
Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão
Departamento de Engenharia Informática

Mestrado em Eng.ª Informática – Cibersegurança e Informática Forense

A P P L I C AT I O N S E C U R I T Y T E S T I N G

tomás avila welling

Leiria, March of 2022

Instituto Politécnico de Leiria
Escola Superior de Tecnologia e Gestão
Departamento de Engenharia Informática

Mestrado em Eng.ª Informática – Cibersegurança e Informática Forense

A P P L I C AT I O N S E C U R I T Y T E S T I N G

tomás avila welling
Number: 2190381

Internship carried out under the guidance of Professor PhD Marco António de
Oliveira Monteiro (marco.monteiro@ipleiria.pt) and under the supervision of Engi-
neer Marco Cova (mc@voidsoftware.com).

Leiria, March of 2022

mailto:marco.monteiro@ipleiria.pt
mc@voidsoftware.com

R E S U M O

Este relatório descreve o trabalho que foi feito durante todo o estágio no software
VOID para terminar o Mestrado em Cibersegurança e Informatica Forense. Durante
este estágio foram implementados dois projetos principais: o primeiro teve a ver
com o desenvolvimento de uma nova interface gráfica para o sistema Wazuh e
a modificação da sua arquitetura através da substituição dos componentes que
pertencem à Elastic stack; o segundo esteve relacionado com a instalação do sistema
Wazuh dentro da sede da VOID para monitorizar alguns dos servidores que são
utilizados para os projetos em desenvolvimento. Os principais objetivos destes
projetos eram aprender sobre o sistema Wazuh, desenvolver uma interface gráfica
para este sistema e configurar e utilizar o sistema Wazuh para monitorizar os hosts
que pertencem à organização. No final deste estágio, foi desenvolvido uma interface
gráfica e o sistema Wazuh foi implantado e está atualmente a funcionar dentro da
organização VOID.

i

A B S T R A C T

This report describes the work that was done throughout the internship at VOID
software to finish the Master’s degree in Cybersecurity and Digital Forensics. During
this internship two main projects were implemented: the first one had to do with
the development of a new Graphical User Interface for the Wazuh system and the
modification of its architecture by replacing the components that belong to the
Elastic stack; the second one was related to setting up the Wazuh system within the
VOID headquarters to monitor some of the servers which are used for the projects
in development. The main goals of these projects were to learn about the Wazuh
system, develop a Graphical User Interface for this system and to setup and use
the Wazuh system to monitor hosts that belong to the organisation. By the end
of this internship a Graphical User Interface (GUI) was developed and the Wazuh
system was deployed and is currently working within the VOID organisation.

iii

I N D E X

Resumo i
Abstract iii
Index v
List of Figures ix
List of Listings xi
List of Acronyms xiii

1 introduction 1
1.1 Internship project . 1

1.1.1 Statement of the problem . 1
1.1.2 Significance of the project . 2
1.1.3 Objectives . 3

1.2 Organisation where the internship was carried out 4
1.3 Report structure . 5

2 graphical user interface concepts 7
2.1 JavaFX . 7

2.1.1 Architecture . 8
2.2 Model-View-ViewModel pattern . 10

2.2.1 JavaFX and MVVM . 11
2.3 Graphical user interface secure development 12

3 security concepts 15
3.1 Significance of cybersecurity . 16
3.2 Endpoint security . 17
3.3 Endpoint detection and response . 18
3.4 Security information and event management systems 19
3.5 Intrusion detection systems . 20

3.5.1 Detection methodologies . 20
3.5.2 Detection approaches . 21
3.5.3 Technology types . 21

3.6 Regulation compliance . 22

v

index

3.6.1 Security regulation compliance laws 23
3.7 Incidence response . 23
3.8 Wazuh overview . 25

3.8.1 Wazuh agents . 26
3.8.2 Wazuh manager . 28
3.8.3 Elastic stack . 29

4 development 31
4.1 Methodology . 31

4.1.1 Tools . 32
4.1.2 Procedure . 32

4.2 Architecture . 33
4.2.1 WazuhFX architecture . 34
4.2.2 Final Wazuh system architecture 35

4.3 Investigation & Setup . 36
4.3.1 Development environment setup 38
4.3.2 Add maven to the project . 38

4.4 Wazuh Setup . 39
4.4.1 Network architecture of the organisation 40
4.4.2 Available methods for installation 41
4.4.3 Development environment installation 42
4.4.4 Production environment . 45

4.5 Request to the Wazuh API . 49
4.5.1 Entities implemented to communicate with the Wazuh manager 50

4.6 Data Storage Migration . 53
4.6.1 Setup . 54
4.6.2 Sample data . 55
4.6.3 Schema creation and data import 56
4.6.4 Querying Data . 58
4.6.5 Data used for the development of the project 59

4.7 WazuhFX development . 60
4.7.1 Kibana dashboard analysis 60
4.7.2 Development . 64

4.8 WazuhFX results . 70

5 conclusions 73
5.0.1 Future work . 74

vi

index

bibliography 77

Appendixes

a solr schema configuration 83

b wazuh server installation 99
b.1 Installation process from the official repositories 99

c wazuh agent installation 101
c.0.1 Adding the Wazuh repository 101
c.0.2 Deploy the Wazuh agent . 101
c.0.3 Disable automatic updates . 102

declaração 103

vii

L I S T O F F I G U R E S

Figure 1 The JavaFX architecture (Oracle, 2014) 8
Figure 2 The JavaFX application architecture 10
Figure 3 The communication flow of the different components used

by the MVVM pattern. 11
Figure 4 Stages of the IR plan as per the SANS definition. 24
Figure 5 The Wazuh system architecture. 26
Figure 6 High level architecture of the GUI application. 34
Figure 7 The original Wazuh architecture. 35
Figure 8 The new Wazuh architecture after performing the modifica-

tions of this project. 36
Figure 9 The general network architecture within the VOID organi-

sation. 41
Figure 10 Options for deploying Wazuh (Wazuh, 2022c). 42
Figure 11 Servers monitored by the Wazuh manager. 45
Figure 12 The network architecture within VOID after installing all

the Wazuh components. 46
Figure 13 Security alerts presented in the Kibana plugin. 61
Figure 14 Scene builder being used to create the login view. 64
Figure 15 The BorderPane layout. 66
Figure 16 WazuhFX view listing the rules which are stored on the

Wazuh manager. 71
Figure 17 WazuhFX XML editor view. 72

ix

L I S T O F L I S T I N G S

Figure 1 Initial Maven Configuration 38
Figure 2 Configuration example for activating HTTPS for the Wazuh

API. 47
Figure 3 Steps followed to change the passwords of the default users

for the Wazuh API. 48
Figure 4 Example of a class used to perform active response actions,

specifically running a command on one or more agents . . . 50
Figure 5 Example for creating a query parameters for a task. 53
Figure 6 Example of an alert generated by the Wazuh manager. . . . 55
Figure 7 Maven dependency to add SolrJ to a Java project. 58
Figure 8 Example Java code for fetching data from a Solr instance. . 59
Figure 9 Code used to switch between different FXML views. 66
Figure 10 Example Java code of the controller associated to a FXML file. 68
Figure 11 Example Java code used to synchronise the View and the

Model by using the ModelView class. 69
Figure 12 Example of the Java code used to fetch information with the

Model class. 70

xi

L I S T O F A C R O N Y M S

AD Anomaly-based Detection.

AMI Amazon Machine Image.

AV Anti Virus.

AWS Amazon Web Services.

CA Certification Authority.

CDB Constant Database.

CIRT Computer Incidence Response Team.

CIS Center of Internet Security.

CSS Cascading Style Sheets.

CSV Comma Separated Values.

DOM Document Object Model.

EDR Endpoint Detection and Response.

ELK Stack Elastic Stack.

EP Endpoint Protection.

EPP Endpoint Protection Platform.

EU European Union.

FDD Feature Driven Development.

GDPR General Data Protection Regulation.

GPG Gnu Privacy Guard.

GUI Graphical User Interface.

xiii

List of Acronyms

HIDS Host-based IDS.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IDE Integrated Development Environment.

IDS Intrusion Detection System.

IOC Indicator of Compromise.

IoT Internet of Things.

IR Incidence Response.

IT Information Technology.

JFX JavaFX.

JS JavaScript.

JWT JSON Web Token.

KQL Kibana Query Language.

MIDS Mixed IDS.

MVVM Model-View-ViewModel.

NAT Network Address Translation.

NBA Network Behavior Analysis.

NGAV Nex Generation Anti Virus.

NGEP Next Generation Endpoint Protection.

NIDS Network-based IDS.

NIST National Institute of Standards and Technology.

OSSEC Open Source HIDS Security.

OVA Open Virtual Appliance.

xiv

List of Acronyms

PC Personal Computer.

PHI Protected Health Information.

SANS SysAdmin, Audit, Network, and Security.

SCA Security Configuration Assessment.

SD Signature-based Detection.

SIEM Security Information and Event Management.

SPA Stateful Protocol Analysis.

UI User Interface.

UX User Experience.

VM Virtual Machine.

WIDS Wireless-based IDS.

WPF Windows Presentation Foundation.

XAML Extensible Application Markup Language.

XDR Cross-Layered Detection and Response.

xv

1
I N T R O D U C T I O N

In concordance with the requirements to complete the Master’s degree in Cyberse-
curity and Digital Forensics at the Polytechnic of Leiria, each student is required
to complete one of three options: Master’s thesis; Master’s dissertation; or an in-
ternship. By these constraints, it was decided to fulfill this requirement by carrying
out an internship within the VOID Software organisation. As well as fulfilling the
requirements for the Master’s degree, this internship will also provide growth within
personal, technical and professional areas.

In this document one can find a detailed explanation of the different activities
that were carried out during the course of the internship.

1.1 internship project

To initiate the internship process it was necessary to define the project that was
developed alongside the organisation, in this case, VOID Software. After an initial
meeting the project was defined, which consisted of implementing a standalone
graphical environment for the Wazuh API and implementing the Wazuh security
system within the installations of the VOID organisation. In the following subsection
we will explore in greater detail what the requirements and constraints of this project
were.

1.1.1 Statement of the problem

There are two main problems that were addressed during this internship, these
problems are:

• Create a Graphical User Interface (GUI) for the Wazuh system (specifically
the Wazuh server), which can aid a security team in managing security related
events in a practical way, to further enhance prevention, detection and response
capabilities against adversary security events, should these occur;

1

introduction

• Implement the Wazuh system within the headquarters of the organisation, so
that critical systems can be monitored in real time and security incidents can
be either prevented, detected or resolved in a timely fashion.

1.1.2 Significance of the project

Wazuh is a endpoint monitoring solution with several capabilities (Wazuh, 2021).
Its architecture is composed of three main components: the Wazuh server, a GUI
and full text search engine. Of these components two are based on products from
the elastic stack family. Namely the GUI for this system is a plugin for Kibana,
which is a GUI for searching, analyzing and visualizing information that is stored
in Elasticsearch indexes. As its search engine, the Wazuh system uses Elasticsearch
which is a database specialised in performing text searches. These search capabilities
are possible since Elasticsearch is based on Lucene indexes which are specifically
created to optimise the task of searching through high volumes of information.

As an organisation VOID software is creating a cybersecurity department. Within
this department different tools will be used to perform various security-related
operations such as security analysis, incidence response and security management.

During the definition of the cybersecurity department, the organisation also looks
to develop, use and test their own tools within the team. As such an initial project
was proposed by VOID, which consisted of setting up the Wazuh system within
the headquarters of the organisation. Once this was done, the next step consisted
of removing the components that are part of the Elastic Stack (ELK Stack) from
the Wazuh system, more specifically to first create a GUI that replaces the current
Kibana plugin and second to replace the current storage and search engine solution
with the Apache Solr enterprise search platform.

Performing these modifications opens the possibility for VOID software to use
the Wazuh system freely, without any of the restrictions associated with products
that rely on the ELK Stack. Furthermore, the modifications to the already existing
Wazuh system will provide the following benefits for the VOID organisation:

• Having a GUI that performs the same data search, analysis and visualization
capabilities with the additional benefit of not depending on Kibana and
Elasticsearch;

2

1.1 internship project

• The possibility of extending, adding or modifying the current capability set
of the Kibana plugin, which, in turn will allow the organisation to adapt the
GUI software to fit their specific needs;

• The assurance that the implemented GUI follows safe coding practices beyond
the ones that are already implemented into the Java environment, of which the
most vital is providing strong authentication and authorization mechanisms
to protect the sensitive information that is collected by the Wazuh system;

• Since the products that belong to the ELK Stack can’t be commercialised
(without following specific guidelines), these modifications will give the possi-
bility, if appropriate, to commercialise and implement the Wazuh flavoured
system within other organisations, without any kind of restrictions.

1.1.3 Objectives

Before initiating the development of this project the organisation (VOID Software)
and the developer (Tomás Avila) defined a set of requirements and objectives
that were fulfilled, insofar as possible, by the end of project. These objectives and
requirements were subject to change during the development stages, depending
on the evolution of the project and the necessities of the client, in this case the
organisation for whom the software is being developed.

The initial set of requirements and objectives for this project were the following:

• Implement a GUI for the Wazuh system that replaces the default one provided
by Wazuh. The GUI should initially at least allow a user to perform the same
actions as the Kibana plugin;

• Perform an initial migration of the storage solution behind the application,
specifically replace Elasticsearch with Solr;

• Develop an application that is able to run on a wide range of common operating
systems (e.g. Microsoft Windows, Linux and Mac OS);

• Provide several methods of authentication for the user (e.g. username and
password, smart card);

• Allow the members of a security team to collaborate when performing different
cybersecurity operations;

• Set up and run the Wazuh system within the VOID organisation;

3

introduction

• Create a configuration for the Wazuh system that is adapted to the organisation
and collect general security information from this same organisation’s hosts,
servers and if necessary network devices;

• Develop the application following secure coding practices.

1.2 organisation where the internship was carried out

VOID Software SA is a company the specialises in software development. Although
software development is at the core of this company’s functions, VOID also provides
other services within the Information Technology (IT) industry such as those in the
areas of cybersecurity, digital forensics, machine learning and data science.

VOID Software is a private company that was founded in Leiria, Portugal, in
2006. As mentioned, its main area of focus is software development, specifically
with regards to web, mobile and desktop applications. The main installations of
this company and the company’s development team are based in Leiria, and the
company is composed of around 30 people which include the roles of developers,
testers and product owners among others.

This company has a modern working environment that seeks to keep their
employees well looked after. Within their installations they have a main office
where all the team works, which provides an easy flow of communication between
team members. Furthermore these installations have areas where team members
can take breaks as required such as the terrace, the games room and the kitchen.
Because of the current pandemic situation, the company also allows its employees
to work from home if they so desire, which in turn promotes remote work and
the adoptions/reinforcement of smart tools and processes. To further increase the
comfort of their employees, VOID also provides the necessary food and drink supplies
during the day.

As a company VOID can provide the following services:

• Software Engineering;

• Blockchain;

• Machine Learning / Data Science;

• Augmented Reality / Virtual Reality;

• Mobile Application Development;

4

1.3 report structure

• Web Applications;

• Desktop Applications;

• Cybersecurity / Digital Forensics.

1.3 report structure

This report is structured into chapters, which describe the different steps that were
carried out to complete the project done during the internship. In this section one
can find an overview of the topics that are covered in each of the chapters.

In Chapter 2 (Graphical User Interface Concepts) one can find the main concepts
and technologies that were used while developing the application, which was a
requirement of this internship. This chapter gives a summary of what JavaFX is
and the architecture behind this development platform. Furthermore this chapter
addresses the design pattern that was used for the application development. Finally
important concepts for developing a secure and usable Graphical User Interface are
explored.

In Chapter 3 (Security Concepts) one can find the main security concepts that
are related to this project. This chapter presents an overview of why cybersecurity
is important nowadays. Furthermore the concept of endpoint security is addressed
in this chapter, this topic is expanded on by understanding how technologies such
as Endpoint Detection and Response, Security Information and Event Management
and Intrusion Detection System work. Additionally, concepts related to the processes
of regulatory compliance and incident response are overviewed. Finally the main
concepts related to the Wazuh system are given.

In Chapter 4 (Development) a detailed explanation of the methodology, archi-
tecture and stages of development for this project is given. The methodology used
during this project is described by the process followed and the tools that were used.
An overview of the architecture of the system that was used and the application
that was developed is given. Finally the development of this project is described by
its different stages: investigation and setup, where we look at the tasks executed
at the start of the project; Wazuh setup, where we look at how the Wazuh system
was implemented within the organisation; requests to the Wazuh API, where we
look at how the communication with the Wazuh server was implemented; data
storage migration, where we look at how the database of the Wazuh system was

5

introduction

migrated; and finally, WazuhFx development where we look at the main tasks that
were carried out to develop the new Graphical User Interface for the Wazuh system.

Finally in Chapter 5 (Conclusion) a conclusion is given with regard to the tasks
that were carried out during this project. This chapter proceeds to give a list of
improvements and additions that could be carried out with the final results which
were achieved by the end of the internship.

6

2
G R A P H I C A L U S E R I N T E R FA C E C O N C E P T S

One of the main goals of this project was to develop a GUI for the Wazuh system.
As such it was important to get an overview of the technologies that could be
used to develop this type of front-end application, to then initiate the development
process of the project. Thus an initial investigation was carried out with regards to
which technologies could be used for this purpose.

Another important aspect of developing this GUI was the architecture that
would be used for its implementation. This aspect is significant because it directly
influences how the application was developed and how it can be maintained and
improved in subsequent iterations of the project. Finally, since this project is related
to the area of cybersecurity, it was important to look at what some of the best
practices are for developing a secure GUI whilst respecting its usability.

In this chapter one can find information related to the concepts that were put into
practice during the development of the GUI application. In Section 2.1 (JavaFX)
an overview of the JavaFX development platform is presented. In Section 2.2
(Model-View-ViewModel pattern) the Model-View-ViewModel (MVVM) architecture
and how it can be used alongside JavaFX is described. And finally in Section 2.3
(Graph user interface secure development) important concerns that should be taken
into consideration when developing a GUI are summarised bearing in mind the
security and usability of the application.

2.1 javafx

JavaFX is a library built upon the Java API, which provides a set of packages that
enable developers to design, test and debug client GUI applications that can be run
consistently across diverse platforms (Oracle, 2014).

Because of using the Java API, JavaFX can use any of the Java libraries for
whatever purpose (e.g. access system resources). Furthermore, this feature provides
the ability to develop the whole application using Java code. To add to the advantages
of developing applications with JavaFX, this platform provides an easy way to

7

graphical user interface concepts

separate the components of the GUI from the business logic that supports the
application (Oracle, 2014). Finally JavaFX provides ways to customise the visual
components of the application by using Cascading Style Sheets (CSS). The main
characteristics of the JavaFX library that enable these features are:

• Java APIs: The JavaFX library is built with classes and interfaces written
in Java;

• FXML and Scene Builder: JavaFX provides a declarative way of defining
views through FXML, which is a XML based markup languages. FXML
markup can either be created by coding it or by using the Scene Builder tool
which is an interactive GUI which then generates the FXML markup;

• WebView: JavaFX can render web content by using this component;

• Self-contained application deployment model: Applications created
with JavaFX have all the application resources and a copy of the Java and
JavaFX runtime libraries in a single application package, this package can
then be run as a native application on any operating system;

• 3D Graphic features: JavaFX can present 3D graphics and models within
an application with this feature;

• Rich Text Support: Rich text such as JSON and XML can be viewed within
JavaFX applications with this feature.

2.1.1 Architecture

JavaFX uses different components to render and run applications. Together these
components compose the JavaFX architecture which can be seen in Figure 1.

Figure 1: The JavaFX architecture (Oracle, 2014)

Although JavaFX has several components that make it work, in most cases, when
developing an application using this library, the developer only interacts with the

8

2.1 javafx

top level components of the architecture (JavaFX public APIs and Scene Graph).
Because of this, in this section we will only focus on explaining the architecture of
the scene graph and the components around it.

2.1.1.1 Application architecture

Every JavaFX application inherits from the javafx.application.Application class,
which defines methods to initialise, start and tear down the application. Additionally
JavaFX applications are divided into different components (Chin, 2019). These
components can be seen in Figure 2 and are described as:

• Stage: Which acts like a container for all the other JavaFX objects. When
an application is started a primary stage is created;

• Scene: To be able to visualise the contents of the applications it is necessary
to create a scene. The scene contains all the visible content of the application;

• Scene Graph: Is a hierarchical structure containing the visual object of the
application, which are called nodes. The scene graph is considered the root
node of the application;

• Node: Each visual element of the application is a Node, each node has one
parent and may contain other nodes. The root node of the application will
always be present as the first node in the scene graph. For a node to be
rendered it must be added to the scene graph and can only be added once to
each scene graph.

9

graphical user interface concepts

Stage

Scene

Root Node

Leaf Node

Parent NodeParent Node

Leaf Node Parent Node

Leaf NodeLeaf Node

Figure 2: The JavaFX application architecture

2.2 model-view-viewmodel pattern

The MVVM design pattern, as for many other patterns used for GUI development,
seeks to separate the logic of the application from the visual components of the
application.

This design pattern is an improvement of the Presentation Model created by
Martin Fowler. Microsoft initially developed the MVVM pattern to aid in the
development of applications using the Windows Presentation Foundation (WPF)
(Microsoft, 2021).

