 s 1 s 2129 s
B 204 s 57 s 1 s 4357 s
C 719 s 155 s 1 s 10,322 s

medium
A 15 h 3 h 0 h 48 h
B 10 h 1 h 0 h 48 h
C 23 h 19 h 0 h 48 h

large
A 28 h 48 h 0 h 48 h
B 34 h 48 h 0 h 48 h
C 37 h 48 h 1 h 48 h

5.2. Analysis of Solution Process

Moreover, we studied the time needed by Gurobi to find the first feasible solution
(t̄ f irst), the time after which the solution did not improve anymore (t̄last), the size of the Lin-

ear Program (LP)-Gap (GapLP), and the size of the final Gap (Gap f inal) when the time limit
was reached. We calculated the LP-Gap as follows: GapLP = (OFVopt −OFVrel)/OFVrel ,
where OFVopt indicates the objective function value of the optimal solution and OFVrel

indicates the LP relaxation solution’s objective function value. With this value, we want to
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describe the quality of the LP relaxation. A low LP-Gap indicates a good LP relaxation and
a high value indicates a bad LP relaxation.

Since we have a time limit of 48 h, optimality cannot be proven for all instances.

Therefore, the final gap (Gap f inal) indicates the gap between the upper and lower bound at
the end of the time limit.

In addition, we performed a second numerical investigation in which the average
number of equally optimal solutions (N̄opt) was determined for the small instances. We
consider solutions as equally optimal if they have the same objective function value as the
optimal solution but differ in structure. Gurobi searches for all solutions with the same
objective function value as the optimal solution and counts the number. Gurobi stops when
all solutions are found or if the total number of equally optimal solutions is higher than
100,000 . Due to the time limit, such a computation is not possible for the instances in the
medium and large instance classes. Because of the upper limit, the average value of the
equally optimal solutions N̄opt is underestimated.

For all described metrics, the average values of 81 instances for each instance graph
are shown in Table 6.

Table 6. Analysis of solution process.

t̄ t̄ f irst t̄last GapLP Gap f inal N̄opt

small
A 142 s 0 s 46 s 47% 0% 6251
B 204 s 0 s 56 s 44% 0% 23,315
C 719 s 0 s 256 s 56% 0% 26,525

medium
A 15 h 0 s 2 h 47% 0% N/A
B 10 h 0 s 1 h 57% 0% N/A
C 23 h 0 s 6 h 51% 1% N/A

large
A 28 h 1 s 3 h 45% 4% N/A
B 34 h 0 s 9 h 48% 5% N/A
C 37 h 1 s 12 h 46% 7% N/A

A first feasible solution is found on average in less than one second in each instance
class. This shows that the problem’s difficulty does not lie in finding a feasible solution.
This is not surprising as a feasible (but expensive) solution can always be constructed by
equipping each link with an ITU and then installing just one PSU.

Compared to the total computation time, a solution that is no longer improved is
found after a relatively short time, particularly for small and medium-sized instances. Even
for the hard-so-solve large instances, in most of the computation time, no improvement
of the incumbent solution occurs. Figure 10 shows the upper and lower bound course
stemming from the Branch-and-Bound process for one exemplary instance of a large-sized
instance of structure A. We observe that a feasible solution is found very quickly. The
upper bound, i.e., the objective function value of the best solution found so far, improves
very strongly at first, then only very slightly. After about 3 h, the upper bound no longer
improves. The lower bound slowly approaches the upper bound in the remaining ten hours
until the optimization terminates with the proof of optimality of the Branch-and-Bound
procedure used by Gurobi.
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Figure 10. Solution Process of one Instance.

Table 6 shows that there are many equally optimal solutions for the instances of the
small instance class. The high number of equally optimal solutions can be a reason for the
long time needed to prove optimality. A large number of equally optimal solutions leads to
many nodes to be visited in the Branch-and-Bound process, even if one optimal solution
may already have been found. One reason for the high number of equivalent optimal
solutions lies in the design of the instances. The links often have the same length and
thus the same energy contributions and investments. Hence, many different infrastructure
designs lead to the same energy contributions and investments. The structure also highly
influences the number of equally optimal solutions and the computation time. If a structure
is symmetrically built, many different infrastructures lead to the same energy contributions
and investments. This is especially the case for structure C in our study. We observe the
highest number of equally optimal solutions for this structure in the small instance class.
But above all, we observe the highest computation times in all instance classes.

