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From a strictly materialist perspective, man is integrated into a complex
network, an inimitably braided chain, an immense field of forces that simultane-
ously affect or may affect his behaviour as well as the way he thinks. Therefore,
in spite of the currently prevailing liberal paradigm, we find ourselves in a
continuous state of dependency, solely entitled to a considerably small, nearly
negligible space of true “autonomy”. Against the background of an acknowl-
edgement section, this overshadowing degree of dependency inherent in our
experienced reality can pose serious problems. While being reliant upon purely
immanent stimuli as the mere basis on which our existence can – physically – be
predicated, we problematically tend to dedicate our words of gratitude to living
entities that, although immanently present, are acknowledged for particular
intangible qualities. Or should one thank the air for providing us with oxygen
for the entire duration of our PhD track? Should we explicitly thank the apple
trees and and wheat fields for supplying food? What about gravity, H2O, or
general causality? In that respect, disregarding the indisputable impossibility
to generate infinite lists of manifest objects fundamental to life, why do we
conventionally restrict ourselves to concrete individuals?

The answer to the preceding question is simple: while the forces of nature
are bound to bestow upon the earth what God commands them to in His
unparalleled fidelity to the Truth, people are capable of voluntarily opting for
particular actions in accordance with our Lord’s respect for man’s free will. For
the purpose of gratitude, at least in the present case, the invisible, intentionally
cultivated acts of freedom are correspondingly of great and absolute importance.
In other words, although we fail to breathe in the absence of oxygen, had we not
been encouraged by person X and/or Y, even in the presence of all “baseline
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Chapter 1. Introduction

Duality methods are essential to linear programming and convex optimisation.
For a given optimisation problem, henceforth the primal, these methods are
namely able to generate so-called dual problems. One can interpret the dual as a
“shadow” problem that mirrors the primal formulation in a specific mathematical
sense.1 The importance of duality is entirely attributable to these problems for
three main reasons. First, the dual formulation of a primal problem typically
facilitates the retrieval of optimal solutions. This is particularly true for
linear programs.2 Second, the dual sheds alternative light on the dynamics
underscoring the primal. For instance, within the confines of trading constraints,
the latter has disclosed to us how the optimal allocation of assets depends on
the subjective valuation of unhedgeable risk.3 Third, for convex optimisation
problems, the dual renders mathematically defined duality relations. These
relations describe how the primal variables depend on the dual variables, and
vice versa. In general, this dependency brings us a few steps closer to the
identification of the optimal decision variables in closed-form.

To study an individual’s optimal trading and consumption behaviour, the
literature on portfolio optimisation ordinarily relies on stochastic optimal control
problems. These problems can generally be subsumed under the umbrella of
convex optimisation in infinite-dimensional spaces. As a result, duality plays
a crucial role in portfolio and consumption theory. In this dissertation, we
concentrate on duality methods in the context of investment, consumption and
related retirement decisions. One can distinguish the literature on portfolio-
based duality methods into roughly three categories: (i) applied studies, (ii)
theoretical studies, and (iii) mixtures of the previous two. This dissertation
covers all three categories. In Chapter 4, we touch upon item (i), and employ
duality techniques to derive optimal policy rules for a pension fund that offers
a DC scheme. In Chapter 3, covering item (ii), we derive a mathematical
formulation of the dual corresponding to a problem involving non-standard

1We use the terms “problem” and “formulation” interchangeably.
2Solution techniques for linear programs can benefit from the dictionary-related duality

inversion, cf. chapter 5 of Vanderbei (2014). Note that the claim in the main text also
applies to convex problems, cf. Rockafellar (2015). For example, in the field of portfolio
optimisation, the martingale duality method, cf. Pliska (1986), Karatzas et al. (1987),
Cox and Huang (1989, 1991), considerably simplifies a derivation of the relevant optima
in closed-form. We elaborate on such methods in section 1.2.

3See e.g. Cvitanić and Karatzas (1992) for an extensive theoretical treatment of this result.
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1.1 What is Duality?

habit formation. In Chapter 2, which deals with item (iii), we develop an
applied approximate method for constrained optimal investment-consumption
problems, predicated on theoretical duality results.

We divide the remainder of this introductory chapter into three connected
parts. First, using a visual approach, we intuitively elaborate on the technical
details underpinning duality for convex optimisation problems. Second, we
address the practical value of duality along the lines of finance-linked topics
extracted from the separate chapters of this dissertation. Third and last, we
analyse these chapters in more detail and comment on their contributions to
the literature on convex duality and portfolio optimisation.

1.1 What is Duality?
To aid the reader’s understanding of duality, we provide Figure 1.1. This figure
is adapted from Chapter 2 and presents a visual illustration of the convex
duality mechanism. In our explanation of the technicalities associated with
duality, we employ Figure 1.1 as a handy reference point. For this purpose,
it is important to note that the graph can be divided into two parts: a lower
half and an upper half. The lower half corresponds to the primal problem. We
stress that this problem outlines the formulation in which we are originally
interested. To make this more concrete, in the spirit of portfolio optimisation,
the primal can be identified as e.g. an ordinary utility-maximisation problem.
In conformity with the former, the upper half of the figure corresponds to the
dual problem. The placement of the dual in the upper half is not without
meaning. We expand on this positioning when explaining the dual-side of the
figure. To conclude this brief sketch, we observe that the preceding two halves
are related to each other via the vertical arrows on the right- and left-hand
sides of Figure 1.1. Both arrows pertain to the duality relations.

1.1.1 Primal Problem

We proceed with an analysis and a discussion of Figure 1.1’s lower half: the
primal-side entitled “Primal”. Here, we assume that the primal concerns a

3



Chapter 1. Introduction
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Primal
Objective

Primal
Controls

Dual
Objective

Dual
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Duality
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Duality
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Duality

Optimal
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inf

sup

Figure 1.1. Duality for convex optimisation problems. This figure presents a graphical
illustration of the core mechanism characterising duality for convex optimisation problems.
For details on the meaning of this graph and its individual attributes, we refer to section 1.1
of this chapter. Likewise, one can consult Chapter 2 and the figures therein.

maximisation problem rather than a minimisation problem. Note that this
postulate is by no means restrictive. Minimisation problems can easily be
transformed into maximisation problems using a slight modification of the
value function.4 Let us (re-)turn to Figure 1.1. On the primal-side, we are able
to discern a curve with a dashed shape. This curve represents the set of primal
controls or primal decision variables. As indicated by the horizontally dotted
line, each primal control implies a value for the primal objective. The objective,
otherwise known as value function, identifies the target of optimisation. In
line with its maximisation incentive, the primal aims to optimise the value
function over all available primal controls. Concretely, it attempts to “steer”

4If the primal concerned a minimisation problem, Figure 1.1 would simply need to be
inverted. In other words, the upper half should be identified as the primal; the lower as
the dual. All other attributes included in the graph could remain unchanged. Note that
by multiplying the objective of the minimisation problem with −1, the formulation is
converted or transformed into an equivalent maximisation problem.
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1.1 What is Duality?

the objective and the thereby implied primal controls towards the point of
optimality. In this point of optimality, the objective is maximised and the
related primal controls are optimal. Note that the latter point is displayed
by the black dot in the middle of Figure 1.1. The operation of maximisation
is depicted by the dash-dotted arrow in the lower curve. This description
concludes the visual illustration of the primal problem.

Although it still seems a little abstract, the lower half of Figure 1.1 is what
most academic researchers in finance are familiar with. In fact, we are able to
include many different problems under the aegis of this lower half. To make
the matter more tangible, let us visit a class of optimisation problems relevant
to finance and this dissertation: utility-maximisation over terminal wealth
and/or consumption. We indicate how these problems are related to Figure
1.1. In the aforementioned branch of problems, an agent attempts to maximise
his/her expected utility from terminal wealth and/or consumption. To this
end, the individual tries to make the most optimal decisions with regard to
investment and/or savings. This operation is represented in Figure 1.1’s lower
half by the dash-dotted arrow. As a consequence, it is clear that the primal
objective identifies a person-specific expected utility criterion. The dashed
curve of primal controls accordingly contains all admissible portfolio weights
and/or consumption rules.5 Consistent with the horizontally dotted line, it is
evident that the individual’s decisions regarding investment and savings imply
a specific value for the utility-related primal objective. Last, we note that that
the black dot in the middle represents the point of maximal expected utility
and related optimal investment-consumption decisions. The relation between
this set of problems and Figure 1.1 is therefore complete. We have visualised
this primal-based relation in Figure 1.2.6

1.1.2 Dual Problem

With the primal problem at hand, we continue with an evaluation of Figure
1.1’s upper half: the dual side entitled “Dual”. The principal distinguishing

5Admissibility refers to feasibility of control variables in the context of portfolio optimisation.
We make use of this term in Chapters 2, 3 and 4. Consider e.g. Karatzas and Shreve
(1998) for a mathematical definition of admissible control variables.

6For a more concrete identification of a graph similar to Figure 1.1, cf. Chapter 2.

5



Chapter 1. Introduction

Primal

Maximal
Expected Utility

Optimal Portfolio
& Consumption

Expected
Utility

Portfolio
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Figure 1.2. Primal for utility-maximisation problem. This figure presents a graphical
illustration of the primal-side corresponding to a (constrained) utility-maximisation problem.
For details on the meaning of this graph and its individual attributes, we refer to section
1.1.1 of this chapter. Likewise, one can consult Chapter 2 and the figures therein.

feature of a dual formulation is its value function. The dual value function
namely always generates an upper bound on the primal value function.7 This
upper bound is the main and most prominent link from the dual to the primal,
and the other way around. For this reason, we position the dual problem in the
upper half of Figure 1.1. As addressed before, the dual can be interpreted as a
shadow problem “mirroring” the primal. This way of mirroring can be taken
quite literally with regard to the nature of optimisation. That is, whereas the
primal consists in a maximisation procedure, the dual consists in a minimisation
routine. To emphasise this inverse imitation, we present the primal and dual
problems as mirrored shapes in Figure 1.1. Note that this idea of mirroring
is corroborated by the dual-implied upper bound. More specifically, along a
technical axis, one is able to argue that the primal and dual sets of control
variables mirror each other in a mathematically valid manner.8 However, for
ease of exposition, we omit a corresponding argument.

Returning to Figure 1.1, we note that the dual-based upper half closely resembles
the primal-based lower half. Indeed, most attributes linked to the dual abide
by a similar interpretation. In more precise terms, the upper curve stands for
the set of dual control variables. The horizontally dotted line signifies that

7In case the primal outlines a minimisation problem, the dual naturally generates a lower
bound on the primal value function. The remaining features remain unaffected.

8That is, these sets are dual to each other.
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1.1 What is Duality?

each dual control implies a value for the dual objective. Recall that the dual
objective spawns an upper bound on the primal value function. Moreover, as in
the primal case, the objective simply represents the target of optimisation. In
accordance with its minimisation target, the dual problem seeks to “steer” the
objective and the thereby implied dual controls to the point of optimality. This
operation is illustrated by the dash-dotted arrow in the upper curve. Observe
that the point of optimality is given by the black dot in the middle of the plot,
and coincides with the primal-optimal point. This phenomenon of coinciding
points of optimality is referred to as strong duality. It particularly implies that
the difference between the dual and primal value functions, i.e. the duality
gap, is equal to zero when both problems are optimised.9 We elaborate on
the strong duality phenomenon when explaining the duality relations. This
description concludes the visual illustration of the dual problem.

The upper half of Figure 1.1 is even more abstract than its counterpart in the
lower half. While we were able to intuitively identify a myriad of financially
relevant optimisation problems with the primal-side of the graph, for the dual-
side this is substantially less straightforward. The primarily technical nature of
a dual formulation encumbers such immediate identifications. Nevertheless, to
make the dual-side of Figure 1.1 more concrete for a finance-oriented audience,
we (re-)visit the earlier branch of utility-maximisation problems. For this illus-
tration, we assume that the utility-maximising agent faces trading constraints.
Relative to the earlier example, this solely implies that the agent maximises the
same expected utility criterion, however, subject to some additional constraints
with respect to his/her portfolio weights. As a result, not all risk present in
the financial environment can be hedged, and the market is incomplete.

In this situation, it is a well-documented fact that the dual serves to determine
the worst-case equivalent martingale measure.10 To this end, it minimises an
expected conjugate utility criterion over all available equivalent martingale

9It could be the case that the duality gap is non-zero. In that instance, the respective
problems are said to satisfy weak duality. As this is not true for the problems relevant to
this dissertation, we exclude an analysis of this special case.

10Consider e.g. Cvitanić and Karatzas (1992), Bardhan (1994), and Tepla (2000). These
papers demonstrate the relation between a so-called auxiliary artificial market and the
non-unique equivalent martingale measures. For the notion of an equivalent martingale
measure, cf. the theoretical study by Delbaen and Schachermayer (1994).
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Figure 1.3. Dual for utility-maximisation problem. This figure presents a graphical
illustration of the dual-side corresponding to a constrained utility-maximisation problem.
For details on the meaning of this graph and its individual attributes, we refer to section
1.1.2 of this chapter. Likewise, one can consult Chapter 2 and the figures therein.

measures. This operation is represented in Figure 1.1’s upper half by the
dash-dotted arrow. Straightforwardly, the dual objective must be identified
as the conjugate expected utility criterion. The upper curve correspondingly
comprises of all feasible equivalent martingale measures. In compliance with
the horizontally dotted line, as in the primal, we have that the equivalent
martingale measures generate particular values for the agent’s conjugate utility
criterion. Note that the conjugate criterion can be regarded as the mirrored
analog of the agent’s expected utility function. In a way, it quantifies the agent’s
attitude towards the unhedgeable uncertainty and the associated martingale
measures. Ultimately, we observe that the black dot in the middle of the graph
represents the point of minimal expected conjugate utility where the equivalent
martingale measure is optimal, i.e. least-favourable. In the same point, the
primal and dual value functions bind, satisfying strong duality. The relation
between this set of constrained problems and Figure 1.1 is therefore complete.
We have visualised this dual-based relation in Figure 1.3.

1.1.3 Duality Relations

To finalise our visually oriented explanation of convex duality, we turn to the
right- and left-hand sides of Figure 1.1. Apart from the phenomenon of strong
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1.1 What is Duality?

duality and some vague geometric mirroring, it is at this stage not clear how the
primal and dual problems are related to each other. To bridge this provisional
“gap”, the aforementioned sides of the graph prove useful. As addressed in the
beginning of this section, both sides (in)directly pertain to the duality relations.
The duality relations stipulate how the primal control variables analytically
depend on the dual control variables, and vice versa. In particular, if one is in
possession of set of primal control variables, via the duality relations, one is
also in possession of a set of dual control variables. The relations consequently
ensure that maximisation of the primal is equivalent to minimisation of the
dual. This concretely means that acquiring the optimal primal control variables
is equivalent to solving both the primal problem and the dual problem.11 The
relations accordingly “glue together” the primal and dual problems. Note that
the preceding set of claims still holds true for the other direction (dual-primal
instead of primal-dual). The former connection reveals that the duality gap is
an immediate consequence of the duality relations. By means of these relations,
the duality gap namely measures the extent up to which the control variables
are different from the optimal ones.12 In particular, the duality gap grows as
the control variables divert away from the point of optimality. The moment
that one obtains the optimal controls, strong duality holds. This description
concludes the visual illustration of the duality relations.

Due to the analyses around Figures 1.2 and 1.3, we have developed a more
practical understanding of the primal- and dual-sides of Figure 1.1. To make
the duality relations more explicit, we correspondingly (re-)visit the earlier col-
lection of constrained utility-maximisation problems. For this class of problems,
we have already argued that the primal consists in a maximisation procedure
of expected utility over all consumption and portfolio rules. Related to this
primal, the dual minimises an analogous expected conjugate utility criterion
over all equivalent martingale measures. The duality relations should therefore
specify how the investment-consumption choices depend on the martingale
measures, and vice versa. In the context of constrained utility-maximisation,
11Although this is an immediate result of the claim in the main text, we stress the following.

Insertion of the optimal primal control variables into the duality relations results in the
optimal dual control variables. This is also true for the other direction.

12This observation is central to the approximate method developed in Chapter 2. In section
1.3, we provide a brief overview of this method.
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Figure 1.4. Duality for utility-maximisation problem. This figure presents a graphical
illustration of the duality mechanism corresponding to a constrained utility-maximisation
problem. For details on the meaning of this graph and its individual attributes, we refer to
section 1.1 of this chapter. Likewise, one can consult Chapter 2 and the figures therein.

this dependency is established by a so-called auxiliary or artificial market.13

This artificial market directly ensues from the duality relations and plays a sim-
ilar role: linking the primal-side to the dual-side. The auxiliary market relaxes
all trading constraints and is uniquely defined by a dual-feasible martingale
measure. In this market, one is therefore able to derive analytical expressions
for the primal controls. Note that these controls depend by construction on
the dual-linked martingale measures. Put differently, the former analytical
expressions outline duality relations. Through a worst-case characterisation of
the martingale measure defining the auxiliary market, the dual attempts to
make the analytical expressions primal-optimal. Similarly, via an optimal spec-
ification of the same expressions, the primal tries to find the least-favourable

13The concept of an artificial market is developed in the pioneering paper on portfolio-related
convex duality by Cvitanić and Karatzas (1992). In Chapter 2, we make use of this
concept to develop an approximate method.
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1.2 Why is Duality Useful?

martingale measure. The interplay between the preceding two mechanisms
demonstrates how the duality relations operate in practice. This explicitly
shows how Figures 1.2 and 1.3 are linked to each other. For the constrained
utility-maximisation, we are consequently able to “glue” the latter graphs
together and disclose the complete duality mechanism. This is done in Figure
1.4, which spells out a concretised variant of Figure 1.1.

1.1.4 Concluding Remarks

In spite of the overview’s stylised character, we have touched upon all duality-
linked features relevant to a proper understanding of this dissertation in a
general sense. The main purpose of this section was to acquaint the reader
with duality and explain what this technically entails. In doing so, we relied
on visual machinery and primarily aimed to answer the following question:
What is duality? For this purpose, we divided the explanation into two parts.
One part concentrated on the purely technical aspects; and one part analysed
duality in an applied utility-maximisation setup. Based on the ingredients at
hand, our answer to the question central to this section is as follows: Duality
constitutes the technical mechanism revolving around the interplay between a
convex optimisation problem and its corresponding dual formulation. In the
sequel, we attempt to make this interplay more explicit by highlighting the
practical use of duality. We conclude this section by noting that the separate
chapters of this dissertation can all be related to the illustration in Figure 1.1
or particular parts thereof. In fact, all topics concern portfolio-based utility-
maximisation and can therefore be identified with the more tangible illustration
in Figure 1.4. In section 1.3, we explicitly indicate where and how the topics
of these chapters can be situated in both of these illustrations.

1.2 Why is Duality Useful?

In order to answer the question in the header of this section, we visit two
optimisation problems related to this dissertation. Thereby, we predominantly
aim to emphasise how duality techniques may facilitate a retrieval of optimal

11



Chapter 1. Introduction

solutions. This simultaneously helps us to better explain what we do in the
remaining chapters. The first formulation is a utility-maximisation problem
over terminal wealth alone. In this problem, we assume that the investor has
to deal with constraints imposed upon his/her portfolio weights. In section 1.1,
we have addressed a more general version of this problem. This constrained
terminal wealth framework bears direct relevance to the topics of Chapter
2 and Chapter 4. The second formulation is, again, a utility-maximisation
problem, however, over consumption alone. Instead of trading constraints,
we incorporate a habit formation component into the problem specification.
The agent is accordingly assumed to derive utility from the difference between
consumption and this habit component. This additive habit problem bears
immediate relevance to the topic of Chapter 3.14

1.2.1 Trading Constraints

In a terminal wealth problem, an agent maximises expected utility from the
terminal value of his/her wealth process. This problem has gained significant
interest since the seminal contributions by Samuelson (1969) and Merton (1969,
1971). Due to its sole dependence on a terminal wealth variable, the framework
can easily be employed to model a broad variety of financially relevant issues.
For instance, in a pension-related setup, the terminal variable can be identified
as retirement wealth. In that case, the problem may correspond to one in
which a pension fund aims to maximise the total expected utility of all its
participants. Similarly, assuming that the fund operates according to a DC
scheme, the problem can be utilised by a pension fund to calculate its optimal
participant-specific investment policies.15 Outside of the pension context, the
configuration can also be used by individual investors to optimise their portfolio
strategies over the life-cycle. This list of three examples is by far not exhaustive,
see e.g. Bodie et al. (2004), Lim and Wong (2010) and Han and Hung (2012),
and references therein, for additional interpretations in similar setups. As
14In the sequel, we refrain ourselves from providing thorough mathematical arguments and/or

derivations. These are not relevant for the rudimentary overview of this section. For the
mathematics, one can consult the separate chapters of this dissertation. Likewise, one
may consider any of the papers cited in the main text for additional technicalities.

15In Chapter 4, we focus on such a problem.
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1.2 Why is Duality Useful?

individual agents and institutional investors alike are typically required to deal
with solvency and/or liquidity requirements, it is sensible to account for trading
constraints. We therefore include trading constraints in the framework of
interest. The ensuing constrained problem is studied by a.o. Kim and Omberg
(1996), Wachter (2002), and Liu (2006). The problem reads as follows:

sup
{πt}t∈[0,T ]∈AX0

E [U (XT )] . (1.2.1)

Note that this problem corresponds to the lower halves of Figures 1.1 and
1.4. Without expanding too extensively on the mathematics related to (1.2.1),
we note the following. The investment strategy is denoted by πt, and the
corresponding terminal wealth variable is given by XT . That is, πt over the
trading interval, [0, T ], i.e. {πt}t∈[0,T ], generates a specific value for XT . One
may accordingly interpret T > 0 as the retirement age or some terminal
target date. To define the agent’s preferences, U : R → R models his/her
utility function. Last, we observe that AX0 outlines the admissibility set,
which accommodates the above-mentioned trading constraints. Hence, given
some starting capital, X0 > 0, the agent in (1.2.1) tries to select {πt}t∈[0,T ]
in such a manner that E [U (XT )] is maximised. Even though (1.2.1) seems
like a simple and mathematically elegant problem, the inclusion of trading
constraints poses serious technical problems. These problems are related to
the constraint-induced non-uniqueness of the equivalent martingale measure,
cf. Karatzas et al. (1991a), Xu and Shreve (1992), and Detemple (2014). In fact,
for general trading constraints, it is not possible to solve (1.2.1) in closed-form.
This is where duality techniques start to play an important role. In particular,
the dual formulation corresponding to (1.2.1) is given by:

inf
ZT ∈Q,η∈R+

E [V (ηZT )] + ηX0. (1.2.2)

Observe that this problem can be identified with the upper halves of Figures 1.1
and 1.4. As in (1.2.1), we do not elaborate on the mathematics underscoring
(1.2.2). For technical accounts of this result in more general setups, we refer
to Cvitanić and Karatzas (1992), Klein and Rogers (2007), Rogers (2003,
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2013). We emphasise that the problems in (1.2.1) and (1.2.2) are binding in
the optimum, i.e. satisfy strong duality. Notation-wise, it is crucial to note
that ZT represents the so-called state-price price density (SPD). In the absence
of interest rate risk, the SPD process spells out the non-unique equivalent
martingale measure. The set denoted by Q therefore contains all dual-feasible
martingale measures. In (1.2.2), η > 0 stands for the Lagrange multiplier, which
scales the dual-optima towards the regions of feasibility. Due to the technical
nature of η > 0, we ignore its precise function in the duality mechanism. Last,
as the counterpart of U , we have that the function V : R → R specifies the
conjugate utility criterion.16 Following our explanation around Figure 1.3, the
dual in (1.2.2) attempts to select ZT in such a way that E [V (ηZT )] + ηX0

is minimised. This operation generally results in the worst-case martingale
measure from the agent’s point view. At this stage, it is not clear how the
interplay between (1.2.1) and (1.2.2) may facilitate the search for optimal
solutions. To this end, we provide the duality relation(s):

XT = I
(
H−1 (X0)ZT

)
. (1.2.3)

Here, x 7→ I (x) represents the inverse of marginal utility. Note that this
equation corresponds to the left- and right-hand sides of Figures 1.1 and 1.4.
As pointed out in section 1.1.3, this identity is an immediate consequence of
the artificial or auxiliary market. More precisely, one is able to disentangle the
auxiliary environment from the dual formulation in (1.2.2). In this environment,
XT identifies the optimal terminal wealth process. The H−1 (X0) term follows
from the Lagrange multiplier and ensures that XT is budget-consistent with the
agent’s initial endowment, X0. By means of hedging arguments, we are in turn
able to recover the optimal trading strategy, {πt}t∈[0,T ]. In keeping with the
nature of a duality relation, (1.2.3) states how optimal wealth depends on the
martingale measure, and vice versa. Due to the intimate link between XT and
{πt}t∈[0,T ], it is clear that the same relation holds with respect to the portfolio

16Formally speaking, the definition of V : R → R is given by the celebrated Legendre-Fenchel
transform: V (x) = supz∈R {U (z) − xz}, for all x ∈ R. The inequality inherent in this
transform, U (z) ≤ V (x) + xz for all x, z ∈ R, generally manages to generate the desired
dual formulations. Note that V (x) + xz supplies an upper bound U (z). In Chapter 3,
we visit a problem for which this inequality falls short in identifying a dual.
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weight(s). To make sure that the auxiliary-optimal control variables maximise
(1.2.1), the worst-case ZT must be determined. The latter process coincides
with the dual-optimal martingale measure. By virtue of the duality mechanism,
we have therefore been able to reduce the intricate dynamic problem in (1.2.1) to
a search for martingale measures. Observe that this search hinges on analytical
expressions for the auxiliary primal controls. Although the characterisation
of ZT may pose different difficulties, the dual is in most cases easier to solve
than the primal. We refer to Brennan and Xia (2002) and Sangvinatsos and
Wachter (2005) for concrete examples. In addition to this, we underline that
the closed-form expressions are tremendously valuable and informative. The
identity in (1.2.3) explicitly demonstrates what the optimal controls look like up
to the exact specification of ZT . Irrespective of ZT ’s specification, the duality
relations consequently disclose the true dynamics of the optimal controls. As
such, the auxiliary solutions bring us much closer to an identification of the
optima in closed-form. This demonstrates the value of duality and how it may
facilitate a retrieval of optimal solutions.17

1.2.2 Habit Formation

In the additive habit model, an agent maximises expected utility from the
difference between consumption and the habit level. The habit level depends
on the agent’s past consumption decisions and is compatible with different
interpretations. As a result, relative to (1.2.1), terminal wealth can be ignored
in outlining the target of optimisation. This problem is pioneered by a.o. Con-
stantinides (1990), and Detemple and Zapatero (1991). The additive habit
problem can be employed to model a variety of economically relevant situations.
To this end, it is important to note that most conventional utility functions
only admit strictly positive arguments. The additive agent is consequently
17In Chapter 2, we analyse a similar problem involving consumption. For the formulation

central to Chapter 4, we relax all trading constraints. In the absence of such constraints,
duality techniques suggest that the dynamic problem in (1.2.1) is identical to the following
static one: supXT s.t. E[XT ZT ]≤X0 E [U (XT )]. Here, due to the fact that all available
risk is traded, ZT is uniquely defined. This static variational formulation is significantly
easier to solve than its dynamic counterpart. The former dynamic-static transformation
can be attributed to the martingale duality method developed by Pliska (1986), Karatzas
et al. (1987), Cox and Huang (1989, 1991).
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required to keep his/her consumption levels above the habit component at all
times. On the grounds of this lower bound, the literature on additive models
interprets the habit component as a subsistence level. From macro-related
perspectives, interpretations of this form are straightforward and plausible. It
enables economists to analyse the society-wide savings/consumption patterns
needed to maximise a population’s “happiness” whilst satisfying a minimum
wage requirement. Alternatively, some studies identify the habit component as
a standard of living. In a micro-related setup, this requires a household to con-
tinuously consume more than the level to which they have become accustomed.
While this requirement is practically unrealistic, it can tell us something about
the behaviour necessary to preserve such a situation. For studies on both
interpretations, see e.g. Campbell and Cochrane (1999), Muraviev (2011), and
Yu (2015). The additive habit problem is characterised by:

sup
{ct,πt}t∈[0,T ]∈AX0

E

[∫ T

0
U (ct − ht) dt

]
. (1.2.4)

In the spirit of (1.2.1), this problem can be aligned with the lower halves of
Figures 1.1 and 1.4. Refraining ourselves from providing rigorous mathematical
arguments, we note the following. The agent’s consumption behaviour is repre-
sented by ct, and πt denotes the corresponding investment strategy. Despite
the exclusion of XT from (1.2.4), the agent is still required to invest so as to
finance his/her consumption patterns. For this reason, maximisation takes
place with respect to both ct and πt. As before, T > 0 can be interpreted as
the investor’s retirement age or some pre-fixed target date. The preferences
are described by the same utility function U : R → R, and AX0 denotes the
admissibility set adjusted for consumption. Hence, given some endowment,
X0 > 0, the agent in (1.2.4) attempts to select {ct, πt}t∈[0,T ] in such a way
that E[

∫ T
0 U (ct − ht) dt] is maximised. Solving this seemingly easy problem is

considerably complicated by the inclusion of ht. The habit component namely
depends on past consumption decisions: ht = e−αth0 +β

∫ t
0 e

−α[t−s]csds, for all
t ∈ [0, T ]. Here, α, β > 0 characterise person-specific parameters related to the
agent’s “degree” of habit formation. Due to the aforementioned dependence,
rather than optimally choosing ct at each point in time, one has to account
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for the ensuing effect on future values of ht. This phenomenon is known as
path-dependency. It encumbers an immediate retrieval of the optimal solu-
tions to (1.2.4), cf. Detemple and Karatzas (2003), Bodie et al. (2004), and
Polkovnichenko (2007). Hence, it may be clever to resort to duality applications
instead. The dual formulation corresponding to (1.2.4) lives by:

inf
η∈R+

E

[∫ T

0
V
(
ηM̂t

)
dt
]

+ ηX̂0. (1.2.5)

We stress that this problem corresponds to the upper halves of Figures 1.1
and 1.4. Following our approach to the primal, we do not expand on the
technicalities relevant to (1.2.5). For mathematical proofs of this duality
result, we refer the reader to Schroder and Skiadas (2002) and Yu (2015). As
in section 1.2.1, we underline that the value functions of (1.2.4) and (1.2.5)
bind in the optimum, i.e. satisfy strong duality. In this dual problem, M̂t

and X̂0 are defined as follows: M̂t = Mt + βE[
∫ T
t
e−(α−β)[s−t]Msds] and

X̂0 = X0 − h0E[
∫ T

0 e−(α−β)sMsds], for all t ∈ [0, T ]. Here, Mt represents the
SPD process. Note that this process is uniquely defined, due to the implied
market completeness. Optimisation in (1.2.5) takes place over η > 0 alone. This
parameter identifies the Lagrange multiplier and serves the same scaling purpose
as its “twin” in (1.2.2). Likewise, the conjugate utility function, V → R → R,
is identical to the one in the aforementioned problem. Observe the similarities
between the analytical structures of the different dual formulations in (1.2.2)
and (1.2.5).18 Nevertheless, whereas we were able to couple financial intuition
to the formulation in (1.2.2), for the dual at hand this is notably harder. The
technical function of η makes it difficult to examine (1.2.5) along well-defined
economic lines. Notwithstanding, on the basis of the duality relations, we are
able to derive an auxiliary market from (1.2.5). In this auxiliary market, the
optimal consumption problem is specified according to:

sup
{ĉt}

t∈[0,T ]
s.t. E

[∫ T

0
ĉtM̂t

]
≤X̂0

E

[∫ T

0
U (ĉt) dt

]
. (1.2.6)

18These similarities follow from the nature of the Legendre-Fenchel transform, V (x) =
supz∈R {U (z) − xz}, for all x ∈ R. The analytical structures of both formulations are
direct consequences of the same inequality inherent in this transform.
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We define ĉt as: ĉt = ct − ht, for all t ∈ [0, T ]. In conformity with the artificial
market from section 1.2.1, the present auxiliary environment implicitly links
the primal to the dual. The problem in (1.2.6) therefore corresponds to the
left- and right-hand sides of Figures 1.1 and 1.4. Note that this auxiliary
formulation is “static” and omits analytically cumbersome path-dependency.
It is static in the sense that agent is solely concerned about ĉt over [0, T ].19

The optimal value for the corresponding trading strategy, πt, can always
be deduced from the specification(s) of ĉt and/or ct. Due to the preceding
features of the auxiliary formulation, acquiring optimal solutions to (1.2.6)
is quite straightforward. More specifically, the optimal solution is given by:
ĉt = I(ηM̂t), for all t ∈ [0, T ]. Here, x 7→ I (x) spells out the inverse of marginal
utility. To correspondingly procure ct, we can use that the following holds:
ct = ĉt + e(β−α)th0 + β

∫ t
0 e

(β−α)[t−s]ĉsds, for all t ∈ [0, T ]. Recall that πt can
be obtained from ct via particular hedging arguments. Clearly, this identity
stipulates how the primal variables, ct and πt, depend on the dual control, η,
and vice versa. Hence, the former equation outlines a valid duality relation.
Unlike (1.2.3), we can employ this duality relation to derive the solutions
to (1.2.4) in closed-form. To accomplish which, one solely has to obtain the
multiplier, η, from E[

∫ T
0 I(ηM̂t)M̂tdt] = X̂0. Hence, using duality techniques,

we have been able to solve the mathematically troublesome problem (1.2.4) in
complete analytical form. This, again, demonstrates the value of duality and
how it may facilitate a retrieval of optimal solutions.20

1.2.3 Brief Discussion

The benefits of duality are not limited to those highlighted by the previous set
of two examples. In the domain of portfolio optimisation, there are numerous
other situations wherein duality proves useful. For example, in markets with
19This phenomenon is referred to as time-separability, cf. Detemple and Karatzas (2003).
20In Chapter 3, we concentrate on a problem involving multiplicative habit formation. The

formulation central to section 1.2.2 is therefore closely related to the topic of the latter
chapter. We would like to point out that the transformation of (1.2.4) to (1.2.6) is
indirectly analysed by Schroder and Skiadas (2002). The authors relate the two problems
to each other via a mathematically defined isomorphism. In doing so, they term the
auxiliary environment the “dual” market, which they employ to unravel the exact primal-
dual relations. For concrete applications of this isomorphism, we refer to e.g. Munk
(2008), van Bilsen and Laeven (2020), and van Bilsen et al. (2020b).
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frictions, duality techniques have given rise to the convenient notion of a
shadow price. This process simplifies the derivation of optimal solutions and
expedites the burdensome procedure of verification, cf. Kallsen and Muhle-
Karbe (2010), Choi et al. (2013), and Bichuch and Guasoni (2018). Similar
upsides apply to the computation of super-replication prices in comparable
markets, cf. Cvitanić and Karatzas (1996), Cvitanić et al. (1999), and Campi
and Schachermayer (2006). Furthermore, due to its close relation to utility-
maximisation, duality techniques are also of fundamental importance to the
literature on partial hedging. The papers by a.o. Pham (2002), Bouchard
et al. (2004), and Kim (2012) derive the corresponding dual formulations and
exemplify this importance along applied lines. On a more secondary level,
duality techniques may bring forth new methods or improve existing ones. The
approximating routines developed by e.g. Haugh et al. (2006), Brown et al.
(2010), and Weiss (2020) directly hinge on the duality-induced artificial market.
In Bick et al. (2013), the duality gap is employed to measure the accuracy of
their approximate solutions. This list is by far not exhaustive. Even though we
have only supplied anecdotal evidence of duality’s use, the gist of its general
importance should be clear. In addition to the upsides listed at the beginning
of this chapter, we thereby hope to have shed sufficient light on the many
possible answers to the question: Why is duality useful?

1.3 Duality in this Dissertation
We conclude this introductory chapter with an overview of the three chapters
central to this dissertation. Note that these chapters comprise of the primary
research output. All three “core” chapters pertain to duality in either a direct
or an indirect manner. Interestingly enough, we are able to relate each chapter
to a different part of Figure 1.1. Translated into theory, this means that each
chapter touches upon a different feature of duality. To make this clear, as
pointed out in section 1.1.4, we subsequently indicate where and how we can
position the distinct chapters in Figure 1.1. In a similar sense, we are able to
categorise the chapters into three connected topics on the subject of utility-
maximisation. This categorisation is primarily based on the different preference
qualifications and corresponding targets of optimisation. In the sequel, we visit

19



Chapter 1. Introduction

the separate chapters and address their content in more detail. Moreover, we
comment on their contributions to the literature on portfolio optimisation and
related duality techniques/applications. We finalise this introductory section
with a general outline of the remainder of this dissertation.

1.3.1 Chapter 2

In the first chapter of this dissertation, we focus on a constrained utility-
maximisation problem similar to the one in (1.2.1). We modify the preceding
formulation to additionally account for possibly non-traded labour income and
utility over consumption. The ensuing model specification is therefore general
enough to cover many different financial/economic situations. Concerning the
category of utility-maximisation, we observe that the target of optimisation
involves utility over both terminal wealth and consumption.21 From section
1.2.1, we know that constrained problems of this form may be difficult to solve
analytically. This is in the first place attributable to the issues emanating
from the non-uniqueness of the equivalent martingale measures. To obtain
optimal solutions, one can resort to numerical applications, e.g. backward
induction techniques or grid-search routines. However, such methods can be
computationally demanding, and generate optima that lack the transparency of
closed-form expressions. Due to the latter, practical execution/implementation
of the optimal policy rules may be cumbersome.

To circumvent these downsides, in Chapter 2, we develop an approximate
dual-control method. Its mechanism bears resemblance to the duality-based
routines proposed by Haugh et al. (2006), Brown et al. (2010), Brown and
Smith (2011), Ma et al. (2017, 2020), Weiss (2020), and Hambel et al. (2021).
More specifically, it constitutes a generalisation of the SAMS (Simulation of
Artificial Markets Strategies) scheme developed by Bick et al. (2013). Our
method primarily relies on the artificial market specification to construct
21The utility functions are assumed to be state-dependent. Preferences are accordingly

allowed to vary with respect the state of the economy. In addition to this, both spec-
ifications involve so-called benchmark processes. These processes can be modelled as
person-specific targets. Valid benchmarks would, for instance, be one’s labour income
or national GDP. This makes the framework amenable to applications in the domain of
prospect theory, cf. Kahneman and Tversky (1979). In Chapter 4, we make explicit use
of a loss aversion-linked reference-dependent preference qualification.
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analytical approximations. Most of this chapter therefore relates to the left-
and right-hand sides of Figure 1.1. The method is in principle three-fold and
works as follows. First, it addresses the toughest part, and approximates the
dual-linked martingale measure. For this purpose, the method restricts the
feasible set of martingale measures to a tractable subspace. In accordance
with this restriction, it re-optimises the dual. Second, it uses the artificial
market to transform the approximate dual control into a primal counterpart.
As this counterpart is typically not admissible in the financial environment,
the method makes use of a projection operator. Consequently, at this stage,
the method is in possession of feasible approximate analytical primal and dual
controls. Third, to measure the accuracy of these approximations, it examines
the magnitude of the corresponding duality gap. This gap can be quantified
in terms of monetary units that admit clear financial interpretations. In the
examples that we consider, the method results in relatively small welfare losses.
Hence, we conclude that our dual-control approximate method is capable of
rendering closed-form near-optimal investment-consumption policies.

1.3.2 Chapter 3

In the second chapter of this dissertation, we study a utility-maximisation
problem involving habit formation. Unlike the formulation in (1.2.4), we make
use of a multiplicative habit model. The agent is correspondingly assumed
to derive utility from the ratio of consumption to the habit component. As
this ratio is strictly positive, irrespective of one’s consumption behaviour, we
are able to relax the additive-specific lower bound. That is, consumption is
not required to exceed the habit level at all times. Due to the omission of
this requirement, the multiplicative habit model gains significant relevance
from a micro-related perspective. In particular, we are now able to interpret
the habit level as a standard of living unique to some household. Adverse
changes in the financial circumstances can namely urge a household to scale
down consumption below the level to which they have become accustomed.
Regarding the category of utility-maximisation, we note that the objective of
optimisation exclusively involves utility over consumption. The specification of
this model dates back to Abel (1990), and has been economically advocated by
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Carroll (2000) and Carroll et al. (2000). In section 2.3 of Rogers (2013), the
author recommends the model from a theoretical point of view.

The objective of the multiplicative habit problem is not fully concave and
involves irremovable path-dependency. The latter implies that it is not possible
to transform the target of optimisation into a time-separable analog. In fact,
Schroder and Skiadas (2002)’s isomorphism only manages to transfer the path-
dependency from the objective to the constraint qualifications. As a result of
these two attributes, the conventional Lagrangian duality techniques fail to
generate a dual formulation. In more precise terms, the ordinarily employed
Legendre transform solely applies to time-separable problems with concave
objective functions. For this reason, to the best of our knowledge, there is
no dual problem known for the multiplicative habit model. To fill this gap in
the literature, in Chapter 3, we derive a mathematical formulation of the dual
corresponding to this multiplicative model. Most of this chapter is consequently
related to the upper half of Figure 1.1. In order to derive the dual, we resort
to the less well-known notion of Fenchel duality. Contrary to the Legendre
transform, Fenchel is able to deal with path-dependent transformations of
the relevant control variables.22 This form of duality renders an analytically
defined dual formulation and simultaneously proves that strong duality holds.
Complementary to this fundamental duality result, we develop an approximat-
ing mechanism similar to the one of Chapter 2. We test the mechanism on
the approximation proposed by van Bilsen et al. (2020a). This approximation
is proven to be accurate under a wide variety of circumstances. The ensuing
welfare losses are confirmed to be small by our novel method.