The main objective of the MVVM pattern is to separate the UI view from the
state and behaviour of an application. As noted in The MVVM Pattern (Microsoft,
2012), this pattern is especially useful alongside frameworks that provide two things:
a declarative way to define views, for example, with markup language such as FXML
and Extensible Application Markup Language (XAML) used in JavaFX and WPF
respectively; and a way to bind variables to each other.

When defining views with this kind of approach (declarative syntax), it is common
to implement the logic as code that is directly associated to the view. Because of
how tightly coupled the logic and the view are in this model, the cost and complexity
of making changes to a view and the logic behind it increases rapidly when the
application grows (Microsoft, 2012).

10

2.2 model-view-viewmodel pattern

As such using the MVVM pattern has the following advantages:

1. Separation of concerns - the UI, state and logic are all contained in separate
locations;

2. It is a natural pattern for frameworks that provide a declarative syntax to
define views;

3. It enables a designer-developer workflow - by allowing designers to be creative
with the view design without generating extra complexity for the developer;

4. It increases the applications testability - by moving the logic to a class that
can be instantiated without the need of the UI. Thus, it is easier to write a
unit test for the functionalities implemented in such a class.

2.2.1 JavaFX and MVVM

As previously mentioned, there are two main requirements to implement the MVVM
pattern, JavaFX has both of them. JavaFX provides a declarative syntax through
FXML to define views which are then associated to controllers which implement
the logic behind such view. Furthermore JavaFX provides variables called Property
Variables which allow other variables to bind to them. When two variables are
bound the values of such variables update depending on the value of the variable
that they are bound to and the condition of the binding. These conditions can be
either unidirectional, which means that a variable updates only when the variable
it is bound to updates, or bidirectional, which means that either variable updates
when either of the variable’s values changes.

Figure 3: The communication flow of the different components used by the MVVM pattern.

When developing a JavaFX application while using the MVVM design pattern,
the following components should be implemented for each view:

11

graphical user interface concepts

• Model: Can be implemented in different ways depending on the application
that is being built. Generally contains the business logic and the data per-
sistence for the application. The Model will not know about the View or the
ViewModel;

• View: The View is defined by FXML and represents how the application will
look visually. It is important that the View does not contain any logic. The
View will hold references to all the visual components but will not know how
they can be used or what actions they perform within the application. The
View will contain a reference to the ViewModel and will not know about the
Model;

• ViewModel: The main task of the ViewModel is to maintain the state of the
View. It is important to note that this component is independent from the
View and as such the View that is associated to it could be replaced. Finally
the ViewModel provides a way for the View and the Model to communicate.
For this purpose the ViewModel contains a reference to the Model and updates
the View through data binding.

The communication of the different components while using the MVVM pattern
can be seen in Figure 3.

2.3 graphical user interface secure development

When developing a User Interface (UI), two relevant concerns should be taken into
account. The first has to do with security, specifically how to prevent unauthorised
access to user’s operations or information. To achieve security, a given application
must implement security mechanisms and protocols (Möller et al., 2011). The second
has to do with UIs usability, which is related to how a user performs actions within
a system. On the one hand such actions influence the user’s perception of the system
(e.g. usable vs. unusable) and on the other hand it influences the user’s perception
of security (Möller et al., 2011). These two concerns are developed and explored by
two engineering practices:

1. Security engineering: Practice that seeks to integrate security activities
and policies within the software development process (Rudolph and Fuchs,
2012);

12

2.3 graphical user interface secure development

2. Usability engineering: Practice that seeks to guarantee efficiency, effective-
ness and satisfaction for a user when performing a certain task and how to
apply it to software development (Weir et al., 2009).

To apply these engineering practices into the software development process it
is necessary, in the initial stages, to determine the security requirements of the
software followed by taking security design decisions. Furthermore the security and
system requirements should be related to usability with a focus on the users.

Cranor and Buchler (Cranor and Buchler, 2014) state on the one hand, that it is
not possible to develop secure software based only on usability requirements. On the
other hand, they state that it is also not possible to develop user-friendly software
when the design is based on security. These problems arise from there not being
enough investigation about security in GUI when compared to User Experience
(UX) and UI design. This limits the ability to predict how the user will react to
a security incident, which in turn limits the security design decisions. Since most
investigations that focus on usability neglect the security aspects, it is not possible
to fulfill the unique requirements of secure applications.

Because of this, it is important to find a balance between security and usability,
which involves finding a good trade-off between the two. For security to be imple-
mented and work well within a GUI application it should be implemented into the
design of such application.

From a user’s perspective a system seems to be more secure when there are
more security mechanisms implemented by such system (Gunson et al., 2011) (ex.
password authentication and two factor authentication). Although the perception
of security is augmented, such behaviour also reduces the usability of the system.
This proves that security (at least from a user’s perspective) is greatly influenced by
how the system is designed. As a consequence of the influence of a system’s design,
whenever possible, it is recommended to go beyond a human-centered design and
implement user decision making (Cranor and Buchler, 2014) (aka. guiding the user),
to prevent users from performing actions that may compromise the security of a
system.

13

3
S E C U R I T Y C O N C E P T S

One of the main goals of this project was to implement and configure the Wazuh
system within the VOID headquarters. This system has three main security func-
tionalities. The first is a Host-based IDS (HIDS), the second is regulation compliance
and security management and finally the system can be used as a comprehensive
Security Information and Event Management (SIEM) solution.

Wazuh was then used to monitor a set of endpoints within and outside of the
organisation with the objective to prevent, detect and respond to security related
events.

In this chapter, the main security functionalities implemented by the Wazuh
platform are explored, providing a general idea of which security concepts are related
to this platform, to later be able to explore more in depth the inner workings of the
Wazuh system. As such this chapter provides an overview of the security practices,
concepts, technologies and methodologies surrounding the Wazuh system.

In Section 3.1 an introduction to why cybersecurity is important is presented,
highlighting the need to have security solutions within an organisation. In Section
3.2 the concept of Endpoint Security is explored, additionally solutions for guar-
anteeing the security of endpoints are listed and described succinctly. In Section
3.3 an in depth description of Endpoint Detection and Response (EDR) systems is
presented. In Section 3.4 an in depth description of SIEM systems is presented. In
Section 3.5 and in depth description of how Intrusion Detection System systems
work and can be used to secure endpoints is presented. In Section 3.6 an overview
of what regulation compliance is and how its verified is presented. In section Section
3.7 an in depth description of the Incidence Response process and the steps of this
process is presented. Finally in Section 3.8 an overview of the Wazuh tool and its
components is presented.

15

security concepts

3.1 significance of cybersecurity

Nowadays organisations rely on vast amount of technologies and devices to support
their operations and provide their services. Typically these devices and technologies
all correspond to different vendor and in most cases the software that runs on
them have different versions. This in turn increases the attack surface which the
organisation is exposed to, ultimately this opens the door for vulnerabilities to be
exploited by malicious entities.

Furthermore organisations handle large amounts of data that belongs, among
others, to their clients, partners and investors. The increase in data handling by
such organisations has also converted information into one of the most important
assets. As consequence of this there is a growing interest from cybercriminals to
steal, modify or destroy such data to cause harm to an organisation. Although data
is one of the most important assets for an organisation, it is not the only asset that
an organisation must protect. David Kim (2016) outlines that the assets that an
organisation should protect are the following:

• Customer Data;

• IT assets and network Infrastructure;

• Finances and Financial Data;

• Service availability and productivity;

• Reputation.

Attacks and data breaches on an organisation can be carried out by internal or
external perpetrators. According to the Verizon, 2021 report, 80% of data breaches
are performed by entities that are external to the organisations, the investigation
also shows that this figure has been increasing over the years, while the internal
breaches have been decreasing. Additionally the Verizon, 2021 report show that
data breaches, in most cases, are only discovered days, week or even moths after
they occur. Failing to detect a data breach as soon as possible or in the worst case,
not even detecting it, can cause a great amount of harm to an organisation there for
it is in the organisations best interest to discover such breaches as soon as possible.
With this in mind it is necessary to invest in improving cybersecurity detection
capabilities as is outlined by Podzins and Romanovs (Podzins and Romanovs, 2019).

16

3.2 endpoint security

3.2 endpoint security

The term Endpoint Security refers to the protection afforded to devices that are
connected to a network, such as workstations, servers or mobile devices from being
exploited by malicious users (Comodo, 2021). Since technology, software and security
are areas in constant progress, this term has evolved with time to accompany such
progression. With the evolution of endpoint security definition, the technology and
processes that support it have also evolved (McFee, 2020). Solutions implemented
for endpoint security have expanded and range from simple programs installed on
hosts that verify file signatures to complex systems that can detect attacks based
on the behaviour of several systems and network devices that are being monitored.

Gartner (Gartner, 2021) defines a Endpoint Protection Platform (EPP) as “a
solution deployed on endpoint devices to prevent file-based malware attacks, detect
malicious activity, and provide the investigation and remediation capabilities needed
to respond to dynamic security incidents and alerts”. As such EPPs are installed on
host as a countermeasures to unwanted malicious activity, some examples of these
platforms are:

• Anti virus: Which uses a database with malicious file signatures to detect
threats;

• Next generation anti virus: That builds upon the threat detection capa-
bilities of the Anti Virus (AV) by adding context base detection (monitoring
processes, network traffic and other important system information) and in
some cases even provides means to respond automatically to threats;

• Endpoint protection: Which expands the concept of Nex Generation Anti
Virus (NGAV) to monitor all hosts connected to an organisations network,
providing a more holistic view over the security status of the organisation;

• Next generation endpoint protection: That builds upon the concept on
Endpoint Protection (EP) by adding behaviour based detection, machine
learning and artificial intelligence strategies. These strategies help detect a
wider range of threats including those classified as zero-day 1 attacks;

• Endpoint detection and response: Since it is not always possible to
prevent security threats. Endpoint Detection and Response (EDR) use mech-
anisms that go beyond detecting threats and provide means to react to these
events once they have occurred.

1 An attack on a system that explores a vulnerability that has not been registered before.

17

security concepts

3.3 endpoint detection and response

EDRs are a type of security solutions that monitors different system-level events
that occur on an endpoint, in real time, with the objective of being able to respond
to security threats either, automatically or with the help of a security analyst. All
the information that is gathered from the monitored hosts is stored, enriched and
consolidated to gain an overview of the state of an endpoint during the whole life
cycle of an attack.

The term EDR was first defined by Chuvakin (Chuvakin, 2013), with the objective
to expand the definition and capabilities of endpoint security solutions. Chuvakin
outlined that the key functionalities that these types of systems should possess are:

1. Event detection: Which consists of being able to classify an action that is
executed on a host as normal or anomalous. To achieve this the activities of a
host must continuously be collected and analysed;

2. Event isolation: Which consist of isolating a host that is compromised, so
that the threat can’t spread to other endpoints on the same network;

3. Event investigation: Which consist of providing means to perform forensic
investigations after a security incident has occurred on an host. This is achieved
by continuously collecting and storing data generated by a host;

4. Response: Which consists of providing the ability to react and recover from
an incident on a host, allowing it to go back to a normal state of operations.

The mode of operation of an EDR, can generally be described by 5 different
steps. The first is endpoint monitoring, which consists of continuously collecting
information about a system and its events, this is generally done through the
systems logs. With this information, in the second step EDRs creates a profile of
each system it monitors, this profiling action is referred to as behavioural analysis.
The third action is the ability to quarantine an endpoint that has been affected
by an attack, from the rest of the hosts on the network. After quarantining an
endpoint a EDR provides detailed information of how the infection happened,
allowing analysts to identify the same behaviour on other hosts. Finally EDRs are
capable of enriching and providing extra information about an incident so it can be
analysed and understood more effectively.

Although EDRs have great capabilities to improve security on the endpoints of
an organisation, there are some limitations that these systems have, namely:

18

3.4 security information and event management systems

• Agents must be deployed on all the monitored systems which becomes harder
the more hosts there is to monitor;

• Agents have a lot of privileges on the host system where they are installed on,
which could enable a malicious user to take advantage of such privileges;

• It is hard to use agents to monitor Internet of Things (IoT) devices;

• In most cases EDRs are not capable of correlating network events with events
that occur on the hosts.

3.4 security information and event management systems

Miller (Miller, 2011) defines a SIEM as "A system which is a complex collection of
technologies designed to provide vision and clarity on the corporate IT system as a
whole, benefitting security analysts and IT administrators as well". The main goal
of these systems is to monitor, identify and sometimes respond to security incidents.
A SIEM achieves these goals by analysing individual security events and correlating
them, providing an individual a global overview of such security events.

As outlined in Miller (2011), the core functionalities of a SIEM are:

• Log management: As the name denotes, log management is the process of
managing the logs2 of one or several systems. The process starts by configuring
each node which logs will be collected from, to then forward relevant logs to a
centralised location. The SIEM system is then in charge of storing, organising
and archiving all the information that has been received. Finally the SIEM
makes all the information that it has collected available through services;

• IT regulation compliance: By creating a set of requirements that should
be fulfilled by all monitored system, these requirements are checked at defined
intervals of time by using rules. This is done with the objective of identifying
compliance (or not) of a given standard that is enforced by the organisation;

• Event correlation: By correlating the events that were collected, the SIEM
system can provide a higher level of intelligence, by making the alerts that it
generates more accurate with regards to a security incident;

• Active response: A SIEM can be configured to respond automatically and
actively to specific types of events. This is done by interacting with one or
several systems that could be compromised by a certain threat;

2 System information and application events

19

security concepts

• Endpoint security: By looking at the logs a of an endpoint, the SIEM
can validate if the security mechanisms of such endpoint are up to date and
running.

Although a SIEM can generally be characterised by these functionalities, there
are many different implementations of these systems, which depend on the vendor,
the organisation that implements the system and other factors. Because of this the
scope of functionalities and monitoring capabilities of a SIEM can vary.

3.5 intrusion detection systems

An Intrusion Detection System (IDS) is usually installed on a specific sector of a
network or directly on a host. The objective of this system is to continuously monitor
network activity, in order to detect events that are not considered normal behaviour
such as unauthorised network packets, vulnerability exploits, a large quantity of
packets or other incidents that can compromise the security of a network. If such
incidents are detected the IDS will create an alert, and in some cases depending
on its configuration react to the the incoming threat. An IDS can be implemented
as a software or hardware solution, and is designed to be deployed on different
environments.

Liao et al. (2013) outlines different kinds of IDS based on different factors. These
factors are: the methodology they use; the classification approach; and the types of
IDS. In the following subsections we will give a small overview of each of these IDS
classifications.

3.5.1 Detection methodologies

Detection methodology refers to how the IDS detects incidents on a system or
network when they occur. Liao et al. (2013) states that there are three major kinds
of detection methodologies.

• Signature-base detection: Signature-based Detection (SD) refers to the
technique that uses signatures, which are patterns or strings that are associated
to a known threat. Detection is achieved by comparing the signature with all
captured events;

20

3.5 intrusion detection systems

• Anomaly-based detection: Anomaly-based Detection (AD) works by creat-
ing profiles of normal or expected behaviours, profiles are created by monitoring
different system, network and user activities. Such profiles can be static which
don’t change over time or dynamic which are updated over time based on the
system that is being monitored. AD detects incidents by comparing profiles
with observed events, if there is a deviation from the normal profile an alert
is created;

• Stateful protocol analysis: Stateful Protocol Analysis (SPA)s detect inci-
dents by tracing protocol states, this method of detection requires vendors to
develop generic profiles for different protocols;

• Hybrid: Uses a combination of the other methods to detect threats.

3.5.2 Detection approaches

Detection approach refers to the the conditions which are used by the IDS to decide
if an event can be classified as an incident or not. In their review, Liao et al. (2013)
states that there are five approaches to classifying incidents.

• Statistics-based: Uses a predefined threshold, such as mean and standard
deviation, and probabilities to identify intrusions;

• Pattern-based: Focuses on known attacks through string matching;

• Rule-based: If–Then or If–Then–Else rules are applied to construct the
model and profile of known intrusions;

• State-based: Uses finite state machines based on the network behaviour to
identify attacks;

• Heuristic-based: Is based on biological concepts such as genetic algorithms
and artificial intelligence to detect attacks.

3.5.3 Technology types

There are several types of IDS technologies. Technologies types are classified based
on where the IDS is deployed to detect attacks, based on this parameter there are
four classes.

21

security concepts

• Host-based IDS: A HIDS monitors the system it is installed on and is
designed to protect against internal and external threats. HIDS monitoring
capabilities are limited to the host on which it is installed on decreasing
the scope on which it can take a decision as to what traffic is classified as
malicious;

• Network-based IDS: Network-based IDS (NIDS) are placed at specific
network points to capture network traffic and then analyses the activities of
applications and protocols to recognise suspicious events;

• Wireless-based IDS: A Wireless-based IDS (WIDS) is similar to NIDS, but
it captures wireless network traffic;

• Network behaviour analysis: A Network Behavior Analysis (NBA) recog-
nises attacks by identifying unexpected traffic flows;

• Mixed IDS: A Mixed IDS (MIDS) combines any of the methods mentioned
before to increase the probability of detecting an attack.

3.6 regulation compliance

Regulations help companies improve their information security by providing guide-
lines and best practices. These regulations serve as a framework, that is based on the
sector of industry the company is in and the type of data that the company deals
with, meaning that different regulations may or may not affect specific organisations.
Generally compliance regulations address security and privacy at the same time,
putting responsibility on organisations to protect themselves from security incidents.

Regulation compliance is verified through assessments and audits. Assessments
are done by companies to verify if they are compliant, with no consequences if the
regulations are not met. On the other had audits are generally conducted by the
entities that enforce regulations, and if an organisation is not compliant it can result
in consequences such as financial fines or loss of reputation.

Complying with regulation helps organisations gain advantages within their sector
by, improving security with regards to their systems and data, minimise losses in case
of undergoing an attack, increase control over what their employees can or cannot
do with their credentials and maintain trust among their clients and providers.

22

3.7 incidence response

3.6.1 Security regulation compliance laws

There are several regulation compliance laws, which affect different sectors of the
industry as mentioned before. Some of the most important ones are:

• Payment card industry data security standard: This standard targets
businesses that process, store or transmit credit or debit card-holder data.
Any application, network, server or any other device connected to card-holder
data environment are also included in this standard. This regulation separates
controls into 12 different areas, each of those areas has its own specific
requirements;

• Healthcare insurance portability and accountability act: This regula-
tion requires administrative, technical and physical safeguards to guarantee
the confidentiality, integrity and security of Protected Health Information
(PHI) which refers to sensitive medical patient information such as medical
records and financial information;

• General data protection regulation: This is the core digital privacy leg-
islation in Europe. It defines a set of rules that gives European Union (EU)
citizens control over their personal information. The General Data Protection
Regulation (GDPR) defines laws an obligations that are based around privacy,
personal data and consent.

3.7 incidence response

Incidence Response (IR) is the capacity an organisation has to react to a incident.
IR is normally based on a framework which helps to streamline and automate the
process as much as possible, such framework is referred to as a IR plan. Hence
the main objective of such plan is to reduce as much as possible the time between
when a incident happens, the time it takes detect and deal with it. A secondary,
yet important, objective of the IR plan is to gain knowledge about each incident
that occurs to later enhance the security capabilities of an organisation.

To further understand what a IR plan is and what the main objectives of IR
are, we will go over the SysAdmin, Audit, Network, and Security (SANS) institute
high level definition of a incident response plan as defined the in Incident Handler’s
Handbook (Karl, 2012). We will look at this definition since it separates the IR
process into 6 phases, as opposed to the 4 phases defined by the National Institute

23

security concepts

of Standards and Technology (NIST), which in turn helps to explore more in detail
the IR process.

As can be seen in Figure 4, the IR process is composed of 6 stages.

Figure 4: Stages of the IR plan as per the SANS definition.

• Preparation: During the preparation stage all the ground rules and processes
for responding to an incident are defined. Since this stage lays out the grounds
of how to act for other stages, it can be considered one of the most crucial
ones in the IR process (Karl, 2012);

• Identification: When an incident is reported a more in depth analysis is
required to have a better understanding of the event. One of two outcomes can
be observed from such analysis. In the first outcome, the incident is classified
as a false positive in which case the security team rejects the alert and doesn’t
take further action. In the second, the incident is acknowledge by the security
team and further actions are taken by the responsible members;

• Containment: In this stage of the IR plan the security team will aim to isolate
all the affected devices, either by disconnecting such devices from the network,
where they could infect other device, or by alerting and informing whomever it
might interest about the incident so they can identify it if necessary. The main
objective of this stage is to prevent other users or devices from being affected
by the incident that has been detected, thus restricting the consequences of
such event;

• Eradication: In this stage of the IR plan the security team seeks to eliminate
the threat that caused the incident from the affected devices. Depending on

24

3.8 wazuh overview

the extent of the incident the team will have to work on different range of
cases;

• Recovery: In this stage of the IR plan the security team performs the
required operations to restore the organisations operations to normal. The
steps followed during this stage can vary depending on how serious the incident
was, in some cases alerting the required entities is enough to return to normal
operations. On the other hand if the attack caused a large amount of damage,
critical systems will have to restored from backups, which would require a
large amount of time and effort;

• Lessons Learned: After every incident there are key takeaways that can
help improve the security of an organisation and improve the processes that
are activated in case of an adversary event. In this stage of IR plan, the final
stage, a complete overview of whole IR process can be observed

3.8 wazuh overview

Wazuh is an open source security platform that provides a range of security func-
tionalities. Many of these characteristics were inherited from the Open Source HIDS
Security (OSSEC) project, additionally Wazuh extends these functionalities to
create a well rounded security tool. Wazuh as a tool can be categorised under the
term EDR as such it provides the following functionalities:

• Host based intrusion detection: By installing a agent on each host which
should be monitored, Wazuh observes such hosts either by looking at its
behaviour or using file signatures. Additionally Wazuh agents can monitory
different activities on a host and check its configurations;

• Regulatory compliance: By mapping security alerts to regulation require-
ments Wazuh performs the necessary controls to assure that a system complies
with the specifications defined by different IT security standards;

• SIEM functionalities: All the alerts generated by the Wazuh server are
stored, so that at any point in time, they can be accessed and analysed for
greater visibility of the overall security of the monitored systems.