In addition, and making things worse, symmetric solutions occur, especially when the
link length is reduced. Figure 11 shows an example of a symmetric solution. There is an
intermediate node between nodes i1 and i2. Let all links have the same length. In this case,
both represented solutions are equivalent because they contribute the same energy to each
service request and have the same investment. In any route segment that is not interrupted
by an intersection and in which the link lengths are the same, each solution is equivalent in
that the sum of the ITUs built in either direction is identical. In the example, the sum of
ITUs in each direction equals 1. Consequently, with smaller link lengths, more symmetries
are expected since there are significantly more such route sections.

i1 i2 i1 i2

Figure 11. Example of a symmetric solution.
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As expected, the final gap increases with increasing problem difficulty. Again, we
observe that instances of structure C are more difficult to solve than those of the other two
structures. Larger instances mean that it is more likely that the time limit will be reached.
For this reason, the final gap is larger with increasing problem size.

The mean value of the LP-Gap has similar sizes for all structures (between 40% and
60%). However, the LP-Gap varies extremely between the individual instances. As Table 7
shows, the most influential factor is the energy ratio. The table shows the average values
of the LP-gap for all instances together with the respective energy ratio ei

ec . For an energy
ratio of 1.2, the average LP-Gap is only 5%, for a ratio of 3.24 it increases to 26% and for
a ratio of 10 even to 115%. For a high energy ratio, it is sufficient to only partially equip
links with an ITU, especially if the links are very long. In the solution of the LP-relaxation
of the DICP, these links are “utilized” with very small fractionals such as 0.1. Therefore,
the LP-Gap is very poor (far away from the ideal of 0%). However, if the energy ratio
is low, many ITUs must be built, and partial equipment is not useful. Thus the LP-Gap
is smaller, reducing the numerical effort of the Branch-and-Bound process performed by
Gurobi. Unfortunately, this numerically attractive situation is not very interesting from
a practical point of view. It corresponds to a situation in which ITUs would need to be
installed almost everywhere, which is exactly what one would like to avoid in the attempt
to find an economically efficient dynamic charging infrastructure.

Table 7. Influence of energy ratio on the LP-Gap.

GapLP

ei/ec
1.2 5%

3.24 26%
10 115%

5.3. Influence of Problem Properties on the Computation Time

The influence of the different instance attributes from Table 4 on the computation time
is shown in Table 8. The computation times are divided according to structure and the
attributes and averaged over 27 values. In the first cell, for example, the times are averaged
over all instances that belong to the small instance class of structure A and have only one
PSU candidate. They differ in the number of service requests, the energy ratio and the ratio
of investments (3 × 3× 3 = 27). In addition, the computation times of the medium-sized
instances are presented graphically in Figures 12–15.

Table 8. Average computation times for different attributes.

|P| %|R| ei/ec cpsu/citu

1 4 8 30% 70% 100% 1.2 3.24 10 1 25 100

small
(in min)

A 0 1 6 1 2 4 5 2 0 4 2 1
B 0 1 9 4 2 4 6 3 1 6 2 2
C 0 4 32 6 16 14 2 16 18 12 14 10

medium
(in h)

A 0 17 29 13 16 17 23 21 3 20 19 7
B 0 8 22 7 11 12 4 23 3 13 10 8
C 0 27 41 22 23 23 24 32 11 25 24 19

large
(in h)

A 1 37 46 25 29 30 21 33 30 32 26 25
B 9 44 48 31 35 36 29 41 32 35 35 31
C 14 48 48 36 37 38 35 42 33 38 36 36

In Figure 12, we see that the number of PSU candidates strongly influences the
computation time. The problem is easy to solve when only one PSU candidate is considered.
In this case, no decision has to be made about where to place PSUs, but only where to
place ITUs. This makes the problem much easier. Increasing the number of PSU candidates
increases the computation time significantly.
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Figure 12. Influence of the number of PSU candidates on the computation time for medium sized
instances of structures A, B, and C.