1.3.3 Chapter 4

In the third and final “core” chapter, we analyse an unconstrained utility-
maximisation problem nearly identical to the one in (1.2.1). The main difference
consists in the identification of the objective as a hedging criterion. Although it
22While Fenchel duality is able to cope with path-dependent transformations, its statement

only applies to fully concave optimisation problems. Therefore, we are required to re-define
the control variables. Using a simple logarithmic transformation of both consumption and
the habit component, we are able to “concavify” the original problem. We consequently
arrive at an objective that can be included under the aegis of Fenchel duality.
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formally qualifies as a preference function, we namely employ the so-called lower
partial moments (LPM) operator as the target of optimisation. This operator
plays a central role in the literature on partial hedging, cf. Sekine (2004), Xia
(2005), and Choi and Jonsson (2009). In that context, the LPM criterion
is used to model situations wherein one is required to hedge a pre-defined
claim with insufficient funds. Utility-maximising agents may be confronted
with similar situations. To this end, let us postulate that an agent has in
mind some goal with respect to his/her terminal wealth. This goal, target
or benchmark is ordinarily referred to as the reference level. In practice, due
to underfunding problems, it is often the case that the reference level is not
attainable without taking risk. This is specifically true for agents in the pension
industry. Hence, to optimise the likelihood of ultimately acquiring the reference
level, it is sensible to resort to partial hedging criteria. Within the confines
of a terminal wealth problem, we correspondingly consider an LPM operator
that incorporates a person-specific reference level. It is therefore clear that the
value function solely includes utility over terminal wealth.

Chapter 4 analyses the aforementioned problem against the background of
a defined contribution (DC) pension scheme. The value for terminal wealth
can consequently be aligned with retirement wealth. Likewise, we identify
the reference level as a person-specific life annuity. To model the market’s
return dynamics, we rely on the financial environment proposed by Koijen
et al. (2009). This model assumes an affine-term structure for the interest rates
and incorporates four distinct risk-drivers. In addition to this, it distinguishes
nominal from real returns. To the best of our knowledge, there are no studies
available that consider the LPM problem in such an applied setup. The litera-
ture on partial hedging is strongly oriented towards the theory, see e.g. Pham
(2000, 2002), Jonsson and Sircar (2002), and Nygren and Lakner (2012). We
analytically solve the LPM-linked terminal wealth problem by means of the
martingale technique. Whereas this technique directly follows from duality
machinery, most of this chapter revolves around the lower half of Figure 1.1.
Due to the affine nature of the market model, it is not possible to disclose the
distributional properties of the unique SPD process. For this reason, we must
make use of the Fourier transform, cf. Carr and Madan (1999), to obtain the
optimal policy rules. Our numerical findings show that the LPM operator can
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improve the likelihood of achieving one’s pension goals. In spite of this great
performance, the outcomes also suggest that the optimal trading strategies
may be hard to implement. Moreover, we demonstrate that the results are
highly sensitive to the estimates for the market prices of risk.

1.3.4 Outline

To closely follow the academic conventions, we briefly outline this dissertation’s
roadmap. In Chapters 2, 3 and 4, we present the main research output. For
short summaries on the subjects of these chapters, one may re-consult this
introductory section or the abstracts provided at the start of each chapter.
In a similar way, as a point of reference, it could be useful to re-consider
Figure 1.1 or Figure 1.4 prior to reading these core chapters. For this purpose,
let us recall that Chapter 2 concerns the left- and right-hand sides of both
figures; Chapter 3 touches upon the corresponding upper halves; and Chapter
4 predominantly pertains to the associated lower halves. The research output
accordingly covers all duality-linked domains relevant to portfolio optimisation.
Finally, in Chapter 5, we conclude this dissertation. We concretely re-examine
the conclusions drawn from the core chapters. In addition to this, we provide
(i) a more general statement on the overall contribution of this dissertation to
the literature, and (ii) a short outlook on future branches of possibly relevant
research. As final attachments, Duality Methods for Stochastic Optimal Control
Problems in Finance includes a bibliography, a summary of this dissertation, a
valorisation or impact paragraph, and the author’s curriculum vitae.
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2
Near-Optimal Asset Allocation in

Financial Markets with Trading
Constraints

Adapted from: Kamma, T., & Pelsser, A. (2022c). Near-optimal asset
allocation in financial markets with trading constraints. European Journal of
Operational Research, 297 (2), 766–781.
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Abstract
We develop a dual-control method for approximating investment strategies
in multidimensional financial markets with convex trading constraints. The
method relies on a projection of the optimal solution to an (unconstrained)
auxiliary problem to obtain a feasible and near-optimal solution to the original
problem. We obtain lower and upper bounds on the optimal value function
using convex duality methods. The gap between the bounds indicates the
precision of the near-optimal solution. We illustrate the effectiveness of our
method in a market with different trading constraints such as borrowing, short-
sale constraints and non-traded assets. We also show that our method works
well for state-dependent utility functions.
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2.1 Introduction

In most cases, investment problems do not allow for an expression of the
optimal trading and consumption strategies in closed-form. This is especially
true for investment problems with trading constraints. Due to the presence
of these constraints, there does not exist a unique financially fair valuation
of assets, i.e. a risk-neutral pricing measure. In fact, an infinite amount of
such measures is available. The investor therefore faces the task of selecting a
risk-neutral valuation of the (partially) unhedgeable assets, in addition to the
optimisation of his/her utility from trading and consumption. This selection of
the optimal risk-neutral valuation is, in general, analytically troublesome, and
obstructs an expression of the solutions to constrained investment problems
in closed-form.1 Since analytical solutions (i) clarify the precise roles played
by the model parameters, (ii) simplify practical implementations, and (iii)
facilitate comparative statistical analyses, see e.g. van Bilsen et al. (2020a), it
is beneficial to have closed-form solutions.

The papers by Kim and Omberg (1996), Wachter (2002), Liu (2006), and
Battauz et al. (2015b) address and demonstrate the analytical issues involved
with solving constrained investment problems. To circumvent these analytical
difficulties and still be able to obtain solutions, several approximate methods
have been developed. The nature of these methods can roughly be divided
along the two following lines: simulation-based ones that render numerical
solutions, cf. Cvitanić et al. (2003), Detemple et al. (2003), Brandt et al. (2005),
and Keppo et al. (2007)2; and those that strive for closed-form outcomes using
duality methods, cf. Haugh et al. (2006), Brown et al. (2010), Brown and
Smith (2011), Ma et al. (2017, 2020), and Weiss (2020). We concentrate in
this chapter on the last branch of routines. Amongst this set of methods, the
one proposed by Bick et al. (2013), SAMS (Simulation of Artificial Markets

1Section 6.1 in Detemple (2014) demonstrates that the optimal risk-neutral pricing measure
is ordinarily characterised by a forward-backward stochastic differential equation (FBSDE).
For the roles that FBSDE’s play in asset allocation problems, we refer to El Karoui et al.
(1997) and Detemple and Rindisbacher (2010).

2For practical implementations of the widely applied numerical grid-search methods, see
e.g. Longstaff (2001), Haliassos and Michaelides (2003), and Cocco et al. (2005). We refer
to Schröder et al. (2013) for a more comprehensive overview of the available simulation-
based numerical schemes.
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Strategies), stands out in terms of analytical transparency and accuracy. Their
method makes use of convex duality techniques.3 This technology enables one
to solve an auxiliary problem, in which one optimises over the feasible risk-
neutral pricing measures instead of over the admissible trading and consumption
strategies. Each measure implies a pair of closed-form trading and consumption
policies via the so-called barrier cone. In fact, by duality principles, the optimal
(minimising) pricing measure implies optimal and admissible (maximising)
trading and consumption rules. However, the optimisation of the auxiliary
problem itself is, in general, analytically difficult.

To bypass the analytical difficulties involved with specifying the optimal pricing
measure, and to also retain closed-form solutions, Bick et al. (2013)’s SAMS
method uses a twofold approximating scheme: (i) a tractable approximation
of the risk-neutral pricing measure, and (ii) a projection of the analytical
trading and consumption strategies. The scope of application of the SAMS
method concerns setups with quadratic or affine returns, specific definitions
of the trading constraints, and CRRA preferences. Guasoni and Wang (2020)
propose a variant of the SAMS method for optimal consumption problems,
which is additionally able to cope with investment opportunities that depend
on Markovian state variables. To enlarge the scope of application even further,
in this chapter we develop an approximate method that generalises the method
by Bick et al. (2013), such that it is applicable to problems with (i) general
return dynamics with non-quadratic and non-affine structures that admit state
variables, (ii) general trading and liquidity constraints, and (iii) state-dependent
utility functions that are (possibly) specified over the real line (e.g. exponential
utility functions) and embed a stochastic benchmark. As for the relevance
of the fact that our method works as well for item (iii), we refer to Battauz
et al. (2011) and Battauz et al. (2015a), who address the economic appeal of
state-dependent utility functions and their complicating effect on the recovery
of analytical solutions.

We derive results for a more general class of models, and modify Bick et al.
(2013)’s routine. In particular, the first step of our approximate method

3The convex duality methodology and the related (unconstrained) artificial market theory
are developed by Karatzas et al. (1991a), Cvitanić and Karatzas (1992), and Xu and
Shreve (1992).
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consists of restricting the space containing all feasible pricing measures to a
tractable convex subspace. Then, we approximate the optimal pricing measure
by optimising over this subspace. The optimal pricing measure implies a unique
closed-form expression for the trading and consumption policies. However, due
to sub-optimality of the approximate measure, these controls are inadmissible.4

Therefore, the second step of our approximate method consists of projecting
the trading and consumption policies to be admissible. Correspondingly, we
use the inadmissible policies as a guide for obtaining admissible closed-form
near-optimal solutions. As a result, we acquire closed-form approximations to
the optimal investment and consumption rules. By convex duality principles,
the approximation provides a so-called duality gap. The magnitude of this
gap decreases with the accuracy of the approximation. Hence, to evaluate the
accuracy of the approximated policies, we can use the magnitude of the duality
gap. The approximate asset allocation and consumption rules therefore come
with a hard guarantee concerning their precision.

To illustrate the effectiveness of our method in a concrete setup, we use a
modified version of Cocco et al. (2005)’s financial market model. This model
contains a cash account, two assets and labour income. The changes in labour
income cannot be fully hedged. Furthermore, we assume that the agent has
a state-dependent utility function, where utility is specified in terms of the
ratio of terminal wealth (and consumption) relative to a stochastic price index.
Additionally, we replace utility from terminal wealth in their setup by Chen et al.
(2011)’s SAHARA function, and enlarge its asset mix by adding one asset. The
objective of the agent is to maximise expected utility by selecting a consumption
and trading strategy over the life-cycle, under trading constraints imposed by
the non-traded labour income and/or price inflation. We study three different
specifications of these constraints, which represent various economically relevant
situations. For all three setups, closed-form solutions are not available. To
nevertheless acquire closed-form solutions, we apply our approximate method.5

4Unless the contracted subspace contains the optimal pricing measure, the approximation
implies trading and consumption rules that are inadmissible, see e.g. Proposition 12.1 in
Cvitanić and Karatzas (1992).

5The SAHARA qualification is specified over the real line, and is therefore illustrative for
one of the elements that differentiates our method from Bick et al., 2013’s. The three
definitions of the constraints involve a requirement to maintain wealth above zero, as well
as impediments to trade, short-sale and borrow. Accordingly, these manage to adequately
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The outcomes show that the bounds on the annual welfare losses, suffered due
to implementation of the approximate rules, vary between 0.000% and 0.051%
of the investor’s initial amount of wealth. These welfare losses are negligibly
small, which demonstrates that the method can be stable, and may be capable
of rendering near-optimal strategies.

The remainder of the chapter is structured as follows. Section 2.2 introduces
the financial market model. Subsequently, section 2.3 establishes the theoretical
background with regard to convex duality and constrained investment prob-
lems. Section 2.4 specifies the approximate method, and provides a numerical
evaluation thereof. Finally, section 2.5 concludes.

2.2 Model Setup

In this section, we introduce and revise some existing concepts/results that are
necessary for the remainder of the chapter. First, we introduce the financial
market model. Second, we outline the investment problem. This problem relies
on state-dependent utility functions that incorporate benchmark processes. As
a result, these functions are more general than the conventional ones. We
therefore analyse these functions in detail.

2.2.1 Financial Market Model

Our model forms a combination of the markets in Cuoco (1997) and Detem-
ple and Rindisbacher (2010)’s section 2.1. Let T > 0, and fix a probabil-
ity space (Ω,F ,F,P), on which an RN -valued standard Brownian motion,
{Wt}t∈[0,T ], is specified. Here, P represents the physical probability measure,
and F = {Ft}t∈[0,T ] denotes the P-augmentation of Wt’s canonical filtration,
{FW

t }t∈[0,T ]. Henceforth, (in)equalities between stochastic processes are un-
derstood in a P-a.s. sense.

We outline a market, M, that consists of an investor who continuously trades
over [0, T ] in a riskless instrument and N risky assets, i.e. stocks. The risk-free

demonstrate the other distinguishing attribute(s).

30



2.2 Model Setup

asset reads
dBt
Bt

= rtdt, B0 = 1, (2.2.1)

where rt defines the R-valued and Ft-progressively measurable instantaneous
interest rate. We assume here that rt ∈ D1,2 ([0, T ]) holds. Here, D1,2 ([0, T ])
represents the so-called Sobolev-Watanabe space. This space contains all
L2 (Ω × [0, T ])-processes that are Malliavin differentiable, cf. Karatzas et al.
(1991b) and Nualart (2006). The price processes for the N risky assets follow
the following stochastic differential equation (SDE):

dSi,t
Si,t

= µi,tdt+ σ⊤
i,tdWt, Si,0 = 1, (2.2.2)

in which µi,t represents the R-valued expected return, and σi,t denotes the RN -
valued corresponding volatility process: both processes are Ft-progressively
measurable. We postulate that ∥µt∥RN ,Tr(σtσ⊤

t ) ∈ L1 ([0, T ])N , in which
µt ∈ RN has entries µi,t, and σt ∈ RN×N rows σi,t, i = 1, . . . , N . In addition
to this, we suppose that σt fulfills the strong non-degeneracy assumption,
ϕ⊤σtσ

⊤
t ϕ ≥ ϵ ∥ϕ∥2

RN for all ϕ ∈ RN and some ϵ > 0, which ensures that σt is
invertible. The space of all p-integrable RN -valued Ft-progressively measurable
processes is given by Lp ([0, T ])N ; the space of all such processes with finite
expectations reads Lp (Ω × [0, T ])N .

In the absence of unhedgeable risk, by Delbaen and Schachermayer (1994), we
know that there exists a unique state price density (SPD), {Mt}t∈[0,T ]. Let
λt := σ−1

t (µt − rt1N ), then Mt follows for all t ∈ [0, T ]

Mt = exp
{

−
∫ t

0
rsds− 1

2

∫ t

0
∥λs∥2

RN ds−
∫ t

0
λ⊤
s dWs

}
, (2.2.3)

where we assume that λt ∈ D1,2 ([0, T ])N , and in which {Bt}t∈[0,T ] serves as
numéraire. As a result of λt ∈ D1,2 ([0, T ]), λt satisfies Novikov’s condition:
E
[
exp

(
1
2
∫ T

0 ∥λs∥2
RN ds

)]
< ∞, cf. Karatzas and Shreve (2012). Observe that

Mt may serve to price traded assets: e.g. {MtSt}t∈[0,T ] is a P-martingale with
respect to {Ft}t∈[0,T ].

The finite-horizon investor in M receives a continuous stream of non-negative
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stochastic labour income over [0, T ]. This random endowment is exogenous
and evolves as:

dYt
Yt

= µY,tdt+ σ⊤
Y,tdWt, Y0 ∈ R+, (2.2.4)

where we assume that expected income growth, µY,t, and income volatility, σY,t,
satisfy µY,t, σi,Y,t ∈ D1,2 ([0, T ]) for all entries, i = 1, . . . , N , of the RN -valued
vector σY,t. As a consequence, the income process fulfills Yt ∈ L2 ([0, T ]), see
El Karoui and Jeanblanc-Picqué (1998).

The agent’s wealth process is endogenously determined by consumption, ct, and
the allocation to assets, πt. We let {ct}t∈[0,T ] be the R-valued Ft-progressively
measurable consumption process and let {π0,t, πt}t∈[0,T ] be the RN+1-valued
Ft-progressively measurable portfolio process. For a fixed initial endowment
X0 ∈ R+, the dynamic wealth process of the investor follows:

dXt = π0,tB
−1
t dBt + π⊤

t diag (St)−1 dSt − (ct − Yt) dt

= π0,trtdt+ π⊤
t (µtdt+ σtdWt) − (ct − Yt) dt, X0 ∈ R+.

(2.2.5)

We call a trading-consumption pair {ct, π0,t, πt}t∈[0,T ] admissible if it satisfies:
Xt = π0,t + π⊤

t 1N ≥ −C,
∫ T

0 π⊤
t σtσ

⊤
t πtdt < ∞,

∫ T
0
∣∣π⊤
t σtλt + rtXt

∣∣dt < ∞,
and E[

∫ T
0 |ct|2 dt] < ∞, for some C ∈ R+.6 We denote the class of admissible

pairs by AX0 .

Finally, let us introduce a non-empty, closed and convex set K ⊆ RN+1

that comprises of the constraints enforced on (π0,t, πt) in a dt⊗ P-a.e. sense.
Accordingly, we define ÂX0 as the set of all admissible trading-consumption
pairs, {ct, π0,t, πt}t∈[0,T ] ∈ AX0 , such that (π0,t, πt) ∈ K holds dt⊗ P-a.e. We
assume that 0N+1 ∈ K holds for technical purposes. As in Haugh et al. (2006),
we note that K is constant, but it can as well be made dependent on time and
the values of exogenous (state) variables.

6Most setups require C = 0, cf. He and Pages (1993), Koo (1998), and Cvitanić et al. (2001).
As in e.g. El Karoui and Jeanblanc-Picqué (1998), Owen and Žitković (2009), and Dybvig
and Liu (2010), we conversely allow the finite-horizon investor to borrow against future
labour income, with the possibility of obtaining terminal debt. Consistent with this, we
specify the investor’s preferences.

32



2.2 Model Setup

2.2.2 Utility Function and Problem Description

The economic environment M consists of a finite-horizon investor who is at
t = 0 equipped with a prefixed endowment X0 ∈ R+, and who retires at
t = T . Over the course of the trading interval, [0, T ], this individual aims
to maximise expected working life utility from consumption and expected
utility from terminal wealth by holding a continuously rebalanced portfolio.
We assume that the investor compares consumption and terminal wealth to
two different individual-specific stochastic benchmark processes. In particular,
the agent derives utility from consumption and terminal wealth, in relation to
these benchmark processes. These benchmarks with respect to the endogenous
rules are completely exogenous and evolve according to the following SDE’s:

dΠi,t = µΠ,i,tdt+ σ⊤
Π,i,tdWt, Π0 ∈ R. (2.2.6)

We assume (µΠ,i,t, σΠ,i,t) ∈ D1,2 ([0, T ]) × D1,2 ([0, T ])N , for i = 1, 2. The
economic interpretation of these stochastic benchmarks could vary from national
GDP to the labour income of one’s neighbour, provided that these remain
unaffected by the finite-horizon investor’s decisions (exogenous). The utility-
maximising investor compares {ct}t∈[0,T ] to {Π1,t}t∈[0,T ], and XT to Π2,T .
We stress that our framework allows the latter semi-martingale benchmark
processes to attain values on the entire real line.

The utility-maximising investor faces the following dynamic stochastic optimal
control problem:

Jopt
P

(
X̄0
)

= sup
{π0,t,πt,ct}t∈[0,T ]∈ÂX0

E

[∫ T

0
u (t, ct,Π1,t) dt+ U (XT ,Π2,T )

]

s.t. dXt = π0,trtdt+ π⊤
t (µtdt+ σtdWt) − (ct − Yt) dt,

(2.2.7)
for all X̄0 := [X0, Y0]⊤ ∈ R2

+ and two utility functions u : [0, T ]×R+×R+×Ω →
R (utility from consumption) and U : R×R×Ω → R+ (utility from retirement
wealth), both of which are state-dependent and incorporate the benchmark
processes, {Πi,t}t∈[0,T ], i = 1, 2.7 More precisely, to maximise (2.2.7), the

7Throughout, we suppress the dependency of all utility-related functionals on ω ∈ Ω for
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investor chooses an allocation of funds to the N + 1 assets, {π0,t, πt}t∈[0,T ], and
chooses a particular consumption pattern, {ct}t∈[0,T ], throughout the trading
interval, [0, T ]. The selection of controls must be consistent with (2.2.5), such
that the admissibility conditions are met.8 Note here that U is specified over
R×R, unless explicitly stated otherwise; whereas the domain of u is given by
R+ ×R, for fixed values of t ∈ [0, T ].

Let us consider u : [0, T ] ×R+ ×R× Ω → R. We assume that u satisfies:

lim
x→∞

u′
X (t, x, y) = 0, lim

x→−∞
u′
X (t, x, y) = ∞, (2.2.8)

and
lim sup
x→∞

x
u′
X (t, x, y)
u (t, x, y) < 1 (2.2.9)

for all y ∈ R and t ∈ [0, T ]. Here, u′
X : [0, T ] × R+ × R × Ω → R+ and

u′′
X : [0, T ] ×R+ ×R× Ω → R− represent the first and second derivatives of
u with respect to x, respectively. The two limits in (2.2.8) are the ordinary
Inada conditions. The limit in (2.2.9) is the reasonable asymptotic elasticity
requirement, cf. Kramkov and Schachermayer (1999). Jointly, these conditions
ensure the validity of convex duality applications. On U : R × R × Ω → R,
making use of similar notation for the first and second derivatives (U ′

X and
U ′′
X), we impose the same conditions as on u (for fixed t ∈ [0, T ]), with the

additional requirement that lim supx→−∞ x
U ′

X (x,y)
U(x,y) > 1 holds.

We define the convex conjugate functions of u and U , for all x ∈ R+, y ∈ R,
and t ∈ [0, T ] as follows

v (t, x, y) = sup
z∈R+

{u (t, z, y) − xz}

= u (t, ι (t, x, y) , y) − xι (t, x, y) ,
(2.2.10)

notational elegance, as all subsequent results hold on a per-state basis.
8Combining the arguments in Schachermayer (2001) and Chen and Vellekoop, 2017, dictating

that ∥πt∥2
RN ≤ Y

(
1 +X2

t

)
holds for some Y ∈ L0 (Ω), guarantees that {Xt}t∈[0,T ] is

indeed well-specified, i.e. “martingale-generating”, and thus that the problem is well-posed
in spite of U allowing for negative arguments. We henceforth assume that Xt ≥ −C is in
AX0 and ÂX0 replaced by the latter condition.
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and
V (x, y) = sup

z∈R
{U (x, y) − xz}

= U (I (x, y) , y) − xI (x, y) ,
(2.2.11)

in which ι : [0, T ]×R+ ×R×Ω → R+ and I : R+ ×R×Ω → R are the inverses
of marginal utility, u′

x and U ′
X , respectively such that u′

X(t, ι(t, x, y), y) = x

and U ′
X(I(x, y), y) = x hold for all y ∈ R and t ∈ [0, T ]. Furthermore, we

let u′
Y : [0, T ] × R+ × R × Ω → R− and U ′

Y : R × R × Ω → R− be the
first derivatives of u and U in the y-direction. For all t ∈ [0, T ], we note
that u and U ought to be once continuously differentiable in both arguments,
u ∈ C (R+,R;R) and U ∈ C (R,R;R). Likewise, for all t ∈ [0, T ], we assume
that u′

x, ι, U
′
X and I are at least once piecewise continuously differentiable in

both arguments, u′
X , ι ∈ PC (R+,R;R+) and U ′

X , I ∈ PC (R+,R;R).

The descriptions of u and U are based on those in Detemple and Zapatero,
1991. We enlarge their generality by relying on Lakner and Nygren (2006) who
prove that the following holds true

F (G,H) ∈ D1,2 ([0, T ]) , for G,H ∈ D1,2 ([0, T ]) , (2.2.12)

for all F ∈ PC (R,R;R), or all F ∈ PC (R+,R;R) conditional on G ∈
D

1,2
+ ([0, T ]). The latter property implies that one is able to employ util-

ity functions, whose marginal analogues incorporate breakpoints, in standard
utility-maximising investment frameworks, without these breakpoints affect-
ing the derivation of the optimal dynamic asset allocation in closed-form.
One may consult Ocone and Karatzas (1991) for the link between Malliavin-
differentiability and the analytical derivation of optimal portfolio rules. For an
example of a utility function that includes breakpoints, see the dual-CRRA
preference qualification in Balter et al. (2020).

Moreover, the utility functions expand the conventional specifications via
the inclusion of an additional argument (y) within their definitions. These
functions consequently admit a widespread variety of preferences that apply
to different theoretical frameworks, varying from prospect theory to external
habit formation, cf. Abel (1990), Campbell and Cochrane (1999), and Alvarez-
Cuadrado et al. (2004). In particular, if we attach the interpretation of a person-
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specific benchmark to the second arguments, this enables us to characterise the
preferences of an individual around this reference level. This results in more
target-focused optimal investment strategies, e.g. in the context of pension
schemes, cf. Lim and Wong (2010) and Han and Hung (2012), or in setups
involving risk-management, see Tepla (2001) and Basak et al. (2007).

2.3 Convex Duality
We continue by analysing the constrained optimal investment problem in (2.2.7).
Due to the presence of trading constraints, it is generally not possible to solve
the problem for {π0,t, πt, ct}t∈[0,T ] in closed-form on the basis of its primal
specification in (2.2.7). Therefore, we resort to convex duality techniques
instead. This allows us to derive closed-form expressions for the optimal
controls. We divide this procedure into three distinct steps. First, we derive
the dual problem that is associated with the primal in (2.2.7). Second, we
demonstrate that this dual problem implies an unconstrained financial market
model that embeds a corresponding auxiliary investment problem. Third, we
derive the optimal consumption and trading strategies in this unconstrained
market, and we show the solution’s connection with the primal and dual
problems. To make this procedure intuitive, we provide in Figure 2.1 a visual
illustration of its underlying mechanism.

2.3.1 Dual Problem Specification

In this section, we rely on convex duality principles, developed by Karatzas et al.
(1991a), Cvitanić and Karatzas (1992), and Xu and Shreve (1992), to derive
the dual specification of the constrained investment problem (2.2.7). In terms
of Figure 2.1, we subsequently derive the technical details corresponding to the
depicted upper half. Note here that the lower half concerns the primal problem,
which has been introduced in section 2.2.2. Concretely, we give a heuristic
derivation of the dual, by using the method of Klein and Rogers (2007) and
Rogers (2003, 2013). This approach applies Lagrangian concepts to dynamic
optimisation problems of the kind at hand in three steps. Subsequently, we
elaborate in a general sense on these three steps.
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Dual

Primal

Jopt
P = Jopt

D
(π̄opt
t , copt

t )

νopt
t

JP (π̄t, ct)

JD νt

DP,D M̂ν

inf
νt

sup
(π̄t,ct)

Figure 2.1. Duality mechanism. This figure illustrates the mechanism that underpins
convex duality. The upper part represents the dual side of the problem; the lower part the
primal side. The upper curve corresponds to the set of feasible dual controls; the lower
curve to the set of admissible primal controls. The horizontal lines stress that each set of
primal controls (π̄t = (π0,t, πt) , ct) and each dual control (νt) render a primal and dual
value function (JD and JP ), respectively. The vertical arrow on the left stands for the
resulting duality gap (DP,D = JD − JP ). The remaining arrows relate to the mechanism
itself. Namely, the vertical one on the right demonstrates that the dual controls and primal
controls interact with each other via the artificial market (M̂ν). The mechanism tries to
select a “point” νt that minimises the dual (infνt ), as indicated by the arrow in the upper
curve. Via M̂ν , the dual-optimal νopt

t implies a “point” (π̄t, ct) that maximises the primal
(sup(π̄t,ct)), as indicated by the arrow in the lower curve. That is, the mechanism attempts to
steer the two primal and dual “points”, through Mν , in the direction of the curves’ tangent
point, which represents the point of optimality ((π̄opt

t , copt
t ), νopt

t ), at which strong duality
(Jopt

P = Jopt
D , DP,D = 0) holds.

First, it introduces a Lagrange multiplier process that enforces the equality
upon the dynamic budget constraint in (2.2.7). This Lagrange multiplier
process evolves according to: dZt = Zt

[
αtdt+ θ⊤

t dWt

]
, for some Z0 ∈ R+,

where we assume that αt ∈ D1,2 ([0, T ]) and θt ∈ D1,2 ([0, T ])N hold. Note
that the solution to this SDE is similar to the expression for Mt in (2.2.3). In
particular, Zt = exp {

∫ t
0 αsds− 1

2
∫ t

0 ∥θs∥2
RN ds−

∫ t
0 θ

⊤
s dWs}, for all t ∈ [0, T ].

Second, it derives corresponding complementary slackness (CS) conditions.
These conditions serve to ensure finiteness of the “Lagrangian” corresponding
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to (2.2.7). For problem (2.2.7), the CS conditions imposed on the drift and dif-
fusion terms in {Zt}t∈[0,T ] read αt = −ν0,t− rt, θt = −λt−σ−1

t (νN,t − ν0,t1N )
for νt = (ν0,t, νN,t) ∈ D1,2 ([0, T ]) × D1,2 ([0, T ])N . As a result, Zt lives by a
structure resembling the configuration of an SPD process. The analogous CS
conditions imposed on ct and XT are:

copt
t = ι (t, Zt,Π1,t) , and Xopt

T = I (ZT ,Π2,T ) . (2.3.1)

The final CS condition, which is imposed on Z0, is given by Zopt
0 = G−1 (X0),

where G−1 : R+ → R+ represents the inverse function of G : R+ → R+, which
is defined in the following manner G (Z0) = E[Xopt

T Z−1
0 ZT +

∫ T
0 [copt

t − Yt −
δ (νt) ]Z−1

0 Ztdt]. Here, δ : RN+1 → R ∪ {∞} denotes the support function,
δ (x) = sup(π0,t,πt)∈K(−x0π0,t − x⊤

Nπt) for all x = (x0, xN ) ∈ R×RN . Third,
and last, it spells out the (candidate) dual problem itself, see Theorem 2.3.1.

Theorem 2.3.1. Consider the investment problem in (2.2.5). Let HÂX0

be the set that contains all {νt}t∈[0,T ] such that νt ∈ D1,2 ([0, T ])N+1 and
∥δ (νt)∥2

L2(Ω×[0,T ]) < ∞ are true, and fix X̂ν,0 = X0 + E[
∫ T

0 Z−1
0 Zt[Yt +

δ (νt) ]dt] for {νt}t∈[0,T ] ∈ HÂX0
and all X̄0 ∈ R2

+. Then the dual problem
of (2.2.5) is given by:

Jopt
D

(
X̄0
)

= inf
{νt}t∈[0,T ]∈H

ÂX0
,Z0∈R+

E

[∫ T

0
v (t, Zt,Π1,t) dt

+V (ZT ,Π2,T )] + X̂ν,0Z0,

(2.3.2)

for all X̄0 ∈ R2
+. The dual value function is therefore characterised as follows:

JD(X̄0, Z0, {νt}t∈[0,T ] ) = E[
∫ T

0 v(t, Zt,Π1,t)dt + V (ZT ,Π2,T )] + X̂ν,0Z0. In
addition to this, the following holds holds for all X̄0 ∈ R2

+:

Jopt
P

(
X̄0
)

= Jopt
D

(
X̄0
)
. (2.3.3)

Proof. The proof is given in Appendix A.1.

Remark 2.3.1. Suppose that C = 0 in the admissibility set, ÂX0 , and assume
that U ∈ C (R+,R;R) holds, i.e. that its first argument is specified over R+
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rather than over R. In particular, assume that U fulfills the same requirements
as u (for all t ∈ [0, T ]). Then, the results in Theorem 2.3.1 are still applicable.
We emphasise this to be able to show at a later stage that our approximate
method also holds for U ∈ C (R+,R;R) and C = 0. Moreover, we remark
that the specifications of νt ∈ D1,2 ([0, T ])N+1 and δ : RN+1 → R ∪ {∞} differ
from those in ordinary setups, e.g. Cvitanić, 1997, Lim and Choi (2009), and
Yener (2015). In order to elicit the similarities between these, suppose that
K = R × RM × {0}N−M , then ν0,t = 0 and νN,t ∈ {0}M × RN−M , such
that Zt

Z0
= B−1

t
dQν

dP |Ft
for Qν ∼ P that only depends on νN,t ∈ D1,2 ([0, T ])N .

Consider Cvitanić and Karatzas (1993), Karatzas and Kou (1996), and Cvitanic
(2000) for more examples.

With the exception of the specification of the dual controls,
νt ∈ D1,2 ([0, T ])N+1, and the corresponding support function,
δ : RN+1 → R ∪ {∞}, the dual (2.3.2) coincides with the conventional
ones. For these conventional specifications, see e.g. Cvitanić and Karatzas
(1992), Cuoco (1997), and Cuoco and Cvitanić (1998). The differences are
due to the fact that U ’s domain is specified over R × R rather than over
R+ ×R. Notwithstanding these differences, the results in Theorem 2.3.1 are
also applicable to utility functions of which the domain lives by R+ × R,
provided that C = 0 (see Remark 2.3.1 above). In the sequel, if the C = 0 and
U ∈ C (R+,R;R) conditions imply different results, we will explicitly indicate
so. Ultimately, we note that {Zt}t∈[0,T ] implies a unique probability measure,
for each choice of {νt}t∈[0,T ] ∈ HÂX0

. This identification of Zt with such a
measure enables us to determine an auxiliary unconstrained environment.

2.3.2 Artificial Financial Market

In this section, we specify the auxiliary, artificial, market corresponding to
the dual problem in Theorem 2.3.1. Thereby, we establish the fundamental
link between between the upper half and lower half of Figure 2.1, i.e. the
primal and dual problems, which is represented by the arrow on the right. This
auxiliary market, resulting after a “fictitious completion of assets”, say M̂ν ,
involves an investment problem similar to (2.2.5). This auxiliary investment
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problem excludes trading constraints. Due to the absence of trading constraints
in this environment, the recovery of closed-form expressions for the (actual)
optimal trading policies is easier. The artificial market, M̂ν , relies on the
same probability space, (Ω,F ,F,P), and the same processes as in M are
active, up to the assets. Instead of Bt and St, it includes Bν,t and Sν,t, for
Bν,0 = Si,ν,0 = 1:

dBν,t
Bν,t

= [rt + ν0,t] dt, and dSi,ν,t
Si,ν,t

= [µi,t + νi,N,t] dt+ σ⊤
i,tdWt. (2.3.4)

As in (2.2.2), we let µt and νN,t be the RN -valued vectors with, elements µi,t
and νi,N,t, respectively, for i = 1, . . . , N . Likewise, σt is defined to be the
RN×N -valued matrix with rows σi,t for i = 1, . . . , N . Additionally, we invoke
the same postulates on the included local drift terms and diffusion coefficients,
as on their analogues in (2.2.1) and (2.2.2). In line with Theorem 2.3.1, we
assume that {νt}t∈[0,T ] ∈ HÂX0

is satisfied in M̂ν , for νt = [ν0,t, νN,t]⊤. As a
consequence of the dependence of {Bν,t}t∈[0,T ] and {Sν,t}t∈[0,T ] on {νt}t∈[0,T ],
there exists a unique fictitious completion M̂ν , for each {νt}t∈[0,T ] ∈ HÂX0

.
We observe that the definitions for the artificial assets, Bν,t and Sν,t, can be
derived on the basis of the one for the dual process, Zt.

By Delbaen and Schachermayer (1994), we know that the SPD in M̂ν is:

dZν,t
Zν,t

= [−rt − ν0,t] dt−
[
λt + σ−1

t (νN,t − ν0,t1N )
]⊤ dWt, (2.3.5)

with Zν,0 = 1, as we essentially work with
{
Z−1

0 Zt
}
t∈[0,T ] rather than with

{Zt}t∈[0,T ]. The strictly positive starting value Z0 ∈ R+ appears in the aux-
iliary investment problem. We note here that {νt}t∈[0,T ] ∈ HÂX0

ought to
hold, as a consequence of which all assumptions that are active for {Mt}t∈[0,T ],
are likewise active for {Zν,t}t∈[0,T ]. The process {Zν,t}t∈[0,T ] therefore es-
tablishes a well-defined SPD process. Consistent with Remark 2.3.1, we
note that Zν,t = B−1

ν,t
dQν

dP |Ft
, for the M̂ν-valid pricing measure, Qν ∼ P,

and corresponding Radon-Nikodym derivative dQν

dP |Ft
= E[ dQν

dP | Ft]. Un-
der the pricing measure Qν , the process {WQν

t }t∈[0,T ] with SDE dWQν

t =
dWt +

[
λt + σ−1

t (νN,t − ν0,t1N )
]

dt is a standard Qν-Brownian motion.

40



2.3 Convex Duality

The dynamic wealth process of the finite-horizon investor in M̂ν is given by:

dXν,t = π0,ν,tB
−1
ν,t dBν,t + π⊤

ν,tdiag (Sν,t)−1 dSν,t − (cν,t − Yν,t) dt

= π0,ν,t [rt + ν0,t] dt+ π⊤
ν,t ([µt + νN,t] dt+ σtdWt) − (cν,t − Yν,t) dt,

(2.3.6)
with Xν,0 = X0. We redefine the labour income stream from M, i.e. {Yt}t∈[0,T ],
in M̂ν as: Yν,t = Yt + δ (νt) for all t ∈ [0, T ]. Now, {πν,0,t, πν,t}t∈[0,T ]
represents the RN+1-valued and Ft-progressively measurable portfolio pro-
cess. To be more precise, πν,0,t is allocated to Bν,t and πν,t to Sν,t over
t ∈ [0, T ]. Similar to the specification in M, we define {cν,t}t∈[0,T ] to be
the R-valued and Ft-progressively measurable consumption process in M̂ν .
The admissiblity set in M̂ν , denoted by Âν,X0 , contains all artificial trading-
consumption pairs {πν,0,t, πν,t, cν,t}t∈[0,T ] that satisfy

∫ T
0 π⊤

ν,tσtσ
⊤
t πν,tdt < ∞,∫ T

0
∣∣π⊤
ν,t [µt + νN,t] + πν,0,trt

∣∣dt < ∞, E[
∫ T

0 |ct|2dt] < ∞, as well as Xν,t =
πν,0,t + π⊤

ν,t1N ≥ −C, for some C ∈ R+ and for all t ∈ [0, T ].

Proposition 2.3.2. Consider the dual problem in (2.3.2) of Theorem 2.3.1.
The unconstrained dynamic asset allocation problem in M̂ν is given by

sup
{π̄ν,t,cν,t}t∈[0,T ]∈Âν,X0

E

[∫ T

0
u (t, cν,t,Π1,t) dt+ U (Xν,T ,Π2,T )

]

s.t. dXν,t = π0,ν,trν,tdt+ π⊤
ν,t (µν,tdt+ σtdWt)

− (cν,t − Yν,t) dt,

(2.3.7)

for {νt}t∈[0,T ] ∈ HÂX0
, in which we let π̄ν,t = (πν,0,t, πν,t), rν,t = rt + ν0,t

and µν,t = µt + νN,t for notational simplicity. Now, suppose that
JM̂ν

(X̄0, {νt}t∈[0,T ] ) specifies the optimal value function for (2.3.7). Then,
the following equality is true for all X̄0 ∈ R2

+:

Jopt
D

(
X̄0
)

= inf
{νt}t∈[0,T ]∈H

ÂX0

JM̂ν

(
X̄0, {νt}t∈[0,T ]

)
. (2.3.8)

By strong duality, we note that for each choice of {νt}t∈[0,T ] ∈ HÂX0
, it

holds that Jopt
P

(
X̄0
)

≤ JM̂ν
(X̄0, {νt}t∈[0,T ] ): in the auxiliary market, M̂ν , the

investor always derives more utility.
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Proof. The proof is given in Appendix A.2.

Remark 2.3.2. The artificial market, M̂ν , is uniquely identified by its prob-
ability measure, Qν ∼ P, and its perturbation on the interest rate, ν0,t. To
observe that the dual is identical to determining the least-favourable artifi-
cial market, we rewrite (2.3.8) as: Jopt

D (X̄0) = inf(Qν ,ν0,t)∈Q JM̂ν
(X̄0,Qν , ν0,t).

Here, Q contains all measures Qν ∼ P and local drift terms {ν0,t}t∈[0,T ], cor-
responding to the auxiliary SPD process {Zt}t∈[0,T ], that harmonise with all
{νt}t∈[0,T ] ∈ HÂX0

. Furthermore, JM̂ν
(X̄0,Qν , ν0,t) spells out the optimal

value function of (2.3.7), for all (Qν , ν0,t) ∈ Q. This formulation of the dual
demonstrates that one must determine the worst-case artificial environment to
ensure that the optimal solutions to (2.3.7) are admissible and optimal in M.

The main takeaway from Proposition 2.3.2 is that we may resort to solving
an auxiliary problem by means of a fictitious completion of assets, instead of
solving the primal problem (2.2.7). This auxiliary problem (2.3.7) excludes
trading constraints, which enables us to determine the optimal artificial al-
location to assets in closed-form. In line with the objective of the dual in
Theorem 2.3.1, we then only ought to determine the shadow price process in
a least-favourable fashion to establish optimality as well as admissibility of
the preceding controls in the primal environment, cf. (2.3.8). In particular,
optimality to the constrained problem is achieved via the auxiliary problem,
due to strong duality. The optimisation of the dual namely ensures that the
auxiliary-optimal controls are projected into the admissibility region.