Wazuh as a tool is mainly used to perform incidence response activities, specifically
it can aid in the process of threat prevention, detection and recovery. Although these
are the main areas on which this tool focuses, it also provides ways to gain insight

25

security concepts

on an attack after it occurred and check if systems are compliant with regards to
IT regulations and organisation policies.

One of Wazuh’s main features is that it can monitor different environments
through its agents, ranging from workstations to containerised components. In cases
when agents cannot be installed on a device, as is the case of network devices,
syslog3 can be used to forward relevant logs to the manager.

To achieve its functionalities the Wazuh system relies on three main compo-
nents: the Wazuh agent, the Wazuh manager or server (these terms can be used
interchangeably) and the ELK Stack; as can bee seen in figure 5. Each of these
components have specific objectives and functionalities that contribute to the Wazuh
system. Moreover these components communicate, in a secure manner, with each
other by either sending information or commands to build this system as a whole.

Figure 5: The Wazuh system architecture.

3.8.1 Wazuh agents

These agents are installed and executed on every endpoint which is desired to be
monitored by Wazuh and run as a lightweight background process. Agents are
divided into separate modules that perform specific tasks, such as collecting and
forwarding the logs of a system. Individual modules can be activated/deactivated
through a configuration file that can either belong to a single agent or a group of
agents.

3 Protocol designed to forward system logs or event messages from a device to a specific server

26

3.8 wazuh overview

Agents can be grouped depending on what kind of system they monitor, Wazuh
has some predefined groups which are assigned to agent when they register to the
manager for the first time. If necessary agents can be assigned groups depending on
the organisation’s requirements.

For an agent to be able to communicate with the Wazuh manager they must
register to it first, during this process the agents receive a cryptographic key which
is used to secure all communication between one another. After the registration
process is complete, the manager and agents are ready to exchange information.

Agents can perform the following actions depending on the configuration of their
modules:

• Collect logs: System and application logs are collected by the agents, then
these logs are forwarded to the Wazuh manager where they will be analysed
in depth;

• Execute commands: Agents can execute authorised commands sent by the
manager on the hosts that they are installed on. These commands can perform
actions such as collecting system information, blocking network traffic or
deleting a file on the system;

• Check file integrity: Agents maintain a database with the signatures of
predefined files or paths on the system, if a file is created, modified or deleted,
the agent generates send this information to the manager;

• Asses security configurations: Depending on the profile of the system,
agents check the configuration files of such system and compare it to the
Center of Internet Security (CIS) standard configuration for that specific
system;

• Perform an active response: Predefined actions to certain events can be
performed by the agents, in this way threats can be mitigated before they
escalate and become a bigger problem;

• Detect malware: Agents use different techniques to identify malware on the
system it is installed on;

• Cloud and container security monitoring: Agents can be installed on
cloud and container environments, detecting changes when they occur.

27

security concepts

3.8.2 Wazuh manager

The manager is the central component of the Wazuh solution, it is responsible
for gathering the data sent by the agents, processing it and creating meaningful
alerts and statistics it, this information can then be analysed at any point of time.
In addition to handling all the information of the system, the manager is also
responsible for keeping agents up to date, updating configurations and executing
actions on monitored hosts.

The Wazuh manager can be installed on a Linux machine either as single node
server or a multi-node cluster. The type of installation of the manager will depend
on the amount of devices that will be monitored and the quantity of information
that will be generated by each of those hosts.

The core functions that are carried out by the manager are performed within
the analysis engine. This engine uses a set of decoders to interpret and extract
information from the data it is sent by the agents, subsequently the extracted
data is compared against several rules that are associated to the decoder. If a rule
is triggered an alert is generated. The default installation of the Wazuh server
already has a large amount of predefined decoders for a wide variety of log formats
and rules to detect different security incidents and events. Additionally rules and
decoders can be created for specific situation and log formats respectively to meet
an organisations requirements.

To further enhance the quality of the information generated by the Wazuh server,
events are correlated with other events and enriched with additional information,
thus providing a greater overview of each event. Finally each log and security alert
is forwarded to the Elasticsearch cluster to be stored.

In addition to performing such analysis on the data that is received, the Wazuh
manager checks for vulnerabilities, verifies the state of the endpoint, reviews policies
and regulations to check if a host complies with them, verifies if any adversary
tactics are being used against the host based on the mitre ATT&CK framework,
uses a threat intelligence databases to check if a system is compromised and can
integrate with other systems to trigger events or share information.

Finally the Wazuh manager provides a REST API which can be used to interact
with it.

28

3.8 wazuh overview

3.8.3 Elastic stack

The final components of the Wazuh system are part of the ELK Stack, which
are tools specifically designed for collecting, storing and visualising information.
Precisely this system uses the following tools which are part of the ELK Stack:

• Elasticsearch: This text search engine is used to store the logs, alerts and
statistics that the Wazuh system generates;

• Kibana: Is a web interface built on top of Elasticsearch, which can be used
among other things to visualise, analyse and mine the information stored in
the Elasticsearch indexes. Wazuh has a dedicated plugin for Kibana which
has predefined graphs for visualising alert information and different panels to
interact with the Wazuh API;

• Filebeat: Is used to forward the logs and alerts that the Wazuh manager
generates to Elasticsearch, furthermore it guarantees that the information has
arrived to its intended destination.

29

4
D E V E L O P M E N T

The development phase of this project complements the investigation that was laid
out in Chapters 2 and 3 by putting into practice the theory that was acquired to
develop a project related to the fields of cybersecurity and application development.

The development process was divided into stages to help keep track of the tasks
that had already been done and to separate tasks which despite being related to
each other within the project, had their own goals with respect to one another.

This chapter discusses all the tasks that were carried out over the duration of this
project to fulfill the objectives that were set when the project began. Additionally,
this chapter serves as a guide for anyone who would like to acquire a greater
understanding of the project, whether to continue with the development of this
project, use it for their own purposes or any other use of this work. Finally, this
chapter addresses how the project was developed.

In Section 4.1 an overview of the methodology for developing this project is
given. In Section 4.2 the architectures related to the GUI application and the
Wazuh system (before and after modifications) are explored. In Section 4.3 the
initial steps of this project are overviewed and a guide to set up the development
environment for this project is given. In Section 4.4 the process to set up the
Wazuh system for development purposes and within the VOID organisation is
described. In Section 4.5 the process for implementing the required entities in
Java to communicate with the Wazuh API is explained. In Section 4.6 the process
to migrate the Elastic search database to the Solr database is explained. And finally
in Section 4.7 the process to develop the GUI application is overviewed.

4.1 methodology

In this section we will look over how the project was implemented. This section
covers the tools and technologies that were used and the process that was applied
in the implementation of the project.

31

development

4.1.1 Tools

Every software development process requires a combination of tools to support it.
For this project different tools for tracking progress, developing software and team
communication were defined, with the objective of making the process as simple
and effective as possible. The tools that were used for developing this project were:

• Intellij IDE: This tool was used to perform all the development and au-
tomated testing of the developed application. It was also used, wherever
necessary, to perform debugging of the project’s code;

• Scene Builder: This tool was used to design the views within the application;

• Maven: This project management tool was used to manage the different
software and library dependencies that were used to develop the proposed
solution;

• Trello: This tool was used to track the progress and requirements of this
project. This tool was also used as a knowledge base where the most important
information about the project’s development can be found;

• Rocket chat: This chat client was used to communicate with the client of
the project and other developers when help was needed;

• Git repository: This tool was used as a central repository for the code of
the project and for version control of the features that were implemented
progressively. The repository was also used as a reference for accepted features;

• Cloud storage: This tool was used to store important information that had
to do with the project, such as files, collected logs, images or any other form
of media needed to develop this project.

4.1.2 Procedure

For the development of the project a form of the Feature Driven Development
(FDD) model was used. This methodology is, in essence, an agile methodology
since it focuses on delivering features continuously over the course of the project.
Features are defined and accepted by the client: as such, when working with this
methodology, it is possible that during the development process the requirements
of the project might change. Although this model formed the foundation of how
development was carried out, some modifications were made. These modifications

32

4.2 architecture

were necessary due to the structure of the development team and the roles the client
played.

The development team was constituted by a single developer who owned each
class. These classes were defined in the planning stages of the project. Owning a
class implies responsibility for designing, coding, testing and documenting features.
Additionally, the developer also took on the role of domain expert whose main
responsibility was to make sure that the features developed worked as the client
expected them to.

There was a project manager supporting the development team who oversaw the
whole project. The project manager also aided the development team in taking
decisions with regards to the architectural design of the system. Finally, the project
manager played the role of the client, meaning that they received each iteration of
the system and either accepted it or asked for modifications.

The steps followed while developing software using the FDD methodology are:

1. Develop and overall model: Define the domain model and the business
problem that will be solved with the project;

2. Build a features list: Define all the features required to complete the project.
Make sure that each feature takes no more than a maximum amount of time
(generally the sprint duration);

3. Plan by feature: Alongside the client, the priority of each feature is defined;

4. Design by feature: Select a set of features that should be developed during
the sprint;

5. Build by feature: In this step, all the parts to complete a feature are
developed. When finished, the feature is reviewed. If the feature is approved
and passes all the tests, the feature is added to the main build for the client
to review.

4.2 architecture

During the development of this project there were two goals that required an
architecture to be defined. The first was for GUI application that was developed;
the architectural decisions for this component of the project were entirely up to the
developer and the project owner. The second is was relative to the Wazuh system
and the modifications done to it. As opposed to the requirement to develop the

33

development

GUI, the architecture of this system was already defined by the team developing
it. Although this is the case, after performing the modifications required by this
project, the final architecture is slightly different.

In the following sub-sections, we will explore in greater detail the architecture of
the GUI and the architecture of the Wazuh system, before and after performing the
modifications.

4.2.1 WazuhFX architecture

The architecture of the GUI is presented in Figure 6.

Graphical User Interface

Data presentation and user input

Data storage communication

Manager communication

Sub-module 1

Sub-module 2

Sub-module ...

Modules

Sub-module 1

Sub-module 2

Sub-module ...

Sub-module 1

Sub-module 2

Sub-module ...

Figure 6: High level architecture of the GUI application.

The GUI is separated into three main modules:

• Manager communication module: Which is in charge of sending and
receiving information from the Wazuh manager;

• Data storage communication module: Responsible for performing queries
to the Solr instance. As such this module is in charge of fetching information
about the alerts generated by the Wazuh manager;

• Data presentation and user input: Which is responsible of presenting
and receiving information from the user by using the MVVM pattern. This
module uses the other two to implement its functionalities.

34

4.2 architecture

4.2.2 Final Wazuh system architecture

As mentioned previously, the Wazuh system’s architecture has already been defined
by the Wazuh team (Wazuh, 2022a), this initial architecture can be seen in Figure
7. Although this is the case, one of the goals of this project was to modify this
architecture by removing the ELK Stack components and replacing them with the
new GUI and the Solr search engine. After performing these modifications, the final
architecture can be seen in Figure 8.

Endpoints

Wazuh agent

Wazuh agent

Wazuh Manager

Elasticsearch

Filebeat
Kibana

Users

Figure 7: The original Wazuh architecture.

The architecture of this system is based on four main components:

• The agents: Which are in charge of monitoring and collecting information
from a host. This information is then forwarded to the manager;

• The Wazuh manager: Which is in charge of processing all the information
collected by the hosts and enriching it. Additionally, the manager is in charge
of managing the agents that are connected to it and itself. The manager
communicates with the GUI to either present information or receive commands;

• The Solr instance: Which is in charge of storing the information generated
by the Wazuh manager. The Solr instance receives the alerts generated by
Wazuh through the post tool which is included with the Solr installation and
then makes these alerts accessible through queries to its REST API;

• The JavaFX GUI: Which is in charge of presenting the information that
it fetches from the Wazuh manager and Solr. The GUI is also in charge of
sending information to the Wazuh manager allowing the user to perform
administrative tasks.

35

development

Endpoints

Wazuh agent

Wazuh agent

Wazuh Manager

Post tool

JavaFX GUI

Figure 8: The new Wazuh architecture after performing the modifications of this project.

4.3 investigation & setup

In this stage of the project an initial investigation was carried out, the purpose of
which was to understand what technologies would be used to develop the required
solution. Additionally, this phase of the project helped to define the requirements
for the project’s development.

Initially the GUI replacement for the Kibana dashboard, was going to be developed
with ReactJS. We decided to use React since it is the main front-end development
library used within the VOID organisation, hence if help were needed during any
stage of development, other people at VOID would be able to provide guidance.
Moreover, React applications can be run on any machine that supports a browser
(and most machines have this feature), which in turn fulfils one of the project’s
requirements: "The application should be able to run on any operating system".

For that reason, during the initial part of the investigation phase a course to learn
React development was followed 1. This course follows a project-based learning
methodology, by providing a set of small projects that introduce important concepts
about React and web development in general.

Some of the most important topics covered by this course are:

• JSX;

• Components (Class and Fucntion);

• Document Object Model (DOM);

1 https://www.udemy.com/course/react-redux/

36

4.3 investigation & setup

• Props;

• Life-cycle Methods;

• The hooks system (Including named hooks);

• Redux;

After a month or so of learning about React and how to write web applications
using this library, a meeting was held with the client (VOID Software). During this
meeting the requirements of the project were further elaborated on: this new set of
requirements could still be implemented by using the React library, although some
of them would be incomplete or even not dependent on the developer, namely the
requirements that were related to security. For this reason, JavaFX was suggested
and taken into consideration as an option for developing the project.

At this point of the project a comparison of both technologies was done to
have a better understanding of which one of these technologies would better serve
the purpose of developing the GUI for the Wazuh system. After performing the
comparison, a decision was made to continue the development of the project using
the JavaFX library.

This decision was made because JavaFX is not dependant on the browser and
the security features associated to it. Additionally JavaFX provides the ability to
interact with the hardware of the PC, making the application perform better if
optimised correctly and allows to interact with dedicated hardware such as smart
card readers, which will be eventually be required to login to the application.

The JavaFX library provides different features and APIs to develop GUI appli-
cations by using Java. At this point in the project, it was necessary to move the
learning focus from react to JavaFX. To initiate the development, a set of tutorial
and articles were followed to learn the main concepts of the JavaFX development
platform.

Among other things, the main concepts that were learnt were:

• Java APIs;

• FXML and Scene Builder;

• JavaFX UI controls and CSS;

• The JavaFX Scene Graph;

• JavaFX layouts;

• 2D and 3D graphs.

37

development

To further understand how JavaFX works a set of small applications was developed,
exploring the main concepts of the JavaFX library. To complete this stage of the
learning phase, 4 weeks were required.

4.3.1 Development environment setup

As mentioned, the Integrated Development Environment (IDE) that was used during
the development of this project was IntelliJ. This IDE was chosen since the developer
was already familiar with it, making it simpler to navigate and use. To manage the
dependencies and the builds of the project, the Maven framework was used, this
helped streamline how dependencies are fetched and also provided a simple way to
understand what the structure of the project was.

4.3.2 Add maven to the project

IntelliJ also provides a simple way to add Maven to a JavaFX project. The steps to
add Maven are:

1. Right click the root of the project and click on “Add Framework Support”;

2. Select Maven as the framework;

3. Give a name to the project using the reverse-DNS syntax;

4. Click to load the changes within the project.

After adding maven to the project, the initial dependencies for the JavaFX project
had to be added. A list of these dependencies, as presented in the dependencies file,
can be seen in Listing 1.

Listing 1: Initial Maven Configuration

1 <?xml version="1.0" encoding="UTF-8"?>

2 <project xmlns="http://maven.apache.org/POM/4.0.0"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">↪→

5 <groupId>com.voidsoftware.wazuhFX</groupId>

6 <artifactId>internship</artifactId>

7 <version>1.0-SNAPSHOT</version>

8

9 ...

10

38

4.4 wazuh setup

11 <build>

12 <plugins>

13 <plugin>

14 <groupId>org.apache.maven.plugins</groupId>

15 <artifactId>maven-compiler-plugin</artifactId>

16 <configuration>

17 <source>10</source>

18 <target>10</target>

19 </configuration>

20 </plugin>

21 </plugins>

22 </build>

23 <dependencies>

24 <dependency>

25 <groupId>org.openjfx</groupId>

26 <artifactId>javafx-controls</artifactId>

27 <version>${javafx.version}</version>

28 </dependency>

29 <dependency>

30 <groupId>org.openjfx</groupId>

31 <artifactId>javafx-fxml</artifactId>

32 <version>${javafx.version}</version>

33 </dependency>

34 </dependencies>

35 </project>

4.4 wazuh setup

When it comes to installing the Wazuh server, the ELK Stack and deploying agents
on the machines which should be monitored, there are several options. The options
listed by the Wazuh documentation (Wazuh, 2022c) take into consideration that
Wazuh will be used to monitor different environments. Additionally, it also considers
that the resources available and the number of machines to be monitored will vary
depending on the organisation where it is implemented.

As such it is important to review these criteria before setting up Wazuh, to make
sure the solution fits the organisation’s needs. After performing this revision, it is
possible to continue with the installation process of the different components that
are part of Wazuh.

39

development

4.4.1 Network architecture of the organisation

As mentioned in Section 1.2, VOID has its headquarters in Leiria, Portugal.
This is where the workstations used by the developers are located, as well as the
servers that host VOIDs internal services (file sharing, chat server, among others).
Moreover these servers also host the test environments for different projects that are
being developed by VOID. In addition to the aforementioned resources, VOID has
servers for pre-production and production environments hosted by another entity in
Germany, which are accessible from anywhere.

The network within the organisation is sectioned into separate VLANs for different
types of devices and for the most part, can only be accessed from within the
organisation’s installations because of the Network Address Translation (NAT) rules
defined on the firewall. A general structure of the network can be seen in Figure 9.

Based on this network design and the resources that are present within it, the
decisions in the subsequent sections were taken.

40

4.4 wazuh setup

VLAN10

VLAN30

VLAN40

IoT Network

Workstation Network

Server Network

VLAN20

Wireless Network

Docker Network

External Network

VOID Headquerters

Figure 9: The general network architecture within the VOID organisation.

4.4.2 Available methods for installation

As per the Wazuh documentation there are three main ways to install the Wazuh
components (not including Wazuh agents). These methods are: a step-by-step
installation (Wazuh, 2022d); a Virtual Machine (VM) installation (Wazuh, 2022e);
or a containerised installation for docker (Wazuh, 2022b). It is also possible to use
a pre-built Amazon Machine Image (AMI) to use in Amazon Web Services (AWS)
cloud. However, this option was not taken into consideration since the organisation
was looking to host the Wazuh server within their installations. Furthermore the
Wazuh components can be deployed either in an all-in-one or distributed mode, as
can be seen in the following figures: Figure 10a and Figure 10b.

41

development

(a) Wazuh all-in-one deployment (b) Wazuh distributed deployment

Figure 10: Options for deploying Wazuh (Wazuh, 2022c).

When doing an all-in-one deployment, both the Wazuh manager and the ELK
Stack components are installed on the same machine, meaning that all the resources
of the machine on which they are installed on are shared. Conversely when performing
a distributed deployment each of the components (Wazuh manager and ELK Stack)
are installed on separate machines, thus each component has access to all the
resources of the machine it is installed on. If a distributed deployment is done, there
is also the option to create a multi-node cluster, which adds redundancy allowing
the system to be up and running all the time and, if necessary, also grants the
system the capability to scale.

4.4.3 Development environment installation

Two installations were carried out for development and testing purposes. Each
installation was done on a separate machine and with specific objectives. In the
following sub-sections, we will look at the installation process carried out and the
goals that were accomplished, among other things.

4.4.3.1 VOID PC installation

The first development installation was carried out on a workstation at the VOID
headquarters. The specifications of the hardware and operating system of this
computer were the following:

• 32 GB of RAM;

• 512 GB of SSD (Additional storage was available if required);

42

4.4 wazuh setup

• i5-2500k CPU;

• Linux Mint (x86_64) OS installed.

Since this was the first installation of Wazuh and it was also being used for devel-
opment purposes, a step-by-step installation was carried out. The main advantage
of performing this kind of installation is that it provided a general overview of the
components of the Wazuh system, expanding the knowledge gained from reading
the documentation. As such the steps found in Appendix B were followed.

After the Wazuh manager and the ELK Stack were installed successfully, it was
possible to proceed with the next step of the Wazuh system set up; installing the
agents on the hosts that were to be monitored.

The workstation where Wazuh was installed is located within the Workstation
Network as can be seen in Figure 9. As such only other machines connected to
this network can communicate with this Wazuh server. Consequently, the hosts
that were monitored by this installation (where the agents were installed), were the
workstations of other employees within the VOID organisation.