In Figure 13, we observe that increasing the number of service requests also leads to
increased computation time. However, increasing the number of service requests leads to a
much lower increase in the computation time than increasing the number of PSU candidates.
On average, the increase from 30% to 70% is greater than the increase from 70% to 100%.
The reason is the overlap of the requests. If all requests are included, an extremely high
number of service requests is considered. Many of these requests have a high percentage of
overlap. It is therefore conceivable that there are service requests that are already covered
by the infrastructure requirements of other service requests. This means, for example, that
if two service requests are fulfilled, a third request is automatically fulfilled as well. From
the perspective of the problem, it makes no difference whether this third service request
is considered or not. This effect will especially occur with a very large number of service
requests. Thus, if we consider 70% of the requests, nearly all original requests are covered,
and the difference between 100% is small. However, considering 30% of the requests will
not cover all requests. Thus, the computation time increases substantially from 30% to 70%
as more requests with no/few overlapping are added to the instance.
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Figure 13. Influence of the percentage of considered requests on the computation time for large sized
instances of structures A, B, and C.

Figure 14 shows the influence of the energy ratio on the computation time. For
structure A of the medium instance, a ratio of 1.2 has the highest computation time, and for
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cases B and C, a ratio of 3.24. Table 8 also shows that the ratio of 3.24 mostly leads to the
highest computation time. The combinatorics of the problem can explain this. An ei/ec ratio
of 1.2 means that the energy intake is slightly larger than the energy consumption. Thus,
almost the entire infrastructure has to be equipped with ITUs. There are few possibilities to
realize this. The extreme case ei = ec illustrates this: In order to supply sufficient energy to
the vehicles, the complete infrastructure must be equipped with ITUs. The only decision to
be made is which PSU is to be connected. Therefore, there are only |P| different feasible
solutions. If ei/ec is very large, then the energy intake is significantly greater than the
energy consumption per distance unit of ITU passed by the vehicle. In this case, only a
very small part of the infrastructure has to be equipped. For this reason, a very large part of
the solutions can be excluded since they are too expensive. In the case of a medium-sized
energy ratio, such as 3.24, many solutions are feasible and not too expansive, and many
solutions can potentially be considered. For this reason, the computation time is usually
the largest for this value.
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Figure 14. Influence of the energy ratio on the computation time for large sized instances of structures
A, B, and C.

Figure 15 shows that increasing the cpsu/citu ratio leads to lower computation times.
This means a high investment in PSUs compared to ITUs lead to low computation times. As
already shown, lower computing times occur if fewer PSUs are considered. If the PSUs are
very expensive compared to the ITUs, it is not economical to build many of them. Rather,
more ITUs would be built instead of one additional PSU. The question of how many PSUs
should be built is not as difficult if the PSUs are very expensive. However, if the PSUs are
less expensive, it may be useful to build multiple PSUs. In this case, there is the question of
where to place the PSUs and whether it is better to build additional ITUs instead of one
additional PSU. These aspects increase the combinatorial difficulty of the problem and thus
the computing times.

In a final study, we re-ran the instances with the features that led to the highest
computation times, but now with a CPU time limit of 200 h (as opposed to the initial 48 h).
Table 9 shows the results. Optimality could not be proven for any of the three instances,
even after 200 h of computation. On the other hand, the remaining integrality gaps between
3.7% and 8.4% indicate that even for those hard instances, the Gurobi solver was able to
find solutions that may be acceptable from a practical point of view as their worst-case
deviation from optimality is not too large.
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Figure 15. Influence of the investment ratio on the computation time for medium sized instances of
structures A, B, and C.

Table 9. Computation of most difficult instances.

|P| %|R| ei/ec cpsu/citu CPU [h] Gap

large
A 8 100% 3.24 1 200 3.7%
B 8 100% 3.24 1 200 8.4%
C 8 100% 3.24 1 200 7.3%

Finally, there is the question of what these computational results mean for real problem
instances. In real problem instances, there will probably be many possible PSU locations
because it is conceivable that there is a connection to the grid at every gate position.
Modeling all of them would most likely make the problem intractable. However, several
PSU locations close to each other could easily be represented by one PSU candidate. The
justification for this approach is that we observed a very large number of equally optimal
solutions, so it is non-unjustified to hope that we can drop many PSU candidate positions
without losing all the optimal solutions from the solution space.