2.3.3 Auxiliary Optimality Conditions

We conclude this section on convex duality by deriving and analysing the
analytical solutions to the auxiliary unconstrained investment problem in
Proposition 2.3.2. Pertaining to Figure 2.1, this section serves to analytically
unravel the intimate link between the optimal primal controls, (π̄opt

t , copt
t ),

and dual controls, νopt
t . In particular, it shows how the duality mechanism

“steers” νt and (π̄t, ct) via M̂ν towards the optimum, as indicated by the
arrows in both curves. After the derivation of the closed-form solutions, we
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2.3 Convex Duality

illustrate the analytical difficulties that may arise when determining the optimal
shadow price process, i.e. the least-favourable fictitious completion. For this
purpose, we consider a concrete specification of the set of trading constraints,
K, cf. Example 2.3.1. This illustration clarifies the potential benefits of an
approximating procedure that circumvents these analytical obstacles, and
retains the closed-form nature of the optimal solutions.

Examining (2.3.7), we can apply the martingale method, cf. Pliska (1986),
Karatzas et al. (1987), Cox and Huang (1989, 1991), which enables us to rewrite
(2.3.7) as

sup
(Xν,T ,cν,t)∈L̂2(Ω×[0,T ])

E

[∫ T

0
u (t, cν,t,Π1,t) dt+ U (Xν,T ,Π2,T )

]

s.t. E

[∫ T

0
(cν,t − Yν,t)Zν,tdt+Xν,TZν,T

]
≤ X0,

(2.3.9)

with L̂2 (Ω × [0, T ]) := L2 (Ω) × L2 (Ω × [0, T ]). Concretely, we rewrite the
dynamic specification (2.3.7) into its static variational analogue (2.3.9). Rather
than selecting a continuous trading strategy and consumption pattern, the
investor in this static problem firstly selects terminal wealth in combination
with a consumption strategy. The ensuing optimal rules coincide with Xopt

T and
copt
t from Theorem 2.3.1. Secondly, the optimal trading strategy, {πopt

ν,t }t∈[0,T ],
can be determined in analytical form by means of standard hedging (martin-
gale) arguments. Proposition 2.3.3 specifies the closed-form optimal dynamic
allocation of assets and consumption strategy.

Proposition 2.3.3. Consider the unconstrained investment problem (2.3.9), as
well as its dynamic counterpart (2.3.7). Optimal terminal wealth and optimal
consumption are specified as follows:

copt
ν,t = ι

(
t, ηoptZν,t,Π1,t

)
,

Xopt
ν,T = I

(
ηoptZν,T ,Π2,T

)
,

(2.3.10)

for all t ∈ [0, T ], with ηopt = G−1 (X0). The optimal wealth over the trading
interval is Xopt

ν,t = E[Xopt
ν,T

Zν,T

Zν,t
+
∫ T
t

(
copt
ν,s − Yν,s

) Zν,s

Zν,t
ds | Ft], for all t ∈ [0, T ].
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Define:

R1,c,t = −
u′′
X

(
t, copt

ν,t ,Π1,t
)

u′
X

(
t, copt

ν,t ,Π1,t
) , R1,X,T = −

U ′′
X

(
Xopt
ν,T ,Π2,T

)
U ′
X

(
Xopt
ν,T ,Π2,T

) ,
R2,c,t = −ι′Y

(
t, ηoptZν,t,Π1,t

)
, and R2,X,T = −I ′

Y

(
ηoptZν,T ,Π2,T

)
,

(2.3.11)
where ι′Y : [0, T ] ×R+ ×R → R is the derivative of ι in the y-direction; and
I ′
Y : R+ ×R → R similarly represents the derivative of I in its second argument.

The terms in (2.3.11) identify (proxies to) the absolute risk-aversion (ARA)
coefficients. Then, we can express the optimal allocation to assets, {πopt

ν,t }t∈[0,T ],
in terms of the following decomposition: πopt

ν,t = πmt + πZt + πΠ
t + πYt . The first

two weights in this decomposition read

πmt = E

[
1

R1,X,T

Zν,T
Zν,t

+
∫ T

t

1
R1,c,s

Zν,s
Zν,t

ds
∣∣∣∣∣ Ft

]
σ⊤−1

t λ̂t

πZt = σ⊤−1

t E

[
1

R̂1,X,T

Zν,T
Zν,t

DZ,t,T +
∫ T

t

1
R̂1,c,s

Zν,s
Zν,t

DZ,t,sds
∣∣∣∣∣ Ft

]
,

(2.3.12)

for all t ∈ [0, T ], where λ̂t := λt+σ−1
t (νN,t − ν0,t1N ), R̂−1

1,X,T := Xopt
ν,T−R−1

1,X,T ,
R̂−1

1,c,t := copt
ν,t − Yν,t − R−1

1,c,t, and DZ,t,s = DW
t log Ẑν,s = DW

t logZν,s + λ̂t

for all s ≥ t, such that s, t ∈ [0, T ]. Additionally, DW
t : D1,2 ([0, T ]) →

L2 (Ω × [0, T ])N defines the Malliavin derivative kernel.9 The remaining two
weights in the optimal portfolio process read as follows

πYt = −σ⊤−1

t E

[∫ T

t

Zν,s
Zν,t

Ys
(
DW
t log Ys + σ̂Y,t,s

)
ds
∣∣∣∣∣ Ft

]
,

πΠ
t = −σ⊤−1

t E

[
Zν,T
Zν,t

R2,X,TDW
t Π2,T +

∫ T

t

Zν,s
Zν,t

R2,c,sDW
t Π1,sds

∣∣∣∣∣ Ft

]
,

(2.3.13)
for all t ∈ [0, T ], wherein we define σ̂Y,t,s = σY,t + Y −1

s DW
t δ (νs) for all

9We characterise the derivative kernel here as a mapping from a uni-dimensional space
to an N-dimensional analogue. If we, instead, accompany the aforementioned kernel
by an N-dimensional argument, i.e. one that attains values in the D1,2 ([0, T ])N space,
the relevant mapping alters into DW

t : D1,2 ([0, T ])N → L2 (Ω × [0, T ])N×N . Consider
e.g. Nualart (2006) for more technical details underscoring this derivative kernel.
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2.3 Convex Duality

s ≥ t, such that s, t ∈ [0, T ]. Here, {Xopt
ν,t − 1⊤

Nπ
opt
ν,t }t∈[0,T ] specifies the optimal

allocation to the cash account, {πopt
0,ν,t}t∈[0,T ]. Note that the Malliavin derivatives

included in (2.3.12) and (2.3.13), are all well-posed.10

Proof. The proof is given in Appendix A.3.

For economic intuition corresponding to the solutions in Proposition 2.3.3,
see Karatzas and Shreve (1998). For theoretical and economic analyses of
the disentangled hedge demands, we refer to Detemple, 2014, and Li et al.
(2020), who examine the mathematical decomposition of optimal portfolios
in detail. As for the duality principles, we note that Proposition 2.3.3 spells
out the optimal controls in M̂ν in closed-form, for a yet unspecified shadow
price process, {νt}t∈[0,T ] ∈ HÂX0

. To make these controls likewise optimal
and admissible in the true market, M, we must determine {νt}t∈[0,T ] as set
out by Theorem 2.3.1 and Proposition 2.3.2. That is, we must determine
the least-favourable artificial market. The following example illustrates that
acquiring the optimal {νt}t∈[0,T ] in closed-form is generally troublesome.

Example 2.3.1. (Non-traded Assets) Consider M, and set σt = [σ̄1,t, σ̄2,t]
for (σ̄1,t, σ̄2,t) ∈ RN×(N−M) × RN×M , wherein σ̄1,t :=

[
σ1,t, 0M×(N−M)

]⊤
and σ̄2,t :=

[
0(N−M)×M , σ2,t

]⊤ for (σ1,t, σ2,t) ∈ R(N−M)×(N−M) × RM×M .
Consequently, the first N−M elements of St are driven exclusively by WN−M,t;
similarly, the last M elements of St are driven solely by WM,t; here, Wt =
[WN−M,t,WM,t]⊤ ∈ RN−M ×RM . Furthermore, fix K = R×RN−M × {0}M :
the last M stocks in St are non-traded. From K’s definition, {νt}t∈[0,T ] ∈ HÂX0

implies that ν0,t = 0 and νN,t ∈ {0}N−M × RM . The dual hence reduces to
infνN,M,t∈D1,2([0,T ])N JD(X̄0, Z

opt
0 , {νN,M,t}t∈[0,T ] ), for Zopt

0 = G−1 (X0) and
νN,N−M,t = 0N−M in νN,t = [νN,N−M,t, νN,M,t]⊤.

10For notational elegance and general clarity, we have chosen to not spell out the Malliavin
derivatives at hand. Conversely, we provide the extended versions here: in (2.3.12),
DW

t log Ẑν,s =
∫ s

t

[
−DW

t ru − DW
t ν0,u

]
du−

∫ s

t

(
DW

t λ̂u

)
λ̂udu−

∫ s

t
DW

t λ̂udWu, and in

(2.3.13), DW
t log Ys =

∫ s

t

(
DW

t µY,uds + DW
t σY,udWY

u

)
, with WY

t = Wt −
∫ t

0 σY,sds,
and DW

t Πi,s =
∫ s

t
DW

t µΠ,i,udu+
∫ s

t
DW

t σΠ,i,udWu +σΠ,i,t, i = 1, 2, ought to hold true
for all s ≥ t such that s, t ∈ [0, T ].
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In Appendix A.4, we demonstrate that optimisation of this dual results in the
following optimality condition:

λ̂M,tX
opt
ν,t = −E

[
DWM
t Xopt

ν,TZν,T

Zν,t
+
∫ T

t

DWM
t cν,Y,sZν,s

Zν,t
ds
∣∣∣∣∣ Ft

]
, (2.3.14)

for all t ∈ [0, T ], wherein λ̂M,t = λM,t +σ−1
2,t νN,M,t for λt = [λN−M,t, λM,t]⊤ ∈

RN−M ×RM such that λ̂t = [λ̂N−M,t, λ̂M,t]⊤ ∈ RN−M ×RM and λ̂N−M,t =
λN−M,t. Concretely, equation (2.3.14) spells out the identity from which one
is able to derive the dual-optimal {λ̂M,t}t∈[0,T ]. In consideration of the char-
acterisation of {πopt

ν,t }t∈[0,T ] in (A.3.19), we observe that the latter specifica-
tion of {λ̂M,t}t∈[0,T ] ensures that πν,M,t = 0M holds for all t ∈ [0, T ], where
πopt
ν,t = [πopt

ν,N−M,t, π
opt
ν,M,t]

⊤ ∈ RN−M ×RM . On the grounds of strong duality
and the latter satisfaction of trading constraints, it holds that {πopt

t }t∈[0,T ] =
{πopt

ν,t }t∈[0,T ] ∈ AX0 . That is, {πopt
ν,t }t∈[0,T ] is admissible and optimal in M.

Example 2.3.1 demonstrates the optimal shadow price process’ ability to ensure
optimality and admissibility of the artificial-optimal trading rules in the true
environment (M). However, when inspecting (2.3.14) more closely, we observe
that the RHS of this equation depends in general non-linearly on past and
future values of the shadow price process. More specifically, (2.3.14) essentially
describes a forward-backward SDE (FBSDE), which obstructs a recovery
of {λ̂M,t}t∈[0,T ] in closed-form. Therefore, in order to derive {πopt

t }t∈[0,T ]

analytically, one still must resort to numerical applications so as to solve the
FBSDE. This unavailability of an analytically defined shadow price process is
not unique to the example (K = R×RN−M × {0}M ). Other definitions of K
ultimately require numerical procedures for solving the optimal shadow price.
For examples of such numerical applications, we refer the reader to e.g. Haugh
and Kogan (2007), and Rogers and Zaczkowski (2015).

2.4 Approximate Method

In this section, we explain our approximate method. The method is based on a
generalisation of the twofold procedure as outlined in Bick et al. (2013). First,
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we approximate analytically the optimal shadow price process by restricting
the dual space to a tractable subspace. The ensuing approximate shadow price
process implies primal controls that are generally inadmissible, cf. Proposition
2.3.3 and Example 2.3.1. Second, therefore, we project these implied primal
controls to the admissibility set in the primal financial environment (M).
Consequently, we are able to obtain closed-form approximate expressions for
the optimal solutions to the constrained problem (2.2.5). We provide a visual
illustration of this twofold approximating mechanism in Figure 2.2. In the
following part, we elaborate on the relevant technicalities, and we illustrate
the method’s functional principle in case of a specific economic environment.

2.4.1 Twofold Approximating Procedure

Propositions 2.3.2 and 2.3.3 show that the difficulty in attaining optimal
solutions to (2.2.7) in closed-form originates from the absence of tractable
expressions for the optimal shadow price processes. These optimal shadow
price processes are typically characterised by FBSDE’s that require numerical
routines to be solved, cf. Example 2.3.1. In an attempt to circumvent these
computational burdens, and to be able to acquire “simple” analytical expres-
sions, it therefore seems sensible to seek approximations to the optimal shadow
price processes. This brings us to to the first step of our twofold approximate
method, which is depicted by (1) and the upper dotted arrow in Figure 2.2.
Our method’s first step concretely consists of confining the dual space to a
convex subset, where we determine {ν∗

t }t∈[0,T ] as:

{ν∗
t }t∈[0,T ] := arg inf

{νt}t∈[0,T ]∈P
ÂX0

JD

(
X̄0, Z

∗
0 , {νt}t∈[0,T ]

)
, (2.4.1)

for any X̄0 ∈ R2
+. Here, PÂX0

⊆ HÂX0
denotes the convex subset of the dual

space, Z∗
0 = G−1 (X0) the approximate Lagrange multiplier, and {ν∗

t }t∈[0,T ] the
approximate shadow price process.11 We determine {ν∗

t }t∈[0,T ] by minimising
the dual over the relevant subset, as shown in (2.4.1). Namely, amongst all

11We endow the controls with an asterisk to indicate that these are approximations of the
optimal policies.
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Dual

Primal

J∗
P (π̂opt

ν,t , ĉ
opt
ν,t )

DP,D M̂ν

(π̄∗
t , c

∗
t )

J∗
D ν∗t

arg inf
νt

proj

(2)

(1)

Jopt
P = Jopt

D
(π̄opt
t , coptt )

νoptt

Figure 2.2. Approximate method. This figure illustrates our approximate method. The
depicted symbols and shapes represent the same as in Figure 2.1, up to the dashed upper
curve and the arrows on the right. Namely, the dashed upper curve corresponds to the
tractable subset of feasible dual controls. The arrows relate to the approximate method
itself as follows. As indicated by the upper dotted arrow, the first step of our method (1)
consists of minimising the dual over all shadow prices in the subset (arg infνt

). This results
in an approximate shadow price (ν∗

t ), which is situated in the curve’s “minimal” point. The
dashed arrow on the right shows that this shadow price implies via the artificial market
(M̂ν) an auxiliary pair of primal controls (π̂opt

ν,t , ĉ
opt
ν,t ). This pair is typically inadmissible,

which is represented by its position outside of the lower curve. To make this pair admissible,
the second step of our method (2) projects this pair into the admissibility set (proj), as
illustrated by the lower dash-dotted arrow. This results in the approximate primal controls
(π̄∗

t , c
∗
t ). The horizontal dotted lines stress that (π̄∗

t , c
∗
t ) and ν∗

t render a primal and dual
value function (J∗

P and J∗
D), respectively. The difference between J∗

D and J∗
P is the duality

gap (DP,D = J∗
D − J∗

P ) and can be used to quantify the approximation’s accuracy.

shadow price processes that are contained in PÂX0
, the one that minimises

the dual tilts the artificial-optimal controls (in M̂ν) the closest to their actual-
optimal analogues (in M). This feature follows from the specific nature of
(convex) duality relations. The artificial-optimal controls implied by {ν∗

t }t∈[0,T ]
consequently provide a proper point of departure in the formulation of approxi-
mate primal controls. We note that the tractability of the approximate shadow
price processes in (2.4.1) depends on the specific choice for PÂX0

. For instance,
PÂX0

= HÂX0
∩R guarantees tractability.
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2.4 Approximate Method

This leads us to the second step of our method, which is represented by (2)
and the dash-dotted lower arrow in Figure 2.2. Let π̂opt

ν,t and ĉopt
ν,t be equal to

πopt
ν,t and copt

ν,t , wherein νt = ν∗
t is fixed for all t ∈ [0, T ]. This second step then

consists of approximating the primal-controls as:

π∗
t = projK2

(
π̂opt
ν,t

)
K1,t, and c∗

t = ĉopt
ν,t K2,t, (2.4.2)

where we let projK2 : RN → K2 be the operator that projects an N -dimensional
argument to the region of constraints imposed on πt, i.e. K2 ⊆ RN in K =
K1 × K2 ⊆ R × RN , under a case-specific metric. Moreover, K1,t and K2,t

represent scalar-valued Ft-progressively measurable processes that enforce
jointly additional (liquidity) constraints upon X∗

t . Namely, as K2 only contains
constants, the projection operator is not in all cases able to fully account for time-
dependent borrowing/liquidity constraints. For instance, if K1 = R,K2 = RN+

and Xt ≥ 0 must hold, then projK2 (x) = (x)+, for x ∈ RN , ensures that
projK2(π̂opt

ν,t ) meets the trading constraints. However, this projection alone
does not guarantee that X∗

t ≥ 0 holds, because one may consume or invest
more than one possesses, resulting in X∗

t < 0. Here, the processes Ki,t, i = 1, 2,
become important. That is, by specifying Ki,t e.g. as Ki,t = 1{X∗

t >0} the
approximation ensures that X∗

t ≥ 0 is satisfied. We consider more examples in
sections 2.4.1.1 and 2.4.1.2.

The rationale behind (2.4.2) is as follows. The truly optimal πopt
t and

copt
t are equal to πopt

ν,t and copt
ν,t , for some {νt}t∈[0,T ], which ensures that

{πopt
0,ν,t, π

opt
ν,t , c

opt
ν,t }t∈[0,T ] ∈ AX0 holds. Hence, the artificial rules that are

implied by ν∗
t are up to νopt

t completely identical to the truly optimal policies.
Furthermore, under PÂX0

⊆ HÂX0
, these artificial policies are situated the

closest to the optimal ones. Consequently, π̂opt
ν,t and ĉopt

ν,t are plausible starting
points in the analytical approximation of πopt

t and copt
t . It then remains to

adjust π̂opt
ν,t and ĉopt

ν,t for remaining inaccuracies that interfere with their
admissibility in M. To that end, we project π̂opt

ν,t and ĉopt
ν,t towards the

admissibility region, using the transformations in (2.4.2). The resulting
approximations, π∗

t and c∗
t , are admissible in M.12 Approximate wealth

12By virtue of π0,t = Xt − π⊤
t 1N , and Xt being endogenously only affected by {πs}s∈[0,t]

and {cs}s∈[0,t], our approximate method solely concerns πt and ct – and via these
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correspondingly evolves for all t ∈ [0, T ] as:

X∗
t = X0 +

∫ t

0
rsX

∗
sds+

∫ t

0
π∗⊤

s ([µs − rs1N ] ds+ σsdWs) −
∫ t

0
(c∗
s − Ys) ds.

(2.4.3)

Our approximating procedure renders analytical expressions for the portfolio
process, π∗

t , and the consumption pattern, c∗
t . To quantify the accuracy of

these approximations, we use strong duality, cf. Theorem 2.3.1. That is, any
deviation from the truly optimal primal and/or dual controls results in a
duality gap. Substituting {c∗

t }t∈[0,T ] and X∗
t evaluated at t = T into the

objective in (2.2.7) gives a lower bound on the optimal value function, say
J∗
P (X̄0, {π∗

t , c
∗
t }t∈[0,T ] ). In the same way, {ν∗

t }t∈[0,T ] gives an upper bound
on the optimal value function, say J∗

D(X̄0, Z
∗
0 , {ν∗

t }t∈[0,T ] ). The duality gap
is equal to the difference between these two bounds, DP,D := J∗

D − J∗
P (see

the most left arrow in Figure 2.2). Note that DP,D = 0 holds if and only if
{νopt
t }t∈[0,T ] ∈ PÂX0

or PÂX0
= HÂX0

. In all other cases, DP,D is non-negative
and can be used to quantify the accuracy of the approximation. We express
the approximation’s precision in terms of V ∈ R+ from:

J∗
P

(
X̄0 [1 + V] , {π∗

t , c
∗
t }t∈[0,T ]

)
= J∗

D

(
X̄0, Z

∗
0 , {ν∗

t }t∈[0,T ]

)
. (2.4.4)

The compensating variation, V, expresses the size of the duality gap as the
fraction of total wealth (X0 and Y0). It represents the additional amount
of capital needed to “bridge” the duality gap. Hence, V specifies an upper
bound on the “welfare loss”, suffered due to implementation of the approximate
strategy. Naturally, V depends on the quality of (i) the approximate duality
set’s selection, and of the (ii) artificial-optimal controls’ projection to the
admissibility region. Its annualised equivalent, (1 + V)

1
T − 1, represents an

annual management fee that one pays to some representative investor to be
protected against the undiversifiability that arises from K. By paying this fee,
the agent is thus assured of being able to maintain his/her optimal consumption
pattern, and of acquiring the optimal amount of terminal wealth. We refer

π0,t. Namely, (2.2.7) boils down to determining the former two controls, of which the
combination is capable of ensuring that π0,t ∈ K1.
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to de Palma and Prigent (2008) and de Palma and Prigent (2009) for more
economic details on V.

2.4.1.1 Utility over the Real Line

In case of an economic setup wherein C = 0 is fixed in the admissibility set,
AX0 , and in which U ∈ C (R+,R;R) holds, our approximate method must be
modified slightly. These requirements outline an environment that only admits
utility functions whose first arguments are specified over R+ rather than R.
Due to the non-negative domain of these utility functions, borrowing against
future labour income must be prohibited (C = 0). For the setting at hand, we
consequently have to account for a concrete liquidity constraint: Xt ≥ 0 for
all t ∈ [0, T ]. In the discussion around (2.4.2), we have argued that Ki,t for
i = 1, 2 are capable of enforcing the liquidity constraints upon {X∗

t }t∈[0,T ] via
the approximate controls, projK2(π̂opt

ν,t ) and ĉopt
ν,t . Indeed, as Bick et al. (2013),

one way of assuring that X∗
t ≥ 0 holds is by specifying Ki,t for i = 1, 2 as:

K1,t = 1{X∗
t >0}, and K2,t = 1{X∗

t >0} + kĉopt−1

ν,t Yt1{X∗
t ≤0}, (2.4.5)

for some k ∈ [0, 1]. That is, the moment that approximate wealth, X∗
t , equates

to zero, the agent sells all of his/her investments in the risky assets, and only
consumes a fraction, k, of his/her current labour income. By this means,
approximate wealth is guaranteed of being non-negative over the trading
interval. Observe that our method does not require conceptual changes for
the present situation, in which one specifies the asset allocation in terms of
proportions of wealth, say ψt in πt = ψtXt, rather than in terms of explicit
monetary units, πt. Since Xt, Xν,t > 0, a mere replacement in (2.4.2) of π̂opt

ν,t by
ψ̂opt
ν,t := π̂opt

ν,t X̂
opt−1

ν,t , where X̂opt
ν,t is identical to optimal wealth in Proposition

2.3.3 for νt = ν∗
t , results in a routine that is appropriate for this setup.

2.4.1.2 Concrete Constraint Specifications

The second step of our twofold approximating procedure, displayed in (2.4.2),
can appear to be rather abstract. In order to make this operation more
tangible, let us consider a set of concrete specifications of K. For now, we
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do not impose any liquidity constraints, so as to be able to highlight at a
later stage that Ki,t for i = 1, 2 suffice to ensure the relevant liquidity of
X∗
t . Consider the following characterisations of trading constraints, K: K =

R×RN−M × {0}M (non-traded assets); K = R×RN+ (short-sale constraints);
and K = R× (−∞,M ]N (buying constraints). Then, the following projections
manage to ensure that

(
π∗

0,t, π
∗
t

)
∈ K holds true for all t ∈ [0, T ], under the

respective sets of constraints:

projK2

(
π̂opt
ν,t

)
=
[
π̂opt
ν,N−M,t, 0M

]⊤
, max

{
0N , π̂opt

ν,t

}
, min

{
π̂opt
ν,t ,M1N

}
.

(2.4.6)
The max- and min-operators are functioning in an element-wise manner:
e.g. max{0N , π̂opt

ν,t } = (max{0, π̂opt
ν,i,t})Ni=1, in which π̂opt

ν,i,t represents the ith ele-
ment of π̂opt

ν,t . Another common set of trading constraints is set out by a combi-
nation of the short-sale and borrowing restrictions (K = R×[0,M ]N ), in case of
which projK2(π̂opt

ν,t ) = max{0N ,min{π̂opt
ν,t ,M1N}} ensures that

(
π∗

0,t, π
∗
t

)
∈ K

holds. Note that any combination involving non-traded assets, would require a
projection that additionally nullifies the relevant elements in π̂opt

ν,t .

Now, let us suppose that (π0,t, πt) ought to attain values in the preceding
definitions of K. Additionally, assume that both (π0,t, πt) and ct must be
chosen, such that Xt ≥ −C holds for some C ∈ R+. Then,

K1,t = 1{X∗
t >−C}, and K2,t = 1{X∗

t >−C} + kĉopt−1

ν,t Yt1{X∗
t ≤−C}, (2.4.7)

for some k ∈ [0, 1], would outline two specifications of Ki,t for i = 1, 2 that
enforce the liquidity constraint upon {X∗

t }t∈[0,T ]. Observe that we do not have
to alter the projections in (2.4.6) to ensure that (π0,t, πt) attains values in
the new definitions of K (these trading restrictions are independent of time).
Clearly, the characterisations of Ki,t for i = 1, 2 in (2.4.7) alone manage to
constrain approximate wealth from below, in line with the liquidity constraint.
In case of C ∈ R−, one arrives at a portfolio insurance setting, cf. Basak (1995),
Basak and Chabakauri (2012), and Browne (2013), and the definitions in (2.4.7)
are still valid. Nevertheless, C is not allowed to exceed a pre-specified amount
of monetary units, cf. Basak (1995). Ultimately, note that enforcing X∗

t ≤ C
for some C ∈ R+ requires only moderate changes in (2.4.7).
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2.4.1.3 Step-wise Overview and Remarks

In order to elicit the essential steps that support our twofold approximating
routine, and to provide a clear and concise overview of the method as set
forth above, we subsequently explicate our method in a step-wise fashion.
Herein, we include an optional step, after (2.4.2). In this additional step, the
approximate shadow price process, ν∗

t , which is incorporated in π∗
t and c∗

t , is
“reset” to an undetermined ν̄t = ν∗

t . Hereafter, ν̄t is identified by maximising
the approximate primal value function over all ν̄t ∈ PÂX0

. We exclude it in
section 2.4.1, because our numerical evaluations have shown that this step
hardly increases the approximation’s quality. However, for completeness, and
to account for case-specific peculiarities, we include it here:

• Restrict the dual space, HÂX0
, to some convex subspace,

PÂX0
⊆ HÂX0

.

• Determine the approximate shadow price process by minimising the
dual: {ν∗

t }t∈[0,T ] := arg inf{νt}t∈[0,T ]∈P
ÂX0

JD(X̄0, Z
∗
0 , {νt}t∈[0,T ] ), and

calculate J∗
D(X̄0, Z

∗
0 , {ν∗

t }t∈[0,T ] ), i.e. the approximate dual value
function.

• Insert {ν∗
t }t∈[0,T ] into the artificial-optimal controls in M̂ν , {πopt

ν,t }
and {copt

ν,t }, to obtain {π̂opt
ν,t } and {ĉopt

ν,t }, respectively.

• Approximate the optimal allocation to assets, and the optimal
consumption pattern in M as follows: π∗

t = projK2(π̂opt
ν,t )K1,t and

c∗
t = ĉopt

ν,t K2,t, and calculate the approximate primal value function,
J∗
P (X̄0, {π∗

t , c
∗
t }t∈[0,T ] ).

• (Optional) Take π∗
t and c∗

t from the latter step and fix ν∗
t = ν̄t

in these controls. Subsequently, determine ν̄t by optimising the
primal: {ν̄t}t∈[0,T ] = arg sup{ν̄t}t∈[0,T ]∈P

ÂX0

J∗
P (X̄0, {π∗

t , c
∗
t }t∈[0,T ] ),

and re-calculate π∗
t , c∗

t , J∗
P (X̄0, {π∗

t , c
∗
t }t∈[0,T ] ) under ν∗

t = ν̄t.
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• Quantify the approximation’s accuracy by calculating the
compensating variation, V ∈ R+, in the following way:
J∗
P (X̄0[1 + V], {π∗

t , c
∗
t }t∈[0,T ] ) = J∗

D(X̄0, Z
∗
0 , {ν∗

t }t∈[0,T ] ).

For technicalities, as well as for employed definitions and notation, we refer to
section 2.4.1. Regarding the fifth optional step, we underline that one is not
obliged to determine ν̄t by maximising the primal value function over PÂX0

.
Concretely, one is free to select any other convex set than PÂX0

. Nevertheless,
in consideration of the fact that π∗

t and c∗
t are essentially based on πopt

ν,t and copt
ν,t ,

and on νt ∈ HÂX0
’s ability to prune the previous controls towards optimality

and admissibility in M, a subset of HÂX0
is more likely to render near-optimal

solutions than sets adjacent to HÂX0
. Moreover, one must take into account

the need for numerical routines in determining ν̄t, irrespective of whether one
optimises over PÂX0

or over a different set. Similar routines may be necessary
in executing the second and the sixth steps.13

Remark 2.4.1. We finalise by addressing the closed-form nature of the ap-
proximate controls. Pertaining to the dual controls, the possibility of acquiring
{ν∗
t }t∈[0,T ] (and Z∗

0 ) in closed-form depends on the choice for PÂX0
. As to the

primal controls, when inspecting (2.4.2), we note that the projection operator
leaves the closed-form character of π̂opt

ν,t intact. Furthermore, the definitions
of the processes Ki,t, for i = 1, 2, are subject to the user’s input, and there-
fore abide by an analytical structure if the user wishes so. Particularly, in
section 2.4.1.2, we provide various analytical specifications of these processes,
for several regularly imposed liquidity constraints. The qualification of the
13In the second step, identifiable with (2.4.1), it may still be necessary to calculate{

ν∗
t

}
t∈[0,T ]

by means of some numerical routine. Looking, for example, at (2.3.14),
one can conclude that not all subsets of H

ÂX0
provide closed-form shadow price pro-

cesses. The emphasis in the main text on the tractable nature of
{
ν∗

t

}
t∈[0,T ]

should
therefore be understood as the accentuation of the possibility to recover π∗

t and c∗
t in

analytical form. In the sixth step, identifiable with (2.4.4), due to the X∗
t process, which

is unavailable in closed-form, it is clear that the possibility of acquiring V ∈ R+ requires
simulations. Moreover, depending on the selected utility functions, obtaining V may also
require numerical root-solving methods. Similar arguments apply to acquiring Z∗

0 .
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primal controls, π∗
t and c∗

t , as analytical is thus correct, insofar as the user
selects closed-form processes Ki,t, i = 1, 2, and a set PÂX0

, which engenders
a tractable shadow price process, {ν∗

t }t∈[0,T ]. Conversely, if the user selects
non-analytical Ki,t and/or a set PÂX0

, which provides a numerical {ν∗
t }t∈[0,T ],

then π∗
t and c∗

t are not available in closed-form.

2.4.2 Illustration of the Approximation

Our routine’s range of application extends Bick et al. (2013)’s to financial mar-
ket models that (i) contain general return dynamics that admit non-quadratic
and non-affine structures, (ii) incorporate general liquidity constraints and
convex trading restrictions, and (iii) include state-dependent preference quali-
fications that are specified over the real-line and explicitly accommodate an
exogenous stochastic benchmark. In this section, we provide an illustration of
our approximate method, in which we focus on the last two items. To that
end, we employ a slightly modified version of Cocco et al. (2005)’s economic
environment. In this market model, we introduce a new asset and assume
that the agent derives utility relative to a non-negative stochastic benchmark.
Moreover, we postulate that the preferences regarding terminal wealth are
described by Chen et al. (2011)’s SAHARA (Symmetric Asymptotic Hyperbolic
Absolute Risk Aversion) function, rather than by a CRRA (Constant Relative
Risk Aversion) qualification.

2.4.2.1 Cocco et al. (2005)’s Market Model

Let us consider the financial market model in section 2.2.1, M, and set N = 3.
This market model outlines a three-dimensional setup, with three corresponding
risk-drivers, {Wt}t∈[0,T ], where Wt = [W1,t,W2,t,W3,t]⊤. In this environment,
we assume that all local drift and diffusion terms in the exogenous processes
are constant. We accordingly relax the time-dependence indicator in the
corresponding subscripts: for example, in equation (2.2.2), µi,t and σi,t become
µi and σi for i = 1, 2, 3, respectively. We let σ ∈ R3×3

+ be a diagonal matrix,
with diagonal entries σ11, σ22, σ33. As a consequence, Si,t is only driven by
Wi,t, for i = 1, 2, 3. For the labour income process, {Yt}t∈[0,T ], we fix σY :=
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σY [ρSY ,
√

1 − ρ2
SY , 0]⊤, given some σY ∈ R+ and ρSY ∈ [−1, 1], defining the

instantaneous correlation parameter between St and Yt.

For the artificial environment, M̂ν , we define the set of approximate dual
controls, PÂX0

, as follows:

PÂX0
= HÂX0

∩
{
νt | νt = νa + νbt, νa, νb ∈ R4, t ∈ [0, T ]

}
. (2.4.8)

In view of (2.4.1) and (2.4.2), we restrict all shadow price processes to a subset of
the duality space that only contains deterministic affine functions that are linear
in time. We use this subset for the purpose of analytical and computational
tractability in the numerical evaluation of our method. We denote the drift
and diffusion terms in M̂ν as νt = νa + νbt for νi = [νi,0, νi,1, νi,2, νi,3]⊤,
i = a, b. Note that the exact definition of {νt}t∈[0,T ] under (2.4.8) depends
on K’s characterisation. More precisely, for general K ⊆ RN+1, we are solely
able to state that νt = νa + νbt holds. We observe that the specification of
M as provided here and the shadow price process’ restriction to the space
PÂX0

, given in (2.4.8), are sufficient for acquiring a complete description of the

artificial market, M̂ν . Ultimately, observe that all processes in M and M̂ν

that are not affected by the definitions above remain entirely intact, e.g. all
the endogenous ones (ct, cν,t πt, πν,t).

Remark 2.4.2. The financial market model above differs from the one in Cocco
et al. (2005), as employed in Bick et al. (2013). The difference is attributable
to the fact that the model contains a third traded risky asset. Hence, the model
as provided here does apart from the latter addition not enlarge the setting of
Bick et al. (2013). Nonetheless, to disclose the differentiating elements of our
routine, we define several “versions” of the foregoing environment. For that
purpose, we specify alternative trading restrictions (K) and liquidity constraints,
and introduce the non-trivial state-dependent ratio-SAHARA qualification. Due
to the additional asset, the ability to impose liquidity constraints per se, and
the SAHARA function being state-dependent and specified over the real line,
the environments noticeably differ from Bick et al. (2013)’s. The (comparative)
generality of the possibly enforced constraints and of the potentially utilised
preferences can therefore be adequately illustrated.
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2.4.2.2 CRRA and SAHARA Utility Functions

We proceed by introducing the agent’s preferences. For this reason, let us
consider the utility functions in (2.2.7), under the market model as specified in
section 2.4.2.1. We fix Πt := Π1,t = Π2,t, i.e. equate the benchmark processes
to each other, and set µΠ,i,t = µΠΠt as well as σΠ,i,t = σΠΠt, for some µΠ ∈ R
and σΠ ∈ R3. As a result, Πt is log-normally distributed. In addition, we
assume that the investor derives utility from consumption via the so-called
ratio-CRRA function: u (t, x, y) = e−βt (x/y)1−γ −1

1−γ for all x, y ∈ R+, β ∈ R,
and γ ∈ R+ \ [0, 1]. Here, β denotes the agent’s time preference parameter,
and γ represents his/her coefficient of relative risk-aversion (RRA).

Furthermore, the investor derives utility from the ratio of terminal wealth to
the benchmark process, XT /ΠT . His/her preferences are accordingly specified
via the following ratio-SAHARA utility specification:

U (x, y) = − 1
α2

1 − 1
(x/y − 1) + α1

√
α2

2 + (x/y − 1)2[
(x/y − 1) +

√
α2

2 + (x/y − 1)2
]α1 , (2.4.9)

for all x ∈ R, y ∈ R+ and αi ∈ R+, for i = 1, 2, such that α1 ̸= 1. For
α1 = 1, the function in (2.4.9) abides by U (x, y) = 1

2 log
(
x̄+

√
α2 + x̄2

)
+

1
2

1
α2

2
x̄[
√
α2

2 + x̄2 − x̄], where x̄ = x
y − 1, for all x ∈ R, y ∈ R+ and α2 ∈ R+.

Due to the fact that one definition of I : R+ ×R+ → R corresponding to (2.4.9)
holds for all α1 ∈ R+, in deriving optimality conditions to (2.3.7), henceforth we
do not make the latter distinction. Concretely, the inverses of marginal utility
read: ι (t, x, y) =

(
eβtxy

)− 1
γ y and I (x, y) = 1

2 [ (xy)− 1
α1 − α2

2 (xy)
1

α1 ]y + y =
α2 sinh (− 1

α1
log xy− logα2)y+y for all x, y ∈ R+ and t ∈ [0, T ]. Furthermore,

the levels of ARA, cf. Proposition 2.3.3, for these utility functions abide by:
−u′′

X (t,x,y)
u′

X
(t,x,y) = γ

x for all x, y ∈ R+ and t ∈ [0, T ], and −U ′′(x,y)
U ′(x,y) = α1

y
√
α2

2 + x̄2 for

all x ∈ R and y ∈ R+. Note that all other, relevant, terms that are addressed
in the main text, such as −ι′Y (t, x, y) and −I ′

Y (x, y), can be derived on the
basis of the information above.

Remark 2.4.3. Our preference qualifications differ from Cocco et al. (2005)’s
in that the investor in our model proportionally compares all relevant endogenous
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quantities ({ct}t∈[0,T ] and XT ) to a benchmark process, {Πt}t∈[0,T ]. Due to
this feature, a state-dependent component affects the utility levels. On top
of that, the agent in our environment derives utility from terminal wealth
via a SAHARA function, (2.4.9), rather than via a CRRA function. Clearly,
this utility specification is defined over the real line, and explicitly models
the preferences around the benchmark. Namely, the SAHARA qualification
constitutes a generalisation of the exponential utility function (which exhibits
constant ARA), because its ARA is wealth-dependent. Concretely, its ARA is
given by α1

y
√
α2

2 + x̄2 for x̄ = x
y − 1, which shows that for deviations of x away

from y, ARA decreases and the agent becomes more willing to engage in risky
trades. The agent is therefore inclined to trade in a manner that is concerning
XT strongly target-oriented, cf. Chen et al. (2011).

2.4.2.3 Approximated Primal and Dual Controls

We conclude with an illustration of the approximate method that focuses on
its mathematical aspects. We use the economic environment described in
sections 2.4.2.1 and 2.4.2.2, with three distinct characterisations of the included
trading and liquidity constraints (K). In our approximate method, the first
step, (2.4.1), is entirely dependent on K’s definition, whereas the second step,
(2.4.2), only depends partially on K. In particular, in (2.4.2), we note that the
projection operator and the functions that ensure satisfaction of the liquidity
constraint are completely dependent on K. Conversely, in the same equation,
π̂opt
ν,t and ĉopt

ν,t are entirely unaffected by K. Therefore, we first focus on the
latter step. We revisit Proposition 2.3.3 to obtain π̂opt

ν,t and ĉopt
ν,t in closed-form.

Corollary 2.4.1 outlines the optimal solutions to (2.3.7) for the model at hand.
For notational purposes and brevity of Corollary 2.4.1, we introduce:

f (t, T )=
∫ T

t

eh(t,s,−
1
γ )− 1

γ β(s−t)ds, (2.4.10)

where h is given by:

h (t, s, x)= (1 + x)
∫ s

t

[
−r − ν0,u + µΠ − σ⊤

Π λ̂u + 1
2x∥σΠ − λ̂s∥2

R3

]
du.

(2.4.11)
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Corollary 2.4.1. Consider the unconstrained investment problem
(2.3.7), in the market model defined by sections 2.4.2.1 and
2.4.2.2. Define the following two processes for all t ∈ [0, T ]:
Xt,T = α2,t,T sinh ( − 1

α1
log [ηoptZν,tΠte

−α1h(t,T,− 1
α1 )] − log(α2,t,T )) and

X̂t,T = 1
2 [(ηoptZν,tΠt)− 1

α1 eh(t,T,−
1

α1 ) −α2
2,t,T

α1+1
α2+2 (ηoptZν,tΠt)

1
α1 e−h(t,T,− 1

α1 )],
for α2,t,T = α2e

1
2 [h(t,T,− 1

α1
)+h(t,T, 1

α1
)]. Then, optimal consumption is given by

ĉopt
ν,t = e− 1

γ βt
(
ηoptZν,t

)− 1
γ Π1− 1

γ

t , (2.4.12)

for all t ∈ [0, T ], where ηopt = G−1 (X0). Furthermore, the optimal allocation
to assets, {π̂opt

ν,t }t∈[0,T ], reads, for all t ∈ [0, T ], as π̂opt
ν,t = π̂mt + π̂Yt + π̂Π

t . The
first component of this sum lives by

π̂mt =
(

1
α1

√
α2

2,t,T + X 2
t,TΠt + 1

γ
ĉopt
ν,t f (t, T )

)
σ⊤−1

λ̂, (2.4.13)

and specifies the ordinary mean-variance hedge demand, corresponding to πmt
in (2.3.12). Since the shadow prices of risk are deterministic, DW

t log Ẑν,s = 03

holds true for all s ≥ t such that s, t ∈ [0, T ]. As a consequence, the other
hedge demand in (2.3.12), πZt , is equal to zero. The remaining two portfolio
weights in π̂opt

ν,t ’s decomposition are labour income (π̂Yt ) and benchmark (π̂Π
t )

hedge demands corresponding to πYt and πΠ
t in (2.3.13), respectively. These

demands are specified by the following two identities

π̂Yt = −σ⊤−1
YtσY

∫ T

t

e
−
∫ s

t

(
r+ν0,u−µY +σ⊤

Y λ̂u

)
duds, and

π̂Π
t = σ⊤−1

(
α1 − 1
α1

X̂t,TΠt + Πte
h(0,T,0) + γ − 1

γ
ĉopt
ν,t f (t, T )

)
σΠ.