To be able to carry out the monitoring process, two steps must be followed:

1. Assign a static IP to the Wazuh server workstation;

2. Install the agents on the other workstations located in the headquarters’ office
Appendix C.

After some days of undertaking this process, it was not possible to work from the
office anymore due to the pandemic restrictions, thus, this setup was abandoned for
the rest of the project.

Although this was the case, performing this initial setup provided us with some
valuable information about the security of a default installation of the Wazuh system,
which then aided with the production installation of this system. The following
security issues were identified:

• Default passwords are used to access the Kibana dashboards and the REST
API;

• The communication between the Wazuh server, specifically the REST API
and the clients that connect to it was not encrypted.

These security issues are considered minimal, since the Wazuh installation is
located in the Servers Network (Figure 12) within the organisation, making it
only accessible from within the VOID headquarters.

43

development

4.4.3.2 Personal PC installation

Since the access to the Personal Computer (PC) in the VOID headquarters was
limited, it was necessary to do a second installation of the Wazuh server on another
PC. In this case, the development PC for this project was used. This new installation
was mainly used to carry out the process of developing the new GUI for the Wazuh
system, leaving aside the monitoring capabilities of Wazuh.

The specification of the hardware and operating system for this computer were
the following:

• 16 GB of RAM;

• 1 TB of HDD storage and 256 GB of SSD storage;

• i7-7700HQ CPU;

• Ubuntu 20.04.0 (x86_64) OS.

Considering that the step-by-step installation had already been carried out and
the appropriate takeaways from this process had been gained, the decision to use
the pre-built VM created by the Wazuh team was made.

This VM is provided in Open Virtual Appliance (OVA) format. The VM can
then be imported into a virtualization software that supports this file format. For
this project the VMware Workstation 16 Pro software was used.

The VM is configured to work out of the box, which makes it simple to use.
Furthermore it has all the Wazuh components already installed and configured on
it, specifically the VM has the following characteristics:

• CentOS 7;

• Wazuh manager;

• Open Distro for Elasticsearch;

• Filebeat-OSS;

• Kibana;

• Wazuh Kibana plugin.

This VM should not be used for a production environment unless secured properly,
which is not a problem since it will only be used for development related purposes.

44

4.4 wazuh setup

4.4.4 Production environment

It was decided that the production environment for the Wazuh server should be
hosted within the VOID headquarters, alongside the other services which are run
internally by the organisation. This means that the Wazuh system will be located
in the Servers Network (Figure 9).

Before initiating the installation process, a decision was made to place the Wazuh
manager in charge of monitoring other servers located within the VOID headquarters
as these servers are located on the same network as the Wazuh manager. Additionally,
this installation would be in charge of monitoring the pre-production and production
servers which are located on the External Network (Figure 12). A list of the servers
monitored by the initial Wazuh installation can be seen in Figure 11.

Figure 11: Servers monitored by the Wazuh manager.

Bearing these factors in mind, it was decided to carry out an all-in-one installation,
meaning that both the Wazuh manager and ELK Stack would be installed on the
same machine. The Wazuh documentation states that an installation like this can
monitor up to 100 hosts (Wazuh, 2021). In the case of more hosts needing to be
monitored, it may be necessary to run a distributed installation of the system,
where the Wazuh manager and ELK Stack are installed on separate machines, each
having their own resources.

The steps carried out in the first installation (Appendix B) were followed to
install the Wazuh server within the organisation’s headquarters. After the manager
was set up correctly, the agents were installed on all the hosts that were required to
be monitored, one by one (Appendix C). Once these steps were complete, the final

45

development

network architecture of the organisation was slightly different to the original, and
the new architecture can be seen in Figure 12.

VLAN10

VLAN30

VLAN40

IoT Network

Workstation Network

Server Network

VLAN20

Wireless Network

Docker Network

External Network

VOID Headquerters

Figure 12: The network architecture within VOID after installing all the Wazuh components.

Finally, some of the security issues that were identified in Section 4.4.3.1 needed
to be solved, namely the following issues:

• Enable Hypertext Transfer Protocol Secure (HTTPS) for the communication
with the REST API;

• Change the default passwords for the REST API.

4.4.4.1 Enabling HTTPS for the Wazuh manager REST API

To enable HTTPS for the REST API of the Wazuh manager it was necessary to do
two things:

46

4.4 wazuh setup

1. Provide the necessary certificates: When deciding what certificates to
use, there was the possibility to either pick the ones created by Wazuh when
the system was installed or generate our own certificates. Since the system will
be placed on a network that is not internet-facing, it was decided to keep the
certificates generated by Wazuh. These certificates are self-signed by a root
Certification Authority (CA) created during the installation of the Wazuh
system;

2. Edit the REST API configuration: After deciding what certificates to use,
the REST configuration, which is located at /var/ossec/api/configuration/api.yaml
on the Wazuh server, was modified. Specifically the lines in Listing 2 were
changed. If any modifications were to be made to the REST API HTTPS
configuration, these lines would have to be modified again.

Listing 2: Configuration example for activating HTTPS for the Wazuh API.

1 https:
2 enabled: yes
3 key: "api/configuration/ssl/server.key"
4 cert: "api/configuration/ssl/server.crt"
5 use_ca: False
6 ca: "api/configuration/ssl/ca.crt"
7 ssl_protocol: "TLSv1.2"
8 ssl_ciphers: ""

Finally, to apply these changes, it was necessary to restart the Wazuh manager
service.

4.4.4.2 Changing the default passwords

The next security issue to be addressed was changing the passwords associated to
users who can authenticate the Wazuh API. The default users have wazuh and
wazuh-wui as their usernames, and the passwords for these users are the same as
the usernames.

To be able to communicate with the Wazuh manager’s API, two authentication
steps are required:

1. BasicAuth: The API requires any user to provide a username and password
to authenticate. If the credentials match those stored on the server, the server
replies with a JSON Web Token (JWT);

47

development

2. JWT Authentication: All subsequent requests to the Wazuh API must
include a header with the JWT that was issued after performing the basic
authentication.

After receiving the JWT it was possible to modify the passwords for the default
users, one by one, by making a PUT request to the /security/users/{user_id}
endpoint with the new password included in the body of the request.

The steps 2, the process to change the password can be seen in Listing 3.

Listing 3: Steps followed to change the passwords of the default users for the Wazuh API.

1 tom@grom:~$ WAZUH=https://192.168.254.128:55000

2 tom@grom:~$ TOKEN=$(curl -k -X GET -u wazuh-wui:wazuh-wui

$WAZUH"/security/user/authenticate?raw=true")↪→

3 % Total % Received % Xferd Average Speed Time Time Time Current

4 Dload Upload Total Spent Left Speed

5 100 271 100 271 0 0 1266 0 --:--:-- --:--:-- --:--:-- 1266

6 tom@grom:~$ echo $TOKEN

7 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ3YXp1aCIsImF1ZCI6IldhenVoIEFQSSB c
SRVNUIiwibmJmIjoxNjQ2OTk1MjE1LCJleHAiOjE2NDY5OTYxMTUsInN1YiI6IndhenVoLXd1aSI c
sInJ1bl9hcyI6ZmFsc2UsInJiYWNfcm9sZXMiOlsxXSwicmJhY19tb2RlIjoid2hpdGUifQ.bAlD c
jIuPdro5ZUxaAlFIPw_xAkZZgKvL7BXG6XADrl0

↪→

↪→

↪→

8 tom@grom:~$ curl -k -X GET $WAZUH"/security/users?pretty=true" -H "Accept:

application/json" -H "Authorization: Bearer ${TOKEN}"↪→

9 {

10 "data": {

11 "affected_items": [

12 {

13 "id": 1,

14 "username": "wazuh",

15 "allow_run_as": true,

16 "roles": [

17 1

18]

19 },

20 {

21 "id": 2,

22 "username": "wazuh-wui",

23 "allow_run_as": true,

24 "roles": [

25 1

26]

27 }

28],

29 "total_affected_items": 2,

30 "total_failed_items": 0,

31 "failed_items": []

32 },

2 These steps were reproduced in a test environment for demonstration purposes. Since the commands
were not copied when the initial installation was done

48

4.5 request to the wazuh api

33 "message": "All specified users were returned",

34 "error": 0

35 }tom@grom:~$curl -k -X PUT $WAZUH"/security/users/1?pretty=true" -H

"Content-Type: application/json" -H "Authorization: Bearer ${TOKEN}" -d '{

"password": "N3wSecureP$$wd" }'

↪→

↪→

36 {

37 "data": {

38 "affected_items": [

39 {

40 "id": 1,

41 "username": "wazuh",

42 "allow_run_as": true,

43 "roles": [

44 1

45]

46 }

47],

48 "total_affected_items": 1,

49 "total_failed_items": 0,

50 "failed_items": []

51 },

52 "message": "User was successfully updated",

53 "error": 0

54 }

4.5 request to the wazuh api

The development of the requests to the Wazuh manager was the first stage of the
actual development of the GUI application. During this stage requests to all the
API endpoints provided by the Wazuh server were created. The implementation of
such requests enabled the application to: get information from the Wazuh manager;
and perform actions on the resources managed by the Wazuh server, which in later
stages will enable the user to interact with the Wazuh manager when using the
GUI. In addition to providing an interface to communicate with the Wazuh server,
this stage also helped several aspects of the Wazuh system to be understood:

• A general idea of the different capabilities that the Wazuh manager offers;

• An overview of how the manager handles authentication for the REST API it
provides;

• The different entities that can be manipulated by the manager;

• The configurations that can be added/removed to modify the manager and
agents functionalities as needed;

49

development

• The different groups, configurations, users, agents and agent configurations
that the server manages;

• The data that is exchanged between agents, manager and the UI.

These insights then helped during the development process, specifically when
developing the UI more effectively, by providing a better understanding of the
capabilities it would have to possess.

Since the API is the main communication point for most of the operations
executed by the Wazuh manager, it was decided to implement this part first so that
it would be possible to focus on the GUI development in later stages.

4.5.1 Entities implemented to communicate with the Wazuh manager

To fulfil the objective of communicating with the Wazuh manager four types of
entities were implemented. These four types were: requests, parameters, request
body schemas and enumerates. Each of these types of entities are used to build
the requests that are used to communicate with the Wazuh manager, which then
replies in JSON format (unless otherwise specified). Finally, when a response is
received from the manager, it is processed by the method that makes the request
and a JSON object is returned to the method caller.

In the following sub-sections, we will have a closer look at the four types of objects
used to communicate with the Wazuh server.

4.5.1.1 Requests

The requests package contains a set of classes which are mapped to each kind of
operation that can be performed on the manager. All the classes in this package are
abstract and only contain static methods. Such methods are mapped to the actions
that can be performed by the Wazuh server on the entities it manages, making it
easier to identify and invoke required actions. An example of one of these classes
can be seen in Listing 4.

Listing 4: Example of a class used to perform active response actions, specifically running a
command on one or more agents

1 package com.voidsoftware.wazuhFX.util.requests;
2

3 import com.voidsoftware.wazuhFX.models.parameters.query.QueryParameter;
4 import com.voidsoftware.wazuhFX.models.requestBodySchemas.ActiveResponseCommand;

50

4.5 request to the wazuh api

5 import com.voidsoftware.wazuhFX.util.enums.ContentType;
6 import com.voidsoftware.wazuhFX.util.enums.WazuhAPIEndpoint;
7 import kong.unirest.json.JSONObject;
8

9 public abstract class ActiveResponse extends WazuhRequest{

10 /*Params: P: ; Q:agent_list, pretty, wait_for_complete ; RBS:

ActiveResponseCommand.java */↪→

11 public static JSONObject runCommand(QueryParameter queryParameters,

ActiveResponseCommand command) {↪→

12 return verifyResponseAndReturnBody(makePUTRequest(WazuhAPIEndpoint.ACTIV c
E_RESPONSE.getPath(),

null,

↪→

↪→

13 queryParameters.getParameters(), command, ContentType.APP_JSON));

14 }

15 }

Each class in the requests package extends the base request class WazuhRequest.
This class is responsible for configuring and initializing the Hypertext Transfer
Protocol (HTTP) client, which is implemented by using the Unirest library (Kong,
2022).

Furthermore the WazuhRequest class provides implementations for performing
GET, POST, PUT and DELETE requests asynchronously. These methods are used
by the classes that inherit from this class to interact with the manager’s REST API.

Finally the WazuhRequest class implements methods to verify and process the
HTTP responses from the manager and returns a JSON object 3 containing the
relevant response information, i.e. whether the action performed has been successful
or failed on the server’s side.

This implementation provides a way to change the underlying HTTP client if
necessary.

4.5.1.2 Parameters

The parameters package contains all the necessary classes to instantiate parameters
used by the requests to the Wazuh manager. Such parameters can either be query
parameters or route parameters. Parameters can be passed to the request made by
the HTTP client by using a Map data structure, where the key of the Map is the
parameter’s name (String) and the value is the parameter (Object). Due to this
reason, all parameters extend the WazuhParameter base class, which defines the

3 Implemented by the Unirest library.

51

development

parameters HashMap and provides a method to get such HashMap while removing
the unnecessary entries (Null entries).

Different strategies are used to create these parameters, depending on the type of
each of these (route or query). The strategies and implementations are described as
follows:

• Route Parameters: Route parameters are used to specify what resource
should be accessed when performing a request (e.g.: supplying the ID of
an agent to get its configuration). The Wazuh manager has endpoints that
require up to 3 route parameters. For this reason the RouteParameter class
has 3 constructors, for supplying either one, two or three route parameters.
This design is similar to the telescoping pattern (Examples, 2022). As such
each constructor receives a key value pair that then will be added to the
parameter Hashmap and subsequently replaced within the route parameters
of the endpoints URL;

• Query Parameters: Query parameters are used to fine-tune any requests
made to the Wazuh manager. Fine tuning may include, though is not limited
to, changing the format of the output, limiting the range of results, getting
results for a specific resource or sorting the results.

Initially the implementation of these query parameters was similar to the
implementation of the route parameters. Such an implementation was not the
most effective for the query parameters since the number of variables used by
these kinds of parameters is much greater than the ones used by the route
parameters. This was a problem since it was necessary to have a constructor
for each new attribute required by each query parameter entity, which resulted
in large number of constructors which, in turn, made instantiating a query
parameter confusing. Another problem that arose from this implementation,
was that when any of the query parameters were not necessary, it had to be set
to null, which made the creation of certain parameters even more confusing.

For this reason it was decided to implement the creation of query parameters
through a builder like pattern (HowToDoInJava, 2022). As such to add
parameters to a query parameter object, it is only necessary to create an
instance of the QueryParameter class and add the required parameters by
using the parameter name (similar to setters) as can be seen in Listing 5.
This final solution is more verbose than the previous one, which increases
the lines of code. On the other hand, it makes the code more readable and
reduces ambiguity when compared to using constructors.

52

4.6 data storage migration

As implemented with requests in this project, there is a class for the parameters
of each kind of request, making it easier to decide which parameters to use.
When parameters are common among several types of requests, the methods
to add such parameters are extracted to the QueryParameters base class.

Listing 5: Example for creating a query parameters for a task.

1 Map<String, Object> a = new TaskParameter().command("test123").pretty(false) c
.offset(1).getParameters();↪→

4.5.1.3 Request Bodies

This package contains all the classes that will be used when sending data to the
Wazuh Manager. Each class contains the required attributes to either create or
update a resource on the Wazuh server. The classes are serialised automatically by
the Unirest library. By default Unirest uses the Gson (Google, 2022) object mapper
for this purpose, but when implementing the Unirest client it was configured to use
the Jackson (FasterXML, 2022) library instead. The decision to use the Jackson
library for the purpose of serialization was taken since it is the same one used by
the elastic search REST client.

The Wazuh manager requires two forms of data encoding in a request’s body,
depending on the request, it may accept JSON and binary strings. Because of this,
the functions used to call HTTP methods can be configured to include headers
defining the content type as required.

4.5.1.4 Enumerations

The enums package, in the case of the request to the Wazuh server, contains all the
constant strings that are used to perform requests, an example of such strings are
the endpoints on the Wazuh manager.

4.6 data storage migration

As seen previously, Wazuh uses Elasticsearch as its database to store all the
information generated by the Wazuh server. According to the requirements of this
project, it is necessary to remove this storage solution and replace it with Apache

53

development

Solr, which is similar to Elasticsearch since it is also based on Lucene indexes. To
achieve this, a set of steps were followed. In this section we will look over the main
actions undertaken to perform an initial migration of the storage solution.

There are several difficulties that needed to be overcome to perform the migration
to the Solr database. The first was to decide whether to install Solr on the same
or a different server than that on which Wazuh was installed. Subsequently, it was
necessary to obtain data that could be stored within the Solr database. In addition
to retrieving such data, it was necessary to create the structure of the database
so the information that had previously been collected could be stored. Finally, it
was necessary to implement the methods within the GUI application to access the
information which was stored in the Solr database.

4.6.1 Setup

Installing Solr was the first step in this portion of the project. To do this, it was
necessary to decide whether Solr should be installed on the same machine as the
Wazuh manager or on a different machine. In this case, for development purposes,
the decision was made to install Solr on the same Machine where the Wazuh manager
was installed. Although this was a good solution for the development stage of this
project, it would not be the optimal solution for a production environment. As
such, separating the components of the solution when setting up the production
environment is recommended.

As can be seen in the Solr documentation (Solr, 2022a), installing the Solr server
for development purposes is a simple process. The steps that must be followed to
install Solr on a Linux machine and run it in cloud mode are as follows:

1. Navigate to https://solr.apache.org/downloads.html and fetch the latest re-
lease;

2. Extract Solr to the directory where the installation is desired (e.g. /opt/);

3. Add the Solr directory to the $PATH variable so it can be used system-wide;

4. Run Solrs cloud example setup: solr -cloud -force

Once these steps were completed, it was possible to move on to the next stage of
the data storage solution migration.

54

4.6 data storage migration

4.6.2 Sample data

For Solr to be able to store the information that is generated by the Wazuh manager,
it was first necessary for Solr to understand the information it would receive. In
this section we will explore where Wazuh stores the logs and alerts it generates. to
then understand the format in which this data is stored.

Wazuh among other things stores all the logs that are sent to it and the alerts
that it generates when a rule is triggered. Furthermore, Wazuh can be configured to
store (or not) such information to accommodate the necessities of the organisation
and the amount of storage available. Wazuh stores the alerts that it generates in
the /var/ossec/logs/alerts/ directory.

Since we know where the Wazuh manager stores the alerts it generates, it was
possible to retrieve alerts from this directory. Such alerts were then used to create
the Schema which Solr then used to index data. An example of an alert can be seen
in Listing 6.

Listing 6: Example of an alert generated by the Wazuh manager.

1 {

2 "timestamp": "2021-11-17T11:15:21.939+0000",

3 "rule": {

4 "level": 3,

5 "description": "Ossec agent started.",

6 "id": "503",

7 "firedtimes": 1,

8 "mail": false,

9 "groups": ["ossec"],

10 "pci_dss": ["10.6.1", "10.2.6"],

11 "gpg13": ["10.1"],

12 "gdpr": ["IV_35.7.d"],

13 "hipaa": ["164.312.b"],

14 "nist_800_53": ["AU.6", "AU.14", "AU.5"],

15 "tsc": ["CC7.2", "CC7.3", "CC6.8"]

16 },

17 "agent": { "id": "001", "name": "grom", "ip": "192.168.1.103" },

18 "manager": { "name": "wazuh-manager" },

19 "id": "1637147721.0",

20 "full_log": "ossec: Agent started: 'grom->any'.",

21 "decoder": { "parent": "ossec", "name": "ossec" },

22 "data": { "extra_data": "grom->any" },

23 "location": "ossec"

24 }

As can be seen in Listing 6 the Wazuh server stores relevant information for an
alert in JSON format. Each alert stores the following information:

55

development

• Timestamp: The date and time when the alert was triggered;

• Rule: The rule that triggered the alert, which contains different metadata
associated to the alert such as the level of the rule, a description of the
alert, the ID of the rule, how many times the rule was triggered and finally
information associated to the regulation requirements associated to the rule;

• Agent: Information about the agent on which the alert was triggered;

• Id: A unique ID to identify the alert;

• full_log: The full log message which was sent by the agent;

• Decoder: Information about the decoder in charge of interpreting the infor-
mation sent by the agent;

• Data: Any extra information that might be necessary to describe an alert;

• Location: The location on the agent of the log which was sent to the manager.

After gathering a set of alerts from the Wazuh server and understanding the
format of these alerts it was possible to continue with the creation of the schema
that stores this information.

4.6.3 Schema creation and data import

Solr describes the structure of a schema through a schema file, within this file there
are definitions for field types and fields that Solr can understand, thus describing
the structure of the documents it can index. There are several ways of creating a
schema for Solr to use. During this stage of the project multiple ways of creating the
Solr schema were attempted, and one was selected for its simplicity and effectiveness
in the end.

4.6.3.1 Schema Designer

This tool is part of the Solr web interface. It provides a interactive method for
designing a new schema based on sample data (Solr, 2022b). To use this tool, it is
first necessary to create a new Schema by copying the _default schema, which is
included within the Solr installation. When the new schema is created, sample data
can either be copied into a text field or uploaded from a file. Solr evaluates this
data and uses it to create the fields that belong to the schema. After Solr concludes
this process, it is possible to modify the fields that were created automatically by

56

4.6 data storage migration

Solr to better fit the data that has been uploaded. If necessary, more data can be
uploaded to the schema designer to verify if the schema accepts such data

Initially this approach seemed to be the easiest way to create a schema that would
work for the data which is created by the Wazuh manager. In practice, though, it
did not work very well, since the schemas that were being auto-generated by Solr
did not match the sample data that was initially provided. Furthermore, the new
schema produced errors when importing more of the sample data.