We further assume that there will be a large volume of traffic on the apron in the
future. This is why we are looking at a large number of service requests. Instead of
operating with a two-trip structure as in our instance generation process, we could also
create instances with single-trip structures. This would reduce the number of requests to
consider, making the problem numerically more tractable. On the other hand, it would
lead to more infrastructure solutions that would be more expensive but more robust by
giving the vehicles more charging opportunities.

As mentioned in Section 4, the energy ratio of 3.24 is based on actual data from Broihan
et al. [8]. They assumed a power of 100 kW and efficiency of 80% for the wireless power
transfer. Since this is still a new technology and the application is very specific, real data
for the investments are difficult to find. Most applications consider a single bus. Jeong
et al. [28] mentioned 500 $/m as investment in a meter of an ITU and 50,000 $/unit for a
PSU. However, the PSU needed for this application cannot be compared to the application
at the airport, where many vehicles are powered simultaneously. Nevertheless, we can
summarize that real-world problems mostly have the characteristics that make the problem
particularly difficult. In addition, we have made simplifications even in the graphs of
the large instance class since we do not consider all gates, depots and parking positions.
Furthermore, we have chosen a still very large link length. It is conceivable that there are
savings with smaller link lengths. With instances of real problem size, we can therefore
assume even significantly higher computation times.



Energies 2022, 15, 6510 23 of 25

6. Conclusions

This paper presents an optimization model for planning an inductive charging in-
frastructure on airport aprons. The model is a simplified variant of the model presented
by [8]. The paper aimed to investigate the problem properties that lead to high computation
times when solving the model with standard solvers and the reasons behind these high
computation times.

For this purpose, we systematically generated a large set of instances in three steps.
At first, we created initial graphs based on real airport apron structures. Afterward, we
adapted these initial graphs to the three defined instance classes small, medium and large.
Finally, we created instances from each graph with different characteristics, such as the
ratio of energy intake to energy consumption.

In the numerical evaluation, we showed that current commercial standard solvers
such as Gurobi can find a feasible solution quickly. They can even find good and potentially
very good solutions in an acceptable time. However, proving the optimality of a solution
often takes very long. One reason for this is the high number of equally optimal solutions,
which are, among other reasons, due to symmetries in the problem structure.

The computation times of instances resulting from graphs of similar size vary sig-
nificantly and depend on the instance’s attributes. Specific attributes lead to remarkably
high computation times. We showed that an increasing number of service requests and
PSU candidates lead to higher computation times, whereby the influence of the PSU candi-
dates is more significant. In addition, we investigated the influence of the ratio of energy
intake to energy consumption and the ratio of PSU investment to ITU investment. The
energy ratio significantly determines the size of the charging infrastructure. The numerical
investigations showed that, in particular, an energy ratio that leads to a medium-sized
charging infrastructure also leads to high computing times, as in this case, there tend to be
many equally good alternatives. The investment ratio of PSUs to ITUs influences whether
an additional PSU or more ITUs must be built. Comparatively cheap PSUs lead to high
computing times.

In real applications, the problem instances may be even more complex than those con-
sidered in this paper. We showed that for some instances, optimality could not be proven
by standard solvers within a time limit of eight days. For this reason, it is crucial to inves-
tigate how the computation time can be reduced. One possibility is to break symmetries
by extending the model with symmetry-breaking restrictions or considering undirected
graphs. This study showed that the presented rather intuitive model formulation is very
hard to solve. For this reason, one might search for alternative model formulations that
lead to lower computation times. For example, a flow-based model formulation in which
the PSUs serve as sources and the ITUs serve as sinks would be conceivable. Further, future
research projects should consider the use of heuristics and customized solution approaches.

Further research could further investigate the interaction of the power dimensioning
and the allocation of the charging infrastructure’s components. The model presented here
hence provides substantial opportunities for such extensions.
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