(2.4.14)

Proof. The proof is given in Appendix A.5.

Using Corollary 2.4.1, we are able to iterate step-wise through our twofold ap-
proximating procedure for concrete specifications of K. The three specifications
of K that we will investigate are: (i) K = R3 × {0}, (ii) K = R×R2

+ × {0},
and (iii) K = [−C,∞) × R+ × {0}2 for some C ∈ R+. Item (i) implies a
setup, in which S3,t is non-traded and Πt consequently (partially) unhedgeable;
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item (ii)’s is identical to the previous setup, wherein a short-sale constraint is
added; item (iii)’s is equal to the latter situation, in which additionally S2,t

is non-traded (making Yt partially undiversifiable) and a borrowing/liquidity
constraint is imposed (π0,t ≥ −C for all t ∈ [0, T ]). This third specification of
the trading constraints is up to the (partial) non-tradeability of the benchmark
process identical to that of Cocco et al. (2005). In Examples 2.4.1 and 2.4.2,
we exemplify the evident need for an approximate method in the present setup,
and we present the approximate controls for the definitions of K.

Example 2.4.1. (Optimal Shadow Price) Consider the financial market model
defined in sections 2.4.2.1 and 2.4.2.2, and relax the assumption PÂX0

=
HÂX0

∩ {νt | νt = νa + νbt, νa, νb ∈ R4, t ∈ [0, T ]}, cf. (2.4.8). Instead, let
us assume that PÂX0

= HÂX0
holds true, which means that HÂX0

is not
contracted to some convex subspace (PÂX0

). Suppose that K = R3 × {0}.
Following Example 2.3.1, we then find that if {νt}t∈[0,T ] ∈ HÂX0

, where νt

decomposes as νt = [ν0,t, νN,t]⊤ ∈ R × R3 for νN,t = [ν1,t, ν2,t, ν3,t]⊤, the
following must hold: ν0,t = 0, ν1,t = ν2,t = 0 and ν3,t ∈ D1,2 ([0, T ]). In the
present setting, in line with (2.3.14), we know that the optimal shadow price,
ν3,t can for all t ∈ [0, T ] be determined from:

λ̂3,tX
opt
ν,t = E

[
R̂2,X,T

Zν,t
− DW3

t Zν,T

R̂1,X,TZν,t
+
∫ T

t

{
R̂2,c,s

Zν,t
− DW3

t Zν,s

R̂1,c,sZν,t

}
ds
∣∣∣∣∣ Ft

]
.

(2.4.15)

In this identity, we define R̂2,X,T = R2,X,TZν,TΠTσΠ,3 and
R̂2,c,t = R2,c,tZν,tΠtσΠ,3 for all t ∈ [0, T ]. Additionally,
DW3
t Zν,s = Zν,s( −

∫ s
t

(DW3
t λ̂u)λ̂udu −

∫ s
t

DW3
t λ̂udW3,u − λ̂3,t) holds for all

s ≥ t such that s, t ∈ [0, T ] and λ̂3,t in λ̂t = [λ̂1,t, λ̂2,t, λ̂3,t]⊤ ∈ R3. After
inserting the definitions from section 2.4.2.2 into (2.4.15), and noting that
Zν,t depends on {λ̂3,s}s∈[0,t], it is clear that the RHS of (2.4.15) depends on
past and future values of λ̂3,t. Concretely, (2.4.15) implies an FBSDE, like
(2.3.14), cf. section 6.1 in Detemple (2014). Therefore, we cannot recover
{λ̂3,t}t∈[0,T ], and thus {ν3,t}t∈[0,T ], in closed-form. Due to the inclusion of
(2.4.15) in all specifications of the dual-optimal {λ̂t}t∈[0,T ], corresponding to
the other descriptions of K, the same applies to the other two setups.
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Example 2.4.2. (i) (Non-traded Asset) Consider the same model as in Ex-
ample 2.4.1, with K = R3 × {0}, which means that {S3,t}t∈[0,T ] is not avail-
able for trading, and {Πt}t∈[0,T ] is partially unhedgeable. Note that there is
no liquidity constraint active. The shadow price process is for {νt}t∈[0,T ] ∈
PÂX0

given by ν0,t = 0, ν1,t = ν2,t = 0 and ν3,t = νa,3 + νb,3t, for some
νa,3, νb,3 ∈ R. In light of (2.4.2), let K1,t = K2,t = 1 for all t ∈ [0, T ],
since no liquidity constraints are active. Furthermore, we employ a projection
operator that nullifies any allocation of assets to {S3,t}t∈[0,T ]: projK2 (x) =
[x1, x2, 0]⊤ for all x ∈ R3 such that x = [x1, x2, x3]⊤. Ultimately, set π̂opt

ν,t =
[π̂opt
ν,1,t, π̂

opt
ν,2,t, π̂

opt
ν,3,t]

⊤. Then, utilising our method in (2.4.1) and (2.4.2), we de-
termine the approximate dual controls14 in the following manner: [νa,3, νb,3] =
arg inf [νa,3,νb,3]∈R2 JD(X̄0, Z

∗
0 , {νt}t∈[0,T ]). Furthermore, the expressions for the

admissible approximate primal controls read:

π∗
t =

[
π̂opt
ν,1,t, π̂

opt
ν,2,t, 0

]⊤ and c∗
t = ĉopt

ν,t . (2.4.16)

(ii) (Non-traded Asset and Short-sale Constraints) Consider the market model
above, with K = R×R2

+ × {0}, which implies that in addition to the preceding
non-tradeability of {St}t∈[0,T ], short-sales are prohibited (we again exclude a
liquidity constraint). As a result, the shadow price process is for {νt}t∈[0,T ] ∈
HÂX0

given by ν0 = 0, and (yet) undetermined νi,1, νi,2, νi,3 ∈ R, for i = a, b,
that ought to ensure ν1,t, ν2,t ≥ 0 for all t ∈ [0, T ]. Due to the exclusion of
liquidity constraints we define K1,t = K2,t = 1 for all t ∈ [0, T ], with an eye on
(2.4.2). Moreover, we make use of the projection operator on which (2.4.16)
relies, which additionally ensures non-negativity of the allocation to assets:
projK2 (x) =

[
(x1)+

, (x2)+
, 0
]⊤

for all x ∈ R such that x = [x1, x2, x3]⊤,
where (xi)+ = max {xi, 0} for i = 1, 2. Then, in keeping with our method, we
identify νa and νb as in (2.4.1). Moreover, following (2.4.2), the approximate

14The approximate shadow price processes are characterised by analytical identities that
require straightforward root-searching algorithms to be solved. In the subsequent evalua-
tion of the method, we therefore accordingly, i.e. numerically, determine the approximate
shadow prices (νa and νb). We stress that this does not interfere with the analytical
nature of the primal controls. Since the identities for νa and νb infer little to nothing
about the economic meaning of the processes, we exclude them in this example. Similarly,
we exclude expressions for the approximate dual value functions. As the primal value
functions have to be calculated by means of simulations, we likewise utilise simulations
to obtain the dual value function – to rule out a simulation-bias.
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primal controls live by:

π∗
t =

[(
π̂opt
ν,1,t

)+
,
(
π̂opt
ν,2,t

)+
, 0
]⊤

and c∗
t = ĉopt

ν,t
(2.4.17)

(iii) (Non-traded Asset, Short-sale and Liquidity Constraints) Ultimately,
consider the market model from the previous setting and let K as K =
[−C,∞) × R+ × {0}2 for some C ∈ R+. This means that {S2,t}t∈[0,T ] and
{S3,t}t∈[0,T ] are non-traded, short-sale constraints are active, and a borrow-
ing/liquidity constraint is imposed (π0,t ≥ −C for all t ∈ [0, T ]). To be
precise, we explicitly impose the following liquidity constraint: X∗

t ≥ −C for
all t ∈ [0, T ]. Consequently, the shadow price process is for {νt}t∈[0,T ] ∈ HÂX0
characterised by νa, νb ∈ R such that ν0,t, ν1,t ≥ 0 holds for all t ∈ [0, T ]. Unlike
in the previous two setups, in the present one the support function, δ (ν), is non-
zero and equates to δ (ν) = ν0C. To enforce the borrowing/liquidity constraint
upon wealth, in consideration of (2.4.2), we define K1,t = 1{X∗

t ≥−C} and

K2,t = 1{X∗
t ≥−C} + kĉopt−1

ν,t Yt1{X∗
t <−C} for all t ∈ [0, T ] and some k ∈ [0, 1].

We utilise a slightly modified version of the projection operator from the previous
setup, which additionally nullifies any allocation of assets to {S2,t}t∈[0,T ] and

respects the borrowing constraint: projK2 (x) =
[
min { (x1)+

, X∗
t + C}, 0, 0

]⊤

for all x ∈ R such that x = [x1, x2, x3]⊤. Then, consistent with our routine, we
determine νa and νb from (2.4.1). Likewise, relying on the identities in (2.4.2),
the approximate primal controls are given by:

π∗
t =

[
min

{(
π̂opt
ν,t

)+
, X∗

t + C
}
, 0, 0

]⊤
K1,t and c∗

t = ĉopt
ν,t K2,t. (2.4.18)

Let us make a few remarks regarding the previous example.15 First, we
note that the choices for the projection operators and “liquidity-ensuring”
15In spite of its absence in Example 2.4.2, the Lagrange multiplier, ηopt = G−1 (X0), also

constitutes a part of the approximation on the dual-side, corresponding to the first step
(2.4.1). However, as the foregoing function depends on the shadow price process, an
approximation to the latter implies one to the former (cf. Corollary 2.4.1). We have
therefore opted for an exclusion of an according explication of the approximate Lagrange
multiplier. Moreover, we observe in Example 2.4.2’s last case that the fraction of labour
income that the agent consumes once the time-dependent liquidity constraint binds,
k ∈ [0, 1], is not specified. Indeed, in the numerical evaluation, we compute k in a manner
such that the approximate primal value function is maximised. One may subsume this
operation under the fifth step in section 2.4.1.2.
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functions are not unique. For instance, for a situation similar to the last one in
Example 2.4.2, Bick et al. (2013) employ a specification of K2,t that differs from
ours. In selecting the operators and functions, we aim for an uncomplicated
interpretation of the approximations. Second, we address that closed-form
expressions for the approximate primal value functions are not available. This
absence of analytical solutions is attributable to the integral expression of
approximate wealth in (2.4.3). We must employ simulations to acquire the
evolution of approximate wealth over [0, T ]. As a consequence, the primal
value function can only be obtained by means of simulations. Third and last,
we would like to stress that the controls in Example 2.4.2 provide closed-form
expressions for the solutions to a problem that does ordinarily not allow for a
characterisation of optimal rules in closed-form at all.

2.4.3 Evaluation of Approximate Method

To demonstrate the accuracy of our approximate method, we conclude this
section with a numerical evaluation. We make use of the framework defined in
sections 2.4.2.1 and 2.4.2.2, and compute the upper bounds on the welfare losses,
V , for the approximate controls in Example 2.4.2. Based on the initialisation of
parameters as reported in Brennan and Xia (2002), Kraft and Munk (2011), and
Bick et al. (2013), we fix our model parameters as follows: C = 0, γ = α1 = 5,
α2 = 0.5, X0/Π̄0 = 1, β = 0.03, r = 0.01, µY = 0.01, σY = 0.075, Y0 = Π0 = 1,
ρSY = 0.5, µΠ = 0.05, σΠ = 0.01, µi = 0.06, σii = 0.2, for i = 1, 2, 3, where
Π̄0 = E [MTΠT ]. All results are based on Monte-Carlo simulations and an
Euler scheme, with 10, 000 sample paths and T ∗10 time-steps: the approximate
strategies are adjusted 10 times a year. More frequent adjustments (such as
Bick et al. (2013)’s 20 times a year) do not improve our results significantly.
In Tables 2.1, 2.2, and 2.3, we report the annual welfare losses, expressed in
terms of the percentages of the investor’s initial amount of total wealth, for
cases (i), (ii), and (iii) of Example 2.4.2, respectively. We present the bounds
for different values of γ, α1, α2, X0/Π̄0, and T ceteris paribus.

First, we analyse the outcomes for item (i) of Example 2.4.2. Item (i), K =
R3 × {0}, outlines a setup, in which the benchmark process, {Πt}t∈[0,T ], is
(partially) unhedgeable. Note that this case constitutes a special version of the
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Coefficient of risk-aversion (γ) Risk-aversion parameter (α1)
4 6 8 10 4 6 8 10

Time (T )
5 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002
10 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002
20 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003
40 0.000 0.001 0.001 0.002 0.001 0.001 0.002 0.002

Scale parameter (α2) Funding ratio (X0/Π̄0)
0.1 0.4 0.7 1 0.7 0.85 1 1.15

Time (T )
5 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000
10 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000
20 0.002 0.000 0.001 0.002 0.000 0.000 0.000 0.000
40 0.002 0.001 0.002 0.003 0.002 0.001 0.001 0.000

Table 2.1. Upper bounds on annual welfare losses for K = R3 × {0}. For the first
case of Example 2.4.2, the table reports the upper bounds on the annual welfare losses that
the agent may incur from implementing the approximate strategy in (2.4.16). These annual
welfare losses are expressed in terms of the percentages of the investor’s initial amount of total
wealth (X0 and Y0), and calculated on the basis of (2.4.4) as follows: [(1+V)

1
T −1]×100. The

presented numbers ensue from variation over one of the four included parameters (the values
of which are shown in the upper rows of the two panels), for different time-horizons (displayed
in the most-left column of the two panels), and a predetermined baseline initialisation of the
parameters. This baseline initialisation is fixed in the following manner: C = 0, γ = α1 = 5,
α2 = 0.5, X0/Π̄0 = 1, β = 0.03, r = 0.01, µY = 0.01, σY = 0.075, Y0 = Π0 = 1, ρSY = 0.5,
µΠ = 0.05, σΠ = 0.01, µi = 0.06, σii = 0.2, for i = 1, 2, 3. The results are based on 10, 000
simulated paths, wherein the agent adjusts his/her portfolio and consumption behaviour 10
times a year, at equidistant points.

problem in Brennan and Xia (2002), involving labour income and intertemporal
consumption, where Πt is the price index. Table 2.1 reveals that the bounds
on the annual welfare losses for the present case vary between 0.000% and
0.003% of the investor’s total wealth. For a broad range of values for the
agent’s risk-profile and the trading-horizon, the welfare losses are lower than
0.001%. As a result of the extended exposure to the unhedgeable risk and
the interrelated magnification of inconsistencies inherent in the approximation,
increases in the trading horizon (T ) give rise to small increases in the (maximal)
welfare losses. For larger values of γ and α1, the size of the bounds increases
marginally. This can be explained by the positive dependence of the benchmark
hedge demand on the γ and α1 parameters, implied by equation (2.4.14). When
we interpret the reported bounds as annual management fees, or as annual
extra returns needed to compensate for the sub-optimal approximate strategies,
then it is safe to state that the approximate rules for case (i) of Example 2.4.2
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Coefficient of risk-aversion (γ) Risk-aversion parameter (α1)
4 6 8 10 4 6 8 10

Time (T )
5 0.000 0.009 0.014 0.023 0.000 0.001 0.003 0.006
10 0.000 0.007 0.007 0.021 0.000 0.002 0.006 0.008
20 0.000 0.011 0.036 0.051 0.000 0.003 0.008 0.014
40 0.001 0.005 0.018 0.022 0.000 0.001 0.001 0.004

Scale parameter (α2) Funding ratio (X0/Π̄0)
0.1 0.4 0.7 1 0.7 0.85 1 1.15

Time (T )
5 0.005 0.001 0.000 0.001 0.002 0.001 0.000 0.000
10 0.015 0.004 0.000 0.001 0.005 0.002 0.001 0.000
20 0.020 0.004 0.001 0.002 0.004 0.002 0.001 0.000
40 0.019 0.002 0.002 0.003 0.002 0.002 0.001 0.001

Table 2.2. Upper bounds on annual welfare losses for K = R×R2
+ × {0}. For the

second case of Example 2.4.2, the table reports the upper bounds on the annual welfare losses
that the agent may incur from implementing the approximate strategy in (2.4.17). Consider
the description of Table 2.1 for further details on the reported values.

are near-optimal.16

Second, we focus on item (ii) in Example 2.4.2. Item (ii), K = R×R2
+ × {0},

implies a setup that is identical to item (i)’s, in which short-selling is prohibited.
Table 2.2 discloses that the corresponding approximate strategies result in
upper bounds that vary between 0.000% and 0.051% of total wealth. For most
of the values of the agent’s risk-profile, the reported bounds are even lower
than 0.010%. Relative to Table 2.1, we observe that these losses are more
pronounced. This can be understood from the fact that the approximate rules
are forced to account for an additional constraint. This effect partially carries
over to the relationship between the time-horizon and the reported bounds.
Indeed, we discern a more noticeable positive link between the former two, up
to the T = 20 horizon. For the T = 40 horizon, the losses converge towards the
16Here and in the sequel, we draw conclusions as to the near-optimality of the approximate

trading-consumption pairs, which are proposed in Example 2.4.2, on the basis of the annual
welfare losses, rather than their non-annualised counterparts. We do so, for the purpose
of a fair comparison amongst the reported bounds in the dimension of the time-horizon
(T ). In the interest of of being able to compute the non-annualised welfare losses, and
thus to compare the magnitudes of these upper bounds to the ones that are documented
in e.g. Bick et al. (2013), we note that V × 100 =

[(
AL
100 + 1

)T
− 1
]

× 100 ≈ AL × T

spawns the non-annualised equivalents of the annual welfare losses (denoted by AL).
Comparable to Bick et al. (2013), we observe that the absolute bounds reported in Tables
2.1, 2.2 and 2.3 vary between 0.000% and 1.300%.
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Coefficient of risk-aversion (γ) Risk-aversion parameter (α1)
4 6 8 10 4 6 8 10

Time (T )
5 0.008 0.007 0.008 0.008 0.006 0.009 0.011 0.014
10 0.012 0.009 0.011 0.013 0.009 0.011 0.013 0.016
20 0.035 0.008 0.008 0.012 0.009 0.012 0.016 0.020
40 0.037 0.017 0.021 0.030 0.016 0.023 0.026 0.032

Scale parameter (α2) Funding ratio (X0/Π̄0)
0.1 0.4 0.7 1 0.7 0.85 1 1.15

Time (T )
5 0.010 0.008 0.006 0.004 0.008 0.008 0.007 0.007
10 0.015 0.011 0.009 0.008 0.011 0.010 0.010 0.010
20 0.022 0.013 0.009 0.007 0.014 0.012 0.011 0.011
40 0.031 0.015 0.014 0.009 0.019 0.016 0.015 0.013

Table 2.3. Upper bounds on annual welfare losses for K = [−C,∞) ×R+ × {0}2.
For the third case of Example 2.4.2, the table reports the upper bounds on the annual welfare
losses that the agent may incur from implementing the approximate strategy in (2.4.18).
Consider the description of Table 2.1 for further details on the reported values.

values in Table 2.1, which indicates that there is virtually no negative demand
for the traded assets, S1,t and S2,t.17 Given the relatively small values for
σΠ, it is logical that increases in γ and α1 put more emphasis on the negative
labour income hedge demand, see (2.4.13) and (2.4.14). Consistent with the
resulting enhanced inclination to short-sale, Table 2.2 shows a distinct positive
relationship between these parameters and the bounds. Due to SAHARA’s
ARA function, the opposite reasoning applies to the connection between α2 and
X0/Π̄0, respectively, and the welfare losses. In summary, the findings suggest
near-optimality of the approximate investment and consumption policies for
case (ii) of Example 2.4.2.

Third and last, we concentrate on item (iii) in Example 2.4.2. The setup implied
by item (iii), K = [0,∞) × R+ × {0}2, is equivalent to item (ii)’s, in which
labour income is (partially) unhedgeable and borrowing is prohibited. Observe
17Whereas changes in α1 or γ and their impact on the optimal portfolio can be intuitively

explained by relating these to the relevant ARA functions and Corollary 2.4.1, the impact
of T on the optimal portfolio is less clear. This is specifically true for a situation in
which one is not allowed to short-sell and/or borrow. For example, an increase in T

does not affect the demand for S3,t in the first case of Example 2.4.2, i.e. πopt
3,t = 0 must

hold regardless. But a similar increase in T may very well affect both the (constrained)
demands for S1,t and S2,t in the second case of Example 4.2. As a result, it is hard to
tell how well the selected projection performs in this instance. It is, therefore, not easy
to provide clear intuition for the patterns that are visible in the dimension of T .
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that this instance is similar to Cocco et al. (2005)’s investment problem. Table
2.3 shows that the bounds on the annual welfare losses are between 0.004% and
and 0.037% of total wealth. Most of the reported bounds are lower than 0.015%.
In comparison to the previous tables, the welfare losses for this example are
larger. We can explain this increase by the inclusion of two additional trading
constraints and a borrowing/liquidity constraint. Also in this case, the welfare
losses monotonically increase in the trading horizon. Similar patterns are visible
in the dimension of all the risk-profile’s parameters, with the exception of γ.
Due to the large impact on the portfolio (cf. the bounds under γ in Tables 2.1
and 2.2), and the enforced cap and floor on the portfolio process, it is clear that
low and high values for γ lead to infeasible allocations that ought to be adjusted
most drastically. This phenomenon results in larger welfare losses for the same
coefficients of risk-aversion. In conclusion, the approximation has proven to lead
to negligible welfare losses, and corresponding near-optimal closed-form trading
strategies, as well for item (iii) in Example 2.4.2. Accordingly, the outcomes
exemplify the approximation’s potential accuracy, and its stable performance,
even when the complexity of the trading constraints increases.18

2.5 Conclusion

This chapter has developed a dual-control method for finding approximate
closed-form solutions to investment problems in multi-dimensional financial
markets with convex trading constraints. This method works as follows: (i) it
approximates the optimal shadow price process; (ii) it “projects” the auxiliary-
optimal analytical controls, which are implied by (i), into the admissibility
region; (iii) it evaluates the accuracy by comparing the primal lower and dual
18In Tables 2.1, 2.2 and 2.3, we have deliberately decided on an omission of the standard

errors, associated with the documented welfare losses. Namely, the magnitudes of these
excluded errors are rather insignificant compared to the reported sizes of the welfare losses,
and therefore redundant. As for the errors of the approximation itself, here encapsulated
by the magnitudes of the bounds, we note that these arise as a result of two reasons: in
line with our essentially twofold procedure, from (i) the approximation of the shadow
price on one side, and (ii) the projection of the artificial-optimal rules on the other side.
The mechanism does not allow one to disentangle the exact attribution of either of these
procedures to the totality of the error – only of these together. Nevertheless, in light of
the small-sized welfare losses for the examples of interest, the latter assignment of errors
to the total amount is irrelevant.
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upper bounds on the optimal value function. Our method differs from the
literature, in that its range of application covers setups with (i) general return
dynamics, (ii) general liquidity constraints and convex trading restrictions,
and (iii) state-dependent utility functions that are (possibly) specified over the
entirety of the real line and embed an exogenous stochastic benchmark. To
highlight these distinguishing features, we have evaluated the quality of our
method in Cocco et al. (2005)’s environment, given both CRRA and SAHARA
preferences. For three different sets of the trading constraints, the numerical
evaluations have shown that the bounds on the annual welfare losses are always
lower than 0.051% of the investor’s initial amount of total wealth. Hence, our
method is capable of rendering near-optimal policy rules.

Appendix A Proofs

A.1 Proof of Theorem 2.3.1

We use the procedure by Klein and Rogers (2007) and Rogers (2003, 2013), to
arrive at a candidate for the dual. To that end, we derive

dXtZt = π0,trtZtdt+ π⊤
t Zt (µtdt+ σtdWt)

− (ct − Yt)Ztdt+XtZt
[
αtdt+ θ⊤

t dWt

]
+ π⊤

t σtθtZtdt,
(A.1.1)

which has the following solution:

XTZT = X0Z0 −
∫ T

0
(ct − Yt)Ztdt+

∫ T

0
π0,tZt (rt + αt) dt

+
∫ T

0
π⊤
t Zt (µt + αt1N + σtθt) dt+

∫ T

0

(
π⊤
t σt + θ⊤

t Xt

)
ZtdWt.

(A.1.2)

To simplify the latter expression, without loss of generality, we write αt and θt
for some νt = [ν0,t, νN,t] ∈ D1,2 ([0, T ])N+1 as follows:

αt = −ν0,t − rt,

θt = −λt − σ−1
t (νN,t − ν0,t1N ) .

(A.1.3)
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Then, from (A.1.2), we are able to deduce:

E

[
−XTZT −

∫ T

0
(ct − Yt)Ztdt

−
∫ T

0

(
π0,tν0,t + π⊤

t νN,t
)
Ztdt

]
+X0Z0 = 0.

(A.1.4)

To assemble a Lagrangian functional for the problem in (2.2.7), we simply
include the latter identity into the value function. Let L denote the Lagrangian
functional. Then, it can be shown that L equates to:

L = E

[∫ T

0
u (t, ct,Π1,t) dt+ U (XT ,Π2,T ) −

∫ T

0
ctZtdt

−XTZT −
∫ T

0

(
π0,tν0,t + π⊤

t νN,t
)
Ztdt+

∫ T

0
YtZtdt

]
+X0Z0.

(A.1.5)

Optimising the Lagrangian, L, over all ct and XT results in the following two
first order conditions (FOCs):

u′
X (t, ct,Π1,t) − Zt = 0,

U ′
X (XT ,Π2,T ) − ZT = 0.

(A.1.6)

These equations are solved by copt
t and Xopt

T . Consequently:

L = E

[∫ T

0
v (t, Zt,Π1,t) dt+ V (ZT ,Π2,T )

−
∫ T

0

(
π0,tν0,t + π⊤

t νN,t
)
Ztdt+

∫ T

0
YtZtdt

]
+X0Z0.

(A.1.7)

Then, we optimise L over all {π0,t, πt}t∈[0,T ] ∈ K. This results in L = ∞,
unless the CS condition holds true:

{νt}t∈[0,T ] ∈ HÂX0
. (A.1.8)

69



Chapter 2. Near-Optimal Asset Allocation

As a result, for {νt}t∈[0,T ] ∈ HÂX0
:

sup
{π0,t,πt,ct}t∈[0,T ]∈ÂX0

L = JD

(
X̄0, Z0, {νt}t∈[0,T ]

)
. (A.1.9)

Minimising the latter expression over all {νt}t∈[0,T ] ∈ HÂX0
and Z0 ∈ R+

yields (2.3.2). Therefore, it is easy to show that optimal Z0 ∈ R+ reads:

Zopt
0 = G−1 (X0) (A.1.10)

For proofs that the candidate in (2.3.3) is the legitimate dual of the primal
problem (2.2.5), we refer the reader to, for example, Karatzas, Žitković, et al.
(2003), and Hugonnier, Kramkov, et al. (2004). The derivations in these papers
can easily be adapted to our mildly adjusted environment.

A.2 Proof of Proposition 2.3.2

It is clear that

inf
Z0∈R+

JD

(
X̄0, Z0, {νt}t∈[0,T ]

)
= JM̂ν

(
X̄0, {νt}t∈[0,T ]

)
, (A.2.11)

holds for all {νt}t∈[0,T ] ∈ HÂX0
and X̄0 ∈ R2

+. Namely, the latter minimisation
procedure results in Zopt

0 = G−1 (X0). The previous definition eliminates the
budget constraint from the specification of JD, which is given by:

−E

[∫ T

0
(cν,t − Yν,t)Zν,tdt+Xν,TZν,T

]
+X0. (A.2.12)

An alternative approach is to note that

sup
(Xν,T ,cν,t)∈L̂2(Ω×[0,T ])

E

[∫ T

0
u (t, cν,t,Π1,t) dt+ U (Xν,T ,Π2,T )

]

s.t. E

[∫ T

0
(cν,t − Yν,t)Zν,tdt+Xν,TZν,T

]
≤ X0,

(A.2.13)
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generates a minimax formulation inherent in its Lagrangian functional that is
identical to the dual formulation central to this proof.

A.3 Proof of Proposition 2.3.3

We first solve (2.3.9) by means of standard Lagrangian methods. To this end,
introduce η ∈ R+ as the Lagrange multiplier. Fix L := L(Xν,T , cν,t, η). Then,
the Lagrangian, L : L̂2 (Ω × [0, T ]) ×R2

+ → R, reads as:

L = E

[∫ T

0
u (t, cν,t,Π1,t) dt+ U (Xν,T ,Π2,T )

− η

(∫ T

0
cν,tZν,tdt+Xν,TZν,T −X0 −

∫ T

0
Yν,tZν,tdt

)]
.

(A.3.14)

We can compute the following two Fréchet derivatives, cf. Definition 5 in
Battauz et al. (2015a):

DXν,T
Lξ1 = ⟨U ′

X (Xν,T ,Π2,T ) − ηZν,T , ξ1⟩L2(Ω)

= E [(U ′
X (Xν,T ,Π2,T ) − ηZν,T ) ξ1] = 0,

(A.3.15)

and

Dcν,tLξ2 = ⟨u′
X (t, cν,t,Π1,t) − ηZν,t, ξ2⟩L2(Ω×[0,T ])

= E

[∫ T

0
(u′
X (t, cν,t,Π1,t) − ηZν,t) ξ2,tdt

]
= 0,

(A.3.16)

for all ξ1 ∈ L2 (Ω) and ξ2 ∈ L2 (Ω × [0, T ]), in which DXν
L : L2 (Ω) → R

and Dcν,t
L : L2 (Ω × [0, T ]) → R specify the Fréchet derivatives in the Xν,T -

direction and in the cν,t-direction, respectively.

Solving (A.3.15) and (A.3.16) for Xν,T and cν,t, yields us the following

cν,t = ι (t, ηZν,t,Π1,t) ,

Xν,T = I (ηZν,T ,Π2,T ) .
(A.3.17)
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These are the stationary points of L. Here, the corresponding value for optimal
η, i.e. ηopt = G−1 (X0), follows from

DηLξ3 = −

〈∫ T

0
cν,tZν,tdt+Xν,TZν,T −X0

−
∫ T

0
Yν,tZν,tdt, ξ3

〉
L2(Ω)

= −G (η) +X0 = 0,
(A.3.18)

for all ξ3 ∈ R+, where DηL : R+ → R is L’s Fréchet derivative in the η-
direction. Note that these identities hold for all ω ∈ Ω and generate (2.3.10).

Now, using the Clark-Ocone formula, we derive:

πopt
ν,t = σ⊤−1

t

{
E

[
DW
t

(
Xopt
ν,T

Zν,T
Zν,t

+
∫ T

t

(
copt
ν,s − Yν,s

) Zν,s
Zν,t

ds
) ∣∣∣∣∣ Ft

]
+ λ̂tX

opt
ν,t

}
,

(A.3.19)

for all t ∈ [0, T ]. The general result underscoring this identity can be found in
the study by Ocone and Karatzas (1991). The four hedge demands follow from
a straightforward expansion of the Malliavin derivative in the same equation
(A.3.19) for πopt

ν,t , i.e. DW
t {Xopt

ν,TZν,T +
∫ T

0 (copt
ν,s − Yν,s)Zν,sds}.

A.4 Derivation of (2.3.14)

Minimisation of JD over νN,M,t ∈ D1,2 ([0, T ])N yields

D{νN,M,t}JD {ϵt} = E

[
Xopt
ν,TZTPϵ,T +

∫ T

0

(
copt
ν,t − Yν,t

)
ZtPϵ,tdt

]
, (A.4.20)

which describes for all ϵt ∈ D1,2 ([0, T ])M the Fréchet derivative of JD : R2
+ ×

R+ × D1,2 ([0, T ])N → R in the νN,M,t-direction, such that D{νN,M,t}JD :
D1,2 ([0, T ])M → R. Here, we define for all t ∈ [0, T ]:

Pϵ,t :=
∫ t

0
ϵ⊤s σ

−1⊤

2,s λ̂M,sds+
∫ t

0
ϵ⊤s σ

−1⊤

2,s dWM,s. (A.4.21)
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By means of Skorokhod’s duality result, cf. Chapter 4.41 of Rogers and Williams,
2000, we find that:

E
[
Xopt
ν,TZT ζ

(
σ−1

2 ϵ
)]

= E

[∫ T

0
ϵ⊤t σ

−1⊤

2,t E
[
DWM
t Xopt

ν,TZT

∣∣∣ Ft
]

dt
]
, (A.4.22)

where ζ (·) specifies the divergence operator or Skorokhod integral. Note that
the Skorokhod integral is defined as:

ζ
(
σ−1

2 ϵ
)

=
∫ T

0
ϵ⊤s σ

−1⊤

2,s dWM,s. (A.4.23)

Likewise, after changing the order of integration,

E

[∫ T

0
copt
ν,Y,tZtζ (ϵ̂) dt

]
= E

[∫ T

0

∫ t

0
ϵ̂⊤s E

[
DWM
s copt

ν,Y,tZt

∣∣∣ Fs
]

dsdt
]
,

(A.4.24)
for all ϵt ∈ D1,2 ([0, T ])M in which copt

ν,Y,t = copt
ν,t − Yt and ϵ̂ = σ−1

2 ϵ.

Combining results and solving

D{νN,M,t}JD {ϵt} = 0, (A.4.25)

for all ϵt ∈ D1,2 ([0, T ])M , we find the first-order condition in (2.3.14) for all
t ∈ [0, T ]. Note that, as for L in Proposition 2.3.3, JD lays out stationary
points at which D{νN,M,t}JD {ϵt} = 0 holds for all ϵt ∈ D1,2 ([0, T ])M : convexity
arguments suffice to conclude on the optimality of {λ̂M,t}t∈[0,T ].

A.5 Proof of Corollary 2.4.1

Noting that ι (t, x, y) = (eβtxy)− 1
γ y, (2.4.12) follows from (2.3.10). Regarding

π̂opt
ν,t , consider (2.3.12), and observe that the following holds:

1
R1,c,t

= 1
γ
ĉopt
ν,t = 1

γ
e− 1

γ βt
(
ηoptZν,t

)− 1
γ Π1− 1

γ

t ,

1
R1,X,T

= α2

α1
cosh

(
1
α1

log
(
ηoptZTΠT

)
+ log (α2)

)
ΠT .

(A.5.26)
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It is then straightforward to show that

E

[∫ T

t

1
R1,c,s

Zν,s
Zν,t

ds
∣∣∣∣∣ Ft

]
= ĉopt

ν,t f (t, T ) ,

E

[
1

R1,X,T

Zν,T
Zν,t

∣∣∣∣ Ft
]

= 1
α1

[
α2

2,t,T + X 2
t,T

] 1
2 Πt.

(A.5.27)

Now, consider (2.3.13), and note that the following holds: R2,c,t = −(1 −
1
γ )ĉopt

ν,t Π−1
t . In addition to this, we are able to derive that

R2,X,t = −1
2

[(
1 − 1

α1

)(
ηoptZTΠT

)− 1
α1

−α2
2

(
1 + 1

α1

)(
ηoptZTΠT

) 1
α1

]
− 1,

(A.5.28)

and DW
t Π1,s = DW

t Π2,s = DW
t Πs = σΠΠs for all s ≥ t. Then,

E

[∫ T

t

Zν,s
Zν,t

R2,c,sDW
t Π1,sds

∣∣∣∣∣ Ft

]
= −

[
1 − 1

γ

]
ĉopt
ν,t f (t, T )σΠ,

E

[
Zν,T
Zν,t

R2,X,TDW
t Π2,T

∣∣∣∣ Ft
]

=
([

1 − 1
α1

]
X̂t,TΠt + Πte

h(0,T,0)
)
σΠ.

(A.5.29)
hold, yielding π̂Π

t . Finally, one is able to show that DW
t µY,u = 03, DW

t σY,u =
03×3 and E[

∫ T
t

Zν,s

Zν,t
Ysds | Ft] = Ytg (t, T ) hold true. These results render the

demand corresponding to the agent’s labour income, π̂Yt . We stress that

DW
t log Ẑν,s = DW

t logZν,s + λ̂t

=
∫ s

t

[
−DW

t ru − DW
t ν0,u

]
du

−
∫ s

t

DW
t λ̂ud

(
Wu + λ̂u

)
= 03,

(A.5.30)

such that

πZt = σ⊤−1

t E

[
1

R̂1,X,T

Zν,T
Zν,t

DZ,t,T +
∫ T

t

1
R̂1,c,s

Zν,s
Zν,t

DZ,t,sds
∣∣∣∣∣ Ft

]
= 03.

(A.5.31)
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3
Dual Formulation of the Optimal

Consumption Problem with
Multiplicative Habit Formation

Adapted from: Kamma, T., & Pelsser, A. (2022a). Dual formulation of the
optimal consumption problem with multiplicative habit formation. Working
paper.
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Abstract
This chapter provides a dual formulation of the optimal consumption problem
with internal multiplicative habit formation. In this problem, the agent derives
utility from the ratio of consumption to the internal habit component. Due to
this multiplicative specification of the habit model, the optimal consumption
problem is not strictly concave and incorporates irremovable path-dependency.
As a consequence, standard Lagrangian techniques fail to supply a candidate
for the corresponding dual formulation. Using Fenchel’s Duality Theorem, we
manage to identify a candidate formulation and prove that it satisfies strong
duality. On the basis of this strong duality result, we develop an evaluation
mechanism to measure the accuracy of analytical or numerical approximations
to the optimal solutions.
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3.1 Introduction
Habit formation describes the phenomenon of an individual growing accustomed
to a certain standard of living. In a financial context, this standard of living is
dependent on a person’s past decisions with regard to saving and consumption.
Consuming more or less than a person-specific living standard may impact the
utility levels of an individual, cf. Kahneman and Tversky (1979). It is therefore
plausible that habit formation affects the current consumption behaviour of a
person. To model and analyse the impact of habit-forming tendencies on this
behaviour, a wide variety of studies have investigated optimal consumption
problems that incorporate a habit level, representing the agent’s living standard.
These studies can be distinguished into two categories: (i) those that focus on
additive habits, and (ii) those that concentrate on multiplicative habits.

We start by discussing the additive habits. In optimal consumption problems
with additive habits, the utility-maximising individual draws utility from the
difference between consumption and a habit level. The literature on these habits
is pioneered by Constantinides (1990) and has been studied by e.g. Detemple
and Zapatero (1991), Campbell and Cochrane (1999), Munk (2008), Muraviev
(2011), and Yu (2015). Additive habit models typically employ arithmetic habit
levels, which monotonically increase over time, cf. Detemple and Karatzas
(2003), Bodie et al. (2004), and Polkovnichenko (2007). Furthermore, as most
standard utility functions only admit strictly positive arguments, additive habit
specifications force the agent to maintain consumption above the habit level.
For this reason, the habit component is sometimes interpreted as a subsistence
level, see e.g. Yogo (2008). This interpretation is sensible for exogenous habits.
However, if we assume that habits are endogenous, the habit level depends
on the individual’s past decisions and becomes person-specific. Consequently,
for endogenous habits, it is hard not to consider the habit component as a
standard of living that increases over time.

Although individuals have a natural incentive to maintain consumption at
least above their living standard, it is clear that additive habit models are
too restrictive to be realistic. We attribute this restrictiveness to two main
reasons. First of all, in practice, adverse changes in the financial circumstances
can urge people to scale down consumption below the level to which they have
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become accustomed. Second, because of the latter phenomenon, an individual’s
standard of living may decrease over the course of a lifetime. To arrive at
a more realistic model setup that manages to deal with the preceding two
situations, the following two modifications can be made. As for the possibility
of a declining standard of living, one can employ a geometric specification of
the habit level, cf. Kozicki and Tinsley (2002), Corrado and Holly (2011), and
van Bilsen et al. (2020a). Unlike the arithmetic habit levels, this geometric
specification relies on the logarithmic transformation of consumption, and can
therefore decrease over time. As for the possibility of scaling down consumption
below the habit level, one can make use of multiplcative habit models.

We now continue with a discussion of the multiplicative habits. Optimal
consumption problems with multiplicative habit formation assume that the
utility-maximising individual derives utility from the ratio of consumption to a
habit level. The specification of these habits dates back to Abel (1990), and
has been economically advocated by Carroll (2000) and Carroll et al. (2000).
Contrary to the additive case, consumption is in this multiplicative setup not
constrained to achieve values above the habit level. Namely, since the ratio of
consumption to the habit level is always strictly positive, it can be included
as an argument in all standard utility functions. The multiplicative habit
model consequently allows the agent to reduce consumption levels below the
habit component. Furthermore, the multiplicative habit model endows the
utility-maximising agent with a strong incentive to fix consumption near/above
the habit level. This incentive is due to the fact that the utility function of the
agent increases with the magnitude of the ratio.