4.6.3.2 Writing the schema file based on Elasticserch mappings

Out of the box Wazuh uses Elasticsearch as its storage solution. For Elasticsearch
to be able to understand the data which is created by Wazuh, it uses mappings 4

created by the Wazuh team. These mappings can be found on the Wazuh server or
downloaded directly from the Elasticsearch cluster that is run by Wazuh.

This appeared to be a good approach to create the new schema for Solr, since, in
this way it would be an exact copy of the schema that is implemented and already
works to store the data created by Wazuh. Despite being an optimal solution,
this is not a very practical one. Mappings are represented in JSON format and
describe the properties of the information an index will store. The mappings created
by the Wazuh team are around 14000 lines long, so translating this to the XML
format required by Solr would be a difficult task. Furthermore, the syntax used
by Elasticsearch and Solr to describe the data which is stored by their indexes is
different. As such this solution was not adopted.

4.6.3.3 Using sample JSON alerts to create the schema

Solr provides API endpoints to upload data in different formats to its indexes.
Furthermore, there are specific endpoints which can be used to upload JSON data,
such as the one generated by the Wazuh server Section 4.6.2. One of the endpoints
that is provided to upload JSON data (/update/json/docs), allows parameters to be
added which “provide information on how to split a single JSON file into multiple
Solr documents and how to map fields to Solr’s schema” (Solr, 2022d).

Using this functionality, it was possible to upload examples of alerts generated
by the Wazuh server to create the schema automatically. This approach is useful
for development purposes, since it provides an easy way to create a schema which
supports and works with the information that is generated by the Wazuh server.

4 Mappings are the same as a schema for Elasticsearch.

57

development

After following this process, it was possible to create an initial Schema for the
alerts created by the Wazuh server (Apendix A). In future iterations of this project,
this schema should be reviewed and the Solr configuration should be optimised to
work just as well as the current data storage solution of the Wazuh system.

4.6.4 Querying Data

Finally, after performing this initial migration of the data storage, it was necessary
to be able to fetch the information from the Solr instance. For this purpose, SolrJ
was used.

SolrJ (Solr, 2022c) is a library which makes it easy for any application written in
Java to communicate with a Solr instance. SolrJ provides simple, high-level methods
to interact with most of Solrs APIs.

Adding SolrJ to a Java project is straightforward, using Maven in the case of this
project. As such it is necessary to add the dependence seen in Listing 7.

Listing 7: Maven dependency to add SolrJ to a Java project.

1 <dependency>
2 <groupId>org.apache.solr</groupId>
3 <artifactId>solr-solrj</artifactId>
4 <version>8.7.0</version>
5 </dependency>

Within the GUI application, a wrapper for the SolrJ client was created with the
purpose of configuring the client before performing requests to the Solr instance.
The configuration process involved setting the endpoints to which the client would
make the requests and the timeout value for waiting on responses.

Once the client is configured, it was possible to perform requests to the Solr
instance, to fetch the required data for each view. An example of a request can be
seen in Listing 8.

58

4.6 data storage migration

Listing 8: Example Java code for fetching data from a Solr instance.

1 SolrQuery query = new SolrQuery("*:*")
2 .addFacetQuery("*:*")
3 .addFacetQuery("rule.level:[7 TO *]")
4 .addFacetQuery("rule.groups:authentication_success")
5 .addFacetQuery("rule.groups:win_authentication_failed authentication_failed

authentication_failures")↪→
6 .setRows(0);
7

8 QueryResponse response4 = client.query(query);

4.6.5 Data used for the development of the project

There were two main sources of information (data sets) used for this project. The
first was the data collected from the organisation’s machines by using the Wazuh
agents. The second was the example dataset of logs provided by the Wazuh team.
The latter was necessary since it was not guaranteed that working from the office
would be possible because of the current pandemic situation.

For the development of the project, only log data from Windows, Mac OS and
Linux systems was used, and these logs were formatted in the native log format for
each of these systems. Subsequently Wazuh used its set of decoders to normalise
such logs, to then provide meaningful information about each system which could
then be represented by using different formats within the GUI. The logs used for the
development of the project both included normal logs (i.e.: logs of normal system
functions) and logs that represent adversary security events.

In the case of the logs collected within the VOID organisation, there were some
restrictions. The restrictions are due to the nature of the logs. Since these belong
to the different hosts and servers within the organisation, they may contain either
sensitive information such as information about the operating system, programs
installed on the system or even vulnerabilities that are present on a system, which
is information that could reveal how certain processes are carried out by different
hosts.

Finally, all data collected throughout the development of the project, as requested
by VOID, was stored in case it is necessary for future use.

59

development

4.7 wazuhfx development

The development of the GUI fulfils an important objective of this project, which is
to remove the Kibana plugin that has already been developed by the Wazuh team
and replace it with a new application, in this case WazuhFX.

During the development of the GUI application two tasks were carried out. The
first task was to perform an analysis on the already existing Kibana dashboard,
the goal of which was to identify the core functionalities of this application to then
define which of these should be implemented within the new GUI. The second task
was the development of the WazuhFX application.

4.7.1 Kibana dashboard analysis

Wazuh uses Kibana alongside a dedicated plugin as its UI to view the information
generated by the Wazuh manager which is stored in Elasticsearch indexes. This
plugin doesn’t only present such information, but also has the capability to com-
municate with the Wazuh manager’s REST API, allowing users to administer the
different entities and configurations which are stored on the manager.

The plugin is divided into different windows that correspond to actions that can
be taken and data that can be accessed from the interface. These windows are:

• Modules: The modules includes a menu, from which the user can view and
analyze information related to the alerts generated by the different modules of
the Wazuh manager, an example of such view can be seen in Figure 13. In
other words, this window gives a summary of the data that can be accessed,
which is related to: the security events; the auditing and policy monitoring
results; the threats which could be present on a system; and information
related to regulatory compliance;

• Management: The management window allows the user to administer dif-
ferent attributes on the Wazuh manager and also provides information about
the status of the Wazuh instance. In this window a user can select to manage
the rules, decoders, groups and configurations present on the Wazuh manager;

• Agents: The agents window presents a list of all the agents which are registered
to a manager, as well as presenting different information related to such agents.
It is also possible to access a agent’s summary information and configuration
files from this window;

60

4.7 wazuhfx development

• Tools: This window includes tools that aid the process of working with Wazuh.
It presents a tool to interact with the Wazuh API and another to test rules
before creating them;

• Security: The security windows allows the user to create, edit or delete users,
roles and policies, to limit the actions that can be performed on the Wazuh
manager;

• Settings: The settings window allows a user to modify a set of configurations
on the Wazuh manager or configurations related to the ELK Stack.

Figure 13: Security alerts presented in the Kibana plugin.

Within each of these windows there are sub sections for more specific actions. In
the case of more complex actions, such as visualizing data or editing entities on the
manager (Rules, decoders, groups and configurations), dedicated windows exist for
these actions. In the cases of more simple tasks there are tabs for each sub-section.

One of the main objectives of this project is to develop a GUI for the Wazuh
system using JavaFX. Consequently, to initiate the development of the project it
was necessary to define the initial goals for developing this new GUI. As such, the
goal of reproducing the main capabilities of the Wazuh dashboard was set. The
initial step to accomplish this goal was to perform an analysis on a group of the
main screens of the Wazuh plugin for Kibana.

4.7.1.1 Login screen

Kibana requires a user to authenticate before being able to access its web interface.
Because of this, the initial screen presented to a user when accessing the IP or

61

development

URL of the interface is the login screen. To further use the application, the user
is required to provide a username and a password, which are then verified against
those stored by Kibana.

4.7.1.2 Data presentation

A useful feature of the Wazuh plugin is its ability to present information stored
in the Elasticsearch indexes in different formats. This is an important aspect of
the tool since it grants visualization capabilities upon the information that has
previously been created from the data that is processed on the Wazuh manager.

Information is presented in several ways depending on the kind of information it
has. Generally, information is presented in three ways:

• Summary of information is represented in terms of key values. Key values
are numbers that describe the number of times an event has occurred. Some
examples of these values are total number of events, number of disconnected
agents and number of alerts with a value above a threshold. The summary of
information gives the user a quick overview of the data that has been collected
up to a certain point in time;

• Graphical information is represented by graphics. Graphics present in-
formation to the user in a visual format, making it easier to get a general
overview of the state of the information as a whole. Furthermore, graphics help
categorise the information based on different parameters, relate information on
certain values, compare information against other data and correlate different
pieces of information to mention just a few;

• Concise information is represented in tables where all the information
about an alert can be found. Concise information allows the user to look
in detail into a specific event or events. When information is presented in a
tabular format, key data points are shown (for example timestamp, agent and
description) to help identify the event which is being searched for. When an
event of interest is identified a user can click on such an event to get all of the
information about the event.

In addition to providing ways of viewing information, the UI allows a user to
search through the information using the Kibana Query Language (KQL) or Lucene
syntax. It also provides methods to filter data based on the timestamps of the alerts
or other fields that are associated with an event.

62

4.7 wazuhfx development

4.7.1.3 Server management

A useful feature of the Kibana plugin, is the ability to communicate with the Wazuh
REST API. This allows the application to administer the resources that are stored
on the Wazuh manager or check the status of the server, giving the user the ability
to interact with the serverdespite not having direct access to it.

The entities that can be modified from the Kibana interface are: Rules, Decoders,
Constant Database (CDB) lists, Groups and configurations. Each of these entities
is stored on the Wazuh server, thus the web interface allows a user to manage the
underlying entities. Entities can either be managed locally on the Wazuh server or
through the Kibana plugin. The latter option offers two possibilities: upload files
with the configurations; or manage the configuration through the web interface.

Entities are presented to the user in a list format where the user can read a
description of the entity and the file to which it is associated. Wazuh has pre-created
entities which can only be viewed by users. On the other hand, users can create
their own files, in which case the user has full permissions (read, write, delete) over
these files. The following entities can be managed by a user:

• Rules and decoders are entities stored on the Wazuh manager used to
process and create alerts from logs. These entities are defined in XML markup;

• CBD lists are regular text files that contain key value pairs5;

• Agent groups are folders containing configuration and other files for a
specific agent group;

• Configuration files are XML files containing the configurations for either
agents, a group of agents or the Wazuh manager.

It is also possible to search through these entities with a search bar, making it
easy to find entities when needed.

4.7.1.4 Listing agents and configuring agents

Since the Wazuh server usually communicates and manages several agents simul-
taneously, it is important to keep track of those agents. Agents are listed by the
Kibana plugin, presenting different information related to each of them. By clicking
on an item in this list, it is also possible to manage an agent’s configuration and
access specific information related to that agent.

5 The format of the key values is - Key:Value. Values are optional

63

development

4.7.2 Development

When developing the GUI application, the pieces that had to be created and put
together for each view can be generally separated into two categories: the visual
components; and the logic components. As such during the development process of
the WazuhFX application, separate workflows for producing the elements in each of
these categories were followed:

• Graphical components: The structure of a graphical component in JavaFX
is described by using FXML (Section 2.1). In the case of this project the scene
builder tool was used to create the markup for the different views, an example
of such usage can be seen in Figure 14. All views were created by using
specific components that can be used to arrange other components, present
information or receive inputs from the user;

• Logic Components: The logic behind each view of the application was done
in Java code. The structure of the code was done following the MVVM pattern
(Section 2.2).

Figure 14: Scene builder being used to create the login view.

During the process of creating a new view for the application, the first step was
to define the layout for the components that will be presented to the user. Because
the initial objective during the development phase of this project was to replicate
the functionalities of the Wazuh Kibana plugin, it was not necessary to define such
a layout for the views and the layouts from the plugin were used as a guide.

64

4.7 wazuhfx development

In the following sections, the process carried out to create each view within the
WazuhFX application will be summarised.

4.7.2.1 Creating the view

After defining the layout of the view, the next step was to create it by using the
components that were available. As mentioned previously, the Scene Builder tool
was used to accomplish this. This tool allows users to drag and drop the desired
components onto a canvas where they can be previewed. Scene builder allows the
user to create a view by using default JavaFX components. Additionally, other
libraries can be imported, adding components and functionalities to the initial set
of components defined by JavaFX.

Two types of elements were used to create a view for this application:

• Layout components were used to organise other components included within
view. These components provide typical arrangements for visual components
such as rows, columns and tiles. Thus, these components serve as containers
which arrange their contents depending on the properties set;

• UI controls are the elements which a user can view and interact with. As
such UI controls are used to present information and receive inputs from a
user. For these controls to be viewed it is necessary to place them within a
layout component.

All the views within the WazuhFX application are added or removed from the
root container, which is the main layout component for the different views within
the application. The layout of the root container is defined as a BorderPane, and
this layout divides the screen into 5 sections: top; bottom; left; right; and center. As
can be seen in Figure 15. The top section of the BorderPane corresponds to the
toolbar of the application and is static. The left section corresponds to the actions
that can be taken from within the application (Section 4.7.1), and this section is
also static. Finally the central section of the BorderPane contains the content of
the window which the user is viewing, and the content of this section is not static,
changing depending on the user’s interactions.

65

development

Figure 15: The BorderPane layout.

The navigation between the different views of the GUI application is performed
by the ViewController. This controller uses the path of a FXML file to then set
the center of the BorderPane with the contents of the FXML file. Additionally, the
controller keeps a cache and a history of the views that have already been accessed,
so that the files associated to each of these views do not have to be loaded every
time a view is visited again and to allow the user to go back to views that have
previously been visited. The code in charge of switching from view to view can be
seen in Listing 9.

Listing 9: Code used to switch between different FXML views.

1 public static void switchTo(ApplicationView view){

2 Parent center;

3 try {

4 if (cache.containsKey(view)) {

5 center = cache.get(view);

6 }

7 else {

8 center = FXMLLoader.load(ViewController.class.getResource(view.getFi c
leName()));↪→

9 cache.put(view, center);

10 }

11 history.push(view);

12 root.setCenter(center);

13 } catch (IOException e) {

14 //Handle exceptions

15 e.printStackTrace();

16 }

17 }

66

4.7 wazuhfx development

Each view has a main layout which defines how the view looks. The layouts that
were mainly used for the views of the application were:

• VBox: This layout allows a set of nodes to easily be arranged in a column;

• HBox: This layout allows a set of nodes to easily be arranged in a row;

• GridPane: This layout allows us to create a grid with any number of rows
and columns, where nodes can be arranged based on the coordinates of such
grid and can span any number of cells;

• TilePane: This layout allows us to create a grid where each cell has the same
size, the contents of this container are then wrapped either horizontally or
vertically depending on the configuration for the tile pane;

• AnchorPane: This layout allows a node or set of nodes to be anchored to
the top, left, bottom, right or center of the view. The nodes will then maintain
the position that was set when the windows resizes.

For the view to then present information or receive inputs from the user, UI
controls needed to be added to the view. These controls are components such as
buttons, labels, text boxes and list views. There are many other UI controls that were
used for this project, all of which were either part of the JavaFX library or belong to
one of the libraries that were added to the project: controlsFX (ControlsFX, 2022);
materialFX (Parisi, 2022); and tilesFX (Grunwald, 2022). These libraries add UI
further controls in addition to those that already exist in the JavaFX library.

4.7.2.2 Adding the logic

Once a view was setup using Scene Builder, it was necessary to add the logic which
augments functionalities to the view. Since the MVVM pattern was used during
this project, three different files for each view were created to add the logic.

The view controller is a Java class that is directly associated to the FXML
representation of the View. The FXML file references the controller through one
of its properties. Furthermore, the view controller can access the UI controls and
layouts of the FXML view through their IDs which are also set as properties
within the FXML file. The main purpose of this file is to have reference to the
UI components so they can be used within the Java code, providing the ability to
modify their properties and values. As such the view controller and the FXML file

67

development

together represent the View. Finally the view controller contains a reference to its
corresponding ViewModel from which it can fetch information to display in the view
or to which it can send information to update the underlying models. This data
exchange is set up within the initialise method of the controller, by binding to the
property variables of the ViewModel. An example of the view controller can be seen
in Listing 10.

Listing 10: Example Java code of the controller associated to a FXML file.

1 public class ModulesMenuController extends Controller {

2 private final ModuleMenuViewModel moduleMenuViewModel = new

ModuleMenuViewModel();↪→

3 @FXML

4 private Label labelTotalAgents;

5 @FXML

6 private Button btnSecurityEvents;

7

8 ...

9

10 @FXML

11 private void initialize() {

12 labelTotalAgents.textProperty().bind(moduleMenuViewModel.totalAgentsProp c
erty());↪→

13

14 ...

15

16 btnSecurityEvents.setOnAction(actionEvent ->

ViewController.switchTo(ApplicationView.VIEW_SECURITY_EVENTS));↪→

17 moduleMenuViewModel.getData();

18 }

19 }

The ViewModel is a Java class which is responsible for keeping the state of
the View and synchronizing it with the Model. To accomplish this the ViewModel
model uses three different strategies: JavaFXs property variables; a reference to
the pub/sub Notification implementation; and a reference to the Model of the view.
The JavaFX property variables are used to store the information that is generated
by the Model and update the visual components of the View, which is done by
using the bind method of the property variables. The ViewModel subscribes to the
Notification singleton so that it can know when the value of the model has changed
and update its values accordingly. Finally, it uses the reference to the Model of the
view to be able to invoke the methods that can be used to store or fetch information
and to retrieve these values. An example of the ViewModel can be seen in Listing
11.

68

4.7 wazuhfx development

Listing 11: Example Java code used to synchronise the View and the Model by using the
ModelView class.

1 public class ModuleMenuViewModel {

2 private final StringProperty totalAgents = new SimpleStringProperty("");

3

4 ...

5

6 private final Notifications notifications = Notifications.INSTANCE;

7 private final AgentsSummaryModel moduleMenuModel = new AgentsSummaryModel();

8

9 private final Service<Void> getDataCommand = new Service<Void>() {

10

11 ...

12

13 //Call moduleMenuModel.fetchSummary() on a separate thread

14

15 ...

16 };

17

18 public ModuleMenuViewModel() {

19 notifications.subscribe(ApplicationEvents.UPDATE_MODULES_MENU_VIEW.getEv c
ent(), this,

this::update);

↪→

↪→

20

21 }

22

23 private void update(String event) {

24 moduleMenuModel.getAgentsSummary().ifPresent(

25 agentsSummary -> {

26 totalAgents.set(String.valueOf(agentsSummary.getTotal()));

27

28 ...

29 }

30);

31 }

32 public StringProperty totalAgentsProperty() {

33 return totalAgents;

34 }

35

36 ...

37

38 public void getData() {

39 getDataCommand.restart();

40 }

41 }

The Model is a Java class which has the ability to either persist the data that
is generated through the inputs of the application or retrieve all the data that
will be presented through the view. To achieve this the Model interacts with the

69

development

Wazuh REST API through the managerCommunication module (Section 4.5). Since
the Model has no references to the View or the ViewModel it uses a pub/sub
implementation to notify other components when data has been modified or fetched
successfully. The Model is also responsible, when necessary, for mapping JSON
objects to Java classes or vice versa. To accomplish this, the Jackson object mapper
was used. An example of the Model can be seen in Listing 12.

Listing 12: Example of the Java code used to fetch information with the Model class.

1 public class AgentsSummaryModel {

2 private final Notifications notifications = Notifications.INSTANCE;

3 private Optional<AgentsSummary> agentsSummary = Optional.empty();

4

5 ...

6

7 public Optional<AgentsSummary> fetchSummary() throws JsonProcessingException

{↪→

8 QueryParameters qp = new QueryParameters();

9 JSONObject data =

Agents.summarizeStatus(qp).getJSONObject(ResponseKey.DATA.getKey());↪→

10 ObjectMapper mapper = new ObjectMapper();

11 AgentsSummary as = mapper.readValue(data.toString(),

AgentsSummary.class);↪→

12 agentsSummary = Optional.of(as);

13 notifications.publish(ApplicationEvents.UPDATE_MODULES_MENU_VIEW.getEven c
t());↪→

14 return Optional.of(as);

15 }

16 }

4.8 wazuhfx results

The application produced during the internship can be used on Linux, Mac OS and
Windows machines, as long as they have the Java runtime environment installed on
them.

When a user first executes the application a login screen is presented, the user
can then introduce a username and password. These credentials are used to perform
a basic authentication request to Wazuh manager, if successful the manager will
respond with a JWT which will then be used to perform other requests to the
Manager. If at any point in time the JWT expires, no more actions can be performed
by the user and to keep on using the application the user must re-authenticate.

70

4.8 wazuhfx results

Once authenticated, the user is presented with a screen from which it is possible
to perform different actions, namely list and view alerts, list and edit rules or
decoders, edit the Wazuh managers configuration, overview agents and export data
to Comma Separated Values (CSV) format.

The GUI allows the user to list the alerts that have been generated by the Wazuh
manager, which can be filtered or sorted based on different parameters. If the user
wants to get more information about any of the items on the list, it is possible to
select one by clicking on it, which then presents a screen with extra information
about that alert. Since the feature to present graphs within the application has
not been implemented, the user can export the most important information about
the alerts to CSV format, so that he can create a graphical representation of these
alerts in another tool (e.g. Microsoft Excel).