When the habit level is endogenously determined (internal), standard solution
techniques generally fail to solve optimal consumption problems with multi-
plicative habit formation in closed-form. Because of its dependence on past
consumption decisions, the habit component gives rise to path-dependency
in the objective function. This path-dependency is irremovable and cannot
be handled in an analytical manner.1 Due to the structure of multiplicative
habits, the optimal consumption problem is not strictly concave. In general,

1This analytical intractability is unique to problems involving multiplicative habits. In case
of additive habits, the path-dependency can be eliminated from the problem, cf. Schroder
and Skiadas (2002).
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non-concave optimisation problems are more difficult to solve than concave
ones, see e.g. Chen et al. (2019). To be able to analyse the corresponding
optimal solutions, the general approach is to fall back on (i) numerical routines,
(ii) approximations or (iii) duality techniques. In a discrete-time setup, Fuhrer
(2000) and Gomes and Michaelides (2003) employ numerical methods to analyse
the internal multiplicative habit model. More recently, in a continuous-time
setup, van Bilsen et al. (2020a) and Li et al. (2021) have made use of an approx-
imation and numerical routines, respectively.2 Although these studies provide
valuable insights into the (optimal) solutions, they ignore potential benefits
and insights from duality approaches. In fact, to the best of our knowledge, a
dual formulation for the multiplicative habit model is not known.

In this chapter, we provide a dual formulation of the optimal consumption
problem with internal multiplicative habit formation. We derive this formula-
tion in a continuous-time setup with power utility and a finite trading-horizon.
The habit level of the utility-maximising individual is assumed to live by a
geometric form. The conventional Lagrangian methods for obtaining dual
formulations, e.g. those in Klein and Rogers (2007) and Rogers (2003, 2013),
are unable to supply a dual for this multiplicative habit problem. Namely,
due to the fact that the problem is non-concave and involves path-dependency,
the ordinary Legendre transform fails to establish the necessary conjugacy
properties. Therefore, we resort to Fenchel’s Duality Theorem and a change
of variables to derive a dual formulation and prove that strong duality holds.
Inspired by Bick et al. (2013) and Kamma and Pelsser (2022c), we make use
of this strong duality result to develop an evaluation mechanism, suitable for
quantifying the accuracy of analytical or numerical approximations to the
optimal solutions. This evaluation mechanism spawns a hard upper bound on
the welfare losses associated with the approximations, and requires little to no
numerical effort. For the approximation developed by van Bilsen et al. (2020a),
we employ this mechanism to show that the corresponding welfare losses can

2We exclusively mention studies that focus on the consumption problem with internal
multiplicative habits. Problems involving external habit formation, see e.g. Carroll et al.
(1997), Chan and Kogan (2002) and Gómez et al. (2009), do not pose issues when it
comes to deriving optimal (duality) results. Martingale duality techniques, developed in
the seminal contributions by Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989,
1991), suffice to analytically solve these consumption problems.
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be very small.

The remainder of the chapter is organised as follows. Section 3.2 introduces the
model setup and the optimal consumption problem. Section 3.3 presents our
main result: the dual formulation. We divide this section into three parts. In
the first part, we provide the dual and a rough sketch of its proof. In the second
part, we address some technical features of the dual. In the third part, we
comment on particular implications of the strong duality result. Subsequently,
section 3.4 outlines the evaluation mechanism and provides some numerical
results. Appendix A contains the proof of our main duality result.

3.2 Model Setup

In this section, we introduce the model setup. First, we lay out the financial
market model. Second, we define the agent’s wealth process. Third, we specify
the agent’s habit level. Fourth, we outline the optimal consumption problem.

3.2.1 Financial Market Model

Our financial market model is N -dimensional, defined in continuous-time, and
based on the economic environments provided in Detemple and Rindisbacher
(2010), van Bilsen et al. (2020a) and Kamma and Pelsser (2022c). We define
T > 0 as the finite trading or planning horizon, and [0, T ] as the corresponding
trading interval. Moreover, we introduce the complete filtered probability space
(Ω,F , {Ft}t∈[0,T ] ,P). The components of this space live by their typical defi-
nitions, and its randomness is generated by an RN -valued standard Brownian
motion, {Wt}t∈[0,T ]. As of now, all (in)equalities between random variables
and stochastic processes are understood in a P-a.s. or a dt⊗ P-a.e. sense.

The financial market, M, contains a money market account and N risky assets
that are represented by N semi-martingale processes. The money market
account submits to the following ordinary differential equation (ODE):

dBt
Bt

= rtdt, B0 = 1. (3.2.1)
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Here, rt represents the R-valued instantaneous interest rate. We assume that rt
is Ft-progressively measurable and fulfills

∫ T
0 |rt| dt < ∞. The price processes

for the N risky assets (stocks) evolve according to the following stochastic
differential equation (SDE) for all i = 1, . . . , N :

dSi,t
Si,t

= µi,tdt+ σ⊤
i,tdWt, Si,0 = 1, (3.2.2)

where µi,t denotes the R-valued instantaneous expected return on stock i and
σi,t the RN -valued vector containing the volatility processes for stock i, both of
which are Ft-progressively measurable. We postulate that

∫ T
0 ∥µt∥RN dt < ∞

and
∫ T

0 Tr(σtσ⊤
t )dt < ∞, in which µt ∈ RN has entries µi,t, and σt ∈ RN×N

rows σi,t, i = 1, . . . , N . Observe here that ∥·∥RN denotes the N -dimensional
Euclidean norm and that Tr (·) represents the trace operator. To ensure
invertibility of σt, we assume that σt is non-singular.

Due to the absence of trading restrictions, this financial market is complete,
i.e. all traded risks are hedgeable. Hence, by the fundamental theorem of asset
pricing, as formulated by Delbaen and Schachermayer (1994), there must exist
a unique equivalent martingale measure. Correspondingly, there must exist a
unique state price density (SPD), {Mt}t∈[0,T ]. Define λt := σ−1

t (µt − rt1N ) as
the market price of risk, then Mt reads:

dMt

Mt
= −rtdt− λ⊤

t dWt, M0 = 1. (3.2.3)

Note that {Bt}t∈[0,T ] is selected as the numéraire quantity. We assume that
{λt}t∈[0,T ] satisfies E[ exp ( 1

2
∫ T

0 ∥λs∥2
RN ds)] < ∞, cf. Karatzas and Shreve

(2012). Moreover, we postulate that {λt}t∈[0,T ] is such that Mt and logMt

attain values in L2 (Ω × [0, T ]).3 The latter assumption is necessary to assure
well-posedness of the dual formulation. In order to evaluate financial instru-
ments in a risk-neutral fashion, one can make use of Mt. For example, MtBt

and MtSt are both P-martingales with respect to {Ft}t∈[0,T ].

3We define Lp (Ω × [0, T ] ;Rn) as the standard Lebesgue space of all Ft-progressively
measurable functions, f : Ω × [0, T ] → Rn, satisfying

( ∫
Ω×[0,T ] ∥ft∥p

Rn P (dt)
)1/p

=(
E
[ ∫ T

0 ∥ft∥p
Rn dt

])1/p
< ∞. If n = 1, we drop the “R”-notation from the definition of

the Lp space.
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3.2.2 Dynamic Wealth Process

In this environment, the agent is free to continuously select an investment and
a consumption strategy over [0, T ]. Specifically, the agent’s wealth process,
{Xt}t∈[0,T ], is affected by two endogenous terms: (i) a process for the proportion
of wealth that is allocated to the stock, {πt}t∈[0,T ], and (ii) a consumption
process, {ct}t∈[0,T ]. We assume that both preceding endogenous processes
are Ft-progressively measurable. Let us fix a deterministic initial endowment,
X0 ∈ R+. Then, the agent’s wealth process is defined by:

dXt = Xt

[(
rt + π⊤

t σtλt
)

dt+ π⊤
t σtdWt

]
− ctdt, (3.2.4)

Clearly, {ct}t∈[0,T ] is R+-valued and {πt}t∈[0,T ] is RN -valued. A trading-
consumption pair, {ct, πt}t∈[0,T ], is said to be admissible if it satisfies the follow-
ing set of conditions: Xt ≥ 0,

∫ T
0 π⊤

t σtσ
⊤
t πtdt < ∞,

∫ T
0
∣∣π⊤
t σtλt + rtXt

∣∣dt <
∞, and log ct ∈ L2 (Ω × [0, T ]). The set containing all admissible trading-
consumption pairs is denoted by AX0 . Observe that the proportion of wealth
that is allocated to the cash account can be recovered from 1−π⊤

t 1N , where 1N
is an RN -valued vector containing only 1’s. This specific proportion only plays
a role through {πt}t∈[0,T ], due to which it can be excluded from {Xt}t∈[0,T ].
See e.g. Cuoco (1997) for a situation in which this is not the case.

3.2.3 Habit Level

The economic environment M consists of a utility-maximising agent who is
internally habit-forming. As a consequence, the individual is in possession
of a habit level, ht at time t ∈ [0, T ]. This habit level represents the level
of consumption to which the agent has become accustomed. Naturally, ht
depends on the agent’s preferences and his/her corresponding past consumption
behaviour. Due to this dependence on past consumption decisions, the habit
level constitutes an endogenous (internal) component. If ht is exogenously
determined (β = 0 below), the agent is externally habit-forming. By analogy
with van Bilsen et al. (2020a) and references therein, we suppose that:

d log ht = (β log ct − α log ht) dt, log h0 = 0. (3.2.5)

82



3.2 Model Setup

The parameter β ∈ R+ expresses the relative importance of past consumption
decisions in the specification of log ht. For large values of β, more weight is
attached to these past consumption choices. For small values of β, the converse
is true. The parameter α ∈ R+ stands for the habit level’s rate of depreciation.
For small values of α, the habit level depends on past consumption decisions
over a large time-horizon. For large values of α, the converse is true. We assume
that α ≥ β holds, for concavity purposes related to the optimal consumption
problem. The limiting case α = β = 0 results in ht = 1 for all t ∈ [0, T ].
Setting α = β = 0 consequently recovers a model without habit formation.

We note that the solution to the ODE in (3.2.5) reads for all t ∈ [0, T ] as:

log ht = β

∫ t

0
e−α(t−s) log csds. (3.2.6)

Hence, the habit level lives by a geometric form. That is,
ht = exp {β

∫ t
0 e

−α(t−s) log csds} holds for all t ∈ [0, T ]. In contrast to
arithmetic habits, cf. Constantinides (1990) and van Bilsen et al. (2020b), this
specification of ht is not strictly increasing in time. As the geometric form
consequently allows for decreases in ht over t ∈ [0, T ], the interpretation of this
habit component as a standard of living is more sensible. Hence, in our setup,
ht is not necessarily a subsistence level. Ultimately, we observe that log ht
in (3.2.6) can be represented as follows: log ht = α

∫ t
0 e

−α(t−s) log cβ/αs ds,
for all t ∈ [0, T ]. This representation indicates that ht can be interpreted
as the geometric weighted moving average (GWMA) of transformed past
consumption decisions, {cβ/αs }s∈[0,t]. Clearly, if α = β ̸= 0, ct

ht
becomes

a dimensionless quantity, and ht reduces to the ordinary GWMA of
(non-transformed) past consumption decisions, {cs}s∈[0,t].

3.2.4 Optimal Consumption Problem

The habit-forming agent in M is at t = 0 in possession of a predetermined
amount of cash, X0 ∈ R+, and lives until t = T . Throughout the trading
interval, [0, T ], this agent seeks to maximise expected lifetime utility from the
ratio of consumption to the habit process by continuously selecting his/her
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consumption levels and corresponding portfolio weights. The habit-forming
agent must determine these controls in agreement with the dynamic budget
constraint in (3.2.4), such that the admissibility conditions are met. We assume
that the preferences of the individual are characterised by the Von-Neumann-
Morgenstern index: E[

∫ T
0 e−δtU (ct/ht) dt], cf. Detemple and Zapatero (1991).

Consistent with this description, the agent faces the following problem:

sup
{ct,πt}t∈[0,T ]∈AX0

E

[∫ T

0
e−δtU

(
ct
ht

)
dt
]

s.t. dXt = Xt

[(
rt + π⊤

t σtλt
)

dt+ π⊤
t σtdWt

]
− ctdt,

d log ht = (β log ct − α log ht) dt, h0 = 1, X0 ∈ R+.

(3.2.7)

In this problem, δ ∈ R+ represents the agent’s time-preference parameter and
U : R+ → R denotes the agent’s utility function. For simplicity, we assume
that utility is given by an ordinary power (CRRA) function, U (x) = x1−γ

1−γ for
all x ∈ R+. Here, γ defines the coefficient of relative risk-aversion. For purposes
related to concavity of the optimisation problem, we fix γ > 1. We denote the
first and second derivatives of U by U ′ and U ′′, respectively. The first derivative
of U , U ′, is also known as marginal utility. By I : R+ → R+, we denote the
inverse of marginal utility (I = (U ′)−1). The preceding optimisation problem
is not strictly concave and does not permit a derivation of the optimal controls
in closed-form, because of the path-dependency induced by ht. Namely, utility
at time t depends, apart from on ct alone, through ht as well on {cs}s∈[0,t].

3.3 Dual Formulation

In this section, we provide the main result of this chapter (Theorem 3.3.1): the
dual formulation of the optimal consumption problem in (3.2.7). We divide this
section into three parts. First, we present the dual formulation and formalise
that it satisfies strong duality, in Theorem 3.3.1. In the same part, we provide
a rough sketch of the proof that culminates in the preceding strong duality
result. Second, we present a set of three technical remarks related to the dual
formulation. Third, we discuss certain implications of the strong duality result
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concerning the analytical structure of the optimal controls. These analytical
implications primarily pertain to the duality relations.

3.3.1 Main Result: Strong Duality

Theorem 3.3.1 contains the main result central to this chapter. Its statement
formalises the fact that the optimal (dual) control problem in (3.3.1) and the
optimal consumption problem in (3.2.7) are dual to each other. The latter
concretely means that these problems satisfy strong duality. First, we provide
the theorem itself. Second, we comment on its corresponding proof.

Theorem 3.3.1. Consider the optimal consumption problem in (3.2.7) and
define the primal objective function: J (X0, {ct, πt}) = E[

∫ T
0 e−δtU( ct

ht
)dt].

Furthermore, introduce the following concave conjugate:
V (x) = infz∈R {xz − (−e−z)} = x − x log x, for all x ∈ R+. Then, the dual
formulation of the optimal consumption problem in (3.2.7) is given by:

inf
ψt∈L2(Ω×[0,T ]),η∈R+

E

[∫ T

0

{
e−δt 1

1 − γ
V
(
eδtψt

)
− ηMtV

ψt − βE
[∫ T
t
e−α(s−t)ψsds

∣∣∣ Ft
]

ηMt

dt

+ ηX0.

(3.3.1)
That is, suppose that V (X0, ψt, η) represents the dual objective function of
(3.3.1). Then, the problems in (3.2.7) and (3.3.1) satisfy strong duality:

sup
{ct,πt}t∈[0,T ]∈AX0

J (X0, {ct, πt}) = inf
ψt∈L2(Ω×[0,T ]),η∈R+

V (X0, ψt, η) , (3.3.2)

for all X0 ∈ R+

Proof. The proof is given in Appendix A.

Typically, the Legendre transform alone suffices to establish a strong duality
result. However, due to the non-concavity and path-dependency of the objective
of (3.2.7), the Legendre transform cannot be used to derive strong duality.
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Therefore, to prove Theorem 3.3.1, we apply a change of variables and employ
Fenchel Duality, cf. Proposition A.1. This form of duality can be regarded as
a generalisation of the Legendre result to problems involving path-dependent
linear transformations of one of the control variables. On the basis of Fenchel
Duality, deriving strong duality for problems (3.2.7) and (3.3.1) is straightfor-
ward. First, we re-express the primal problem (3.2.7) in terms of its static
equivalent and log ct. Second, we use Fenchel Duality to demonstrate that
strong duality holds for the static problem and infψt∈L2(Ω×[0,T ]) V (X0, ψt, η).
Third and last, we resort to a technical argument (Lemma A.2) in order to
extend this strong duality result to (3.2.7) and (3.3.1).

3.3.2 Technical Remarks

In this section, we address three technical aspects of the dual formulation in
Theorem 3.3.1. The first two aspects touch upon the dual control variable,
{ψt}t∈[0,T ]. As for the first aspect, we know that this control variable attains
values in the “unconstrained” set L2 (Ω × [0, T ]). However, the function V is
defined over R+. Consequently, the dual forces the following two constraints
upon {ψt}t∈[0,T ]: ψt > 0 and ψt − βE[

∫ T
t
e−α(s−t)ψsds | Ft] > 0 for all

t ∈ [0, T ]. The second aspect is closely related to the latter and concerns
an alternative representation of the dual in (3.3.1). Suppose that we define
a process pt = ψt − βE[

∫ T
t
e−α(s−t)ψsds | Ft] for all t ∈ [0, T ]. Then, the

latter identity can be regarded as a Volterra equation for ψt with the following
solution: ψt = pt + βE[

∫ T
t
e−[α−β](s−t)psds | Ft] for all t ∈ [0, T ]. Therefore,

the dual formulation in (3.3.1) is identical to the following one:

inf
pt∈L2(Ω×[0,T ]),η∈R+

E

[∫ T

0

{
−ηMtV

(
pt
ηMt

)

e−δt 1
1 − γ

V

(
eδt

{
pt + βE

[∫ T

t

e−[α−β](s−t)psds
∣∣∣∣∣ Ft

]})}
dt
]

+ ηX0.

(3.3.3)
As in case of {ψt}t∈[0,T ], it is clear that the the preceding dual
formulation forces the following constraints upon {pt}t∈[0,T ]: pt > 0 and
pt + βE[

∫ T
t
e−[α−β](s−t)psds | Ft] > 0 for all t ∈ [0, T ]. Although this
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re-definition of the dual control variable does not affect the dual optimality
conditions, it implies slightly different duality relations. In the subsequent
section 3.3.3, we address the nature of these relations in more detail.

The third and final aspect concerns the dual formulation for the model setup
without habit formation. To recover this no-habit case, it suffices to fix
α = β = 0. Setting α = β = 0 in the dual of Theorem 3.3.1 provides us with
the following dual formulation:

inf
ψt∈L2(Ω×[0,T ]),η∈R+

E

[∫ T

0

{
e−δtV

(
eδtψt

)
1 − γ

− ηMtV

(
ψt
ηMt

)}
dt
]

+ ηX0.

(3.3.4)
Here, the dual forces {ψt}t∈[0,T ] to satisfy ψt > 0 for all t ∈ [0, T ]. In line
with the exclusion of ht in the primal, the no-habit dual does not contain the
E[
∫ T
t
e−α(s−t)ψsds | Ft] term. The dual in (3.3.4) differs from the conventional

one in e.g. Cvitanić and Karatzas (1992). Note that this is not troublesome,
as the dual formulations for convex optimisation problems are not unique,
cf. Rockafellar (2015). In fact, after inserting the optimal dual control, say ψopt

t

(cf. Example 3.3.1), into (3.3.4), we find the conventional formulation. The
aforementioned difference is attributable to the fact that this dual ensues from
an application of Fenchel Duality. Namely, this notion of duality involves two
convex conjugates instead of one. Moreover, it requires one to re-express the
primal control as follows: ct = e−(− log ct) for all t ∈ [0, T ]. Due to these two
features, the dual accommodates two functions that coincide with the concave
conjugate of the exponential utility function (x 7→ −e−x).

3.3.3 Duality Relations

For convex optimisation problems, duality theory can be employed to disclose
the relationship between the primal and dual controls, i.e. the duality relation.
This duality relation infers how the primal controls analytically depend on
the dual controls, and vice versa. The key characteristic of this relation is
that it yields the optimal primal (dual) controls after insertion of the optimal
dual (primal) controls (respectively). Therefore, the duality relation contains
important information about the analytical structure of the optimal primal
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and dual variables. In addition to this, it provides an alternative view on the
mechanisms that are involved with optimising the primal and dual problems. As
the dual in (3.3.1) follows from Fenchel Duality rather than from the Legendre
transform, its implied duality relations differ from the conventional ones. In
fact, the duality relations4 for the problems in (3.2.7) and (3.3.1) are twofold
and for all t ∈ [0, T ] given by the following identities:

c∗
t =

ψt − βE
[∫ T
t
e−α(s−t)ψsds

∣∣∣ Ft
]

ηMt
and h∗

t = c∗
t

(
eδtψt

) 1
γ−1 . (3.3.5)

In a technical sense, the duality relation for consumption in (3.3.5), c∗
t , can be

regarded as a specification of optimal consumption in some auxiliary (artificial)
market. To ensure that consumption defined by this relation is admissible and
optimal in the true market, the dual problem in (3.3.1) aims to characterise
this identity for c∗

t in such a manner that it generates the habit level in (3.3.5),
h∗
t . In an economic sense, we note that dual-implied consumption c∗

t is endowed
with a “penalty term”. Concretely, selecting high values for ψt at future dates,
requires one to increase ψt today so as to arrive at similar utility levels. This
mechanism inversely reflects the agent’s viewpoint in the primal problem.
Namely, if this agent selects high values for ct today, via ht, he/she is required
to increase ct even further to maintain similar utility levels. To obtain some
insights into the role that ψt plays in minimising the dual value function, V,
we now conclude with Example 3.3.1.

Example 3.3.1. Suppose that α = β = 0. Then, we have the following:

ψopt
t =

(
ηoptMt

) [
eδtηoptMt

]− 1
γ , (3.3.6)

for all t ∈ [0, T ]. Here, ψopt
t denotes the optimal dual process, and ηopt

represents the corresponding dual-optimal constant. In particular, ηopt can
4These duality relations follow from the fact that the primal and dual objectives, in (3.2.7)

and (3.3.1), are conjugate to each other. This concretely means that these expressions
bind in the unique “point” outlined by (3.3.5), conditional on ηX0 = ηE

[ ∫ T

0 ctMtdt
]

being true. Note that the duality relation in (3.3.5) corresponds to the dual in (3.3.1).
For the alternative, howbeit identical, representation in (3.3.3), the duality relations read:

c∗
t = pt

ηMt
and h∗

t = c∗
t

(
eδt
{
pt +βE

[ ∫ T

t
e−[α−β](s−t)psds

∣∣ Ft

]}) 1
γ−1 for all t ∈ [0, T ].
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be obtained from solving E[
∫ T

0
ψopt

t

ηoptMt
dt] = X0 for ηopt. From the duality

relations provided in (3.3.5), we know that ψopt
t should generate copt

t via c∗
t =

ψt−βE
[∫ T

t
e−α(s−t)ψsds

∣∣ Ft

]
ηMt

. Using that c∗
t = ψt

ηMt
for α = β = 0, we therefore

find that optimal consumption is given by:

copt
t = ψopt

t

ηoptMt
=
(
eδtηoptMt

)− 1
γ , (3.3.7)

for all t ∈ [0, T ]. Employing the definition of I : R+ → R+, we accordingly have
that copt

t = I
(
eδtηoptMt

)
holds. Moreover, in the optimum characterised by copt

t

and ψopt
t , the value for ηopt ∈ R+ is determined such that E[

∫ T
0 copt

t Mtdt] = X0

holds. Hence, it is clear that copt
t in (3.3.7) coincides with optimal consumption

in the no-habit case (α = β = 0). See for instance Merton (1971) for a similar
representation of copt

t and the corresponding optimal portfolio.

3.4 Approximations
In this section, we develop a duality-based mechanism for evaluating the
accuracy of approximations to the optimal solutions of (3.2.7). We break
this section down into three parts. First, we provide the general evaluation
mechanism and comment on related technicalities. Second, we present the
approximate solution proposed by van Bilsen et al. (2020a). In addition to
this, we rely on the duality relation in (3.3.5) to develop a corresponding dual
approximation. Third, we make use of the evaluation mechanism to numerically
study the precision of these analytical approximations.

3.4.1 Evaluation Mechanism

To quantify the accuracy of approximations to the optimal solutions of (3.2.7),
we develop an evaluation mechanism. This mechanism is predicated on the eval-
uation techniques proposed in Bick et al. (2013) and Kamma and Pelsser (2022c).
These techniques make use of strong duality to note that any departure from
the optimal primal and/or dual controls results in a duality gap. Concretely, the
primal value function, J (X0, {ct, πt}), delivers a lower bound on the optimal
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dual value function, for each admissible pair {ct, πt}t∈[0,T ] ∈ AX0 . Likewise,
the dual value function, V (X0, ψt, η), spawns an upper bound on the optimal
primal value function, for each feasible pair (η, ψt) ∈ R+ ×Ψ, where Ψ := {ψt ∈
L2 (Ω × [0, T ]) | ψt > 0, ψt > βE[

∫ T
t
e−α(s−t)ψsds | Ft], ∀ t ∈ [0, T ] }. To be

more precise, for all X0 ∈ R+, {ct, πt}t∈[0,T ] ∈ AX0 and (η, ψt) ∈ R+ × Ψ, the
following holds true:

J (X0, {ct, πt}) ≤ V (X0, ψt, η) . (3.4.1)

Theorem 3.3.1 infers that the inequality in (3.4.1) binds if and only if (ct, πt) =(
copt
t , πopt

t

)
and (η, ψt) =

(
ηopt, ψopt

t

)
for all t ∈ [0, T ]. Here, we employ the

superscript “opt” to indicate that these concern the optimal primal/dual control
variables. For the former reason, the difference between J and V grows, the
farther {ct, πt}t∈[0,T ] and/or (η, ψt) are situated from the optima. We can
employ this observation to gauge the accuracy of particular approximations as
follows. Suppose that {c′

t, π
′
t}t∈[0,T ] ∈ AX0 represents an arbitrary admissible

trading-consumption pair and that (η′, ψ′
t) ∈ R+ × Ψ specifies a feasible pair

of dual controls. Then, D (X0) = V (X0, ψ
′
t, η

′) − J (X0, {c′
t, π

′
t}) characterises

for all X0 ∈ R+ the corresponding duality gap. As it is difficult to interpret
the quantity D (X0) ∈ R+, we compute the so-called compensating variation
(CV), denoted by C ∈ R+. The CV can be calculated from:

J (X0, {c′
t, π

′
t}) = V (X0 [1 − C] , ψ′

t, η
′) . (3.4.2)

Here, C can be interpreted as a fee that one pays to gain access to the optimal
trading-consumption pair. In Bick et al. (2013) and Kamma and Pelsser (2022c),
a similar interpretation is used. Note that C grows with the magnitude ofD (X0),
and thus with the difference(s) between {c′

t, π
′
t}t∈[0,T ] and

{
copt
t , πopt

t

}
t∈[0,T ],

as well as between (η′, ψ′
t) and

(
ηopt, ψopt

t

)
. Note that this way of calculating

the approximation error is numerically not demanding, as one does not require
the optimal controls to obtain the error.

Suppose that we are in possession of an approximate trading-consumption
pair, {c′

t, π
′
t}t∈[0,T ]. Calculating the corresponding lower bounds (J) is straight-

forward. To see how we may obtain matching upper bounds (V), we note
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that

c′
t =

ψ′
t − βE

[∫ T
t
e−α(s−t)ψ′

sds
∣∣∣ Ft

]
η′Mt

and ĉ′
t =

(
eδtψ′

t

) 1
1−γ , (3.4.3)

follows from the duality relations in (3.3.5). Here, we define ĉ′
t := c′

t

h′
t

as
approximate ratio consumption, where h′

t represents the corresponding approx-
imate habit level. The first identity in (3.4.3) indicates that each admissible
consumption strategy corresponds to dual control variable, ψ′

t. Similarly,
the second identity shown in (3.4.3) demonstrates that each ratio consump-
tion strategy implies an (analytical) expression for ψ′

t. One can then ob-
tain a matching approximation to the dual constant, η′, from: E[

∫ T
0

1
η′ (ψ′

t −
βE[

∫ T
t
e−α(s−t)ψ′

sds | Ft])dt] = X0 (conditional on ψ′
t ∈ Ψ). Since it could

be the case that ψ′
t ̸∈ Ψ, it may be necessary to project {ψ′

t}t∈[0,T ] into Ψ, to
ensure dual-feasibility of (η′, ψ′

t). For this purpose, we introduce a projection
operator projΨ : L2 (Ω × [0, T ]) → Ψ. Using this operator, we re-define the
primal-implied dual controls in the following way:

ψ̂′
t = projΨ (ψ′

t) and η̂′ = R−1 (X0) . (3.4.4)

We define R−1 : R+ → R+ as the inverse of the following function: R (η) =
E[
∫ T

0
1
η′ (ψ̂′

t − βE[
∫ T
t
e−α(s−t)ψ̂′

sds | Ft])dt]. Clearly, (η̂′, ψ̂′
t) is feasible and

generates an upper bound, V, on the optimal value function. This enables us
to determine C as in equation (3.4.2).

We would like to make three remarks. First, we observe that one can distil
(feasible) dual controls from either c′

t or ĉ′
t in (3.4.3). The dual controls implied

by c′
t differ from those implied by ĉ′

t, except when c′
t = copt

t and ĉ′
t = ĉopt

t .
Second, we note that it is possible to obtain an analytical expression for ψ′

t from
the duality relation for c′

t in (3.4.3). Similar to the alternative representation
of the dual in (3.3.3), it suffices to identify the appropriate Volterra equation.
Third and last, we stress that our evaluation mechanism does not need to
be conceptually modified for the alternative dual in (3.3.3). In fact, all steps
relevant to the mechanism remain the same. The mere adjustment that has to
be made is the specification of the duality relations in (3.4.3).
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3.4.2 Approximate Controls

Subsequently, we present the analytical approximation to optimal (ratio) con-
sumption, ĉopt

t , proposed by van Bilsen et al. (2020a). On the grounds of our
evaluation mechanism, and the relations in (3.4.3), we develop a corresponding
novel dual approximation. In the sequel, we do not pay attention to the trading
strategy that hedges approximate consumption. The trading strategy does
not play a role in the specification of the approximate value function, and can
always be obtained from admissible consumption processes. The approximation
of van Bilsen et al. (2020a) is based on a first-order Taylor expansion of the bud-
get constraint in the static representation of (3.2.7), i.e. E[

∫ T
0 Mtĉthtdt] ≤ X0,

around {ĉt}t∈[0,T ] = 1. The motivation for such an expansion is that the
habit level closely tracks optimal consumption. According to Theorem 3.1 in
van Bilsen et al. (2020a), this approximation is for all t ∈ [0, T ] given by:

ĉ′
t =

(
η′eδtMt

{
1 + βE

[∫ T

t

e−[α−β](s−t)Ms

Mt
ds
∣∣∣∣∣ Ft

]})− 1
γ

. (3.4.5)

Here, η′ ∈ R+ is determined such that the budget constraint holds:
E[
∫ T

0 Mtĉ
′
th

′
tdt] = X0. Moreover, h′

t is the approximate habit level generated

by {ĉ′
s}s∈[0,T ], i.e. h′

t = e
β
∫ t

0
e−[α−β](t−s) log ĉ′

sds.

Consistent with the outline of our evaluation mechanism, we must determine a
corresponding dual approximation in order to measure the accuracy of ĉ′

t in
(3.4.5). For this purpose, we must utilise either of the two duality relations
shown in (3.4.3). Although the identity for ĉ′

t allows for an easy recovery of ψ′
t,

it may be the case that ψ′
t ̸∈ Ψ. As we wish to avoid rigorous modifications

enforced upon ψ′
t by a projection operator, we resort to the identity for c′

t

instead. Note that c′
t = ĉ′

th
′
t for all t ∈ [0, T ]. In the identity for c′

t in (3.4.3), we
can recognize a clear Volterra equation. Its solution for ψ′

t can accordingly be
formulated as: ψ′

t = ηMtc
′
t+βE[

∫ T
t
e−[α−β](s−t)ηMsc

′
sds | Ft] for all t ∈ [0, T ].

Hence, after re-arranging some terms, we are able to derive that

ψ′
t = η′Mtc

′
t

(
1 + βE

[∫ T

t

e−[α−β](s−t)Msc
′
s

Mtc′
t

ds
∣∣∣∣∣ Ft

])
, (3.4.6)

92



3.4 Approximations

Coefficient of risk-aversion (γ) Initial endowment (X0)
6 8 10 12 14 8 9 10 11 12

C (%) 0.103 0.061 0.042 0.031 0.025 0.093 0.047 0.042 0.067 0.114

RSS 0.062 0.037 0.026 0.020 0.016 0.028 0.011 0.026 0.050 0.075

Speed of mean-reversion (α = β) Time-preference (δ)
0.01 0.05 0.1 0.15 0.2 0.01 0.02 0.03 0.04 0.05

C (%) 0.000 0.010 0.042 0.095 0.167 0.048 0.045 0.042 0.039 0.036

RSS 0.003 0.014 0.026 0.037 0.048 0.027 0.026 0.026 0.026 0.026

Table 3.1. Upper bounds on welfare losses (C). In the row denoted by C, the table
reports the upper bounds on the welfare losses corresponding to the approximate solution
provided in equation (3.4.5). Additionally, in the row denoted by RSS, the table reports
the “root” sum of squares (RSS) corresponding to this approximate solution. The welfare
losses are calculated by solving (3.4.2) for C, and are expressed in terms of percentages (%).
The RSS is calculated as follows: RSS = E

[∑M

i=1(c′
ti

− c′′
ti

)2
]1/2

, where c′
ti

is approximate
consumption for (3.4.5), and c′′

ti
is approximate consumption implied by ψ′

t in (3.4.6) via
the second duality relation in (3.4.3). Moreover, t1 < t2 < . . . < tM represent M time-steps
in the Euler scheme. The table reports C and RSS for different values of the four displayed
parameters (γ, X0, α = β and δ), under a baseline initialisation of the parameters. This
baseline set is fixed as follows: X0 = 10, T = 10, γ = 10, δ = 0.03, α = β = 0.1, µ = 0.05,
r = 0.01 and σ = 0.2. The results are based on 10, 000 simulations and an Euler scheme with
20 equidistant time-steps.

characterises the approximation to ψopt
t , implied by the duality relation for

c′
t in (3.4.3). Note that ηMtc

′
t > 0 holds for all t ∈ [0, T ]. As a consequence,

we have that ψ′
t > 0 is true for all t ∈ [0, T ]. Moreover, by construction, it is

the case that ψ′
t − βE

[∫ T
t
e−α(s−t)ψ′

sds
∣∣∣ Ft

]
= η′Mtc

′
t > 0 for all t ∈ [0, T ].

Therefore, ψ′
t ∈ Ψ, implying that the approximation in (3.4.6) is dual-feasible.

It should be noted that both approximations are truly optimal in the no-habit
case (α = β = 0). For the approximation to optimal consumption in (3.4.5),
fixing α = β = 0, yields that ĉ′

t = c′
t =

(
eδtη′Mt

)− 1
γ , which coincides with copt

t

in (3.3.7). Similarly, letting α = β = 0, the approximation to the optimal dual
control in (3.4.6) becomes ψ′

t = η′Mtc
′
t = η′Mt

[
eδtη′Mt

]− 1
γ , which coincides

with (3.3.6). Observe that we have not distinguished between the primal and
dual values η′. These values are, in fact, identical.

3.4.3 Numerical Results

We evaluate the accuracy of the approximation shown in equation (3.4.5),
using the evaluation mechanism of section 3.4.1. To this end, we set N = 1
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in the market model, M, and fix rt = r, σt = σ, µt = µ, where r, σ and µ

are constants. Based upon the parameter initialisation in van Bilsen et al.
(2020a), we define: X0 = 10, T = 10, γ = 10, δ = 0.03, α = β = 0.1, µ = 0.05,
r = 0.01 and σ = 0.2. In Table 3.1, we present the upper bounds on the
welfare losses (C) associated with the approximation, for different values of γ,
X0, α = β and δ. We compute the welfare losses from the equality displayed in
(3.4.2), in which the value functions, J and V, follow directly from the primal
and dual approximations in (3.4.5) and (3.4.6), respectively. In addition to
this, the table displays the “root” sum of squares (RSS) corresponding to the
approximations. The RSS is calculated as follows: RSS = E[

∑M
i=1(c′

ti −c′′
ti)

2]
1
2 ,

where c′
ti is approximate consumption for (3.4.5), and c′′

ti is approximate
consumption implied by ψ′

t in (3.4.6) via the second duality relation in (3.4.3).
Here, t1 < t2 < . . . < tM represent M time-steps in the Euler scheme. These
results ensue from 10, 000 Monte-Carlo simulations and an Euler scheme with
20 equidistant time-steps.

Table 3.1 shows that the maximal welfare losses generated by the approximation
in (3.4.5) vary between 0.000% and 0.167% of X0. Bearing in mind that these
numbers constitute upper bounds on the true errors, we can conclude that
the approximation is near-optimal. This finding coincides with the results
reported in van Bilsen et al. (2020a) and is confirmed by the magnitude of
the values reported for RSS. In view of the fact that c′

t → copt
t as α = β → 0,

it is clear why the table displays a positive relation between α = β and the
magnitude of both C and the RSS. As for the same relations involving γ and
δ, we can observe from (3.4.5) that increases in γ and δ result in ĉt attaining
values closer to 1. That is, due to increases in γ and δ, the habit level tracks
consumption more closely. Consequently, as shown in Table 3.1, approximate
consumption in (3.4.5) becomes more accurate for increases in γ and δ, as c′

t is
based on a Taylor expansion around {ĉt}t∈[0,T ] = 1. To explain the relation
between X0 and both C and RSS, we note that X0 = 1

r

(
1 − e−rT ) ≈ T roughly

implies that ĉt ≈ 1. The latter is a consequence of the budget constraint,
E[
∫ T

0 Mtĉthtdt] = X0. Hence, the performance of c′
t should decrease for values

of X0 and T that deviate from X0 = T . This is shown in Table 3.1.5

5We note that the running time for calculating C and RSS in Table 3.1 is effectively equal
to zero. The mere required computational effort stems from the simulations. This is a
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Appendix A Proof of Theorem 3.3.1
To prove Theorem 3.3.1, we make use of Fenchel Duality as formalised in The-
orem 4.3.3 of the textbook by Borwein and Zhu (2004). As this theorem lies at
the heart of our proof, we provide its statement in the following proposition.

Proposition A.1. Let f : X → R ∪ {∞} and g : Y → R ∪ {∞} be two
continuous and convex functions. Additionally, introduce the bounded linear
map A, defined as A : X → Y . Here, X and Y outline two Banach spaces.
Then, the Fenchel problems, denoted by p∗ and d∗, are given by:

p∗ = inf
x∈X

{f (x) + g (Ax)} ,

d∗ = sup
y∗∈Y

{−f∗ (A∗y∗) − g∗ (−y∗)} ,
(A.1)

and satisfy weak duality, d∗ ≤ p∗. Here, f∗ and g∗ represent the convex
conjugates of f and g, respectively, i.e. f∗ (x) = supz∈X {⟨x, z⟩ − f (z)}
and g∗ (y) = supz∈Y {⟨y, z⟩ − g (z)}, for all x ∈ X∗ and y ∈ Y ∗. Note that
X∗ and Y ∗ are the dual spaces of X and Y , respectively. Moreover, A∗,
defined as A∗ : Y → X, is the adjoint of A. That is, A and A∗ must satisfy:
⟨Ax, y⟩Y = ⟨y,A∗y⟩X , for all x ∈ X and y ∈ Y . Strong duality, p∗ = d∗, holds
if either of the following conditions is fulfilled:

(i) 0 ∈ core (dom g −A dom f) and f and g are both lower semi-continuous.
Here, core stands for the algebraic interior, and dom h is given by
dom h = {z | h (z) < ∞} for any function h;

(ii) A dom f ∩ cont g ̸= ϕ, where cont are the points where the function is
continuous.

Moreover, if |d∗| < ∞ holds, then the supremum in (A.1) is attained.

Proof. See page 136 of Borwein and Zhu (2004).
significant advantage, as most evaluation procedures employ computationally demanding
grid-search routines.
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We continue by aligning the notation of our primal and dual problems with the
notation of Proposition A.1. To this end, we start by deriving an alternative
representation of (3.2.7). This alternative representation is based on the
static formulation of optimal investment-consumption problems, due to Pliska
(1986), Karatzas et al. (1987), Cox and Huang (1989, 1991). We provide this
formulation in the subsequent lemma.

Lemma A.2. Define the following function:

J (X0,− log ct, η) = E

[∫ T

0
e−δt e

[1−γ](log ct−loght)

1 − γ
)dt
]

− ηE

[∫ T

0
elog ctMtdt

]
+ ηX0.

(A.2)

Then, for all X0 ∈ R+, the following optimisation problems are identical:

sup
{ct,πt}t∈[0,T ]∈AX0

J (X0, {ct, πt}) = inf
η∈R+

sup
− log ct∈L2(Ω×[0,T ])

J (X0,− log ct, η) .

(A.3)

Proof. By arguments similar to those that yield Lemma 2.2 in Cox and Huang
(1989) and Proposition 7.3 in Cvitanić and Karatzas (1992), we know that
{ct, πt}t∈[0,T ] ∈ AX0 if and only if {ct}t∈[0,T ] satisfies E

[∫ T
0 ctMtdt

]
≤ X0

and log ct ∈ L2 (Ω × [0, T ]). Therefore, maximisation of J (X0, {ct, πt}) over
{ct, πt}t∈[0,T ] ∈ AX0 is the same as maximisation of J (X0, {ct, πt}) over all
log ct ∈ L2 (Ω × [0, T ]) such that E

[∫ T
0 ctMtdt

]
≤ X0 holds. As a result of the

preceding equivalence, we are able to derive the following equations:

sup
{ct,πt}t∈[0,T ]∈AX0

E

[∫ T

0
e−δtU

(
ct
ht

)
dt
]

= sup
log ct∈L2 s.t. E

[∫ T

0
ctMtdt

]
≤X0

E

[∫ T

0
e−δtU

(
ct
ht

)
dt
]

= inf
η∈R+

(
sup

− log ct∈L2

{
E

[∫ T

0
e−δtU

(
ct
ht

)
dt
]

− ηE

[∫ T

0
ctMtdt

]
+ ηX0

})
.

(A.4)
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Here, we set L2 := L2 (Ω × [0, T ]).

The last equality is a result of the following ingredients. First, we know that
ct = X0ϵ(E[

∫ T
0 Mtdt])−1 for ϵ ∈ (0, 1) is a strictly feasible solution to the

static formulation of the consumption problem. Second, we have that ht > 0
and ct > 0. Hence, ct = elog ct and ht = eloght . Using this, we derive that
E[
∫ T

0 e−δtU( ct

ht
)dt] is strictly concave in − log ct ∈ L2 (Ω × [0, T ]). Similarly,

we have that ηE[
∫ T

0 ctMtdt] is strictly convex in − log ct ∈ L2 (Ω × [0, T ]).
Third, by concavity of U , and the fact that log ct, log ht ∈ L2 (Ω × [0, T ]), it
holds that E[

∫ T
0 e−δtU( ct

ht
)dt] < ∞. These properties validate the last equality,

cf. Theorem 1 on page 217 of Luenberger (1997). The step from (A.4) to (A.3)
is trivial using the definition of U , and that ct = elog ct and ht = eloght .

To align our notation with the one of Proposition A.1, we should have:

d∗ = sup
− log ct∈L2(Ω×[0,T ])

J (X0,− log ct, η) . (A.5)

Accordingly, in the nomenclature of the aforementioned proposition, we have
that y∗ = − log ct and Y = L2 (Ω × [0, T ]). Note here that Y = L2 (Ω × [0, T ])
outlines a Banach space. In addition to this, in terms of the functions f∗ and
g∗, and the mapping A, we must have the following:

−f∗ (A∗y∗) = E

[∫ T

0
e−δt e

−[1−γ]A∗(− log ct)

1 − γ
dt
]
,

−g∗ (−y∗) = −ηE

[∫ T

0
elog ctMtdt

]
+ ηX0,

(A.6)

where the linear map A∗ is given by:

A∗ (− log ct) = − log ct + β

∫ t

0
e−α(t−s) log csds. (A.7)

Clearly, A∗ : L2 (Ω × [0, T ]) → L2 (Ω × [0, T ]). Therefore, by adjointess argu-
ments, we must have that A : L2 (Ω × [0, T ]) → L2 (Ω × [0, T ]), too.

We note the following: −f (z1) = infx∈X∗ {f∗ (x) − ⟨x, z1⟩} and −g (z2) =
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infy∈Y ∗ {g∗ (y) − ⟨y, z2⟩}, for all z1 ∈ X and z2 ∈ Y . It is easy to show that:

f (x) = E

[∫ T

0
e−δt 1

1 − γ
V
(
eδtxt

)
dt
]
,

g (x) = −E

[∫ T

0
ηMtV

(
xt
ηMt

)
dt
]

+ ηX0.

(A.8)

We observe that X = Y = L2 (Ω × [0, T ]), and that the preceding definitions of
f : X → R∪ {∞} and g : Y → R∪ {∞} constitute two continuous and convex
functions. Furthermore, we find that A is given by:

Axt = xt − βE

[∫ T

t

e−α(s−t)xsds
∣∣∣∣∣ Ft

]
. (A.9)

Note here that:

∥Axt∥L2 ≤ ∥xt∥L2 + β

∥∥∥∥∥E
[∫ T

t

e−α(s−t)xsds
∣∣∣∣∣ Ft

]∥∥∥∥∥
L2

≤ ∥xt∥L2 + βE

[∫ T

0
E

[∫ T

t

e−2α(s−t)x2
sds

∣∣∣∣∣ Ft

]
dt
] 1

2

= ∥xt∥L2 + 1
2
β

α

∥∥∥xt (1 − e−2αt) 1
2
∥∥∥
L2

≤ 3
2 ∥xt∥L2 .

(A.10)

Again, we use that L2 := L2 (Ω × [0, T ]). The first inequality is due to the
triangle inequality; the second inequality is a result of Hölder’s inequality; the
final inequality is trivial (1 − e−2αt < 1 for all t ∈ [0, T ]). As a consequence of
(A.10), we know that A : X → Y is a bounded linear map.

Considering Proposition A.1, we note that A dom f ∩ cont g =(
L2 (Ω × [0, T ]) ∩R

)
∩
(
L2 (Ω × [0, T ]) ∩R+

)
̸= ϕ. Hence, by Proposition

A.1, we have strong duality, which finalises – via Lemma A.2 – the proof:

p∗ = inf
ψt∈L2(Ω×[0,T ])

V (X0, ψt, η)

= sup
− log ct∈L2(Ω×[0,T ])

J (X0,− log ct, η) = d∗.
(A.11)
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4
Investing Towards an Exogenous

Reference Level Using a Lower Partial
Moments Criterion

Adapted from: Kamma, T., & Pelsser, A. (2022b). Investing towards an
exogenous reference level using a lower partial moments criterion. Working
Paper.
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Chapter 4. Investing Towards an Exogenous Reference Level

Abstract
This chapter analyses an optimal investment problem, in which the agent aims
to minimise a lower partial moments (LPM) criterion that depends on an
exogenous reference level. The problem concerns terminal wealth alone and is
specified in an affine-term structure model with four risk-drivers. We derive
and present closed-form expressions for the optimal portfolio rules and the
optimal wealth process. Moreover, we analytically disentangle the distributional
features of optimal terminal wealth. In the numerical illustrations, we examine
the problem in the context of a defined contribution (DC) pension scheme. The
reference level is accordingly identified as a life annuity. Our findings suggest
that LPM-based investment policies can improve a pension fund’s recovery
potential. Despite their potentially outstanding performance, we illustrate that
these policies may be difficult to implement. Furthermore, we show that the
optima strongly depend on the estimates for the market prices of risk.
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4.1 Introduction

Reference levels, otherwise known as benchmarks or targets, play a non-
negligible role in the specification of an individual’s preferences.1 The critical
nature of a reference level can be attributed to (i) its impact on preference
qualifications and (ii) the fact that it constitutes a crucial part of an agent’s
risk profile. The impact on preferences is well-documented in studies on
utility-based frameworks, see e.g. Browne (1999), Wagner (2002), Gómez and
Zapatero (2003), and Berkelaar et al. (2004). The fact that it forms a pivotal
element of an agent’s risk profile is confirmed by e.g. Thaler (1980), Tversky
and Kahneman (1991), Bateman et al. (1997), Munro and Sugden (2003),
and Marzilli Ericson and Fuster (2011).2 Due to their typical dependence on
preference qualifications, the importance of a reference level carries over to
optimal investment problems.

To illustrate this importance, let us visit the following stylised pension-related
example.3 Suppose that an individual receives a lump-sum of 100,000 monetary
units upon retirement. We postulate that this amount is large enough to avail
the individual of all resources necessary for an appropriate continuation of
his/her pre-retirement life. In addition to this, assume that the individual’s
neighbours obtain a similar lump-sum, however, of 1,000,000 monetary units.
Even though the former amount is in principle sufficient for the individual, in
comparison to the neighbours’ lump-sum, it appears rather small (only one
tenth of the 1,000,000 monetary units). Depending on the value that this
comparative magnitude has for the individual of interest, his/her experienced
levels of happiness or utility will differ. In case of a strong reference-oriented
individual, the 100,000 monetary units are clearly disappointing. The converse
would be true for an individual who is indifferent with respect to the neighbours’
financial circumstances. Note that this illustration extends to setups beyond
the pension context, wherein the neighbours’ retirement wealth can be identified

1Throughout the remainder of this chapter, we use “reference level”, “benchmark”, “goal”
and “target” interchangeably.

2This short outline of empirical studies on reference-dependent preferences is by far not
exhaustive. We refer to O’Donoghue and Sprenger (2018) for a more comprehensive
overview. In the study by Zank (2010), one can find a closely related overview.

3This illustration builds on the “catching/keeping up with the Joneses” idea, formulated
and analysed in a.o. Abel (1990), Gali (1994), and Gómez (2007).
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as e.g. a life annuity, one’s last earned wage or the stock index.

This example corroborates the claims above. In particular, it intuitively
demonstrates that a reference level cannot be ignored in specifying an agent’s
preferences and, therefore, in optimising his/her utility from wealth. This
intuition is scientifically supported by a great body of empirical findings
dating back to a.o. Markowitz (1952), Edwards (1955), and Hershey and
Schoemaker (1985).4 These papers concretely argue that individuals tend
to measure accumulated amounts of cash in relative terms, i.e. compared to
a reference level. This feature gave rise to a myriad of studies on portfolio
problems that explicitly incorporate such a level. We refer to section 2 of
van Bilsen et al. (2020b) for an overview of such studies. In the contributions
by a.o. Bernard and Ghossoub (2010), Balter et al. (2020), and van Bilsen and
Laeven (2020), the inclusion of a reference level in investment-linked frameworks
is shown to have a non-negligible impact on the optimal decision variables. By
virtue of the aforementioned empirical evidence and the latter non-negligible
impact, research on reference-oriented or goal-based investment routines is
highly relevant. Within the confines of portfolio optimisation, the literature
on reference levels can roughly be distinguished into three categories: those
that concentrate on (i) loss aversion, (ii) risk aversion, and (iii) preference-
independent hedging criteria.

Loss aversion outlines a key concept in the domain of prospect theory, cf. Kah-
neman and Tversky (1979). It refers to the empirically confirmed tendency
of individuals to value losses greater than equivalent gains. Losses and gains
are defined with respect to a person-specific reference level. To model this
phenomenon, loss aversion models ordinarily rely on S-shaped utility functions,
see e.g. He and Zhou (2011). Risk aversion setups do not explicitly distinguish
between losses and gains. These setups hinge on Inada-type preferences that
characterise an agent’s attitude towards risk. The agent’s risk profile is accord-
ingly defined across the absolute accumulation of capital. To model preferences
around a benchmark, risk aversion frameworks redefine this absolute accumula-
tion in relative terms. This redefinition is usually carried out by incorporating a
reference level into the conventional definitions of preferences, see e.g. Detemple

4We refer to Zank (2010) for an extensive overview of these empirical studies.
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and Zapatero (1991), Van Binsbergen et al. (2008), and Kamma and Pelsser
(2022a). Preference-independent hedging criteria ignore an individual’s attitude
towards risk and solely concentrate on acquiring/replicating a reference level.
For these criteria, the reference level primarily serves as a goal or a target. Due
to the independence from an individual’s risk profile, hedging criteria involve a
strong target-orientation. Models of this type are defined on a broad spectrum
that includes e.g. super-replication and expected shortfall hedging, cf. Cvitanić
et al. (1999) and Cvitanic (2000).

In this chapter, we focus on an investment problem, in which the agent aims
to minimise a lower partial moments (LPM) criterion. We assume that this
criterion depends on an exogenous reference level. In terms of the three
categories above, the LPM framework combines a preference-independent
hedging criterion with the concept of risk aversion. Although not explicitly,
as pointed out by Jarrow and Zhao (2006), aspects unique to loss aversion
return in the LPM operator.5 We stress that the LPM operator enters into the
problem via the agent’s objective function. Unlike most studies, e.g. Harlow
and Rao (1989), Leitner (2008), and Gao et al. (2017), this implies that it does
not define a downside risk constraint. Similar problems have been analysed by
e.g. Föllmer and Leukert (2000), Jarrow and Zhao (2006), and Krabichler and
Wunsch (2021). We emphasise that Nawrocki and Viole (2014) advocate the
use of such partial moments for the study of utility and portfolio theory from
the perspective of behavioural economics.

Mathematically speaking, the LPM operator specifies a smoothed variant of
the expected shortfall criterion. The latter identifies a valid hedging criterion
that is unaffected by an agent’s risk profile. As a result of this smoothing
procedure, the LPM operator can be interpreted as a utility function that is
closely related to the Inada-family. The agent’s preference qualification or
attitude towards risk is correspondingly specified as follows. If wealth is equal
to the benchmark, the agent becomes infinitely risk averse in an attempt to
“lock in” wealth at the current level. On the contrary, if wealth falls below

5In Jarrow and Zhao (2006), the authors demonstrate that the LPM problem can be
subsumed under the umbrella of prospect theory. To this end, they employ a definition
of (downside) loss aversion that relaxes the convexity requirement with regard to losses,
cf. equation (1) and footnote 4 of their study.
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the benchmark, the agent becomes considerably less risk averse. The previous
decline in the agent’s level of risk aversion comes close to the “gamble for
resurrection” behaviour specific to loss aversion frameworks. Adapted to setups
involving risk aversion, Yang et al. (2021) refer to this phenomenon as “risk-
taking for resurrection”. These attributes of the LPM criterion imply that the
agent is strongly target-oriented.

We analyse the problem in continuous-time for terminal wealth alone. Moreover,
we place the problem in the financial market model proposed by Koijen et al.
(2009). This model assumes an affine-term structure for the (real) interest
rate and involves four risk-drivers. The market distinguishes nominal from
real returns and accommodates market prices of risk that depend on a mean-
reverting state variable. For the exogenous reference level, we postulate a
general log-normal process. To the best of our knowledge, there are no studies
available that couple the LPM objective to such a complex model specification.6

Due to the state-dependency of the market prices of risk, it is highly nontrivial
to derive analytical solutions to the LPM problem. Nevertheless, using the
Fourier transform similar to Carr and Madan (1999), we are able to derive
closed-form expressions for the optimal portfolio rules and the optimal wealth
process. In addition to this, we manage to disentangle an analytical formulation
for the distributional properties of optimal terminal wealth. These analytical
expressions form our first main contribution to the literature

In the numerical experiments, we analyse the problem in the context of a
defined contribution (DC) pension scheme. For this reason, we identify the
reference level as a life annuity that generates annual payments until the
agent’s fixed date of death. We numerically analyse the distribution of optimal
retirement wealth and execute a sensitivity analysis of the optimal portfolio
rules. The findings suggest that LPM-based investment policies can increase

6In Föllmer and Leukert (2000), the LPM problem was first introduced. The authors
consider the problem in the context of partial hedging. Our chapter can therefore be
regarded as a contribution to the literature on applied partial hedging. Although there are
more studies available on partial hedging than on LPM problems, these papers typically
concentrate on the relevant mathematical aspects. For such theoretical treatments,
consider e.g. Pham (2000, 2002), Sekine (2004), Xia (2005), and Choi and Jonsson (2009).
In related technical studies by Jonsson and Sircar (2002), Bouchard et al. (2004), and
Nygren and Lakner (2012), the utility-dimension of a.o. the LPM operator is highlighted.
For an applied deep learning approach to partial hedging, cf. Hou et al. (2022).

104



4.2 Model Setup

the likelihood of achieving one’s pension goals, i.e. improve the pension fund’s
recovery potential. In spite of their possibly outstanding performance, we
exemplify that these policies may be difficult to implement in reality. Due
to the extraordinarily large and/or highly leveraged positions implied by the
optimal trading rules, we recommend to include trading constraints. In addition
to this, we demonstrate that both the recovery potential and the portfolio rules
grandly depend on the estimates for the market prices of risk. This finding
supports the use of policies that account for parameter/model uncertainty,
cf. Balter (2016) and references therein. These three economic takeaways
constitute our second main contribution to the literature.

The remainder of the chapter is structured as follows. Section 4.2 introduces
the model setup. Section 4.3 presents the optimality conditions corresponding
to the LPM problem. Section 4.4 contains the numerical analysis. Finally,
section 4.5 concludes. We collect all mathematical proofs in the appendix.

4.2 Model Setup
In this section, we spell out the model setup. First, we introduce the financial
market model. Second, we provide the agent’s dynamic budget constraint.
Third, we specify the dynamics of a benchmark process, i.e. the exogenous
reference level, which models the agent’s “goal” with regard to retirement.
Fourth, we outline the optimal terminal wealth problem.

4.2.1 Financial Market Model

We make use of the financial market introduced in the paper by Koijen et al.
(2009). Their model is defined in continuous-time, contains four independent
risk-drivers and involves two distinct state variables. This setup is similar
to Brennan and Xia (2002)’s. To specify this environment, we introduce a
finite-valued trading horizon, T > 0. Correspondingly, the trading interval
reads [0, T ]. The uncertainty is described by a complete filtered probability
space, (Ω,F , {Ft}t∈[0,T ] ,P). Note that the separate components of this space
live by their conventional definitions. On this space, the four factors are defined
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by an R4-valued standard Brownian motion process, {Wt}t∈[0,T ], such that
Wt = [W1,t,W2,t,W3,t,W4,t]⊤. Henceforth, we assume that all (in)equalities
between processes hold in either a P-a.s. or dt⊗ P-a.e. sense.

In line with the market specification in Koijen et al. (2009), we introduce an
R2-dimensional state variable process, Zt = [Z1,t, Z2,t]⊤. These state variables
are assumed to evolve according to an Ornstein-Uhlenbeck process as follows:

dZt = −KZZtdt+ ΣZdWt, Z0 = 02, (4.2.1)

where 02 is defined as follows: 02 = [0, 0]⊤ Here, the drift and diffusion terms,
KZ and ΣZ , naturally achieve values in R2×2 and R4×4, respectively. We
postulate that KZ constitutes a lower-triangular matrix. Moreover, we set
ΣZ = [I2×2, 02×2], where I2×2 characterises a two-dimensional identity matrix
and 02×2 identifies an R2×2-valued matrix containing zeros. Note here that Zt
spells out a two-dimensional mean-reverting process.

Similar to the models in Brennan and Xia (2002) and Sangvinatsos and Wachter
(2005), this market makes a distinction between nominal and real return
dynamics. To model this distinction, we introduce three processes for (i) the
nominal interest rate, (ii) the commodity price index (CPI), and (iii) the
inflation rate. The first is specified as:

rt = δ0,r + δ⊤
1,rZt, (4.2.2)

where δ0,r ∈ R+ and δ1,r ∈ R2. That is, the process for the instantaneous
interest rate is affine in both state variables, Z1,t and Z2,t. For the CPI,
we assume a geometric form, such that it evolves according to the following
stochastic differential equation (SDE):

dΠt

Πt
= πtdt+ σ⊤

Π dWt, Π0 = 1, (4.2.3)

where πt spells out the instantaneous expected inflation process, and σΠ outlines
an R4-valued vector. As rt, the process for πt is assumed to be affine in Zt:

πt = δ0,π + δ⊤
1,πZt, (4.2.4)
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where δ0,π ∈ R+ and δ1,π ∈ R2.

In this financial market, M, the agent is allowed to continuously trade in five
financial instruments: a money market account, a stock, two nominal bonds,
and an inflation-linked bond. We first introduce the money market account
and the stocks. After determining the term structure of interest rates, we
provide the dynamics of the two bonds. The money market account lives by
the following ordinary differential equation (ODE):

dBt
Bt

= rtdt, B0 = 1. (4.2.5)

Note that Bt is specified in nominal terms. The return dynamics of the
non-dividend paying (nominal) stock are characterised by the following SDE:

dS1,t

S1,t
= (rt + ηS) dt+ σ⊤

S dWt, S1,0 = 1, (4.2.6)

Here, σS defines the R4-valued vector for the volatility of the stock. Observe
that σS consists of scalars alone. Additionally, ηS characterises the time-
independent scalar-valued equity risk premium of the stock.

We assume that the financial market excludes frictions, i.e. (proportional)
transaction costs. Moreover, we postulate that all risk factors are traded, due
to which the market is complete. Therefore, by the fundamental theorem of
asset pricing, cf. Delbaen and Schachermayer (1994), we know that there exists
a unique equivalent martingale measure. In view of its dependency on this
measure, we consequently know that there exists a unique nominal state price
density process, {Mt}t∈[0,T ]. Under the assumption that {Bt}t∈[0,T ] serves as
the numéraire quantity, this process is given by the subsequent SDE:

dMt

Mt
= −rtdt− Λ⊤

t dWt, M0 = 1, (4.2.7)

where Λt denotes the R4-valued process for the nominal market prices risk.
Following the reasoning around equations (1)-(4) in Detemple et al. (2003),
we are able to write the state price density process as follows: Mt = exp { −∫ t

0 rsds − 1
2
∫ t

0 Λ⊤
s Λsds −

∫ t
0 Λ⊤

s dWs}, for all t ∈ [0, T ]. This representation
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plays an important role in the LPM problem.

To arrive at an affine model for the term structure of interest rates, Koijen
et al. (2009) assume that these nominal market prices of risk are affine in both
state variables, Z1,t and Z2,t. As a result, Λt is specified in conformity with rt
and πt. Concretely, we suppose that the process for Λt is given by:

Λt = Λ0 + Λ1Zt, (4.2.8)

where Λ0 ∈ R4 and Λ1 ∈ R4×2. It should be noted that the specification of
{St}t∈[0,T ] in (4.2.6) forces restrictions upon the preceding Λ0 and Λ1 parame-
ters. Namely, by martingale arguments, it must hold that σ⊤

S Λt = ηS for all
t ∈ [0, T ]. Suppose that Λ0(i) and Λ1(i,j) denote the ith entry of Λ0 and the
(i, j)th element of Λ1, respectively. Throughout the remainder of this chapter,
we adopt this notation for all vectors and matrices. In Koijen et al. (2009),
the former condition is handled by assuming that Λ0(4), Λ1(4,1), and Λ1(4,2) are
defined such that σ⊤

S Λ0 = ηS and σ⊤
S Λ1 = 0⊤

2 . We assume the same:

Λ0(4) = ηS
σS(4)

− 1
σS(4)

3∑
i=1

σS(i)Λ0(i),

Λ1(4,j) = − 1
σS(4)

3∑
i=1

σS(i)Λ1(i,j), j = 1, 2.
(4.2.9)

We complete the asset mix by introducing two nominal bonds and an inflation-
linked bond. For a given time to maturity, t+ τi,

dPt,t+τi

Pt,t+τi

= rtdt+B (τi)⊤ ΣZ (dWt + Λtdt) , P0,τi = eA(τi), (4.2.10)

characterises the dynamics of the two nominal bonds. Here, we set i = 1, 2,
such that τ1 ̸= τ2. Suppose that Λ̃0 = ΣZΛ0 and Λ̃1 = ΣZΛ1. Then, the
deterministic functions A (x) and B (x) are for all x ∈ R+ given by:

A (x) = −
∫ x

0

[
B (s)⊤ Λ̃0 − 1

2B (s)⊤
B (s) + δ0,r

]
ds,

B (x) =
(
K⊤
Z + Λ̃⊤

1

)−1 [
exp

{
−
[
K⊤
Z + Λ̃⊤

1

]
x
}

− I2×2

]
δ1,r.

(4.2.11)
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Note that the return dynamics of the nominal bonds in (4.2.10) are based
on the following identity: Pt,T = E

[
MT

Mt

∣∣∣ Ft
]

= eA(T−t)+B(T−t)⊤Zt for all
t ∈ [0, T ]. In a similar sense, we are able to derive the nominal return dynamics
of an inflation-linked bond with a given time to maturity, t + τ , say PRt,t+τ .
That is, the identity for the inflation-linked bond is predicated on: PRt,T =
E
[
MT ΠT

Mt

∣∣∣ Ft
]

= eA
R(T−t)+BR(T−t)⊤ZtΠt for all t ∈ [0, T ]. As a result, for a

given time to maturity, t+ τ , the SDE of PRt,t+τ evolves according to:

dPRt,t+τ
PRt,t+τ

= rtdt+
(
BR (τ)⊤ ΣZ + σ⊤

Π

)
(dWt + Λtdt) , PR0,t = eA

R(τ). (4.2.12)

To be able to define the deterministic functions, τ 7→ AR (τ) and τ 7→ BR (τ),
we introduce the following convenient notation: δ̂0,r = δ0,r − δ0,π + σ⊤

Π Λ0,
δ̂1,r = δ1,r − δ1,π + Λ⊤

1 σΠ, and Λ̂0 = Λ̃0 − σ̃Π, for σ̃Π = ΣZσΠ. Then, similar to
(4.2.11), it can be shown that τ 7→ AR (τ) and τ 7→ BR (τ) are for all τ ∈ R+

given by the subsequent specifications:

AR (τ) = −
∫ τ

0

[
BR (s)⊤ Λ̂0 − 1

2B
R (s)⊤

BR (s) + δ̂0,r

]
ds,

BR (τ) =
(
K⊤
Z + Λ̃⊤

1

)−1 [
exp

{
−
[
K⊤
Z + Λ̃⊤

1

]
τ
}

− I2×2

]
δ̂1,r.

(4.2.13)

We conclude the introduction of the two bonds with three remarks. First,
following Pelsser (2019), we note that not all EU countries issue inflation-
linked bonds (e.g. the Netherlands). However, as most other countries in
the euro-area do issue such contracts (e.g. France), it is realistic to include
a single inflation-linked bond in the asset mix. Second, in outlining both
Pt,t+τi

and PRt,t+τ in (4.2.10) and (4.2.12), respectively, we have employed the
notation of Chen et al. (2020). To avoid confusion, we stress that Λ̃0, Λ̃1

and σ̃Π are defined as: Λ̃0 =
[
Λ0(1),Λ0(2)

]⊤, Λ̃1 =
[
Λ1(1,1:2),Λ1(2,1:2)

]⊤, and
σ̃Π =

[
σΠ(1), σΠ(2)

]⊤. Third and last, we observe that the three bonds are
assumed to have continuously adjusted times to maturity, t+ τi and t+ τ . We
are obliged to make this simplifying assumption in order to ensure that the
three bonds are traded throughout the entire trading interval.7

7The yields or the continuously compounded zero-coupon rates of the nominal bonds
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Finally, suppose that St contains all traded financial instruments: St =[
S1,t, Pt,t+τ1 , Pt,t+τ2 , P

R
t,t+τ

]⊤. Then, the SDE of St is given by:

dSt = diag (St) [(rt + σΛt) dt+ σdWt] , (4.2.14)

with starting value S0 =
[
1, eA(τ1), eA(τ2), eA

R(τ)
]⊤

. In the latter SDE, diag (St)
stands for the R4×4-valued diagonal matrix, which contains the four distinct
entries of St on its diagonal. To be more precise: diag (St) =

(
St1⊤

4
)

⊙
I4×4, where 14 spells out an R4-valued vector of 1’s, I4×4 characterises a
four-dimensional identity matrix, and “⊙” denotes the Hadamard product.
The matrix σ outlines the volatility process of St and attains values in
R4×4. Here, σ consists of scalars alone and is defined as follows: σ =[
σS , B (τ1)⊤ ΣZ , B (τ2)⊤ ΣZ , BR (τ)⊤ ΣZ + σ⊤

Π

]⊤
. We cast the four different

risky financial instruments into the vector-format provided by St in order to
both facilitate derivations and simplify notation. We conclude this section by
pointing out that {St}t∈[0,T ] is indeed driven by the four Brownian motions,
{Wt}t∈[0,T ]. As a consequence, trading in St alone suffices to hedge all the risk
present in this financial environment.

4.2.2 Dynamic Budget Constraint

We proceed with the introduction of the agent’s dynamic budget constraint.
In the utility maximisation problem of interest, this agent is solely concerned
about terminal wealth. As a result, consumption does not play a role and can
be excluded from the specification of the budget constraint. Taking into account
that trading takes place in continuous-time over the financial instruments from
section 4.2.1, it suffices to introduce a single endogenous process, {πt}t∈[0,T ],
as the control variable. This process is R4-valued, Ft-progressively measurable,
and records the agent’s decisions with regard to investment. More precisely,
{πt}t∈[0,T ] denotes the amount of monetary units that the agent allocates to the
four traded risky assets, {St}t∈[0,T ]. Let us assume that the agent is at the start

and the index-linked bond, say yt,τi and yR
t,τ , are as follows: yt,τi = − log Pt,t+τi

τi
=

− A(τi)
τi

− B(τi)⊤

τi
Xt and yR

t,τ = −
log P R

t,t+τ

τ
= − AR(τ)

τ
− BR(τ)⊤

τ
Xt − 1

τ

∫ t

0 πsds +
1
τ

1
2σ

⊤
ΠσΠ − 1

τ
σ⊤

ΠWt.
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of the trading interval, t = 0, in possession of a fixed initial endowment equal
to X0 ∈ R+. Then, given X0 ∈ R+, the agent’s dynamic budget constraint
evolves according to the following SDE:

dXt =
(
Xt −

4∑
i=1

πi,t

)
dBt
Bt

+
4∑
i=1

πi,t
dSi,t
Si,t

=
(
Xtrt + π⊤

t σΛt
)

dt+ π⊤
t σdWt.

(4.2.15)

For the purpose of clarity, we note that Si,t represents the ith element of the
R4-valued vector, St, in (4.2.14). Moreover, we observe that Xt −

∑4
i=1 πi,t

stands for the amount of monetary units that the agent leaves in the money
market account, Bt, at time t ∈ [0, T ]. Note that the allocation of assets to Bt
is, therefore, entirely dependent on the allocation to St. To prevent the agent
from implementing ill-posed investment decisions, e.g. doubling strategies, we
introduce an admissibility set, AX0 . This set contains all admissible or well-
posed investment strategies: AX0 consists of all {πt}t∈[0,T ], such that Xt ≥ 0,∫ T

0 π⊤
t σtσ

⊤
t πtdt < ∞, and

∫ T
0
∣∣π⊤
t σtΛt

∣∣ dt < ∞ hold for all t ∈ [0, T ]. Naturally,
we restrict the agent’s investment decisions to those that are contained in the
admissibility set, AX0 . See for instance Karatzas and Shreve (1998), van
Bilsen et al. (2020a), or Kamma and Pelsser (2022c), for similar definitions of
admissible trading strategies.

4.2.3 Specification of Benchmark

In this financial environment, the agent is assumed to retire at t = T . Accord-
ingly, the agent’s retirement wealth is equal to XT . In this context, XT can be
regarded as (i) a lump-sum that is paid out to the agent at t = T , or (ii) as
a specific amount of monetary units that is converted into an annuity, which
renders annual payments until the agent’s date of death. Within the confines of
a pension scheme, it is reasonable to assume that participants have particular
expectations with regard to their retirement wealth. That is, the agent in our
model setup may have in mind a certain benchmark or reference level that
he/she ideally acquires at retirement. Note that such a reference level may also
be relevant to agents outside of the pension industry, cf. the introduction.
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To model this benchmark, we make use of a log-normally distributed random
variable.8 Suppose that YT represents the agent’s person-specific (real) bench-
mark. Henceforth, with a slight abuse of notation, we set Yt equal to YT |T=t

for all t ∈ [0, T ]. Let Y0 ∈ R+ be the benchmark’s starting value. Moreover,
define αt and βt as two deterministic processes of time (t ∈ [0, T ]) alone. Here,
t 7→ αt achieves values in R; t 7→ βt attains values in R4. One could generalise
αt to be affine in Zt. However, due to the log-normal structure of YT , the
corresponding randomness generated by αt can easily be handled by βt alone.
With this notation at hand, we postulate that the benchmark constitutes the
solution to dYt

Yt
= αtdt+ β⊤

t dWt at time t = T . In other words, the value of
the retirement-linked reference level is specified as follows:

YT = Y0 exp
{∫ T

0
αsds− 1

2

∫ T

0
β⊤
s βsds+

∫ T

0
β⊤
s dWs

}
. (4.2.16)

We conclude by touching upon two features relevant to the benchmark in
(4.2.16): (i) possible interpretations of YT , and (ii) the funding or coverage
ratio corresponding to YT . Concerning item (i), as mentioned in Kamma and
Pelsser (2022c), there is a wide variety of interpretations available for YT . We
should stress here that these interpretations should respect the exogeneity of
YT , meaning that YT must be left unaffected by the agent’s own decisions.
For example, we could interpret YT as one’s labour income, the net worth
of the agent’s neighbour, or a fraction of a nation’s GDP. As for item (ii),
we note that the funding or coverage ratio corresponding to YT is defined as:
F0 = X0

E[YTMT ΠT ] . If F0 < 1, the agent is not in possession of enough funds
(assets) at t = 0 to risk-neutrally cover his/her benchmark (liabilities). The
converse holds true if F0 ≥ 1. Taking into account that F0 is linear in Y0, it
is clear that we can alter Y0 to modify the coverage ratio. In the sequel, for
technical reasons, we are limited to the F0 < 1 case

8We assume log-normality of this benchmark process for two main reasons. First, due to its
distributional elegance, the log-normal benchmark does not interfere with a closed-form
characterisation of optimal solutions. Second, because it outlines a strictly positive
process that can be identified with a.o. Bt and St, the log-normal specification allows
for a fairly broad selection of interpretations. In the numerical illustration related to the
investment problem of interest, we define the benchmark as the analytical approximation
to a life annuity. In this definition of the benchmark, its log-normality plays a central
role via the so-called Fenton-Wilkinson approximate method, cf. Fenton (1960).
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4.2.4 Optimal Investment Problem

The subsequent investment problem is predicated on the LPM formulation
that is addressed in section 5.2 of Föllmer and Leukert (2000). To supply this
problem, we cast the agent’s situation into the following context. The financial
market, M, occupies an agent, who is in possession of an initial endowment
X0 ∈ R+. The agent uses this entire prefixed amount of monetary units for
investment over the trading interval, [0, T ]. Over the course of this interval,
the agent is allowed to continuously modify the weights of his/her portfolio.
These portfolio weights, πt, are defined as the amounts of monetary units that
the agent allocates to the four risky assets, St. By modifying these weights,
the agent aims to minimise the so-called lower partial moment of the difference
between real retirement wealth, XT

ΠT
, and the (real) benchmark YT . In doing

so, the agent tries to acquire an amount of real retirement wealth that is as
close as possible to his/her goal: the benchmark. In mathematical terms, the
agent faces the following investment problem:

sup
{πt}t∈[0,T ]∈AX0

E

[
−1
p

[(
YT − XT

ΠT

)+
]p]

s.t. dXt =
(
Xtrt + π⊤

t σΛt
)

dt+ π⊤
t σdWt,

X0 < sup
Q∈Q

EQ
[
YTΠT

BT

]
= E [YTMTΠT ] .

(4.2.17)

Here, p > 1 holds and Q describes the set of all equivalent martingale measures
under the numéraire {Bt}t∈[0,T ]. Notation-wise, we let EQ [·] represent the
expectation operator under the Q measure, and (·)+ stands for the max-
operator: (y)+ = max {0, y} for all y ∈ R. If p = 1, the formulation in (4.2.17)
reduces to the expected shortfall minimisation problem, cf. section 4 in Föllmer
and Leukert (2000). However, p = 1 cannot be regarded as a special case of the
optimal solution to (4.2.17), as x 7→ − [(x)+]p

p is only continuously differentiable
for p > 1. Although the formulation in (4.2.17) is specified in the canonical
form of a maximisation problem, it should be noted that it is equivalent to
minimising E[ 1

p [(YT − XT

ΠT
)+]p]. The latter criterion characterises the pth lower

partial moment of XT

ΠT
− YT . The agent aims to minimise this criterion over all
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admissible trading strategies, {πt}t∈[0,T ] ∈ AX0 , given that X0 < E [YTMTΠT ]
holds true. The preceding condition states that X0 ought to be smaller than
the super-replication price of YT .9 Since the market M is complete, this
super-replication price coincides with the risk-neutral value of YT , given by
E [YTMTΠT ]. Hence, since X0 < E [YTMTΠT ] is true, we have that F0 < 1
holds. Observe that if F0 ≥ 1, X0 exceeds the super-replication price, which
enables XT

ΠT
to exceed YT in all states of the world. As this makes problem

(4.2.17) superfluous, we solely analyse the F0 < 1 case.

4.3 Optimality Conditions
In this section, we analytically spell out and analyse the optimality conditions
corresponding to the investment problem in (4.2.17). First, we provide a general
formulation of the optimality conditions for the LPM problem in the spirit of
Föllmer and Leukert (2000). For this reason, we employ the martingale method.
Second, we introduce the optimal solutions to the dynamic optimisation problem
(4.2.17) in closed-form. In line with the martingale method, these solutions
are two-fold: (i) one part of the solution clearly concerns the optimal trading
strategy, and (ii) the remaining part pertains to the agent’s optimal wealth
process. In view of the fact that item (i) follows directly from item (ii), we first
focus on the latter and conclude with the former. All derivations relevant to
this section can be found in the appendix.

4.3.1 General Optimal Solutions

In deriving the optimality conditions to the formulation in (4.2.17), we make
use of the martingale method. This method is developed in the seminal contri-
butions by Pliska (1986), Karatzas et al. (1987), Cox and Huang (1989, 1991),
and revolves around a static alternative to the dynamic problem in (4.2.17).
This approach slightly differs from the one that Föllmer and Leukert (2000)
employ to solve (4.2.17). Whereas their approach treats the LPM operator
as a hedging criterion, the martingale method emphasises its specification as

9For the definition of a super-replication price, cf. El Karoui and Quenez (1995), Kramkov
(1996), Föllmer and Kabanov (1997), and Example 2 of Rogers (2003).
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a utility function. To identify the LPM operator as a utility function, let us
introduce the mapping U : R2

+ → R− defined by: U (x, y) = − 1
p

[
(y − x)+

]p
,

for all x, y ∈ R+. Clearly, U : R2
+ → R− qualifies as a utility function and

E [U (XT ,ΠT )] spells out the objective of the problem in (4.2.17). We observe
that the inverse of marginal utility is characterised by: I (z, y) = y − z

1
p−1 ∧ y.

In Theorem 4.3.1, we introduce the general optimality conditions for the
investment problem in (4.2.17).

Theorem 4.3.1. Consider the optimal dynamic LPM investment problem in
(4.2.17). The corresponding optimal wealth process, denoted by Xopt

t , is for all
t ∈ [0, T ] characterised by:

Xopt
t = 1

Mt
E
[
YTM

R
T 1{AT }

∣∣ Ft
]

− 1
Mt
E

[(
H−1 (X0)

1
p MR

T

) p
p−1

1{AT }

∣∣∣∣ Ft
]
.

(4.3.1)

Here, H−1 : R+ → R+ outlines the inverse function of H : R+ → R+, which
is specified as: H (η) = E [I (ηMTΠT , YT ) ΠTMT ] = X0. The event AT is
given by: AT = {YT ≥ (H−1 (X0)MR

T )
1

p−1 }. We define MR
t as the real pricing

kernel: MR
t = MtΠt, for all t ∈ [0, T ]. Consistent with Xopt

t , there exists an
L2 ([0, T ])-valued process, {ψt}t∈[0,T ], such that the optimal investment strategy,
πopt
t , reads for all t ∈ [0, T ] as:

πopt
t = σ⊤−1 ψt

Mt
+ σ⊤−1

ΛtXopt
t . (4.3.2)

Proof. The proof is given in Appendix A.

The specifications of Xopt
t and πopt

t are valid for general Yt and general return
dynamics. More specifically, the presented optima in Theorem 4.3.1 still
hold true for non-log-normal characterisations of Yt, e.g. a semi-martingale
definition. The same applies to the specification of St, i.e. the return dynamics.
Nevertheless, for concrete setups, it is in general possible to spell out Xopt

t

and πopt
t more explicitly. In case of M, one can indeed derive closed-form

expressions for both processes. Due to the distributional features of Mt, the
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evaluation of the conditional expectations in (4.3.1) demands special care. We
elaborate on the details in section 4.3.2. As the retrieval of ψt in (4.3.2) entirely
depends on the (analytical) definition of Xopt

t , the distributional properties
of Mt also play a role in the identification of πopt

t . We discuss this at greater
length in section 4.3.3. Note that ψt can be derived from Xt in closed-form
by means of Itô’s Lemma or Malliavin calculus. For details on the latter less
well-known approach, we refer to Nualart (2006) or Appendix C.

4.3.2 Optimal Wealth Process

We continue with the introduction of the optimal wealth process corresponding
to the dynamic investment problem in (4.2.17): Xopt

t for all t ∈ [0, T ]. As
addressed in the discussion of the general optimality conditions in section 4.3.1,
the derivation of Xopt

t comes down to an evaluation of the conditional expecta-
tions in (4.3.1). To analytically evaluate these expectations, we are required to
employ Fourier transforms. Namely, the stochastic processes included in this
identity for Xopt

t are, for non-zero Λ1, not log-normally distributed. In fact,
the distributional features of these processes are not known, which encumbers
a closed-form recovery of Xopt

t by means of standard machinery. Therefore,
the Fourier transform comes in handy, because it enables us to evaluate the
conditional expectations in (4.3.1), without requiring the exact distributional
properties of the relevant processes. Details concerning the Fourier transform
in application to (4.3.1) can be found in Appendix B.1. In Proposition 4.3.2,
we formally introduce the analytical expression for Xopt

t .

Proposition 4.3.2. Consider the optimal dynamic investment problem in
(4.2.17). The corresponding value for the optimal wealth process, Xopt

t , at time
t ∈ [0, T ] is given in (4.3.1). After analytical evaluation of the conditional
expectations in this identity, the following holds:

Xopt
t = YtΠtP1 (t, Zt)

1
2π

∫ ∞

−∞
f∗
κ (T, ω)ϕ1,T−t (−ω − iκ, h) dω

−
(
ηoptMtΠt

) 1
p−1 ΠtP2 (t, Zt)

1
2π

∫ ∞

−∞
f∗
κ (T, ω)ϕ2,T−t (−ω − iκ, h) dω,

(4.3.3)
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for all t ∈ [0, T ]. Here, ηopt = H−1 (X0) ∈ R+ characterises the optimal
Lagrange multiplier, which can be retrieved from solving Xopt

0 = X0 for ηopt.
Moreover, P1 (t, Zt) and P2 (t, Zt) are for all t ∈ [0, T ] specified as:

P1 (t, Zt) = exp
{
Ã (t) + B̃ (t)⊤

Zt

}
, and

P2 (t, Zt) = exp
{
Â (t) + B̂ (t)⊤

Zt + Z⊤
t Ĉ (t)Zt

}
.