The GUI allows the user to list all the rules or decoders which are stored on
the Wazuh manager, an example of such list can be seen in Figure 16. The lists
containing the rules or decoders can also be sorted and filtered. If the user selects
one of the items on the list another view is presented, this view contains the XML
representation of the rule or decoder. If the rule or decoder does not belong to the
set of rules and decoders pre-created by the Wazuh team, then the user can also
edit and update it, which then modifies the corresponding entity on the Wazuh
manager.

Figure 16: WazuhFX view listing the rules which are stored on the Wazuh manager.

71

development

Another operation that can be performed from the GUI is to access a list of the
agents which are registered to the Wazuh manager. This list can be sorted by the
user. If the user clicks on one of the items of the list, a new view is presented where
extra information about an agent is given.

Finally, the user can access the Wazuh manager configuration, which is presented
in an XML editor, such as the one seen in Figure 17. Within this editor the user
can modify the different parameters of the Wazuh managers configuration. When
the user saves these modifications, the respective configurations are updated on the
Wazuh manager..

Figure 17: WazuhFX XML editor view.

72

5
C O N C L U S I O N S

The internship at VOID software provided a great opportunity to expand and
consolidate the skills and knowledge gained throughout the Master’s degree.

An important takeaway from this experience was the experience of working within
an organisation which specialises in developing software. Insights into how the
development process works, the people that are part of it and the methodology that
are required, were both observed and put into practice. The result of this process
was the ability to take an idea and transform it into a tangible result.

As a cybersecurity student it is pertinent to highlight the importance of knowing
how to carry out research and applying it to accomplish a goal. Many of the
challenges that were faced while completing this Master’s degree had to do with
researching topics to gather enough information and reaching a reasonable conclusion
with regard to the topic at hand. This internship was no different: while performing
the tasks leading up to the proposed project completion it was necessary to put
into practice these research skills by looking into new technologies, concepts and
ideas throughout this internship.

More specifically, it was possible to put into practice the skills related to software
development and cybersecurity. Throughout the project an agile methodology was
followed (namely FDD) with the objective of implementing the functionalities of
a security tool one by one. In order to support this methodology, agile tools were
used to keep track of the task at hand and to retain an overview of the versions
of the project that had been delivered. Furthermore it was necessary to gain an
understanding of the various processes which are followed within VOID software;
and to learn about the systems and network architecture of the organisation, to
then be able to set up a security tool in the best way possible which monitors
system and network events, fulfilling some of the goals the organisation has set out
to accomplish regarding the security of their digital assets.

By using the JavaFX platform alongside other Java libraries it was possible to
start and advance the development of a security tool. Although this tool was not
finished by the end of the internship and more development is required for it to
be a finalised product, the project has started and a solid base was delivered, so

73

conclusions

the tool can be further worked on if VOID software desires so. Knowledge about
JavaFX was gained and used as best as possible to create a new GUI for the Wazuh
system. This tool was thought of and developed to ensure that its development can
be continued at any point in time, such objective was made possible by using a
mature and well known development pattern (MVVM). At the end of the internship
it was possible to produce a tool that is able to communicate with the Wazuh API,
fetch information that was produced by the Wazuh server and present it to the user.

The Wazuh system was set up within the VOID software organisation, allow-
ing them to monitor several of their systems in case a security incident occurs.
Implementing this system helped to learn about the inner workings of a security
tool (EDR) and the uses it may have (IR) for an organisation; although not being
the main objective of this task, this knowledge was then applied while developing
the GUI. To set up Wazuh it was also necessary to understand how core systems
are distributed on the different networks of the organisation, providing a general
overview of the systems architecture of a medium sized company and the digital
assets which are part of it. After having an understanding of these two concepts
it was possible to take decisions regarding the main criteria related to the Wazuh
system installation.

Finally the communication flows of the different components of the Wazuh system
were understood, to then be able to modify its initial architecture. It was possible
to migrate the data storage solution (Elasticsearch) to a new one (Solr); it was
also possible to replace the current GUI (Kibana) with a new one (WazuhFX);
and it was possible to modify the tool (Filebeat) which forwarded alerts to the
database, with a new one (post-tool). These modifications were only carried out in
a development environment and require to be worked on before performing them
on a production system. Although this was the case, the investigation supporting
these changes and initial development modifications are an excellent starting point
to carry out the final implementation of the new VOID flavoured Wauzuh system.

5.0.1 Future work

Although the internship has already been finished, the projects that were developed
could still be continued. As such, the following improvements and increments are
suggested:

• Carry out tests on the deployed application at VOID to certify that it works
as intended;

74

conclusions

• Add graphs to represent data within the GUI;

• Fine tune the Wazuh manager so that i does not create unnecessary alerts;

• Implement the new Solr storage solution for a production environment;

• Improve the configuration system of the WazuhFX application;

• Verify the XML structure of rules, decoders and configurations within the
front-end application.

75

B I B L I O G R A P H Y

Chin, Stephen (2019). The Definitive Guide to Modern Java Clients with JavaFX
: Cross-Platform Mobile and Cloud Development. Berkeley, CA: Apress. isbn:
978-1-4842-4925-3.

Chuvakin, Anton (July 26, 2013). Named: Endpoint Threat Detection & Response.
Gartner. url: https://blogs.gartner.com/anton-chuvakin/2013/07/26/

named-endpoint-threat-detection-response/ (visited on 09/23/2021).
Comodo (Apr. 2021).What is enpoint security? And why is it crucial today? Comodo

Seecurity. url: https://enterprise.comodo.com/blog/what-is-endpoint-

security/ (visited on 09/20/2021).
ControlsFX (2022). ControlsFX. Ed. by Jonathan Giles. url: https://github.

com/controlsfx/controlsfx (visited on 03/14/2022).
Cranor, Lorrie Faith and Norbou Buchler (Nov. 2014). “Better Together: Usability

and Security Go Hand in Hand”. In: 12.6, pp. 89–93. doi: 10.1109/msp.2014.

109.
David Kim, Michael G. Solomon (Oct. 26, 2016). Fundamentals of Information

Systems Security: Print Bundle. JONES & BARTLETT PUB INC. 548 pp.
isbn: 128411645X. url: https://www.ebook.de/de/product/26228820/

david_kim_michael_g_solomon_fundamentals_of_information_systems_

security_print_bundle.html.
Examples, Java by (2022). Telescoping Constructor in Java. url: http://www.

javabyexamples . com / telescoping - constructor - in - java/ (visited on
02/17/2022).

FasterXML (2022). Jackson Databind. url: https://github.com/FasterXML/

jackson-databind (visited on 03/08/2022).
Gartner (2021). Endpoint protection platform. Gartner. url: https://www.gartner.

com/en/information-technology/glossary/endpoint-protection-platform-

epp (visited on 09/23/2021).
Google (2022). Gson. url: https : / / github . com / google / gson (visited on

03/08/2022).
Grunwald, Gerrit (2022). TilesFX. url: https://github.com/HanSolo/tilesfx

(visited on 03/01/2022).

77

https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-endpoint-threat-detection-response/
https://enterprise.comodo.com/blog/what-is-endpoint-security/
https://enterprise.comodo.com/blog/what-is-endpoint-security/
https://github.com/controlsfx/controlsfx
https://github.com/controlsfx/controlsfx
https://doi.org/10.1109/msp.2014.109
https://doi.org/10.1109/msp.2014.109
https://www.ebook.de/de/product/26228820/david_kim_michael_g_solomon_fundamentals_of_information_systems_security_print_bundle.html
https://www.ebook.de/de/product/26228820/david_kim_michael_g_solomon_fundamentals_of_information_systems_security_print_bundle.html
https://www.ebook.de/de/product/26228820/david_kim_michael_g_solomon_fundamentals_of_information_systems_security_print_bundle.html
http://www.javabyexamples.com/telescoping-constructor-in-java/
http://www.javabyexamples.com/telescoping-constructor-in-java/
https://github.com/FasterXML/jackson-databind
https://github.com/FasterXML/jackson-databind
https://www.gartner.com/en/information-technology/glossary/endpoint-protection-platform-epp
https://www.gartner.com/en/information-technology/glossary/endpoint-protection-platform-epp
https://www.gartner.com/en/information-technology/glossary/endpoint-protection-platform-epp
https://github.com/google/gson
https://github.com/HanSolo/tilesfx

bibliography

Gunson, Nancie et al. (June 2011). “User perceptions of security and usability of
single-factor and two-factor authentication in automated telephone banking”.
In: 30.4, pp. 208–220. doi: 10.1016/j.cose.2010.12.001.

HowToDoInJava (Jan. 3, 2022). Builder Design Pattern. url: https://howtodoinjava.

com/design-patterns/creational/builder-pattern-in-java/ (visited on
02/17/2022).

Karl, Patrick (Feb. 21, 2012). Incident Handler’s Handbook.
Kong (2022). Unirest-Java Documentation. url: http : / / kong . github . io /

unirest-java/ (visited on 02/17/2022).
Liao, Hung-Jen et al. (2013). “Intrusion detection system: A comprehensive review”.

In: Journal of Network and Computer Applications 36.1, pp. 16–24. issn: 1084-
8045. doi: https://doi.org/10.1016/j.jnca.2012.09.004. url: https:

//www.sciencedirect.com/science/article/pii/S1084804512001944.
McFee (Sept. 2020). What is ednpoint security? McFee. url: https://www.mcafee.

com/enterprise/en-us/security-awareness/endpoint.html (visited on
09/23/2021).

Microsoft (Apr. 10, 2012). The MVVM Pattern. url: https://docs.microsoft.

com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)?redirectedfrom=

MSDN.
— (Apr. 15, 2021). Desktop Guide (WPF .NET). Ed. by DCtheGeek adego. url:

https://docs.microsoft.com/en- us/dotnet/desktop/wpf/overview/

?view=netdesktop-6.0 (visited on 02/15/2022).
Miller, David (2011). Security information and event management (SIEM) imple-

mentation. New York: McGraw-Hill. isbn: 9780071701082.
Möller, Sebastian et al. (June 2011). “Modeling the behavior of users who are

confronted with security mechanisms”. In: 30.4, pp. 242–256. doi: 10.1016/j.

cose.2011.01.001.
Oracle (2014). JavaFX: Getting Started with JavaFX. url: https://docs.oracle.

com/javase/8/javafx/get-started-tutorial/jfx-overview.htm.
Parisi, Alessadro (2022). MaterialFX. url: https://github.com/palexdev/

MaterialFX (visited on 02/16/2022).
Podzins, Oskars and Andrejs Romanovs (Apr. 2019). “Why SIEM is Irreplaceable in

a Secure IT Environment?” In: 2019 Open Conference of Electrical, Electronic
and Information Sciences (eStream). doi: 10.1109/eStream.2019.8732173.

Rudolph, Carsten and Andreas Fuchs (May 2012). “Redefining Security Engineering”.
In: IEEE. doi: 10.1109/ntms.2012.6208773.

Solr (2022a). Installing Solr. url: https://solr.apache.org/guide/8_8/

installing-solr.html (visited on 03/01/2022).

78

https://doi.org/10.1016/j.cose.2010.12.001
https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/
https://howtodoinjava.com/design-patterns/creational/builder-pattern-in-java/
http://kong.github.io/unirest-java/
http://kong.github.io/unirest-java/
https://doi.org/https://doi.org/10.1016/j.jnca.2012.09.004
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://www.sciencedirect.com/science/article/pii/S1084804512001944
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint.html
https://www.mcafee.com/enterprise/en-us/security-awareness/endpoint.html
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/hh848246(v=pandp.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0
https://docs.microsoft.com/en-us/dotnet/desktop/wpf/overview/?view=netdesktop-6.0
https://doi.org/10.1016/j.cose.2011.01.001
https://doi.org/10.1016/j.cose.2011.01.001
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm
https://github.com/palexdev/MaterialFX
https://github.com/palexdev/MaterialFX
https://doi.org/10.1109/eStream.2019.8732173
https://doi.org/10.1109/ntms.2012.6208773
https://solr.apache.org/guide/8_8/installing-solr.html
https://solr.apache.org/guide/8_8/installing-solr.html

bibliography

— (2022b). Schema Designer. url: https://solr.apache.org/guide/8_10/

schema-designer.html (visited on 03/01/2022).
— (2022c). SolrJ. url: https://solr.apache.org/guide/8_7/using-solrj.

html (visited on 03/08/2022).
— (2022d). Transforming and Indexing Custom JSON. url: https : / / solr .

apache.org/guide/8_8/transforming-and-indexing-custom-json.html

(visited on 03/01/2022).
Verizon (2021). 2021 Data Breach Investigation Report. Tech. rep. Verizon.
Wazuh (2022a). Architecture. url: https://documentation.wazuh.com/current/

getting-started/architecture.html (visited on 03/08/2022).
— (2022b). Docker. url: https://documentation.wazuh.com/current/docker/

index.html (visited on 03/08/2022).
— (2022c). Installation Guide. url: https : / / documentation . wazuh . com /

current/installation-guide/index.html (visited on 03/08/2022).
— (2022d). Server Installation. url: https : / / documentation . wazuh . com /

current/installation-guide/open-distro/index.html (visited on 03/08/2022).
— (2022e). Virtual Machine (OVA). url: https://documentation.wazuh.com/

current/virtual-machine/virtual-machine.html (visited on 03/08/2022).
— (2021). Wazuh Docs. url: https://documentation.wazuh.com/current/

index.html (visited on 11/08/2021).
Weir, Catherine S. et al. (Feb. 2009). “User perceptions of security, convenience

and usability for ebanking authentication tokens”. In: 28.1-2, pp. 47–62. doi:
10.1016/j.cose.2008.09.008.

79

https://solr.apache.org/guide/8_10/schema-designer.html
https://solr.apache.org/guide/8_10/schema-designer.html
https://solr.apache.org/guide/8_7/using-solrj.html
https://solr.apache.org/guide/8_7/using-solrj.html
https://solr.apache.org/guide/8_8/transforming-and-indexing-custom-json.html
https://solr.apache.org/guide/8_8/transforming-and-indexing-custom-json.html
https://documentation.wazuh.com/current/getting-started/architecture.html
https://documentation.wazuh.com/current/getting-started/architecture.html
https://documentation.wazuh.com/current/docker/index.html
https://documentation.wazuh.com/current/docker/index.html
https://documentation.wazuh.com/current/installation-guide/index.html
https://documentation.wazuh.com/current/installation-guide/index.html
https://documentation.wazuh.com/current/installation-guide/open-distro/index.html
https://documentation.wazuh.com/current/installation-guide/open-distro/index.html
https://documentation.wazuh.com/current/virtual-machine/virtual-machine.html
https://documentation.wazuh.com/current/virtual-machine/virtual-machine.html
https://documentation.wazuh.com/current/index.html
https://documentation.wazuh.com/current/index.html
https://doi.org/10.1016/j.cose.2008.09.008

A P P E N D I X E S

81

A
S O L R S C H E M A C O N F I G U R AT I O N

The schema file for the solr test configuration.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-- Solr managed schema - automatically generated - DO NOT EDIT -->

3 <schema name="default-config" version="1.6">

4 <uniqueKey>id</uniqueKey>

5 <fieldType name="_nest_path_" class="solr.NestPathField"

maxCharsForDocValues="-1" omitNorms="true" omitTermFreqAndPositions="true"

stored="false" multiValued="false"/>

↪→

↪→

6 <fieldType name="ancestor_path" class="solr.TextField">

7 <analyzer type="index">

8 <tokenizer class="solr.KeywordTokenizerFactory"/>

9 </analyzer>

10 <analyzer type="query">

11 <tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="/"/>

12 </analyzer>

13 </fieldType>

14 <fieldType name="binary" class="solr.BinaryField"/>

15 <fieldType name="boolean" class="solr.BoolField" sortMissingLast="true"/>

16 <fieldType name="booleans" class="solr.BoolField" sortMissingLast="true"

multiValued="true"/>↪→

17 <fieldType name="delimited_payloads_float" class="solr.TextField"

indexed="true" stored="false">↪→

18 <analyzer>

19 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

20 <filter class="solr.DelimitedPayloadTokenFilterFactory" encoder="float"/>

21 </analyzer>

22 </fieldType>

23 <fieldType name="delimited_payloads_int" class="solr.TextField" indexed="true"

stored="false">↪→

24 <analyzer>

25 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

26 <filter class="solr.DelimitedPayloadTokenFilterFactory" encoder="integer"/>

27 </analyzer>

28 </fieldType>

29 <fieldType name="delimited_payloads_string" class="solr.TextField"

indexed="true" stored="false">↪→

30 <analyzer>

31 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

32 <filter class="solr.DelimitedPayloadTokenFilterFactory"

encoder="identity"/>↪→

33 </analyzer>

83

anexos

34 </fieldType>

35 <fieldType name="descendent_path" class="solr.TextField">

36 <analyzer type="index">

37 <tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="/"/>

38 </analyzer>

39 <analyzer type="query">

40 <tokenizer class="solr.KeywordTokenizerFactory"/>

41 </analyzer>

42 </fieldType>

43 <fieldType name="ignored" class="solr.StrField" indexed="false" stored="false"

multiValued="true"/>↪→

44 <fieldType name="location" class="solr.LatLonPointSpatialField"

docValues="true"/>↪→

45 <fieldType name="location_rpt"

class="solr.SpatialRecursivePrefixTreeFieldType" geo="true"

omitNorms="true" omitTermFreqAndPositions="true" maxDistErr="0.001"

termOffsets="false" distErrPct="0.025" distanceUnits="kilometers"

termPositions="false" omitPositions="true"/>

↪→

↪→

↪→

↪→

46 <fieldType name="lowercase" class="solr.TextField" positionIncrementGap="100">

47 <analyzer>

48 <tokenizer class="solr.KeywordTokenizerFactory"/>

49 <filter class="solr.LowerCaseFilterFactory"/>

50 </analyzer>

51 </fieldType>

52 <fieldType name="pdate" class="solr.DatePointField" docValues="true"/>

53 <fieldType name="pdates" class="solr.DatePointField" docValues="true"

multiValued="true"/>↪→

54 <fieldType name="pdouble" class="solr.DoublePointField" docValues="true"/>

55 <fieldType name="pdoubles" class="solr.DoublePointField" docValues="true"

multiValued="true"/>↪→

56 <fieldType name="pfloat" class="solr.FloatPointField" docValues="true"/>

57 <fieldType name="pfloats" class="solr.FloatPointField" docValues="true"

multiValued="true"/>↪→

58 <fieldType name="phonetic_en" class="solr.TextField" indexed="true"

stored="false">↪→

59 <analyzer>

60 <tokenizer class="solr.StandardTokenizerFactory"/>

61 <filter class="solr.DoubleMetaphoneFilterFactory" inject="false"/>

62 </analyzer>

63 </fieldType>

64 <fieldType name="pint" class="solr.IntPointField" docValues="true"/>

65 <fieldType name="pints" class="solr.IntPointField" docValues="true"

multiValued="true"/>↪→

66 <fieldType name="plong" class="solr.LongPointField" docValues="true"/>

67 <fieldType name="plongs" class="solr.LongPointField" docValues="true"

multiValued="true"/>↪→

68 <fieldType name="point" class="solr.PointType" subFieldSuffix="_d"

dimension="2"/>↪→

69 <fieldType name="random" class="solr.RandomSortField" indexed="true"/>

70 <fieldType name="rank" class="solr.RankField"/>

71 <fieldType name="string" class="solr.StrField" sortMissingLast="true"

docValues="true"/>↪→

72 <fieldType name="strings" class="solr.StrField" sortMissingLast="true"

docValues="true" multiValued="true"/>↪→

84

anexos

73 <fieldType name="text_ar" class="solr.TextField" positionIncrementGap="100">

74 <analyzer>

75 <tokenizer class="solr.StandardTokenizerFactory"/>

76 <filter class="solr.LowerCaseFilterFactory"/>

77 <filter class="solr.StopFilterFactory" words="lang/stopwords_ar.txt"

ignoreCase="true"/>↪→

78 <filter class="solr.ArabicNormalizationFilterFactory"/>

79 <filter class="solr.ArabicStemFilterFactory"/>

80 </analyzer>

81 </fieldType>

82 <fieldType name="text_bg" class="solr.TextField" positionIncrementGap="100">

83 <analyzer>

84 <tokenizer class="solr.StandardTokenizerFactory"/>

85 <filter class="solr.LowerCaseFilterFactory"/>

86 <filter class="solr.StopFilterFactory" words="lang/stopwords_bg.txt"

ignoreCase="true"/>↪→

87 <filter class="solr.BulgarianStemFilterFactory"/>

88 </analyzer>

89 </fieldType>

90 <fieldType name="text_ca" class="solr.TextField" positionIncrementGap="100">

91 <analyzer>

92 <tokenizer class="solr.StandardTokenizerFactory"/>

93 <filter class="solr.ElisionFilterFactory"

articles="lang/contractions_ca.txt" ignoreCase="true"/>↪→

94 <filter class="solr.LowerCaseFilterFactory"/>

95 <filter class="solr.StopFilterFactory" words="lang/stopwords_ca.txt"

ignoreCase="true"/>↪→

96 <filter class="solr.SnowballPorterFilterFactory" language="Catalan"/>

97 </analyzer>

98 </fieldType>

99 <fieldType name="text_cjk" class="solr.TextField" positionIncrementGap="100">

100 <analyzer>

101 <tokenizer class="solr.StandardTokenizerFactory"/>

102 <filter class="solr.CJKWidthFilterFactory"/>

103 <filter class="solr.LowerCaseFilterFactory"/>

104 <filter class="solr.CJKBigramFilterFactory"/>

105 </analyzer>

106 </fieldType>

107 <fieldType name="text_cz" class="solr.TextField" positionIncrementGap="100">

108 <analyzer>

109 <tokenizer class="solr.StandardTokenizerFactory"/>

110 <filter class="solr.LowerCaseFilterFactory"/>

111 <filter class="solr.StopFilterFactory" words="lang/stopwords_cz.txt"

ignoreCase="true"/>↪→

112 <filter class="solr.CzechStemFilterFactory"/>

113 </analyzer>

114 </fieldType>

115 <fieldType name="text_da" class="solr.TextField" positionIncrementGap="100">

116 <analyzer>

117 <tokenizer class="solr.StandardTokenizerFactory"/>

118 <filter class="solr.LowerCaseFilterFactory"/>

119 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_da.txt" ignoreCase="true"/>↪→