(4.3.4)

Here, t 7→ Ã (t) and t 7→ B̃ (t) outline two deterministic functions that are
given in (B.1.13). Likewise, t 7→ Â (t), t 7→ B̂ (t) and t 7→ Ĉ (t) spell
out three deterministic functions that jointly solve the system of ODE’s in
(B.1.14). The deterministic function f∗

κ (T, ω) is for all ω ∈ R and some
κ ∈ R+ given by: f∗

κ (T, ω)− e
(iω−κ) 1

p−1 log H−1(X0)

iω−κ . Ultimately, let Qj (t, Zt, ω) =
eĀj(t,ω)+B̄j(t,ω)⊤Zt+Z⊤

t C̄j(t,ω)Zt for j = 1, 2, all ω ∈ R and t ∈ [0, T ]. The func-
tions, (t, ω) 7→ Āj (t, ω), (t, ω) 7→ B̄j (t, ω) and (t, ω) 7→ C̄j (t, ω), jointly solve
the system of ODE’s in (B.1.29), for j = 1, 2. Then, for j = 1, 2, all ω ∈ R
and t ∈ [0, T ], the characteristic function is given by:

ϕj,T−t (ω, h) = Qj (t, Zt, ω)
(
MR

− 1
p−1

t Yt

)iω
. (4.3.5)

Proof. The proof is given in Appendix B.1.

The expression for optimal wealth over the trading interval, Xopt
t in (4.3.3),

can be analysed along the following technical lines. The YtΠtP1 (t, Zt) term
coincides with the risk-neutral value of YTΠT at time t ∈ [0, T ]. Similarly,
the (H−1 (X0)MtΠt)

1
p−1 ΠtP2 (t, Zt) term identifies the risk-neutral value of(

H−1 (X0)MTΠT

) 1
p−1 ΠT at time t ∈ [0, T ]. Moreover, the two integral expres-

sions, 1
2π
∫∞

−∞ f∗
κ (T, ω)ϕj,T−t (−ω − iκ, h) dω for j = 1, 2, specify the Fourier

transforms of two distinct conditional probabilities. These conditional probabili-
ties concern the AT event under different (nearly-identical) probability measures
that are equivalent to P, i.e. X1 and X2 in Appendix B.1. It is clear that these
conditional probabilities determine how much weight is attached to the risk-
neutral value of YTΠT −

(
H−1 (X0)MTΠT

) 1
p−1 ΠT , at time t ∈ [0, T ]. That is,

the better the state of the economy, the closer these probabilities will be to 1;
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for the converse case, these probabilities will attain values near 0. Hence, Xopt
t

can be regarded as the risk-neutral value of YTΠT − (H−1 (X0)MR
T )

1
p−1MT ,

weighted in accordance with the state of the economy. In Corollary 4.3.3, we
introduce Xopt

t for the case where Λ1 is equal to 0.

Corollary 4.3.3. Consider the optimal dynamic investment problem in
(4.2.17). The corresponding optimal wealth process, Xopt

t , is given in (4.3.3)
of Proposition 4.3.2. Suppose that Λ1 = 04×2, where 04×2 = [04, 04] and 04 is
an R4-valued vector of zeros. Then,

Xopt
t = YtΠte

Ã(t)+B̃(t)⊤ZtΦ (d1,t,T )

−
(
H−1 (X0)MtΠt

) 1
p−1 Πte

Â(t)+B̂(t)⊤ZtΦ (d2,t,T ) ,
(4.3.6)

characterises for all t ∈ [0, T ] the optimal wealth process. Here, t 7→ Ã (t)
and t 7→ B̃ (t) outline two deterministic functions that are given in (B.2.32).
Likewise, t 7→ Â (t) and t 7→ B̂ (t) spell out two deterministic functions that
are given in (B.2.33). Additionally, Φ (·) represents the cumulative distribution
function (CDF) of a random variable that is standard normally distributed.
The two arguments inside this function, i.e. the processes d1,t,T and d2,t,T , are
for j = 1, 2 and all t ∈ [0, T ] given by the following identity:

dj,t,T =
− log

(
H−1(X0)

1
p−1

MR
− 1

p−1
t Yt

)
+ EXj

[
log MR

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣ Ft

]
√√√√√VarXj

log M
R

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣∣ Ft


. (4.3.7)

Here, VarXj

[
logMR

− 1
p−1

T YT /M
R

− 1
p−1

t Yt

∣∣∣ Ft
]

and

EXj

[
logMR

− 1
p−1

T YT /M
R

− 1
p−1

t Yt

∣∣∣ Ft
]

are given in (B.2.40) and
(B.2.41), respectively, for j = 1, 2 and all t ∈ [0, T ].

Proof. The proof is given in Appendix B.2.

As addressed in the discussion preceding Proposition 4.3.2, an analytical
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evaluation of the conditional expectations in (4.3.1) is complicated by the
distributional features of the relevant processes. In particular, for non-zero
Λ1, these distributional properties are unknown. To arrive at an analytical
expression for Xopt

t , we therefore employed the Fourier transform, cf. Proposi-
tion 4.3.2. However, if Λ1 is equal to zero, the distributional properties of both
YTM

R
T and (H−1 (X0)

1
p MR

T )
p

p−1 are given. In precise terms, both of the latter
processes are log-normally distributed. This result can be attributed to the fact
that Λt and ΛRt = Λt − σΠ spell out non-affine constants, as a consequence of
Λ1 = 04×2. On the grounds of this log-normality, the closed-form evaluation of
the conditional expectations in (4.3.1) is significantly facilitated. Furthermore,
the expression for Xopt

t is more tractable, as it neither depends on Fourier trans-
forms nor on analytically unsolvable systems of ODE’s. Note that the analysis
regarding the weighted risk-neutral value of YTΠT −

(
H−1 (X0)MTΠT

) 1
p−1 ΠT

from (4.3.3) also applies to (4.3.6). The sole difference consists in the known
distributional features of the probability weights.

Remark 4.3.1. In spite of its analytical transparency, the expression for
optimal wealth (Xopt

t ) in (4.3.3) can be computationally challenging. Namely,
in addition to P2 (t, Zt)’s dependence on an analytically unsolvable matrix
Riccati differential equation for t 7→ Ĉ (t), both ϕ1,T−t and ϕ2,T−t depend
on similar Riccati equations. As ϕ1,T−t and ϕ2,T−t are parts of the distinct
integrals in (4.3.3), their dependence on a.o. two separate Riccati equations
may complicate computational analyses. Therefore, to facilitate numerical
evaluations of the integral(s) characterising Xopt

t , we provide a computation-
ally friendlier expression for Xopt

t (at the cost of analytical clarity). This
expression is based on a direct application of the Fourier transform to Xopt

t

in (4.3.1). Define f̂∗
κ (T, ω) = e

(iω−κ+1) 1
p−1 log H−1(X0)

(iω−κ+1)[iω−κ] , for some κ > 1, and

ϕ̂T−t (ω, g, j) = Q̂ (t, Zt, ω)MR
p−iω
p−1

t Y iωt , cf. (B.3.48) and (B.3.49) for the defi-
nition of Q̂. Then10, for all t ∈ [0, T ], Xopt

t is specified as follows:

Xopt
t = 1

2π
1
Mt

∫ ∞

−∞
f̂∗
κ (T, ω) ϕ̂T−t (−ω − iκ, g, j) dω. (4.3.8)

10For the full derivation of Xopt
t in (4.3.8), see Appendix B.3. We stress here that the

expressions in (4.3.3) and (4.3.8) naturally result in the same optimal wealth processes
(Xopt

t ).
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4.3.3 Optimal Trading Strategy

In this section, we present the optimal trading strategy that solves the dynamic
investment problem in (4.2.17): πopt

t for all t ∈ [0, T ]. According to the
analysis in section 4.3.1, πopt

t can be retrieved on the basis of the analytical
specification for Xopt

t . To emphasise the link between πopt
t and Xopt

t , let us turn
to equation (4.3.2) for πopt

t , and observe that we are already in possession of
Xopt
t , cf. Proposition 4.3.2 and Corollary 4.3.3. As a result, the mere unknown

in this equation is the process {ψt}t∈[0,T ]. Note here that {ψt}t∈[0,T ] outlines
the integrand in Xopt

t Mt’s martingale representation and consequently depends
on Xopt

t . Therefore, in order to identify πopt
t , we utilise Xopt

t to derive the
expression for this integrand by means of Itô’s Lemma or Malliavin calculus.
Details concerning the applications of the latter two concepts to Xopt

t in (4.3.3)
and (4.3.6) are provided in Appendices C.1 and C.2, respectively. In Proposition
4.3.4, we present the ensuing final expression for πopt

t .

Proposition 4.3.4. Consider the optimal dynamic investment problem in
(4.2.17). The optimal trading strategy, i.e. the solution of (4.2.17), is given
in (4.3.2). In this identity, the expression for Xopt

t can be found in (4.3.3).
After determining {ψt}t∈[0,T ], π

opt
t can be decomposed in the following way:

πopt
t = πMt + πΠ

t + πYt + πFTt + πRt , for all t ∈ [0, T ].

The first two weights in this portfolio decomposition, πMt and πRt , read:

πMt = σ⊤−1Λt
p− 1

(
H−1 (X0)

1
p MR

t

) p
p−1 P2 (t, Zt)

Mt
R2,t,

πΠ
t = σ⊤−1

σΠX
opt
t − σ⊤−1

σΠ

p− 1

(
H−1 (X0)

1
p MR

t

) p
p−1 P2 (t, Zt)

Mt
R2,t,

(4.3.9)

for all t ∈ [0, T ]. Here, Rj,t is defined as: Rj,t =
1

2π
∫∞

−∞ f∗
κ (T, ω)ϕj,T−t (−ω − iκ, h) dω, for j = 1, 2, and all

t ∈ [0, T ]. The deterministic function f∗
κ (T, ω) is spelled out

in Proposition 4.3.2. Likewise, the characteristic functions,
ϕj,T−t (ω, h) for j = 1, 2, are specified in (4.3.5). Now, let
R̂j,t = 1

2πPj (t, Zt)
∫∞

−∞ (f∗
κ (T, ω)ϕ1,T−t (−ω − iκ, h) [Σ⊤

Z B̄j (t,−ω − iκ) +
2Σ⊤

Z C̄j (t,−ω − iκ)Zt + i (−ω − iκ) (βt + 1
p−1ΛRt )])dω, for j = 1, 2, and
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all t ∈ [0, T ], where (t, ω) 7→ B̄j (t, ω) and (t, ω) 7→ C̄j (t, ω) solve the
multidimensional system of non-linear ODE’s in (B.1.29).

Then, the remaining weights, πYt , πFTt and πRt , in πopt
t ’s decomposition read:

πYt =
(
σ⊤−1

βt

)
YtΠtP1 (t, Zt)R1,t,

πFTt = σ⊤−1

t

[
YtΠtR̂1,t −

(
H−1 (X0)

1
p MR

t

) p
p−1 1

Mt
R̂2,t

]
,

πRt = σ⊤−1
Σ⊤
Z

(
B̃ (t)Xopt

t − D̃ (t)
(

H−1 (X0)
1
p MR

t

) p
p−1

P2 (t, Zt)R2,t

)
,

(4.3.10)
for all t ∈ [0, T ], where the mapping t 7→ B̃ (t) is given in (B.1.13). In addition
to this, the mapping t 7→ D̃ (t) is defined as follows: D̃ (t) = B̂ (t) + 2Ĉ (t)Zt +
B̃ (t), for all t ∈ [0, T ]. In the latter identity, t 7→ B̂ (t) and t 7→ Ĉ (t) jointly
solve the multidimensional system of non-linear ODE’s in (B.1.14).

Proof. The proof is given in Appendix C.1.

In Proposition 4.3.4, we decompose the optimal trading strategy (πopt
t ) into

five distinct hedge demands. In disentangling these demands, we primarily
adhere to the decomposition principles proposed by Detemple and Rindisbacher
(2010) and Li et al. (2020). These papers concentrate on utility functions of
the conventional Inada-family. Although the LPM function in the objective
of (4.2.15) cannot be entirely subsumed under this family, the corresponding
optimal portfolio weights live by a structure similar to theirs. We identify the
demands in (4.3.9), πMt and πΠ

t , as a variant of the optimal mean-variance
portfolio and a CPI hedge, respectively. As for πMt , it is in this regard
noteworthy that σ⊤−1

Λt

γ corresponds to the Merton portfolio for γ = p− 1 > 0,
cf. Merton (1969, 1971). In a similar sense, πΠ

t incorporates Merton-like weights
that depend on σΠ instead of Λt. The remaining demands in (4.3.10), πYt ,
πFTt and πRt , can be identified as a benchmark hedge, a probability hedge, and
a real interest rate hedge, respectively. Due to their dependence on βt and
the parameters in Rt = rt − πt + σ⊤

Π Λt, the identification of πYt and πRt is
straightforward. The πFTt weight is referred to as a probability hedge, as its
components follow from the Fourier transforms in (4.3.3) that characterise the
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relevant conditional probabilities. In Corollary 4.3.5, we introduce the optimal
trading strategy, πopt

t , given that Λ1 = 04×2 holds.

Corollary 4.3.5. Consider the optimal dynamic investment problem in
(4.2.17). The optimal trading strategy, i.e. the solution of (4.2.17), is given
in (4.3.2). Suppose that Λ1 = 04×2, and M̂R

t = H−1 (X0)
1
p MR

t . Then,
πopt
t = πMt + πΠ

t + πYt + πRt holds, for all t ∈ [0, T ]. Here, πMt and πΠ
t read:

πMt = σ⊤−1Λ0

p− 1

(
M̂R
t

) p
p−1 eÂ(t)+B̂(t)⊤Zt

Mt
Φ (d2,t,T ) ,

πΠ
t = σ⊤−1

σΠX
opt
t − σ⊤−1

σΠ

p− 1

(
M̂R
t

) p
p−1 eÂ(t)+B̂(t)⊤Zt

Mt
Φ (d2,t,T ) ,

(4.3.11)

for all t ∈ [0, T ]. The mappings t 7→ Ã (t) and t 7→ B̃ (t) correspond to the
deterministic functions in Corollary 4.3.3 and are given in (B.2.32). Similarly,
the mappings t 7→ Â (t) and t 7→ B̂ (t) follow from Corollary 4.3.3 and are
presented in (B.2.33). Moreover, the function Φ (·) denotes the CDF of a
standard normally distributed random variable. The arguments of this function,
d1,t,T and d2,t,T , are defined in equation (4.3.7). Suppose that D̃ (t) = B̂ (t) +
B̃ (t), for all t ∈ [0, T ]. Then, the remaining weights, πYt and πRt , in the
decomposition of πopt

t are specified, for all t ∈ [0, T ], as follows:

πYt =
(
σ⊤−1

βt

)
YtΠte

Ã(t)+B̃(t)⊤ZtΦ (d1,t,T ) ,

πRt = σ⊤−1
Σ⊤
Z

(
B̃ (t)Xopt

t − D̃ (t)
(
M̂R
t

) p
p−1

eÂ(t)+B̂(t)⊤ZtΦ (d2,t,T )
)
.

(4.3.12)

Proof. The proof is given in Appendix C.2.

Corollary 4.3.5 spells out the optimal trading strategy (πopt
t ) corresponding

to the optimal wealth process (Xopt
t ) in Corollary 4.3.5. That is, the opti-

mal portfolio weights in (4.3.11) and (4.3.12) precisely replicate the optimal
wealth process in (4.3.6). The analytical tractability of this wealth process
correspondingly carries over to the optimal trading strategy. Concretely, unlike
the portfolio in Proposition 4.3.4, the optimal investment rules for Λ1 = 04×2
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neither depend on Fourier transforms nor on analytically troublesome multi-
dimensional systems of (non-)linear ODE’s. Due to the interdependent links
between Xopt

t and πopt
t , it is self-explanatory that this tractability is attributable

to the advantageous distributional features of Xopt
T . As for the economic inter-

pretations of the separate demands, we underline that the weights in (4.3.11)
and (4.3.12) represent the same hedges as those in Proposition 4.3.4. Note
that the hedge demand for the probability weights, πFTt in (4.3.10), is equal
to 04 for Λ1 = 04×2. We are able to derive this result through an application
of Malliavin calculus.11 However, because of the analytical structure of Xopt

T

in (A.3), a similar application for the general Λ1 ∈ R4×2 case does not infer
that πFTt = 04 must hold.12 Therefore, Proposition 4.3.4 includes this hedge
demand as a possibly non-zero one.

Remark 4.3.2. In the spirit of Remark 4.3.1, we observe that the expression for
the optimal trading strategy (πopt

t ) in Proposition 4.3.4 may pose computational
difficulties. Namely, the dependencies in Xopt

t on multiple matrix Riccati
differential equations are also present in the latter specification of πopt

t . Hence,
consistent with (4.3.8), in order to facilitate numerical evaluations of the
integral(s) outlining πopt

t , we provide a computationally friendlier expression
for this process. We derive this expression on the grounds of the identity
for Xopt

t in equation (4.3.8). For this purpose, we employ the definitions of
f̂∗
κ (T, ω) and ϕ̂T−t (ω, g, j) given in Remark 4.3.1. In addition to this, we

fix D̂
Q̂

(t, ω) = B̂
Q̂

(t, ω) + 2Ĉ
Q̂

(t, ω)Zt, for all t ∈ [0, T ] and ω ∈ R. Here,
the definitions of (t, ω) 7→ B̂

Q̂
(t, ω) and (t, ω) 7→ Ĉ

Q̂
(t, ω) can be found in

(B.3.49). Moreover, we set Λ̂Rt (p, ω) = iωβt − p−iω
p−1 ΛRt . Then13, the optimal

11This application strongly depends on the result reported in Lakner and Nygren (2006),
concerning Mallivain-differentiability of piecewise continuously differentiable functions.

12Such an application ultimately requires one to evaluate a conditional expectation of the
following form: E

[
NT1{AT }

∫ T

t
χsdWs

∣∣ Ft

]
, where NT ∈ L0

+ (Ω) and {χt}t∈[0,T ]
represents a deterministic process satisfying χt ∈ L2 (0, T ). Although this conditional
expectation can be evaluated by employing the Fourier transform, it does not enable us to
determine whether the ensuing expression contributes to the πF T

t weight or not. Hence,
by means of the Malliavin-based approach, we are unable to state that πF T

t = 04 holds
for general values of Λ1 ∈ R4×2. Note that this condition, πF T

t = 04, neither follows
from the expression for πF T

t in Proposition 4.3.4 itself.
13For the full derivation of πopt

t in (4.3.13), see Appendix C.3. As in Remark 4.3.1, we stress
here that the expressions in Proposition 4.3.4 and (4.3.13) naturally result in the same
optimal portfolio (πopt

t ).
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trading strategy, πopt
t , is for all t ∈ [0, T ] given by:

πopt
t = 1

2π
1
Mt

σ⊤−1
∫ ∞

−∞

(
f̂∗
κ (T, ω) ϕ̂T−t (−ω − iκ, g, j)

×
[
Σ⊤
Z D̂Q̂

(t,−ω − iκ) + Λ̂Rt (p,−ω − iκ)
])

dω + σ⊤−1
ΛtXopt

t .

(4.3.13)

4.4 Numerical Analysis

In this section, we provide a numerical analysis of the optimal solutions to the
investment problem in (4.2.15). A numerical examination of the closed-form
solutions (cf. section 4.3) can aid and deepen our understanding of a.o. their
distributional properties and parameter sensitivity. Subsequently, we first
elaborate on the specification of the benchmark process, {Yt}t∈[0,T ]. Thereby,
we aim to cast the matter into the confines of the accumulation phase of a defined
contribution (DC) pension scheme. Second, we numerically investigate the
probability distribution of the optimal terminal wealth process. In particular,
we are interested in the likelihood of XT

ΠT
attaining YT . Third and last, we

study the behaviour of the optimal trading strategy with respect to changes in
the model parameters. We particularly concentrate on the strategy’s sensitivity
with respect to the so-called replacement ratio.

4.4.1 Benchmark and Life Annuity

Henceforth, we assume that the investment problem in (4.2.17) corresponds to
a participant in a DC scheme. Accordingly, we choose to model the benchmark,
{Yt}t∈[0,T ], as a life annuity. As a consequence, the agent or pension fund
in (4.2.17) aims to invest in such a manner that real retirement wealth (XT

ΠT
)

completely covers the life annuity (YT ). Note here that the agent departs from
an underfunding situation (F0 < 1), similar to most pension funds. The setup
is therefore highly relevant. Now, we postulate that the participant lives τA
fixed years after his/her predetermined retirement date, T . This concretely
implies that the trading interval, [0, T ], coincides with the participant’s accu-
mulation phase. Correspondingly, the interval that aligns with the participant’s
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decumulation phase is given by (T, T + τA]. In the sequel, we suppose that aT
represents the real value of the life annuity at time t = T . The formal equation
for the (real) value of this life annuity, aT , reads:

aT = C

τA∑
i=1

PRT,T+i

ΠT
= C

τA∑
i=1

exp
{
AR (i) +BR (i)⊤

ZT

}
. (4.4.1)

The specifications of AR (·) and BR (·) are provided in (4.2.13). Without loss
of generality14, we assume here that the life annuity pays C ∈ R+ monetary
units per annum in real terms. We mainly employ C to adjust the coverage or
funding ratio (F0). In Donnelly et al. (2022), the authors make use of a similar
definition for the value of a life annuity. Noting that ZT outlines a normally
distributed random variable, it is clear that the expression for aT identifies
a sum of τA log-normally distributed processes. Therefore, aT in (4.4.1) is
not log-normally distributed, and cannot be directly identified with YT in
(4.2.16), cf. Dufresne (2008). Nevertheless, in order to make this identification
possible, we assemble an approximation to aT . For this purpose, we resort
to a modified application of the Fenton-Wilkinson (FW) method developed
by Fenton (1960). This method is predicated on the observation that sums
of log-normally distributed random variables are approximately log-normal.
Applied to aT in equation (4.4.1), this method proceeds as follows.

Now, let âT denote the log-normal approximation to aT . Then,

âT = C exp
{
ᾱ+ β̄⊤ZT

}
= C exp

{
ᾱ+ β̄⊤

∫ T

0
e−KZ (T−s)ΣZdWs

}
, (4.4.2)

must hold according to the FW method. In this definition of âT , the scalar
ᾱ ∈ R and the vector β̄ ∈ R2 are to be determined. Ordinarily, the FW method
characterises both ᾱ and β̄ by matching the first and second moments of âT
and aT . However, as β̄ is two-dimensional, this procedure is not appropriate.
14Deterministic variable payments can be incorporated into aT ’s definition by replacing

AR (i) with ÂR (i) = AR (i) + log Ci
C

, given Ci ∈ R+, for all i = 1, . . . , τA. In a similar
manner, stochastic payments can be included in aT ’s specification, as long as these respect
the log-normality of exp

{
AR (i) +BR (i)⊤ ZT

}
. For instance, C = αST , with α ∈ R+,

would be an appropriate candidate.
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Therefore, to be able to specify the preceding unknowns, we slightly modify the
FW approach. In particular, we still match the first moments. Yet, instead of
the second moments, we also match the following two expectations: E [aTZT ]
and E [âTZT ]. The idea underscoring the latter operation is that it is identical
to fixing: ∂

∂β̄
E [âT ] =

∑τA

i=1
∂

∂BR(i)E
[
exp {AR (i) +BR (i)⊤

ZT }
]
. That is, we

match in expectation the variations of aT and âT with respect to the loadings of
ZT . Note here that both E [aT ] and E [aTZT ] are completely available in closed-
form and can be found in equation (D.1.5) and equation (D.1.8), respectively.
Based on this mildly adjusted version of the conventional FW method, we are
able to determine ᾱ and β̄ in closed-form. For the complete derivation of both
ᾱ and β̄ in (4.4.3), we refer the reader to Appendix D.1. In precise terms, we
find that ᾱ and β̄ are characterised by the following identities:

ᾱ = log E [aT ]
C

− 1
2

∫ T

0
β̄⊤e−KZ (T−s)

[
e−KZ (T−s)

]⊤
β̄ds,

β̄ =
(∫ T

0
e−KZ(T−s)

[
eKZ (T−s)

]⊤
ds
)−1

E [aTZT ]
E [aT ] .

(4.4.3)

To illustrate the accuracy of this approximation, we examine the magnitude

of the L2 (Ω)-distance between âT and aT : E
[
(aT − âT )2

] 1
2 . Additionally, we

assess the size and sign of the correlation between âT and aT : Corr (âT , aT ). We
compute these quantities by means of simulations, to avoid presenting additional
complicated expressions. For this reason, we make use of the baseline parameter
initialisation provided in Table 4.1. The subsequent numbers are based on
10,000 simulated paths and an Euler scheme with 10 yearly equidistant time-
points. Regarding the L2 (Ω)-distance, we find: ∥aT − âT ∥L2(Ω) = 0.0923.15

For the correlation, we have: Corr (aT , âT ) = 0.9994. Considering that this
coefficient is nearly equal to 1, and that the corresponding L2 (Ω)-distance is
negligibly small, we conclude that the approximation to aT is rather accurate.
To finalise this section, we identify âT with YT in (4.2.16). The following
unique specifications ensure that YT = âT holds: Y0 = Ceᾱ, αt = 1

2β
⊤
t βt and

15We observe that infᾱ,β̄

∥∥aT − âT

∥∥
L2(Ω)

= 0.0897 holds. As this value is very close to the
one in the main text (0.0923), we can conclude that our approximation behaves similar
to the L2 (Ω)-optimal variant.
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β⊤
t = β̄⊤e−KZ (T−t)ΣZ , for all t ∈ [0, T ].

4.4.2 Distribution of Retirement Wealth

In this section, we derive the distributional properties of optimal retirement
wealth, Xopt

T . From section 4.2.4, we know that the agent in the LPM problem
is strongly target-oriented. This focus on a person-specific target or benchmark
can be summarised as follows.16 As long as XT

ΠT
< YT holds, the agent is able

to draw additional non-negative utility by increasing the magnitude of XT

ΠT
.

However, if XT

ΠT
= YT is true, no additional utility can be derived by enlarging

XT

ΠT
. That is, the agent has reached a maximal level of utility once the desired

target has been obtained. These preference-related features translate into the
following behaviour. Provided that wealth drifts away from the benchmark, the
agent is willing to engage in riskier trades so as to increase the odds of ultimately
securing the target. On the contrary, if wealth covers the benchmark, the agent
becomes more prudent with respect to risky investments in an attempt to “lock
in” his/her wealth at the current target level. Since the agent’s preferences are
explicitly modelled around this target, we confine ourselves to an analysis of
XT

ΠT
relative to YT . With this end in view, we introduce Proposition 4.4.1

Proposition 4.4.1. Consider optimal terminal wealth, Xopt
T , provided in

Proposition 4.3.2 or more explicitly in (A.3). The corresponding benchmark,
YT , is presented in (4.2.16). Suppose that x 7→ FX/Y (x) represents the CDF
of XT

ΠT

1
YT

, i.e. FX/Y (x) = P
(
XT

ΠT

1
YT

≤ x
)

for all x ∈ R. Then,

FX/Y (x) = 1
2π

∫ ∞

−∞
f̃∗
κ (T, x, ω)ϕT (−ω − iκ, h) dω, (4.4.4)

holds for all x ∈ [0, 1).17 Moreover, FX/Y (x) = 0 for all x ∈ (−∞, 0), and
16The subsequent analysis is based on U ’s coefficient of absolute risk aversion (ARA). ARA

for U is equal to: − U′′
x (x,y)

U′
x(x,y) = p−1

(y−x)∗ for all x, y ∈ R+.

17Note here that FX/Y (x) = 1 −P
(
MR

1
p−1

T YT
−1 ≤ (1 − x) ηopt

− 1
p−1 ) holds for all x ∈ R,

cf. (D.3.18). Whereas we were able to disentangle more explicit terms for the optimal
control processes in Propositions 4.3.2 and 4.3.4, this is not possible for the case at
hand. This is entirely attributable to the analytical structure of the indicator function,
x 7→ 1{x∈A}, which is not multiplicative in its sole argument. Alternative, indirect
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FX/Y (x) = 1 for all x ∈ [1,∞). The deterministic function f̃∗
κ (T, x, ω) is

for all ω ∈ R, all x ∈ [0, 1) and some κ ∈ R− given by: f̃∗
κ (T, x, ω) =

1
iω−κe

(iω−κ)[ 1
p−1 log H−1(X0)−log(1−x)]. Additionally, the characteristic function,

ϕT (ω, h), is specified as follows: ϕT (ω, h) = eÃ(0,ω)Y iω0 for all ω ∈ R. Here,
(t, ω) 7→ Ã (t, ω) represents the deterministic function provided in (D.2.15),
through the system of ODE’s in (D.2.12). Now, let x 7→ fX/Y (x) denote the
density of XT

ΠT

1
YT

on the domain (0, 1), i.e. fX/Y (x) = ∂
∂xFX/Y (x) for all

x ∈ (0, 1). Then, for all x ∈ (0, 1):

fX/Y (x) = 1
2π

∫ ∞

−∞

iω − κ

1 − x
f̃∗
κ (T, x, ω)ϕT (−ω − iκ, h) dω. (4.4.5)

Proof. The proof is given in Appendix D.2.

Proposition 4.4.1 analytically characterises the distribution of XY,Π
T = XT

ΠT

1
YT

using the following two functions: (i) the CDF of XY,Π
T in (4.4.4), and (ii)

the density of XY,Π
T on the domain (0, 1) in (4.4.4). Note that the CDF,

x 7→ FX/Y (x), delivers the likelihood that XY,Π
T attains values in an interval

(−∞, x]. The density, x 7→ fX/Y (x), can be interpreted as a function that
constitutes the continuous analogue of a histogram for XY,Π

T . We choose to
analyse the distributional features of XY,Π

T , as this random variable immediately
infers how well XT

ΠT
performs relative to YT . In fact, XY,Π

T can be identified
with the so-called replacement ratio, see e.g. Balter et al. (2020). Concretely,
XY,Π
T takes on values in the half-open unit interval, [0, 1), and measures the

degree up to which real retirement wealth is able to cover or replicate the
benchmark. For example, if XY,Π

T achieves a value of 0.75, real retirement
wealth is able to cover 75% of the benchmark’s value. Great performance
is accordingly associated with XY,Π

T ≈ 1; poor performance with XY,Π
T ≈ 0.

Therefore, the shape of XY,Π
T ’s distribution explicitly indicates whether and up

to what extent the pension fund is able to meet the financial expectations of
the participant. Evidently, in particular from the participant’s point of view,

applications of the Fourier transform (used for Propositions 4.3.2 and 4.3.4) would
consequently not contribute to the analytical transparency of the ensuing identities.
Therefore, x 7→ FX/Y (x) in (4.4.4) is the most analytical expression that we can engender
for the CDF. On account of the immediate derivation of the density from the CDF, it is
self-explanatory that the same applies to x 7→ fX/Y (x).

128



4.4 Numerical Analysis

a highly left-skewed distribution is preferred. In Corollary 4.4.2, we provide
x 7→ FX/Y (x) and x 7→ fX/Y (x) for Λ1 = 04×2.

Corollary 4.4.2. Consider optimal terminal wealth, Xopt
T , provided in (A.3).

The corresponding benchmark, YT , is presented in (4.2.16). Suppose that
Λ1 = 04×2. Then, the CDF of XT

ΠT

1
YT

, i.e. FX/Y (x) = P
(
XT

ΠT

1
YT

≤ x
)

for all
x ∈ R, is for all x ∈ [0, 1) given by:

FX/Y (x) = Φ


log H−1(X0)

1
p−1

1−x − E
[
logMR

− 1
p−1

T YT

]
√
Var

[
logMR

− 1
p−1

T YT

]
 . (4.4.6)

Furthermore, FX/Y (x) = 0 for all x ∈ (−∞, 0), and FX/Y (x) = 1 for all

x ∈ [1,∞). Here, E[ logMR
− 1

p−1
T YT ] and Var[ logMR

− 1
p−1

T YT ] are given in
(D.3.20). In addition to this, Φ (·) denotes the CDF of a standard normally
distributed random variable. Now, define x 7→ d0,T (x) as the argument of
the CDF in (4.4.6). Let x 7→ fX/Y (x) denote the density of XT

ΠT

1
YT

on the
domain (0, 1), i.e. fX/Y (x) = ∂

∂xFX/Y (x) for all x ∈ (0, 1). Moreover, let ϕ (·)
denote the PDF of a random variable that is standard normally distributed:
ϕ (x) = 1√

2π
e− 1

2x
2 for all x ∈ R. Then, for all x ∈ (0, 1):

fX/Y (x) = ϕ (d0,T (x))

(1 − x)

√
Var

[
logMR

− 1
p−1

T YT

] . (4.4.7)

Proof. The proof is given in Appendix D.3.18

Following sections 4.3.2 and 4.3.3, we distinguish the Λ1 = 04×2 case from the
general Λ1 ∈ R4×2 case. As XY,Π

T ’s distributional features are unknown for
Λ1 ̸= 04×2, we relied on Fourier transforms to derive the results in Proposition
18To avoid confusion, we emphasise that both Proposition 4.4.1 and Corollary 4.4.2 are

valid for the general specification of the benchmark process, YT , provided in (4.2.16). As
a consequence, the special case implied by YT = âT in section 4.4.1 is covered by the
presented results.
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4.4.1. However, provided that Λ1 = 04×2 holds, XY,Π
T solely depends on log-

normal random variables. As a consequence, the expression for XY,Π
T allows

for more explicit specifications of both x 7→ FX/Y (x) and x 7→ fX/Y (x).
These specifications are presented in (4.4.6) and (4.4.7), respectively. Indeed,
neither of the two aforementioned identities depends on Fourier transforms or
analytically burdensome systems of ODE’s. Compared to the definition of FX/Y ,
the characterisation of fX/Y is specifically tractable, due to the involvement of
x 7→ ϕ (x) rather than x 7→ Φ (x). Namely, whereas the latter function concerns
an integral expression19, the former is completely available in closed-form.
Considering the fact that fX/Y can be regarded as the continuous variant of a
histogram, it directly tells something about the frequency with which XT /ΠT

comes near YT . In the context of our DC scheme, the analytical nature of
fX/Y is therefore highly advantageous. Notwithstanding, we must emphasise
that fX/Y does not coincide with the formal PDF of XY,Π

T , cf. Remark 4.4.1.
In spite of technicality, the addressed relation between XY,Π

T ’s distributional
features and x 7→ fX/Y (x) in (4.4.7) stands.

Remark 4.4.1. The Borel probability measure corresponding to the CDF of
XY,Π
T admits atoms. That is, positive mass is assigned to the singleton {XY,Π

T =
0}. In particular, we have: FX/Y (0) −FX/Y (0−) = FX/Y (0), which is strictly
positive. As a consequence, FX/Y is not absolutely continuous and there does
not exist a corresponding probability density function (PDF).20 Nevertheless,
although x 7→ fX/Y (x) in both (4.4.5) and (4.4.7) is no formal PDF, as part
of XY,Π

T ’s mixed density function, it does enable us to (numerically) examine
the shape of XY,Π

T ’s distribution on the practically relevant domain, (0, 1). To

19In exact terms, Φ (x) = 1
2

[
1 + erf

(
1√
2
x
)]

, with erf (x) = 2√
π

∫ x

0 e−t2 dt, for all x ∈ R.
20Suppose that µ : B (R) → R+ represents a Borel measure, such that FX/Y (x) =

µ ((−∞, x]) holds for all x ∈ R. Clearly, µ identifies the probability measure asso-
ciated with FX/Y . Then, following the Lebesgue Decomposition Theorem: µ (A) =∫

A fX/Y (t) dt + FX/Y (0)1{0∈A}, where we extend fX/Y ’s definition to ensure that
fX/Y (x) = 0 holds for all x ∈ (−∞, 0] ∪ [1,∞). Using this expression, it is tempting to
argue that the PDF reads: fX/Y (x) + FX/Y (0) δ (x), in which x 7→ δ (x) outlines the
Dirac delta function. Note that we discard the absolute non-continuity of x 7→ δ (x) here.
However, FX/Y (0) − FX/Y

(
0−
)

= FX/Y (0) > 0, which contradicts the fact that the
PDF should coincide with the derivative of FX/Y . Hence, the former expression for the
PDF is invalid. Aside from this technical invalidity, at x = 0 it results in ∞, rendering
the expression meaningless for practical purposes.
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get an idea of what happens at the extreme value, x = 0, we can in turn apply
numerical machinery to approximate limx↓0 fX/Y (x). Furthermore, the exact
probability for this extreme event, {XY,Π = 0}, can be directly obtained from
(4.4.4) and (4.4.6) as follows: P(XY,Π = 0) = FX/Y (0). By virtue of these
reasons, we provide the analytical expressions in (4.4.5) and (4.4.7) for the
densities of XY,Π

T on the subdomain (0, 1).

4.4.3 Analysis of Retirement Wealth

We continue with a numerical evaluation of XY,Π
T ’s distributional features

presented in Proposition 4.4.1 and Corollary 4.4.2. For this reason, we employ
the parameter estimates reported in Table 4.1. The values for these estimates are
based on calibrations to recent data. For details on this calibration procedure,
we refer to Pelsser (2019). As we wish to emphasise the salient dependence of
the optimal solutions on Λt, we vary the parameter estimates over Λ0 and Λ1.
To this end, we introduce two additional sets of parameter estimates defined by
the following values for Λ0 and Λ1: (i) Λ0(i) = 0.1 and Λ1(i,j) = 0.075, and (ii)
Λ0(i) = 0.1 and Λ1 = 04×2, for all i = 1, . . . , 4 and j = 1, 2. These values are
comparable to the estimates for the market prices of risk provided in table 1 of
Brennan and Xia (2002). Note that we modify the value for ηS in conformity
with the adjustments in Λ0 and Λ1. We label the baseline input in Table 4.1
as “P 0”; the aforementioned two inputs as “P 1” and “P 2”, respectively.

Although all relevant details are given in the table, we note that the subsequent
results correspond to an accumulation phase of T = 40 years. We assume that
the related decumulation phase lasts for τA = 20 years. The agent endows the
pension fund at t = 0 with X0 = 10 monetary units, faces a funding ratio of
F0 = 80%, and has a risk profile characterised by p = 2. We solely consider the
p = 2 case. Our primary findings on the subject of robustness do not change
for higher values of p. Observe that p = 2 comes close to the situation for
the celebrated expected shortfall criterion (p = 1). In Figures 4.1 and 4.2, we
present the CDF of XY,Π

T and the density function of XY,Π
T , respectively. In

Figure 4.3, we display the success probability of XY,Π
T for different values of Λ0

and Λ1. The success probability is defined as the likelihood that XY,Π
T exceeds
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Parameter Value Parameter Value Parameter Value Parameter Value

S1,t Λt Πt, Zt rt, πt

ηS 0.0451 Λ0(1) 0.6420 σΠ(1) −0.0010 δ0,r 0.0097

σS(1) −0.0483 Λ0(2) −0.0240 σΠ(2) 0.0013 δ1,r(1) −0.0094

σS(2) 0.0078 Λ1(1,1) 0.1710 σΠ(3) 0.0055 δ1,r(2) −0.0024

σS(3) 0.0010 Λ1(1,2) 0.3980 KZ(1,1) 0.0479 δ0,π 0.0158

σS(4) 0.1335 Λ1(2,1) −0.5140 KZ(2,1) 1.2085 δ1,π(1) −0.0028

Λ1(2,2) −1.1470 KZ(2,2) 0.5440 δ1,π(2) −0.0014

Table 4.1. Baseline parameter input. This table contains the baseline parameter input
on which we rely to compute the numerical results in section 4.4. The displayed values
are derived from the second column of Table 1 in Pelsser (2019). Note that the estimates
documented in the latter paper are based on calibrations to recent data. In fact, these
estimates are employed by the Dutch Central Bank (DNB). As in both Koijen et al. (2009)
and Pelsser (2019), we define Λ0(3) = Λ1(3,1) = Λ1(3,2) = σΠ(4) = 0. In addition to this,
we set the trading horizon (retirement date) equal to 40, i.e. T = 40. Moreover, we assume
that the agent lives 20 fixed years after his/her retirement, i.e. τA = 20. The funding or
coverage ratio is held fixed at 100%, i.e. F0 = 1, unless stated differently. The times to
maturity of the three bonds are: τ1 = 5, τ2 = 20 and τ = 20. Last, we set the agent’s initial
endowment equal to: X0 = 10. Observe that C in the definition of the benchmark process,
YT , cf. section 4.4.1, follows from the parameter input. That is, C = X0

F0
e−ᾱ−Ã(0), where ᾱ

is shown in (4.4.3), and t 7→ Ã (t) is given in (B.1.13).

95%. Given that we depart from a funding ratio of 80%, this definition of
“success” seems acceptable.