120 <filter class="solr.SnowballPorterFilterFactory" language="Danish"/>

85

anexos

121 </analyzer>

122 </fieldType>

123 <fieldType name="text_de" class="solr.TextField" positionIncrementGap="100">

124 <analyzer>

125 <tokenizer class="solr.StandardTokenizerFactory"/>

126 <filter class="solr.LowerCaseFilterFactory"/>

127 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_de.txt" ignoreCase="true"/>↪→

128 <filter class="solr.GermanNormalizationFilterFactory"/>

129 <filter class="solr.GermanLightStemFilterFactory"/>

130 </analyzer>

131 </fieldType>

132 <fieldType name="text_el" class="solr.TextField" positionIncrementGap="100">

133 <analyzer>

134 <tokenizer class="solr.StandardTokenizerFactory"/>

135 <filter class="solr.GreekLowerCaseFilterFactory"/>

136 <filter class="solr.StopFilterFactory" words="lang/stopwords_el.txt"

ignoreCase="false"/>↪→

137 <filter class="solr.GreekStemFilterFactory"/>

138 </analyzer>

139 </fieldType>

140 <fieldType name="text_en" class="solr.TextField" positionIncrementGap="100">

141 <analyzer type="index">

142 <tokenizer class="solr.StandardTokenizerFactory"/>

143 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

144 <filter class="solr.LowerCaseFilterFactory"/>

145 <filter class="solr.EnglishPossessiveFilterFactory"/>

146 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

147 <filter class="solr.PorterStemFilterFactory"/>

148 </analyzer>

149 <analyzer type="query">

150 <tokenizer class="solr.StandardTokenizerFactory"/>

151 <filter class="solr.SynonymGraphFilterFactory" expand="true"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

152 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

153 <filter class="solr.LowerCaseFilterFactory"/>

154 <filter class="solr.EnglishPossessiveFilterFactory"/>

155 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

156 <filter class="solr.PorterStemFilterFactory"/>

157 </analyzer>

158 </fieldType>

159 <fieldType name="text_en_splitting" class="solr.TextField"

autoGeneratePhraseQueries="true" positionIncrementGap="100">↪→

160 <analyzer type="index">

161 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

162 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

163 <filter class="solr.WordDelimiterGraphFilterFactory" catenateNumbers="1"

generateNumberParts="1" splitOnCaseChange="1" generateWordParts="1"

catenateAll="0" catenateWords="1"/>

↪→

↪→

164 <filter class="solr.LowerCaseFilterFactory"/>

165 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

86

anexos

166 <filter class="solr.PorterStemFilterFactory"/>

167 <filter class="solr.FlattenGraphFilterFactory"/>

168 </analyzer>

169 <analyzer type="query">

170 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

171 <filter class="solr.SynonymGraphFilterFactory" expand="true"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

172 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

173 <filter class="solr.WordDelimiterGraphFilterFactory" catenateNumbers="0"

generateNumberParts="1" splitOnCaseChange="1" generateWordParts="1"

catenateAll="0" catenateWords="0"/>

↪→

↪→

174 <filter class="solr.LowerCaseFilterFactory"/>

175 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

176 <filter class="solr.PorterStemFilterFactory"/>

177 </analyzer>

178 </fieldType>

179 <fieldType name="text_en_splitting_tight" class="solr.TextField"

autoGeneratePhraseQueries="true" positionIncrementGap="100">↪→

180 <analyzer type="index">

181 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

182 <filter class="solr.SynonymGraphFilterFactory" expand="false"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

183 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

184 <filter class="solr.WordDelimiterGraphFilterFactory" catenateNumbers="1"

generateNumberParts="0" generateWordParts="0" catenateAll="0"

catenateWords="1"/>

↪→

↪→

185 <filter class="solr.LowerCaseFilterFactory"/>

186 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

187 <filter class="solr.EnglishMinimalStemFilterFactory"/>

188 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

189 <filter class="solr.FlattenGraphFilterFactory"/>

190 </analyzer>

191 <analyzer type="query">

192 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

193 <filter class="solr.SynonymGraphFilterFactory" expand="false"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

194 <filter class="solr.StopFilterFactory" words="lang/stopwords_en.txt"

ignoreCase="true"/>↪→

195 <filter class="solr.WordDelimiterGraphFilterFactory" catenateNumbers="1"

generateNumberParts="0" generateWordParts="0" catenateAll="0"

catenateWords="1"/>

↪→

↪→

196 <filter class="solr.LowerCaseFilterFactory"/>

197 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt"/>

198 <filter class="solr.EnglishMinimalStemFilterFactory"/>

199 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

200 </analyzer>

201 </fieldType>

202 <fieldType name="text_es" class="solr.TextField" positionIncrementGap="100">

203 <analyzer>

204 <tokenizer class="solr.StandardTokenizerFactory"/>

205 <filter class="solr.LowerCaseFilterFactory"/>

87

anexos

206 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_es.txt" ignoreCase="true"/>↪→

207 <filter class="solr.SpanishLightStemFilterFactory"/>

208 </analyzer>

209 </fieldType>

210 <fieldType name="text_et" class="solr.TextField" positionIncrementGap="100">

211 <analyzer>

212 <tokenizer class="solr.StandardTokenizerFactory"/>

213 <filter class="solr.LowerCaseFilterFactory"/>

214 <filter class="solr.StopFilterFactory" words="lang/stopwords_et.txt"

ignoreCase="true"/>↪→

215 <filter class="solr.SnowballPorterFilterFactory" language="Estonian"/>

216 </analyzer>

217 </fieldType>

218 <fieldType name="text_eu" class="solr.TextField" positionIncrementGap="100">

219 <analyzer>

220 <tokenizer class="solr.StandardTokenizerFactory"/>

221 <filter class="solr.LowerCaseFilterFactory"/>

222 <filter class="solr.StopFilterFactory" words="lang/stopwords_eu.txt"

ignoreCase="true"/>↪→

223 <filter class="solr.SnowballPorterFilterFactory" language="Basque"/>

224 </analyzer>

225 </fieldType>

226 <fieldType name="text_fa" class="solr.TextField" positionIncrementGap="100">

227 <analyzer>

228 <charFilter class="solr.PersianCharFilterFactory"/>

229 <tokenizer class="solr.StandardTokenizerFactory"/>

230 <filter class="solr.LowerCaseFilterFactory"/>

231 <filter class="solr.ArabicNormalizationFilterFactory"/>

232 <filter class="solr.PersianNormalizationFilterFactory"/>

233 <filter class="solr.StopFilterFactory" words="lang/stopwords_fa.txt"

ignoreCase="true"/>↪→

234 </analyzer>

235 </fieldType>

236 <fieldType name="text_fi" class="solr.TextField" positionIncrementGap="100">

237 <analyzer>

238 <tokenizer class="solr.StandardTokenizerFactory"/>

239 <filter class="solr.LowerCaseFilterFactory"/>

240 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_fi.txt" ignoreCase="true"/>↪→

241 <filter class="solr.SnowballPorterFilterFactory" language="Finnish"/>

242 </analyzer>

243 </fieldType>

244 <fieldType name="text_fr" class="solr.TextField" positionIncrementGap="100">

245 <analyzer>

246 <tokenizer class="solr.StandardTokenizerFactory"/>

247 <filter class="solr.ElisionFilterFactory"

articles="lang/contractions_fr.txt" ignoreCase="true"/>↪→

248 <filter class="solr.LowerCaseFilterFactory"/>

249 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_fr.txt" ignoreCase="true"/>↪→

250 <filter class="solr.FrenchLightStemFilterFactory"/>

251 </analyzer>

252 </fieldType>

88

anexos

253 <fieldType name="text_ga" class="solr.TextField" positionIncrementGap="100">

254 <analyzer>

255 <tokenizer class="solr.StandardTokenizerFactory"/>

256 <filter class="solr.ElisionFilterFactory"

articles="lang/contractions_ga.txt" ignoreCase="true"/>↪→

257 <filter class="solr.StopFilterFactory" words="lang/hyphenations_ga.txt"

ignoreCase="true"/>↪→

258 <filter class="solr.IrishLowerCaseFilterFactory"/>

259 <filter class="solr.StopFilterFactory" words="lang/stopwords_ga.txt"

ignoreCase="true"/>↪→

260 <filter class="solr.SnowballPorterFilterFactory" language="Irish"/>

261 </analyzer>

262 </fieldType>

263 <fieldType name="text_gen_sort" class="solr.SortableTextField"

positionIncrementGap="100" multiValued="true">↪→

264 <analyzer type="index">

265 <tokenizer class="solr.StandardTokenizerFactory"/>

266 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

267 <filter class="solr.LowerCaseFilterFactory"/>

268 </analyzer>

269 <analyzer type="query">

270 <tokenizer class="solr.StandardTokenizerFactory"/>

271 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

272 <filter class="solr.SynonymGraphFilterFactory" expand="true"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

273 <filter class="solr.LowerCaseFilterFactory"/>

274 </analyzer>

275 </fieldType>

276 <fieldType name="text_general" class="solr.TextField"

positionIncrementGap="100" multiValued="true">↪→

277 <analyzer type="index">

278 <tokenizer class="solr.StandardTokenizerFactory"/>

279 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

280 <filter class="solr.LowerCaseFilterFactory"/>

281 </analyzer>

282 <analyzer type="query">

283 <tokenizer class="solr.StandardTokenizerFactory"/>

284 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

285 <filter class="solr.SynonymGraphFilterFactory" expand="true"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

286 <filter class="solr.LowerCaseFilterFactory"/>

287 </analyzer>

288 </fieldType>

289 <fieldType name="text_general_rev" class="solr.TextField"

positionIncrementGap="100">↪→

290 <analyzer type="index">

291 <tokenizer class="solr.StandardTokenizerFactory"/>

292 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

293 <filter class="solr.LowerCaseFilterFactory"/>

89

anexos

294 <filter class="solr.ReversedWildcardFilterFactory" maxPosQuestion="2"

maxFractionAsterisk="0.33" maxPosAsterisk="3" withOriginal="true"/>↪→

295 </analyzer>

296 <analyzer type="query">

297 <tokenizer class="solr.StandardTokenizerFactory"/>

298 <filter class="solr.SynonymGraphFilterFactory" expand="true"

ignoreCase="true" synonyms="synonyms.txt"/>↪→

299 <filter class="solr.StopFilterFactory" words="stopwords.txt"

ignoreCase="true"/>↪→

300 <filter class="solr.LowerCaseFilterFactory"/>

301 </analyzer>

302 </fieldType>

303 <fieldType name="text_gl" class="solr.TextField" positionIncrementGap="100">

304 <analyzer>

305 <tokenizer class="solr.StandardTokenizerFactory"/>

306 <filter class="solr.LowerCaseFilterFactory"/>

307 <filter class="solr.StopFilterFactory" words="lang/stopwords_gl.txt"

ignoreCase="true"/>↪→

308 <filter class="solr.GalicianStemFilterFactory"/>

309 </analyzer>

310 </fieldType>

311 <fieldType name="text_hi" class="solr.TextField" positionIncrementGap="100">

312 <analyzer>

313 <tokenizer class="solr.StandardTokenizerFactory"/>

314 <filter class="solr.LowerCaseFilterFactory"/>

315 <filter class="solr.IndicNormalizationFilterFactory"/>

316 <filter class="solr.HindiNormalizationFilterFactory"/>

317 <filter class="solr.StopFilterFactory" words="lang/stopwords_hi.txt"

ignoreCase="true"/>↪→

318 <filter class="solr.HindiStemFilterFactory"/>

319 </analyzer>

320 </fieldType>

321 <fieldType name="text_hu" class="solr.TextField" positionIncrementGap="100">

322 <analyzer>

323 <tokenizer class="solr.StandardTokenizerFactory"/>

324 <filter class="solr.LowerCaseFilterFactory"/>

325 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_hu.txt" ignoreCase="true"/>↪→

326 <filter class="solr.SnowballPorterFilterFactory" language="Hungarian"/>

327 </analyzer>

328 </fieldType>

329 <fieldType name="text_hy" class="solr.TextField" positionIncrementGap="100">

330 <analyzer>

331 <tokenizer class="solr.StandardTokenizerFactory"/>

332 <filter class="solr.LowerCaseFilterFactory"/>

333 <filter class="solr.StopFilterFactory" words="lang/stopwords_hy.txt"

ignoreCase="true"/>↪→

334 <filter class="solr.SnowballPorterFilterFactory" language="Armenian"/>

335 </analyzer>

336 </fieldType>

337 <fieldType name="text_id" class="solr.TextField" positionIncrementGap="100">

338 <analyzer>

339 <tokenizer class="solr.StandardTokenizerFactory"/>

340 <filter class="solr.LowerCaseFilterFactory"/>

90

anexos

341 <filter class="solr.StopFilterFactory" words="lang/stopwords_id.txt"

ignoreCase="true"/>↪→

342 <filter class="solr.IndonesianStemFilterFactory" stemDerivational="true"/>

343 </analyzer>

344 </fieldType>

345 <fieldType name="text_it" class="solr.TextField" positionIncrementGap="100">

346 <analyzer>

347 <tokenizer class="solr.StandardTokenizerFactory"/>

348 <filter class="solr.ElisionFilterFactory"

articles="lang/contractions_it.txt" ignoreCase="true"/>↪→

349 <filter class="solr.LowerCaseFilterFactory"/>

350 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_it.txt" ignoreCase="true"/>↪→

351 <filter class="solr.ItalianLightStemFilterFactory"/>

352 </analyzer>

353 </fieldType>

354 <fieldType name="text_ja" class="solr.TextField"

autoGeneratePhraseQueries="false" positionIncrementGap="100">↪→

355 <analyzer>

356 <tokenizer class="solr.JapaneseTokenizerFactory" mode="search"/>

357 <filter class="solr.JapaneseBaseFormFilterFactory"/>

358 <filter class="solr.JapanesePartOfSpeechStopFilterFactory"

tags="lang/stoptags_ja.txt"/>↪→

359 <filter class="solr.CJKWidthFilterFactory"/>

360 <filter class="solr.StopFilterFactory" words="lang/stopwords_ja.txt"

ignoreCase="true"/>↪→

361 <filter class="solr.JapaneseKatakanaStemFilterFactory" minimumLength="4"/>

362 <filter class="solr.LowerCaseFilterFactory"/>

363 </analyzer>

364 </fieldType>

365 <fieldType name="text_ko" class="solr.TextField" positionIncrementGap="100">

366 <analyzer>

367 <tokenizer class="solr.KoreanTokenizerFactory"

outputUnknownUnigrams="false" decompoundMode="discard"/>↪→

368 <filter class="solr.KoreanPartOfSpeechStopFilterFactory"/>

369 <filter class="solr.KoreanReadingFormFilterFactory"/>

370 <filter class="solr.LowerCaseFilterFactory"/>

371 </analyzer>

372 </fieldType>

373 <fieldType name="text_lv" class="solr.TextField" positionIncrementGap="100">

374 <analyzer>

375 <tokenizer class="solr.StandardTokenizerFactory"/>

376 <filter class="solr.LowerCaseFilterFactory"/>

377 <filter class="solr.StopFilterFactory" words="lang/stopwords_lv.txt"

ignoreCase="true"/>↪→

378 <filter class="solr.LatvianStemFilterFactory"/>

379 </analyzer>

380 </fieldType>

381 <fieldType name="text_nl" class="solr.TextField" positionIncrementGap="100">

382 <analyzer>

383 <tokenizer class="solr.StandardTokenizerFactory"/>

384 <filter class="solr.LowerCaseFilterFactory"/>

385 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_nl.txt" ignoreCase="true"/>↪→

91

anexos

386 <filter class="solr.StemmerOverrideFilterFactory"

dictionary="lang/stemdict_nl.txt" ignoreCase="false"/>↪→

387 <filter class="solr.SnowballPorterFilterFactory" language="Dutch"/>

388 </analyzer>

389 </fieldType>

390 <fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">

391 <analyzer>

392 <tokenizer class="solr.StandardTokenizerFactory"/>

393 <filter class="solr.LowerCaseFilterFactory"/>

394 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_no.txt" ignoreCase="true"/>↪→

395 <filter class="solr.SnowballPorterFilterFactory" language="Norwegian"/>

396 </analyzer>

397 </fieldType>

398 <fieldType name="text_pt" class="solr.TextField" positionIncrementGap="100">

399 <analyzer>

400 <tokenizer class="solr.StandardTokenizerFactory"/>

401 <filter class="solr.LowerCaseFilterFactory"/>

402 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_pt.txt" ignoreCase="true"/>↪→

403 <filter class="solr.PortugueseLightStemFilterFactory"/>

404 </analyzer>

405 </fieldType>

406 <fieldType name="text_ro" class="solr.TextField" positionIncrementGap="100">

407 <analyzer>

408 <tokenizer class="solr.StandardTokenizerFactory"/>

409 <filter class="solr.LowerCaseFilterFactory"/>

410 <filter class="solr.StopFilterFactory" words="lang/stopwords_ro.txt"

ignoreCase="true"/>↪→

411 <filter class="solr.SnowballPorterFilterFactory" language="Romanian"/>

412 </analyzer>

413 </fieldType>

414 <fieldType name="text_ru" class="solr.TextField" positionIncrementGap="100">

415 <analyzer>

416 <tokenizer class="solr.StandardTokenizerFactory"/>

417 <filter class="solr.LowerCaseFilterFactory"/>

418 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_ru.txt" ignoreCase="true"/>↪→

419 <filter class="solr.SnowballPorterFilterFactory" language="Russian"/>

420 </analyzer>

421 </fieldType>

422 <fieldType name="text_sv" class="solr.TextField" positionIncrementGap="100">

423 <analyzer>

424 <tokenizer class="solr.StandardTokenizerFactory"/>

425 <filter class="solr.LowerCaseFilterFactory"/>

426 <filter class="solr.StopFilterFactory" format="snowball"

words="lang/stopwords_sv.txt" ignoreCase="true"/>↪→

427 <filter class="solr.SnowballPorterFilterFactory" language="Swedish"/>

428 </analyzer>

429 </fieldType>

430 <fieldType name="text_th" class="solr.TextField" positionIncrementGap="100">

431 <analyzer>

432 <tokenizer class="solr.ThaiTokenizerFactory"/>

433 <filter class="solr.LowerCaseFilterFactory"/>

92

anexos

434 <filter class="solr.StopFilterFactory" words="lang/stopwords_th.txt"

ignoreCase="true"/>↪→

435 </analyzer>

436 </fieldType>

437 <fieldType name="text_tr" class="solr.TextField" positionIncrementGap="100">

438 <analyzer>

439 <tokenizer class="solr.StandardTokenizerFactory"/>

440 <filter class="solr.TurkishLowerCaseFilterFactory"/>

441 <filter class="solr.StopFilterFactory" words="lang/stopwords_tr.txt"

ignoreCase="false"/>↪→

442 <filter class="solr.SnowballPorterFilterFactory" language="Turkish"/>

443 </analyzer>

444 </fieldType>

445 <fieldType name="text_ws" class="solr.TextField" positionIncrementGap="100">

446 <analyzer>

447 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

448 </analyzer>

449 </fieldType>

450 <field name="_nest_path_" type="_nest_path_"/>

451 <field name="_root_" type="string" docValues="false" indexed="true"

stored="false"/>↪→

452 <field name="_text_" type="text_general" multiValued="true" indexed="true"

stored="false"/>↪→

453 <field name="_version_" type="plong" indexed="false" stored="false"/>

454 <field name="agent" type="text_general"/>

455 <field name="agent.id" type="plongs"/>

456 <field name="agent.ip" type="text_general"/>

457 <field name="agent.name" type="text_general"/>

458 <field name="data" type="text_general"/>

459 <field name="data.dstuser" type="text_general"/>

460 <field name="data.extra_data" type="text_general"/>

461 <field name="data.file" type="text_general"/>

462 <field name="data.sca.check.command" type="text_general"/>

463 <field name="data.sca.check.compliance.cis" type="pdoubles"/>

464 <field name="data.sca.check.compliance.cis_csc" type="text_general"/>

465 <field name="data.sca.check.compliance.gdpr_IV" type="text_general"/>

466 <field name="data.sca.check.compliance.gpg_13" type="pdoubles"/>

467 <field name="data.sca.check.compliance.hipaa" type="text_general"/>

468 <field name="data.sca.check.compliance.nist_800_53" type="text_general"/>

469 <field name="data.sca.check.compliance.pci_dss" type="pdoubles"/>

470 <field name="data.sca.check.compliance.tsc" type="text_general"/>

471 <field name="data.sca.check.description" type="text_general"/>

472 <field name="data.sca.check.id" type="plongs"/>

473 <field name="data.sca.check.previous_result" type="text_general"/>

474 <field name="data.sca.check.rationale" type="text_general"/>

475 <field name="data.sca.check.reason" type="text_general"/>

476 <field name="data.sca.check.remediation" type="text_general"/>

477 <field name="data.sca.check.result" type="text_general"/>

478 <field name="data.sca.check.status" type="text_general"/>

479 <field name="data.sca.check.title" type="text_general"/>

480 <field name="data.sca.description" type="text_general"/>

481 <field name="data.sca.failed" type="plongs"/>

482 <field name="data.sca.file" type="text_general"/>

483 <field name="data.sca.invalid" type="plongs"/>

93

anexos

484 <field name="data.sca.passed" type="plongs"/>

485 <field name="data.sca.policy" type="text_general"/>

486 <field name="data.sca.policy_id" type="text_general"/>

487 <field name="data.sca.scan_id" type="plongs"/>

488 <field name="data.sca.score" type="plongs"/>

489 <field name="data.sca.total_checks" type="plongs"/>

490 <field name="data.sca.type" type="text_general"/>

491 <field name="data.srcip" type="text_general"/>

492 <field name="data.status" type="text_general"/>

493 <field name="data.title" type="text_general"/>

494 <field name="data.uid" type="plongs"/>

495 <field name="decoder" type="text_general"/>

496 <field name="decoder.name" type="text_general"/>

497 <field name="decoder.parent" type="text_general"/>

498 <field name="full_log" type="text_general"/>

499 <field name="id" type="string" multiValued="false" indexed="true"

required="true" stored="true"/>↪→

500 <field name="location" type="text_general"/>

501 <field name="manager" type="text_general"/>

502 <field name="manager.name" type="text_general"/>

503 <field name="predecoder.hostname" type="text_general"/>

504 <field name="predecoder.program_name" type="text_general"/>

505 <field name="predecoder.timestamp" type="text_general"/>

506 <field name="previous_log" type="text_general"/>

507 <field name="previous_output" type="text_general"/>

508 <field name="rule" type="text_general"/>

509 <field name="rule.cis" type="pdoubles"/>

510 <field name="rule.cis_csc" type="pdoubles"/>

511 <field name="rule.description" type="text_general"/>

512 <field name="rule.firedtimes" type="plongs"/>

513 <field name="rule.gdpr" type="text_general"/>

514 <field name="rule.gdpr_IV" type="text_general"/>

515 <field name="rule.gpg13" type="pdoubles"/>

516 <field name="rule.gpg_13" type="pdoubles"/>

517 <field name="rule.groups" type="text_general"/>

518 <field name="rule.hipaa" type="text_general"/>

519 <field name="rule.id" type="plongs"/>

520 <field name="rule.level" type="plongs"/>

521 <field name="rule.mail" type="booleans"/>

522 <field name="rule.mitre.id" type="text_general"/>

523 <field name="rule.mitre.tactic" type="text_general"/>

524 <field name="rule.mitre.technique" type="text_general"/>

525 <field name="rule.nist_800_53" type="text_general"/>

526 <field name="rule.pci_dss" type="text_general"/>

527 <field name="rule.tsc" type="text_general"/>

528 <field name="timestamp" type="text_general"/>

529 <dynamicField name="*_txt_en_split_tight" type="text_en_splitting_tight"

indexed="true" stored="true"/>↪→

530 <dynamicField name="*_descendent_path" type="descendent_path" indexed="true"

stored="true"/>↪→

531 <dynamicField name="*_ancestor_path" type="ancestor_path" indexed="true"

stored="true"/>↪→

532 <dynamicField name="*_txt_en_split" type="text_en_splitting" indexed="true"

stored="true"/>↪→

94

anexos

533 <dynamicField name="*_txt_sort" type="text_gen_sort" indexed="true"

stored="true"/>↪→

534 <dynamicField name="ignored_*" type="ignored"/>

535 <dynamicField name="*_txt_rev" type="text_general_rev" indexed="true"

stored="true"/>↪→

536 <dynamicField name="*_phon_en" type="phonetic_en" indexed="true"

stored="true"/>↪→

537 <dynamicField name="*_s_lower" type="lowercase" indexed="true" stored="true"/>

538 <dynamicField name="*_txt_cjk" type="text_cjk" indexed="true" stored="true"/>

539 <dynamicField name="random_*" type="random"/>

540 <dynamicField name="*_t_sort" type="text_gen_sort" multiValued="false"

indexed="true" stored="true"/>↪→

541 <dynamicField name="*_txt_en" type="text_en" indexed="true" stored="true"/>

542 <dynamicField name="*_txt_ar" type="text_ar" indexed="true" stored="true"/>

543 <dynamicField name="*_txt_bg" type="text_bg" indexed="true" stored="true"/>

544 <dynamicField name="*_txt_ca" type="text_ca" indexed="true" stored="true"/>

545 <dynamicField name="*_txt_cz" type="text_cz" indexed="true" stored="true"/>

546 <dynamicField name="*_txt_da" type="text_da" indexed="true" stored="true"/>

547 <dynamicField name="*_txt_de" type="text_de" indexed="true" stored="true"/>

548 <dynamicField name="*_txt_el" type="text_el" indexed="true" stored="true"/>

549 <dynamicField name="*_txt_es" type="text_es" indexed="true" stored="true"/>

550 <dynamicField name="*_txt_et" type="text_et" indexed="true" stored="true"/>

551 <dynamicField name="*_txt_eu" type="text_eu" indexed="true" stored="true"/>

552 <dynamicField name="*_txt_fa" type="text_fa" indexed="true" stored="true"/>

553 <dynamicField name="*_txt_fi" type="text_fi" indexed="true" stored="true"/>

554 <dynamicField name="*_txt_fr" type="text_fr" indexed="true" stored="true"/>

555 <dynamicField name="*_txt_ga" type="text_ga" indexed="true" stored="true"/>

556 <dynamicField name="*_txt_gl" type="text_gl" indexed="true" stored="true"/>

557 <dynamicField name="*_txt_hi" type="text_hi" indexed="true" stored="true"/>

558 <dynamicField name="*_txt_hu" type="text_hu" indexed="true" stored="true"/>

559 <dynamicField name="*_txt_hy" type="text_hy" indexed="true" stored="true"/>

560 <dynamicField name="*_txt_id" type="text_id" indexed="true" stored="true"/>

561 <dynamicField name="*_txt_it" type="text_it" indexed="true" stored="true"/>

562 <dynamicField name="*_txt_ja" type="text_ja" indexed="true" stored="true"/>

563 <dynamicField name="*_txt_ko" type="text_ko" indexed="true" stored="true"/>

564 <dynamicField name="*_txt_lv" type="text_lv" indexed="true" stored="true"/>

565 <dynamicField name="*_txt_nl" type="text_nl" indexed="true" stored="true"/>

566 <dynamicField name="*_txt_no" type="text_no" indexed="true" stored="true"/>

567 <dynamicField name="*_txt_pt" type="text_pt" indexed="true" stored="true"/>

568 <dynamicField name="*_txt_ro" type="text_ro" indexed="true" stored="true"/>

569 <dynamicField name="*_txt_ru" type="text_ru" indexed="true" stored="true"/>

570 <dynamicField name="*_txt_sv" type="text_sv" indexed="true" stored="true"/>

571 <dynamicField name="*_txt_th" type="text_th" indexed="true" stored="true"/>

572 <dynamicField name="*_txt_tr" type="text_tr" indexed="true" stored="true"/>

573 <dynamicField name="*_point" type="point" indexed="true" stored="true"/>

574 <dynamicField name="*_srpt" type="location_rpt" indexed="true" stored="true"/>

575 <dynamicField name="attr_*" type="text_general" multiValued="true"

indexed="true" stored="true"/>↪→

576 <dynamicField name="*_txt" type="text_general" indexed="true" stored="true"/>

577 <dynamicField name="*_str" type="strings" docValues="true" indexed="false"

stored="false" useDocValuesAsStored="false"/>↪→

578 <dynamicField name="*_dts" type="pdate" multiValued="true" indexed="true"

stored="true"/>↪→

95

anexos

579 <dynamicField name="*_dpf" type="delimited_payloads_float" indexed="true"

stored="true"/>↪→

580 <dynamicField name="*_dpi" type="delimited_payloads_int" indexed="true"

stored="true"/>↪→

581 <dynamicField name="*_dps" type="delimited_payloads_string" indexed="true"

stored="true"/>↪→

582 <dynamicField name="*_is" type="pints" indexed="true" stored="true"/>

583 <dynamicField name="*_ss" type="strings" indexed="true" stored="true"/>

584 <dynamicField name="*_ls" type="plongs" indexed="true" stored="true"/>

585 <dynamicField name="*_bs" type="booleans" indexed="true" stored="true"/>

586 <dynamicField name="*_fs" type="pfloats" indexed="true" stored="true"/>

587 <dynamicField name="*_ds" type="pdoubles" indexed="true" stored="true"/>

588 <dynamicField name="*_dt" type="pdate" indexed="true" stored="true"/>

589 <dynamicField name="*_ws" type="text_ws" indexed="true" stored="true"/>

590 <dynamicField name="*_i" type="pint" indexed="true" stored="true"/>

591 <dynamicField name="*_s" type="string" indexed="true" stored="true"/>

592 <dynamicField name="*_l" type="plong" indexed="true" stored="true"/>

593 <dynamicField name="*_t" type="text_general" multiValued="false"

indexed="true" stored="true"/>↪→

594 <dynamicField name="*_b" type="boolean" indexed="true" stored="true"/>

595 <dynamicField name="*_f" type="pfloat" indexed="true" stored="true"/>

596 <dynamicField name="*_d" type="pdouble" indexed="true" stored="true"/>

597 <dynamicField name="*_p" type="location" indexed="true" stored="true"/>

598 <copyField source="agent" dest="agent_str" maxChars="256"/>

599 <copyField source="manager" dest="manager_str" maxChars="256"/>

600 <copyField source="data" dest="data_str" maxChars="256"/>

601 <copyField source="rule" dest="rule_str" maxChars="256"/>

602 <copyField source="location" dest="location_str" maxChars="256"/>

603 <copyField source="decoder" dest="decoder_str" maxChars="256"/>

604 <copyField source="timestamp" dest="timestamp_str" maxChars="256"/>

605 <copyField source="full_log" dest="full_log_str" maxChars="256"/>

606 <copyField source="agent.ip" dest="agent.ip_str" maxChars="256"/>

607 <copyField source="rule.tsc" dest="rule.tsc_str" maxChars="256"/>

608 <copyField source="rule.gdpr" dest="rule.gdpr_str" maxChars="256"/>

609 <copyField source="rule.hipaa" dest="rule.hipaa_str" maxChars="256"/>

610 <copyField source="decoder.parent" dest="decoder.parent_str" maxChars="256"/>

611 <copyField source="rule.nist_800_53" dest="rule.nist_800_53_str"

maxChars="256"/>↪→

612 <copyField source="rule.description" dest="rule.description_str"

maxChars="256"/>↪→

613 <copyField source="data.extra_data" dest="data.extra_data_str" maxChars="256"/>

614 <copyField source="decoder.name" dest="decoder.name_str" maxChars="256"/>

615 <copyField source="manager.name" dest="manager.name_str" maxChars="256"/>

616 <copyField source="rule.pci_dss" dest="rule.pci_dss_str" maxChars="256"/>

617 <copyField source="agent.name" dest="agent.name_str" maxChars="256"/>

618 <copyField source="rule.groups" dest="rule.groups_str" maxChars="256"/>

619 <copyField source="previous_log" dest="previous_log_str" maxChars="256"/>

620 <copyField source="previous_output" dest="previous_output_str" maxChars="256"/>

621 <copyField source="rule.mitre.id" dest="rule.mitre.id_str" maxChars="256"/>

622 <copyField source="rule.mitre.technique" dest="rule.mitre.technique_str"

maxChars="256"/>↪→

623 <copyField source="data.dstuser" dest="data.dstuser_str" maxChars="256"/>

624 <copyField source="predecoder.program_name" dest="predecoder.program_name_str"

maxChars="256"/>↪→

96

anexos

625 <copyField source="predecoder.timestamp" dest="predecoder.timestamp_str"

maxChars="256"/>↪→

626 <copyField source="rule.mitre.tactic" dest="rule.mitre.tactic_str"

maxChars="256"/>↪→

627 <copyField source="predecoder.hostname" dest="predecoder.hostname_str"

maxChars="256"/>↪→

628 <copyField source="data.status" dest="data.status_str" maxChars="256"/>

629 <copyField source="data.title" dest="data.title_str" maxChars="256"/>

630 <copyField source="data.file" dest="data.file_str" maxChars="256"/>

631 <copyField source="data.srcip" dest="data.srcip_str" maxChars="256"/>

632 <copyField source="rule.gdpr_IV" dest="rule.gdpr_IV_str" maxChars="256"/>

633 <copyField source="data.sca.check.previous_result"

dest="data.sca.check.previous_result_str" maxChars="256"/>↪→

634 <copyField source="data.sca.type" dest="data.sca.type_str" maxChars="256"/>

635 <copyField source="data.sca.check.remediation"

dest="data.sca.check.remediation_str" maxChars="256"/>↪→

636 <copyField source="data.sca.policy" dest="data.sca.policy_str" maxChars="256"/>

637 <copyField source="data.sca.check.description"

dest="data.sca.check.description_str" maxChars="256"/>↪→

638 <copyField source="data.sca.check.compliance.cis_csc"

dest="data.sca.check.compliance.cis_csc_str" maxChars="256"/>↪→

639 <copyField source="data.sca.check.command" dest="data.sca.check.command_str"

maxChars="256"/>↪→

640 <copyField source="data.sca.check.title" dest="data.sca.check.title_str"

maxChars="256"/>↪→

641 <copyField source="data.sca.check.compliance.gdpr_IV"

dest="data.sca.check.compliance.gdpr_IV_str" maxChars="256"/>↪→

642 <copyField source="data.sca.check.compliance.nist_800_53"

dest="data.sca.check.compliance.nist_800_53_str" maxChars="256"/>↪→

643 <copyField source="data.sca.check.compliance.hipaa"

dest="data.sca.check.compliance.hipaa_str" maxChars="256"/>↪→

644 <copyField source="data.sca.check.compliance.tsc"

dest="data.sca.check.compliance.tsc_str" maxChars="256"/>↪→

645 <copyField source="data.sca.check.result" dest="data.sca.check.result_str"

maxChars="256"/>↪→

646 <copyField source="data.sca.check.rationale"

dest="data.sca.check.rationale_str" maxChars="256"/>↪→

647 <copyField source="data.sca.file" dest="data.sca.file_str" maxChars="256"/>

648 <copyField source="data.sca.policy_id" dest="data.sca.policy_id_str"

maxChars="256"/>↪→

649 <copyField source="data.sca.description" dest="data.sca.description_str"

maxChars="256"/>↪→

650 <copyField source="data.sca.check.status" dest="data.sca.check.status_str"

maxChars="256"/>↪→

651 <copyField source="data.sca.check.reason" dest="data.sca.check.reason_str"

maxChars="256"/>↪→

652 </schema>

97

B
WA Z U H S E RV E R I N S TA L L AT I O N

The following steps must be followed to perform a step by step installation of the
Wazuh system.

b.1 installation process from the official repositories

The first step to install the Wazuh server, is to add the official Wazuh repository to
the system where it will be installed.

Before starting we must install a series of necessary packages. To run all of the
commands in the installation process we must be authenticated as the system
administrator (root user):

1 $ sudo su -
2 $ apt update
3 $ apt install curl apt-transport-https unzip wget libcap2-bin

software-properties-common lsb-release gnupg↪→

b.1.0.1 Adding the Wazuh repository

Before being able to pull the packages from the Wazuh repositories we must add
the Gnu Privacy Guard (GPG) key:

1 curl -s https://packages.wazuh.com/key/GPG-KEY-WAZUH | apt-key add -

Now we can add the repository and update the packages information:

1 $ echo "deb https://packages.wazuh.com/4.x/apt/ stable main" | tee -a
/etc/apt/sources.list.d/wazuh.list↪→

2 $ apt update

99

anexos

b.1.0.2 Installing the Wazuh manager

Subsequently we can install the Wazuh manager:

1 $ apt install wazuh-manager

After the installation process is completed, we must enable and start the Wazuh
manager service:

1 $ systemctl daemon-reload
2 $ systemctl enable wazuh-manager
3 $ systemctl start wazuh-manager

Finally we check if the Wazuh manager is running:

100

C
WA Z U H A G E N T I N S TA L L AT I O N

The following steps must be followed to install the Wazuh agent.

c.0.1 Adding the Wazuh repository

Before being able to pull the packages from the Wazuh repositories we must run
commands as the root user, add the Gnu Privacy Guard (GPG) key and add the
source repository :

1 $ sudo -su -
2 $ curl -s https://packages.wazuh.com/key/GPG-KEY-WAZUH | apt-key add -
3 $ echo "deb https://packages.wazuh.com/4.x/apt/ stable main" | tee -a

/etc/apt/sources.list.d/wazuh.list↪→
4 $ apt-get update

c.0.2 Deploy the Wazuh agent

Set the WAZUH_MANAGER variable with the manager IP address and install the
Wazuh agent from the Wazuh repository:

1 $ WAZUH_MANAGER="IP_MANAGER" apt-get install wazuh-agent

Enable and restart the agent service:

1 $ systemctl daemon-reload
2 $ systemctl enable wazuh-agent
3 $ systemctl start wazuh-agent

101

anexos

c.0.3 Disable automatic updates

Since the Wazuh agents version must be equal or lower than the one of the Wazuh
manager, the documentation recommends to disable Wazuh automatic updates:

1 $ echo "wazuh-agent hold" | dpkg --set-selections

102

D E C L A R A Ç Ã O

Declaro, sob compromisso de honra, que o trabalho apresentado nesta dissertação,
com o título “Application Security Testing ”, é original e foi realizado por Tomás
Avila Welling (2190381) sob orientação de Professor PhD Marco António de Oliveira
Monteiro (marco.monteiro@ipleiria.pt).

Leiria, March of 2022

Tomás Avila Welling

mailto:marco.monteiro@ipleiria.pt

PARECER SOBRE TRABALHO DE ESTÁGIO SUBMETIDO A PROVAS PÚBLICAS SUBSCRITO PELO
ORIENTADOR

ORIENTADOR

NOME Marco António de Oliveira Monteiro

CATEGORIA Professor Adjunto DEPARTAMENTO Engª Informática

INSTITUIÇÃO ESTG – Instituto Politécnico de Leiria

COORIENTADOR (SE APLICÁVEL)

NOME

CATEGORIA DEPARTAMENTO

INSTITUIÇÃO

NA QUALIDADE DE ORIENTADOR(ES) DO ESTUDANTE Tomás Avila Welling

COM O NÚMERO 2190381 DO CURSO DE

Mestrado em Cibersegurança e
Informática Forense

COM O TEMA Application Security Testing

Declara que o trabalho acima referenciado, por mim revisto, foi concluído com sucesso, respeita as regras

aprovadas e reúne a qualidade científica e as condições necessárias para que seja submetido a prova pública

de defesa.

DATA ORIENTADOR

28/03/2022

	Resumo
	Abstract
	Index
	List of Figures
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 Internship project
	1.1.1 Statement of the problem
	1.1.2 Significance of the project
	1.1.3 Objectives

	1.2 Organisation where the internship was carried out
	1.3 Report structure

	2 Graphical User Interface Concepts
	2.1 JavaFX
	2.1.1 Architecture

	2.2 Model-View-ViewModel pattern
	2.2.1 JavaFX and MVVM

	2.3 Graphical user interface secure development

	3 Security Concepts
	3.1 Significance of cybersecurity
	3.2 Endpoint security
	3.3 Endpoint detection and response
	3.4 Security information and event management systems
	3.5 Intrusion detection systems
	3.5.1 Detection methodologies
	3.5.2 Detection approaches
	3.5.3 Technology types

	3.6 Regulation compliance
	3.6.1 Security regulation compliance laws

	3.7 Incidence response
	3.8 Wazuh overview
	3.8.1 Wazuh agents
	3.8.2 Wazuh manager
	3.8.3 Elastic stack

	4 Development
	4.1 Methodology
	4.1.1 Tools
	4.1.2 Procedure

	4.2 Architecture
	4.2.1 WazuhFX architecture
	4.2.2 Final Wazuh system architecture

	4.3 Investigation & Setup
	4.3.1 Development environment setup
	4.3.2 Add maven to the project

	4.4 Wazuh Setup
	4.4.1 Network architecture of the organisation
	4.4.2 Available methods for installation
	4.4.3 Development environment installation
	4.4.4 Production environment

	4.5 Request to the Wazuh API
	4.5.1 Entities implemented to communicate with the Wazuh manager

	4.6 Data Storage Migration
	4.6.1 Setup
	4.6.2 Sample data
	4.6.3 Schema creation and data import
	4.6.4 Querying Data
	4.6.5 Data used for the development of the project

	4.7 WazuhFX development
	4.7.1 Kibana dashboard analysis
	4.7.2 Development

	4.8 WazuhFX results

	5 Conclusions
	5.0.1 Future work

	 Bibliography
	Appendixes
	A Solr schema configuration
	B Wazuh Server Installation
	B.1 Installation process from the official repositories

	C Wazuh Agent Installation
	C.0.1 Adding the Wazuh repository
	C.0.2 Deploy the Wazuh agent
	C.0.3 Disable automatic updates

	 Declaração

		2022-03-28T19:55:03+0100