4.4.3.1 Technical Discussion: Figures 4.1 and 4.2

We proceed with a technical discussion of Figures 4.1 and 4.2. From both figures,
one can infer that XY,Π

T is equal to approximately 100% with a probability that
approaches 1. This result implies that retirement wealth is in almost all states
of the world able to completely cover the agent’s life annuity. Considering that
F0 = 80%, this outcome seems highly unrealistic. Nevertheless, we should take
into account that: (i) the market prices of risk (Λt) are fairly large, and (ii) the
diffusion coefficient of YT (βt) is small compared to Λt. The market prices of
risk, Λt, play a dominant role in the specifications of both x 7→ FX/Y (x) and
x 7→ fX/Y (x). This is particularly visible in the definition of H−1 (X0). The
identity for Xopt

t in (4.3.3) depends on exponentially compounded quadratic
versions of Λ0 and Λ1. If |Λ0|, |Λ1| and/or T grow, this will (exponentially)
increase the value of the second term in (4.3.3). Note that H−1 (X0) solves
Xopt

0 = X0. Consequently, large values for |Λ0|, |Λ1| and/or T will considerably
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Figure 4.1. CDF of replacement ratio. This figure depicts the CDF of the replacement
ratio (XY,Π

T ) for three different inputs of parameter estimates. The black line corresponds
to the P 0 input; the dashed line to the P 1 input; and the dash-dotted line to the P 2 input.
For the baseline input of estimates (P 0), we refer to Table 4.1. The remaining inputs are
equal to P 0’s, where (i) Λ0(i) = 0.1 and Λ1(i,j) = 0.075 (P 1), and (ii) Λ0(i) = 0.1 and
Λ1 = 04×2 (P 2), for all i = 1, . . . , 4 and j = 1, 2. The horizontal axis represents the value of
the replacement ratio. The vertical axis represents the value of the probability rendered by
the relevant CDF. For this graph, we relied on XY,Π

T ’s CDF provided in Proposition 4.4.1.
Moreover, we fixed p = 2 and F0 = 80%. Although we solely plot the three trajectories on
the practically relevant subdomain [0.7, 1), we note that the behaviour of the CDFs on the
remaining domains follows from what is presented here. In fact, for XY,Π

T ≥ 1, the value of
the CDF is equal to 1; for XY,Π

T < 0.7, all three trajectories tend towards 0 and stay there
once XY,Π

T has passed 0.

drive down the magnitude of H−1 (X0). From (4.4.4) and (4.4.6), we know that
declines in H−1 (X0) result in smaller values for the CDF. Hence, increases in
|Λ0| and/or |Λ1| negatively influence the CDF and, by extension, the density
function. Note that the opposite holds for increases in βt. As the substantial
impact of Λt on both FX/Y and fX/Y is not offset by an equal impact of βt,
we find the shapes in Figures 4.1 and 4.2.21 In section 4.4.3.3, we comment on

21To get an idea of the magnitudes, consider (4.4.6) and let Λ1 = 04×2 in P 0.

Then, H−1 (X0) = 2.8668 × 10−06. Moreover, E
[

logMR
− 1

p−1
T YT

]
= 18.9333 and
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Figure 4.2. Density function of replacement ratio. This figure depicts the density
function of the replacement ratio (XY,Π

T ) for three different inputs of parameter estimates.
Similar to Figure 4.1, the black line corresponds to the P 0 input; the dashed line to the
P 1 input; and the dash-dotted line to the P 2 input. For the definitions of P 0, P 1 and P 2,
we refer the reader to the main text of section 4.4.3 and the description of Figure 4.1. The
horizontal axis represents the value of the replacement ratio. The vertical axis represents the
value of the density function. For this graph, we relied on XY,Π

T ’s density function provided in
Proposition 4.4.1. Moreover, we fixed p = 2 and F0 = 80%. Although we solely plot the three
trajectories on the practically relevant subdomain [0.7, 1), we note that the corresponding
behaviour on (0, 0.7) follows from what is presented here. In fact, for XY,Π

T < 0.7, all three
trajectories tend towards 0. Observe that the density function is only defined on the open
unit interval (0, 1). Values for x outside of (0, 1) are consequently irrelevant.

the implications of this finding.

These claims are verified by the trajectories for the P 1 and P 2 cases in Figures
4.1 and 4.2. Due to the smaller values for |Λ0| and |Λ1| in P 1, the CDF of
XY,Π
T is indeed driven away from zero. The density function correspondingly

lives by a more natural shape. The latter still displays that XY,Π
T is likely

to achieve values in a region near 95%. This is partially attributable to the
comparatively small values for βt. However, the agent now also faces notable

Var
[

logMR
− 1

p−1
T YT

]
= 27.1862. For all x ∈ [0, 1), this will clearly steer FX/Y (x)

towards values near 0.
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Figure 4.3. Success probability for replacement ratio. This figure depicts the success
probability for the replacement ratio (XY,Π

T ) varied with respect to Λ0 and Λ1. The success
probability is defined as the likelihood that XY,Π

T exceeds 95%: P
(
XY,Π

T ≥ 0.95
)

. Moreover,
the elements in Λ0 and Λ1 are assumed to be identical: Λ0 = Λ0(i) and Λ1 = Λ0(i,j), for
all i = 1, . . . 4 and j = 1, 2. The output corresponds to the baseline collection of parameter
estimates (P 0) reported in Table 4.1. The vertical axis represents the success probability.
The axes labelled Λ0 and Λ1 represent the values for Λ0 and Λ1, respectively. For this
graph, we relied on XY,Π

T ’s CDF provided in Proposition 4.4.1. In addition to this, we fixed
p = 2 and F0 = 80%. Similar to Figures 4.1 and 4.2, we solely plot the three-dimensional
trajectories on two distinct subdomains for Λ0 and Λ1: [0, 0.2] and [0, 0.075], respectively.
The graph’s dynamics on the remainder of R2 namely follow from what is presented here.
In fact, for larger values of Λ0 and Λ1, the success probability converges to 1; for negative
values, the graph behaves as displayed.

positive odds of obtaining XY,Π
T below the level of his/her starting position

(F0 = 80%). For the P 2 case, the graphical results appear even more plausible.
The density function indicates that XY,Π

T is likely to achieve values in a much
wider region around 95%. Additionally, the agent faces significantly higher
odds of obtaining XY,Π

T below 80%. For a funding ratio of 80%, such outcomes
seem reasonable. In our discussion preceding this analysis of P 1 and P 2, we
did not distinguish between the impact of Λ0 and Λ1 on FX/Y and fX/Y . The
technical reason for this indifference is that |Λ0| and |Λ1| play similar roles in
the characterisation of H−1 (X0), cf. Proposition 4.3.2. As shown in the two
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plots for P 1 and P 2, the impact is indeed comparable in terms of its sign.

4.4.3.2 Technical Discussion: Figure 4.3

Figure 4.3 confirms the previous claim. For a fixed value of Λ0, the success
probability positively depends on Λ1. The same holds with respect to Λ0, for a
fixed value of Λ1. Note here that the elements in Λ0 and Λ1 are assumed to
be identical: Λ0 = Λ0(i) and Λ1 = Λ0(i,j), for all i = 1, . . . 4 and j = 1, 2 (with
a slight abuse of notation). Despite the former similarities, the impact of Λ1

on the success probability is greater than the impact of Λ0. This difference
can be explained by the fact that Λt depends on Λ1 through Zt. The variance
of Zt grows in time. Therefore, upon retirement, small non-zero values for Λ1

are capable of inflating the market prices of risk. We stress that Λ1Zt can be
regarded as a time-dependent analogue of Λ0. As a result, small values for
Λ1 have an impact on the success probability that resembles the impact of
comparatively large values for Λ0. We underline that Figure 4.3 substantiates
our claims regarding the outcomes’ sensitivity to Λ0 and Λ1. In fact, for values
of these parameters in rather small subdomains, the success probability varies
between 0 and 1. In spite of this sensitivity, we observe that the replacement
ratio is potentially very likely to exceed a level of 95%. Given that Λ0 > 0.125
and/or Λ1 > 0.050 hold true, the success probability tends towards 100%.

4.4.3.3 Economic Takeaways

The set of economic takeaways corresponding to the output in Figures 4.1, 4.2
and 4.3 is twofold. First, we find that LPM-based investment strategies can
increase the likelihood of achieving one’s pension goals. This finding is robust
to some uncertainty around Λ0 and Λ1. Second, the displayed outcomes are
highly dependent on the estimates for Λ0 and Λ1. This result supports the use
of approaches that account for model/parameter uncertainty. We elaborate on
these takeaways in the following two summaries:

Takeaway 1. The first takeaway is a straightforward conse-
quence of a.o. the displayed trajectories for FX/Y and fX/Y . Based on the
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plots for fX/Y , we can conclude that real retirement wealth is very likely to
achieve values in the neighborhood of the life annuity. These high odds are
coupled to fairly low odds of the replacement ratio falling below the agent’s
funding ratio. Note that the pension fund departs from a funding ratio of
80%. In terms of hedging, this means that the fund is able to arrive at a
replacement ratio of likewise 80% with a probability of 1. Without sacrificing
too much of this certainty, the LPM-framework is able to significantly improve
this recovery potential of 80%. Note that these qualitative results hold true
for different values of Λ0 and Λ1, despite their relatively large impact on
the shapes of FX/Y and fX/Y . Figure 4.3 indeed demonstrates that the
replacement ratio exceeds a level of 95% with a probability near 1, provided
that Λ0 > 0.125 and/or Λ1 > 0.050 hold true The conclusions that we
draw here are consequently quite robust to some uncertainty around Λ0 and Λ1.

Takeaway 2. The second takeaway also follows from the graphs
for FX/Y and fX/Y . Nevertheless, the sensitivity of the outcomes to the
estimates for Λ0 and Λ1 is most distinct in Figure 4.3. The pronounced impact
of Λt on these graphs highlights the strong dependence of the optimality
conditions on the market prices of risk. As pointed out in section 4.4.3.1,
particular values for Λ0 and Λ1 may even lead to nonsensical outcomes. This
dependence has an important implication for the way in which one ordinarily
treats parameter estimates. Small estimation errors can namely generate
meaningless outcomes and/or imply enormous policy changes.22 In order to
avoid such adverse events, it is wise to be careful concerning the parameter
estimates and account for parameter/model uncertainty. The latter refers
to doubts that one may have about the veracity of particular parameter
estimates or model specifications. An agent can account for this by cautiously
preparing him- or herself for a worst-case scenario. Accordingly, one becomes
less sensitive to estimation-related errors, i.e. robust. This robustness naturally
returns in the optima and the corresponding policy rules. For applications of
parameter/model uncertainty in similar investment-based frameworks, we refer
to Balter (2016) and references therein.

22It is noteworthy that the standard errors corresponding to the Λt-related estimates reported
in Pelsser (2019) are fairly large compared to those for the other estimates.
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4.4.4 Analysis of Portfolio Rules

In this section, we present a numerical analysis of the optimal portfolio rules
provided in Proposition 4.3.4 and Corollary 4.3.5. We mainly aim to inspect
the implications of the LPM-mechanism for the optimal trading behaviour.
For this analysis, we make use of the parameter estimates defined by P 2. This
collection of estimates is spelled out in section 4.4.3 and the description of
Figure 4.1. Due to the nature of the analysis, it is not necessary to employ
the P 0 and P 1 collections. Note that all subsequent results correspond to a
situation wherein T = 40, τA = 20, X0 = 10, F0 = 80% and p = 2. The
pension-related interpretation of this initialisation is given at the beginning
of section 4.4.3. Observe that the asset mix consists of a stock, two τi-year
nominal bonds and a τ -year inflation-linked bond. Henceforth, we assume that
τ1 = 5, τ2 = 20 and τ = 20.

The optimal portfolio rules can be expressed in terms of observable quantities.
To this end, consider e.g. (4.3.13) and note that the right-hand side depends
on the following processes: Mt, Πt, Zt, Yt and Xt. The values for Yt, Πt and
Xt are directly observed. The value for Mt uniquely depends on the ones for
Zt, Yt, Πt and Xt, cf. (4.3.8). Moreover, Zt can be expressed in terms of rt
and πt, both of which are observed. Hence, given the values of rt, πt, Yt, Πt

and Xt, the agent knows precisely how he/she should optimally invest in the
four risky assets. This is an outstanding advantage entirely attributable to the
closed-form nature of the optimality conditions.

To emphasise this advantage and to examine the implications of the LPM-
mechanism for the optimal exposures, we present Figures 4.4 and 4.5. These
figures depict the optimal allocation of assets (πopt

t ) varied with respect to
time (t ∈ [0, T ]). In Figure 4.4, the risk-neutral value of the replacement
ratio progressively grows to a level of 100% at retirement. Figure 4.5 displays
the same, but for a risk-neutral value of the replacement ratio that progres-
sively declines to a level of 60% at retirement. The risk-neutral value of the
replacement ratio lives by: Ft = Xt

E[YT ΠTMT /Mt | Ft] , for all t ∈ [0, T ]. For
Figures 4.4 and 4.5, we fix: rt = δ0,r, πt = δ0,π, Yt = Y0e

δ0,rt, Πt = eδ0,πt

and Xt = X0e
(δ0,r+δ0,π+ 1

T logFT ×Y0/X0)t, for all t ∈ [0, T ]. It is clear that Πt is
initialised at its approximate expected value. We predicate the specification
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of Yt on the assumption that it moves together with the cash account. The
definition of Xt therefore ensures that XY,Π

T = FT holds. Figures 4.4 and 4.5
accordingly set FT = 100% and FT = 60%, respectively. Note that we hold rt

and πt fixed at their expected values.

4.4.4.1 Technical Discussion: Figure 4.4

We continue with a technical discussion of Figure 4.4. The depicted allocations
correspond to a participant who enters the pension scheme with a funding
ratio of 80%. Over the course of the accumulation phase, his/her wealth moves
closer to the reference level. Upon retirement, the replacement ratio is equal to
100%. For this situation, the optimal portfolio exhibits a clear life-cycle pattern.
That is, the percentages of wealth allocated to the risky assets decrease as
the individual ages. This trading behaviour can be attributed to the LPM-
mechanism. From section 4.4.2, we recall that an LPM-agent’s level of risk
aversion positively depends on the risk-neutral value of the replacement ratio
(Ft). Due to the inverse relation between levels of risk aversion and optimal
portfolios, progressive growth of Ft generates life-cycle strategies as shown in
the graph. We emphasise that the LPM-agent is willing to bear significant risk
as long as the target is not achieved. For instance, at t = 0 when F0 = 80%,
the fund is required to invest nearly 15 times their accumulated wealth in the
5-year nominal bond. This extreme behaviour comes close to the “gamble for
resurrection” phenomenon. The opposite can be observed when the target
is more or less reached. Indeed, for Ft close to 100% (at t = T ), the fund
“de-risks” their portfolio so as to “lock in” wealth at the current level.

4.4.4.2 Technical Discussion: Figure 4.5

Let us now turn to Figure 4.5. As in the previous case, the participant enters the
pension scheme with a funding ratio of 80%. However, during the accumulation
phase, his/her wealth gradually moves away from the reference level. Upon
retirement, the replacement ratio now equals 60%. Consequently, in contrast to
Figure 4.4, the risk-neutral value of the replacement ratio decreases over time.
This leads to optimal allocations that behave as reversed life-cycle strategies.
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Figure 4.4. Optimal portfolio for progressively improving replacement ratio.
This figure depicts the optimal allocation of assets varied with respect to time (t ∈ [0, T ]).
The risk-neutral value of the replacement ratio progressively grows to a level of 100% at
retirement (T = 40). The black line corresponds to the demand for the stock (St); the
dashed line to the demand for the 5-year nominal bond (Pt,t+τ1 ); the dash-dotted line to the
demand for the 20-year nominal bond (Pt,t+τ2 ); and the dotted line to the demand for the
20-year inflation-linked bond (PR

t,t+τ ). The output is based on the set of parameter estimates
labelled as P 2, cf. section 4.4.3. The horizontal axis represents the time-dimension. The
vertical axis represents the proportion of wealth. For this graph, we relied on the analytical
expression for πopt

t in (4.3.13). Moreover, we set p = 2 and F0 = 80%. Throughout the
time-dimension, we hold the observable quantities fixed as follows: rt = δ0,r, πt = δ0,π,
Yt = Y0eδ0,rt, Πt = eδ0,πt and Xt = X0e

(δ0,r+δ0,π+ 1
T

log Y0/X0)t, for all t ∈ [0, T ]. As the
demands are calculated on a yearly basis, we used cubic-spline interpolation to compute and
accordingly smoothen the demands over the entirety of [0, T ].

Strategies of this form are in stark contrast with conventional wisdom, cf. Cocco
et al. (2005). Nevertheless, using the same arguments as before, one is able
to explain the progressively increasing exposure to risk. As a result of the
declining value of Ft, the agent namely becomes increasingly less risk averse.
This directly leads to trading patterns involving more risk as time passes.
In fact, near t = T when Ft approaches 60%, the agent is so worried about
achieving the target that the pension fund is required to invest almost 40 times
their wealth in the 5-year nominal bond. Note that the overall exposure to risk
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Figure 4.5. Optimal portfolio for progressively worsening replacement ratio.
This figure depicts the optimal allocation of assets varied with respect to time (t ∈ [0, T ]).
The risk-neutral value of the replacement ratio progressively declines to a level of 60% at
retirement (T = 40). In line with Figure 4.4, the black line corresponds to the demand for
the stock (St); the dashed line to the demand for the 5-year nominal bond (Pt,t+τ1 ); the
dash-dotted line to the demand for the 20-year nominal bond (Pt,t+τ2 ); and the dotted line
to the demand for the 20-year inflation-linked bond (PR

t,t+τ ). Note that these line patterns
coincide with those shown in Figure 4.4. The displayed trajectories are predicated on the
set of parameter estimates labelled as P 2, cf. section 4.4.3. The horizontal axis represents
the time-dimension. The vertical axis represents the proportion of wealth. As this graph
presents the same as Figure 4.4 but for Xt = X0e

(δ0,r+δ0,π+ 1
T

log 0.6×Y0/X0)t, we refer to
the description of Figure 4.4 for further details on (i) LPM-specific parameters, (ii) the
observable quantities and (iii) the interpolation technique.

was already relatively large at t = 0. This behaviour confirms that the LPM
operator accommodates features specific to loss aversion setups. Although
these strategies are highly impractical, we point out that they are potentially
capable of rendering great outcomes for XY,Π

T , cf. section 4.4.3.

4.4.4.3 Economic Takeaways

As in section 4.4.3.3, the set of economic takeaways corresponding to Figures
4.4 and 4.5 is twofold. First, we find that LPM-based investment strategies
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strongly depend on the risk neutral value of the replacement ratio. This
dependency highlights the core mechanism of the LPM operator. Second, we
show that the optimal portfolio rules can be difficult to implement in practice.
For this purpose, it is advisable to account for trading/solvency constraints.
We expand on these takeaways in the following two summaries:

Takeaway 1. In section 4.4.2, we addressed the dependence of
the agent’s attitude towards risk on the difference between the reference level
and accumulated wealth. This dependence gives rise to a positive relation
between risk aversion and the risk-neutral value of the replacement ratio (Ft).
The latter relation constitutes the central feature of the LPM mechanism. As
a consequence of this relation, the optimal LPM-based investment policies
negatively depend on Ft. In particular, for values of Ft near 100%, the
LPM-agent implements a notably prudent investment strategy. In this way,
he/she aims to “lock in” wealth at the desired reference level. On the contrary,
if Ft decreases in value, the LPM-agent allocates strikingly larger proportions
of wealth to the risky assets. Thereby, he/she tries to improve the likelihood of
ultimately achieving the target. This phenomenon approaches the “gamble for
resurrection” behaviour. Although the agent does not become risk-loving for
Ft < 1, Figures 4.4 and 4.5 show indeed that he/she is considerably more
willing to bear risk. The graphs accordingly support the study by Jarrow and
Zhao (2006). In this paper, the authors demonstrate that the LPM operator
can be nested under the aegis of prospect theory.

Takeaway 2. The second takeaway ties in with the previous
one. In line with the LPM mechanism, declines in Ft namely force the agent
to increase his/her exposure to risk. Particular values of Ft may even result in
unrealistically leveraged and/or large positions in the financial instruments.
This is saliently visible in Figure 4.5. For values of Ft between 60% and
80%, the agent may be required to invest nearly 40 times his/her wealth in
the 5-year nominal bond. In reality, pension funds must deal with solvency
requirements. These requirements involve specific restrictions concerning
a.o. borrowing and short-selling. The LPM-based investment policies are
correspondingly difficult to adopt by most pension funds. Due to the very
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extreme nature of the optimal allocations, this extends to a broader set of
agents. Therefore, in order to arrive at more practical portfolio rules, it is
recommendable to account for trading/solvency constraints. We refer to
Cvitanić and Karatzas (1992) and Basak and Shapiro (2001) for analyses
involving such constraints. By the same token, it can be advantageous to take
parameter/model uncertainty into account, cf. section 4.4.3.3. The worst-case
preparation naturally leads to more conservative investment policies.

4.5 Conclusion

This chapter has studied an optimal terminal wealth problem, in which the
agent aims to minimise an LPM criterion. This criterion incorporates a log-
normal exogenous reference level. We have placed the problem in the complex
market model proposed by Koijen et al. (2009). In this continuous-time
framework, the market prices of risk depend on a mean-reverting state variable.
As a result, it is highly nontrivial to derive closed-form solutions to the LPM
problem. Nevertheless, using Fourier machinery, we have been able to deduce
analytical expressions for the optimal portfolio rules and the optimal wealth
process. Moreover, we have managed to disentangle a closed-form specification
for the distributional features of optimal terminal wealth. In the numerical
illustrations, we have cast the LPM problem into the context of a DC pension
scheme. The ensuing results have demonstrated that LPM-based investment
policies can improve a pension fund’s recovery potential. In spite of their
possibly outstanding performance, we have exemplified that these policies may
be difficult to implement in reality. Furthermore, we have shown that these
outcomes strongly depend on the estimates for the market prices of risk.

Appendix A Proof of Theorem 4.3.1

The dynamic problem in (4.2.17) is equivalent to:

sup
XT ∈L0

+(Ω) s.t. E[XTMT ]≤X0

E

[
−1
p

[(
YT − XT

ΠT

)+
]p]

. (A.1)
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The Lagrangian for (A.1), L : L0
+ (Ω) ×R+ → R, is given by:

L (XT , η) = E [U (XT , YT ) − ηXTMT ] + ηX0

= E

[
−1
p

[(
YT − XT

ΠT

)+
]p

− ηXTMT

]
+ ηX0,

(A.2)

where η ∈ R+ represents the Lagrange multiplier. Appropriate optimisation of
this Lagrangian results in:

Xopt
T = I

(
H−1 (X0)MTΠT , YT

)
ΠT . (A.3)

Due to the fact that E
[
I
(
H−1 (X0)MTΠT , YT

)
ΠTMT

]
= X0 holds,{

Xopt
t Mt

}
t∈[0,T ] spells out a P-martingale process with respect to {Ft}t∈[0,T ].

This results in the identity for Xopt
t in (4.3.1).

Moreover, by the martingale representation theorem:
Xopt
t Mt = X0 +

∫ T
0 ψ⊤

s dWs, for all t ∈ [0, T ] and some
L2 ([0, T ])-valued process {ψt}t∈[0,T ]. Then, (4.3.2) follows from:

Xopt
t Mt = X0 +

∫ t

0

(
πopt⊤

s σ − Λ⊤
s X

opt
s

)
MsdWs

= X0 +
∫ T

0
ψ⊤
s dWs, ∀ t ∈ [0, T ] .

(A.4)

Appendix B Proofs I

B.1 Proof of Proposition 4.3.2

Define the following two processes for all t ∈ [0, T ]:

dX1

dP

∣∣∣∣
Ft

=
E
[
YTM

R
T

∣∣ Ft
]

E
[
YTMR

T

] = e
− 1

2

∫ t

0
λ⊤

1,sλ1,sds+
∫ t

0
λ⊤

1,sdWs ,

dX2

dP

∣∣∣∣
Ft

=
E
[(
MR
T

) p
p−1

∣∣∣ Ft
]

E
[(
MR
T

) p
p−1
] = e

− 1
2

∫ t

0
λ⊤

2,sλ2,sds+
∫ t

0
λ⊤

2,sdWs .

(B.1.1)
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Both dX1
dP |Ft

and dX2
dP |Ft

qualify as valid Radon-Nikodym23 derivatives:

dXi

dP

∣∣∣∣
Ft

= E

[
dXj

dP

∣∣∣∣
Fs

∣∣∣∣∣ Ft

]
> 0, ∀s ≥ t, i = 1, 2. (B.1.2)

Note that Xi ∼ P, for i = 1, 2. Here, the two processes {λ1,t}t∈[0,T ] and
{λ2,t}t∈[0,T ] are to be determined. Under Xi, the following two processes are
standard Brownian motions, for i = 1, 2 and all t ∈ [0, T ]:

WXi
t = Wt −

∫ t

0
λi,sds. (B.1.3)

Using the changes of measure implied by the Radon-Nikodym derivatives in
(B.1.1), we are able to rewrite the conditional expectation in (4.3.1) as:

Xopt
t = 1

Mt
E
[
YTM

R
T 1{AT }

∣∣ Ft
]

− 1
Mt
E

[(
H−1 (X0)

1
p MR

T

) p
p−1

1{AT }

∣∣∣∣ Ft
]

= YtΠtE

[
YTM

R
T

YtMR
t

∣∣∣∣ Ft
]
X1 (AT | Ft)

−
(
H−1 (X0)MR

t

) 1
p−1 ΠtE

[(
MR
T

MR
t

) p
p−1

∣∣∣∣∣ Ft

]
X2 (AT | Ft) .

(B.1.4)

In the last line, we use for i = 1, 2 that:

Xi (· | Ft) = E

dXi

dP

∣∣∣∣∣
FT

dXi

dP

∣∣∣∣∣
−1

Ft

1{·}

∣∣∣∣∣∣ Ft

 . (B.1.5)

We start by evaluating the expectations in (B.1.4). Relying on the results in
Duffie and Kan (1996), we note that the following holds for all t ∈ [0, T ]:

P1 (t, Zt) = E

[
YTM

R
T

YtMR
t

∣∣∣∣ Ft
]

= EQ1

[
exp

{
−
∫ T

t

F (s, Zs) ds
} ∣∣∣∣∣ Zt

]
,

(B.1.6)
23See e.g. Karatzas and Shreve (1998, 2012).
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and

P2 (t, Zt) = E

[(
MR
T

MR
t

) p
p−1

∣∣∣∣∣ Ft

]
= EQ2

[
exp

{
−
∫ T

t

G (s, Zs) ds
} ∣∣∣∣∣ Zt

]
.

(B.1.7)
Here, the measures Q1 and Q2 are induced by:

dQi
dP

∣∣∣∣
Ft

= e
− 1

2

∫ t

0
λ̂⊤

i,sλ̂i,sds+
∫ t

0
λ̂⊤

i,sdWs , (B.1.8)

for i = 1, 2, where λ̂1,t = −ΛRt + βt and λ̂2,t = − p
p−1 ΛRt , for all t ∈ [0, T ]. Note

that Rt = rt + πt − σ⊤
Π Λt and ΛRt = Λt − σΠ, for all t ∈ [0, T ]. Furthermore,

F : [0, T ] ×R → R and G : [0, T ] ×R → R, read:

F (t, Zt) = Rt − αt + ΛR
⊤

t βt = at + b⊤
t Zt,

G (t, Zt) = p

p− 1Rt − 1
2

p

(p− 1)2 ΛR
⊤

t ΛRt

= ã+ b̃⊤Zt + Z⊤
t c̃Zt,

(B.1.9)

where at = δ̂0,r − αt + β⊤
t (Λ0 − σΠ), and bt = δ̂1,r + Λ⊤

1 βt; as well as ã =
p
p−1 δ̂0,r − 1

2
p

(p−1)2 (Λ0 − σΠ)⊤ (Λ0 − σΠ), b̃ = p
p−1 δ̂1,r − p

(p−1)2 Λ⊤
1 (Λ0 − σΠ),

and c̃ = − 1
2

p
(p−1)2 Λ⊤

1 Λ1. Hence, the function F is affine in Zt, and the function
G is affine-quadratic in Zt.

Now, let us note that the SDE’s of YtMR
t and YtM

R
p

p−1
t are given by:

dYtMR
t

YtMR
t

= −
(
Rt − αt + β⊤

t ΛRt
)

dt−
(
ΛRt − βt

)⊤ dWt,

dMR
p

p−1
t

MR
p

p−1
t

= −

(
p

p− 1Rt − 1
2

p

(p− 1)2 ΛR
⊤

t ΛRt

)
dt− p

p− 1ΛR
⊤

t dWt.

(B.1.10)

As a result, the following must be true:

P1,t − P⊤
1,ZKZZ + 1

2tr (P1,ZZ) − F (t, Z)P1 − P⊤
1,ZΣZ

(
ΛR − β

)
= 0,

P2,t − P⊤
2,ZKZZ + 1

2tr (P2,ZZ) −G (t, Z)P2 − p

p− 1P
⊤
2,ZΣZΛR = 0.

(B.1.11)

146



Appendix B Proofs I

Observe here that tr (·) spells out the trace operator.

Inspired by Duffie and Kan (1996), Sangvinatsos and Wachter (2005), and
Koijen et al. (2009), we define the subsequent ansatz functions for P1 and P2:

P1 (t, Zt) = exp
{
Ã (t) + B̃ (t)⊤

Zt

}
, and

P2 (t, Zt) = exp
{
Â (t) + B̂ (t)⊤

Zt + Z⊤
t Ĉ (t)Zt

}
.

(B.1.12)

Here, we postulate that Ã : [0, T ] → R, B̃ : [0, T ] → R2, Â : [0, T ] → R,
B̂ : [0, T ] → R2, and Ĉ : [0, T ] → R2×2, are deterministic functions of time,
t ∈ [0, T ], alone. Now, we proceed in the spirit of Dai and Singleton (2002)
and Koijen et al. (2009), and insert the (ansatz) definitions for P1 and P2 into
(B.1.11). Let ct = Λ0 − σΠ − βt. For P1, we then find:

Ã (t) = −
∫ T

t

[
B̃ (s)⊤ ΣZcs − 1

2 B̃ (s)⊤
B̃ (s) + as

]
ds,

B̃ (t) = −
∫ T

t

exp
{

−
[
K⊤
Z + Λ⊤

1 Σ⊤
Z

]
(s− t)

}
bsds.

(B.1.13)

For P2, we derive the subsequent system of ODE’s:

Â′ (t) = p

p− 1 B̂ (t)⊤ ΣZ [Λ0 − σΠ] − 1
2 B̂ (t)⊤

B̂ (t) + ãt,

B̂′ (t) =
(

p

p− 1Λ⊤
1 Σ⊤

Z +K⊤
Z − 2Ĉ (t)⊤

)
B̂ (t) + b̃t,

Ĉ ′ (t) = 2
(
K⊤
Z + p

p− 1Λ⊤
1 Σ⊤

Z

)
Ĉ (t) − 2Ĉ (t)⊤

Ĉ (t) + c̃,

(B.1.14)

where we define ãt = −tr
(
Ĉ (t)

)
+ ã and b̃t = 2 p

p−1 Ĉ (t)⊤ ΣZ [Λ0 − σΠ] + b̃,
for all t ∈ [0, T ]. Note that: Â (T ) = 0, B̂ (T ) = 02, and Ĉ (T ) = 02×2, where
02 = [0, 0]⊤ and 02×2 = [02, 02]⊤. This system of ODE’s involves a matrix
Riccati differential equation, for which no closed-form solution is available.
Likewise, we cannot analytically solve the second ODE in (B.1.14). We are
only able to state that the following holds for all t ∈ [0, T ]:

Â (t) = −
∫ T

t

[
p

p− 1 B̂ (s)⊤ ΣZ [Λ0 − σΠ] − 1
2 B̂ (s)⊤

B̂ (s) + ãs

]
ds. (B.1.15)
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Let us return to (B.1.1) and derive the following SDE’s:

ddX1

dP

∣∣∣∣
Ft

= −
(

ΛR
⊤

t − β⊤
t − B̃ (t)⊤ ΣZ

)
dWt,

ddX2

dP

∣∣∣∣
Ft

= −
(

p

p− 1ΛR
⊤

t −
[
B̂ (t)⊤ + 2Z⊤

t Ĉ (t)⊤
]

ΣZ
)

dWt,

(B.1.16)

where we use that dX1
dP |Ft

= C1P1 (t, Zt)YtMR
t and

dX2
dP |Ft

= C2P2 (t, Zt)MR
p

p−1
t , for C1 = E

[
YTM

R
T

]−1 and
C2 = E[(MR

T )
p

p−1 ]. As a consequence, for all t ∈ [0, T ]

WX1
t = Wt +

∫ t

0

(
ΛRt − βt − Σ⊤

Z B̃ (t)
)

ds,

WX2
t = Wt +

∫ t

0

(
p

p− 1ΛRt − Σ⊤
Z

[
B̂ (t) + 2Ĉ (t)Zt

])
ds,

(B.1.17)

outline the standard Brownian motions under X1 and X2, respectively.

To facilitate the application of the Fourier transform to the two conditional
probabilities of interest, note that: AT = {(MR

T )− 1
p−1YT ≥ H−1 (X0)

1
p−1 }.

Therefore, 1{AT } = f (T,HT ), where we define HT = log [(MR
T )− 1

p−1YT ]. This
implies that: fj (t, h) = Xj (AT | Ft) = EXj [f (T,HT ) | Ht = h], for j = 1, 2
and all t ∈ [0, T ]. Via the Fourier transform, for j = 1, 2 and all t ∈ [0, T ]:

fj (t, h) = EXj [f (T,HT ) | Ht = h]

= 1
2π

∫ ∞

−∞
f∗
κ (T, ω)ϕj,T−t (−ω − iκ, h) dω,

(B.1.18)

where f∗
κ (T, ω) is for some κ > 0 and all ω ∈ R given by the following:

f∗
κ (T, ω) =

∫ ∞

−∞
e(iω−κ)Hf (T,H) dH

=
∫ ∞

−∞
e(iω−κ)H1{

(MR
T )− 1

p−1 YT ≥H−1(X0)
1

p−1

}dH

=
∫ ∞

−∞
e(iω−κ)H1{H≥ 1

p−1 log H−1(X0)}dH = −e(iω−κ) 1
p−1 log H−1(X0)

iω − κ
.

(B.1.19)
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Observe here that we have:

ϕj,T−t (ω, h) =
∫ ∞

−∞
eiωHϕj (H,h) dH

= EXj
[
eiωHT

∣∣ Ht = h
]

= EXj

[(
MR

− 1
p−1

T YT

)iω ∣∣∣∣∣ Ft

]
,

(B.1.20)
for j = 1, 2 and all t ∈ [0, T ]. Note that ϕj (H,h) characterises the conditional
density function (under the Xj measure) corresponding to HT .

To determine ϕj,T−t (ω, h) in (B.1.18), we derive:

dMR
− iω

p−1
t Y iωt

MR
− iω

p−1
t Y iωt

=
(
iωαt + 1

2 iω [iω − 1]β⊤
t βt + iω

p− 1Rt

−1
2

iω

p− 1

[
− iω

p− 1 − 1
]

ΛR
⊤

t ΛRt + (iω)2

p− 1β
⊤
t ΛRt

+iω
[
β⊤
t + 1

p− 1ΛR
⊤

t

]
λj,t

)
dt+ iω

[
β⊤
t + 1

p− 1ΛR
⊤

t

]
dWXj

t ,

(B.1.21)
for j = 1, 2, where we define the processes λ1,t and λ2,t as follows: λ1,t =
−(ΛRt − βt − Σ⊤

Z B̃ (t) ) and λ2,t = −( p
p−1ΛRt − Σ⊤

Z [B̂ (t) + 2Ĉ (t)Zt]) for all
t ∈ [0, T ]. Then, in the sense of Duffie and Kan (1996), we note that the
following holds for all t ∈ [0, T ]:

Qj (t, Zt, ω) = EXj

MR
− iω

p−1
T Y iωT

MR
− iω

p−1
t Y iωt

∣∣∣∣∣∣ Ft


= ECj

[
exp

{
−
∫ T

t

Rj (s, Zs) ds
} ∣∣∣∣∣ Zt

]
.

(B.1.22)

The measures Cj are induced by the following Radon-Nikodym derivatives:
dCj

dXj
|Ft

= e
− 1

2

∫ t

0
λ̄⊤

s λ̄sds+
∫ t

0
λ̄⊤

s dW
Xj
s , where λ̄t = iω[βt + 1

p−1 ΛRt ]. Furthermore,
R1 : [0, T ] ×R → R and R2 : [0, T ] ×R → R read:

−R1 (t, Zt) = a1,t (ω) + b1,t (ω)⊤
Zt + Z⊤

t c1,t (ω)Zt,

−R2 (t, Zt) = a2,t (ω) + b2,t (ω)⊤
Zt + Z⊤

t c2,t (ω)Zt.
(B.1.23)
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The deterministic function aj,t (ω) is given by:

aj,t (ω) = iωαt + 1
2 iω [iω − 1]β⊤

t βt + iω

p− 1 δ̂0,r

− 1
2

iω

p− 1

[
− iω

p− 1 − 1
]

(Λ0 − σΠ)⊤ (Λ0 − σΠ)

+ (iω)2

p− 1β
⊤
t (Λ0 − σΠ) + iω

[
β⊤
t + 1

p− 1 (Λ0 − σΠ)⊤
]
λj,0,t,

(B.1.24)

for j = 1, 2, all t ∈ [0, T ] and ω ∈ R, where we define

λ1,0,t = −
(
(Λ0 − σΠ) − βt − Σ⊤

Z B̃ (t)
)
,

λ2,0,t = −
(

p

p− 1 [Λ0 − σΠ] − Σ⊤
Z B̂ (t)

)
,

(B.1.25)

for all t ∈ [0, T ]. Note that at (ω) ∈ R holds. Similarly, bt (ω) ∈ R2 and ct (ω) ∈
R2×2 hold. Now, define: λ1,1,t = −Λ1 and λ2,1,t = −

(
p
p−1 Λ1 − 2Σ⊤

Z Ĉ (t)
)

, for
all t ∈ [0, T ]. Then, λj,t = λj,0,t + λj,1,tZt for all t ∈ [0, T ]. The definitions of
bj,t (ω) and cj,t (ω) are for j = 1, 2, all t ∈ [0, T ] and ω ∈ R given by:

bj,t (ω) = iω

p− 1 δ̂1,r − iω

p− 1

[
− iω

p− 1 − 1
]

Λ⊤
1 (Λ0 − σΠ) + (iω)2

p− 1Λ⊤
1 βt

+ iωλ⊤
j,1,t

(
βt + 1

p− 1 [Λ0 − σΠ]
)

+ iω
1

p− 1Λ⊤
1 λj,0,t,

cj,t (ω) = −1
2

iω

p− 1

[
− iω

p− 1 − 1
]

Λ⊤
1 Λ1 + iω

1
p− 1Λ⊤

1 λj,1,t.

(B.1.26)

As in (B.1.12), we postulate the following ansatz for Qj (t, Zt, ω):

Qj (t, Zt, ω) = exp
{
Āj (t, ω) + B̄j (t, ω)⊤

Zt + Z⊤
t C̄j (t, ω)Zt

}
. (B.1.27)

Here, Āj : [0, T ] ×R → R, B̄j : [0, T ] ×R → R2, and C̄j : [0, T ] ×R → R2×2,
for j = 1, 2, are deterministic functions. We know that:

Qj,t −Q⊤
j,ZKZZ + 1

2tr (Qj,ZZ)

−Rj (t, Z)Qj + iωQ⊤
j,ZΣZ

[
β + 1

p− 1ΛR
]

= 0.
(B.1.28)
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Then, we derive the following system of ODE’s:

Ā′
j (t) = −iωB̄j (t)⊤ ΣZΛ̄R0,t − 1

2 B̄j (t)⊤
B̄j (t) + āj,t (ω) ,

B̄′
j (t) =

(
− iω

p− 1Λ⊤
1 Σ⊤

Z +K⊤
Z − 2C̄j (t)⊤

)
B̄j (t) + b̄j,t (ω) ,

C̄ ′
j (t) = 2

(
K⊤
Z − iω

p− 1Λ⊤
1 Σ⊤

Z

)
C̄j (t) − 2C̄j (t)⊤

C̄j (t) − cj,t (ω) ,

(B.1.29)

for j = 1, 2, where we define āj,t (ω) = −aj,t (ω) − tr
(
C̄j (t)

)
, b̄j,t (ω) =

−bj,t (ω) − 2iωC̄j (t)⊤ ΣZΛ̄R0,t, and Λ̄R0,t = 1
p−1 [Λ0 − σΠ] + βt, for all t ∈ [0, T ]

and ω ∈ R. Observe that: Āj (T, ω) = 0, B̄j (T, ω) = 02 and C̄j (T, ω) = 02×2,
for j = 1, 2 and all ω ∈ R. As for the system of ODE’s in (B.1.14), B̄j (t) and
C̄j (t) cannot be solved in closed-form. Hence, we are solely able to state that
the following24 holds, for j = 1, 2:

Āj (t) = −
∫ T

t

[
−iωB̄j (s)⊤ ΣZΛ̄R0,s − 1

2 B̄j (s)⊤
B̄j (s) + āj,s (ω)

]
ds.

(B.1.30)

Then, we conclude by observing that, for all t ∈ [0, T ], ω ∈ R, and j = 1, 2:

ϕj,T−t (ω, h) =
∫ ∞

−∞
eiωHϕj (H,h) dH

= EXj

[(
MR

− 1
p−1

T YT

)iω ∣∣∣∣∣ Ft

]
= Qj (t, Zt, ω)

(
MR

− 1
p−1

t Yt

)iω
.

(B.1.31)

B.2 Proof of Corollary 4.3.3

For the Λ1 = 04×2 case, we have that E
[
YTM

R
T

YtMR
t

∣∣∣ Ft
]

= eÃ(t)+B̃(t)⊤Zt , where

Ã (t) = −
∫ T

t

[
B̃ (s)⊤ ΣZcs − 1

2 B̃ (s)⊤
B̃ (s) + as

]
ds,

B̃ (t) = K⊤−1

Z

[
exp

{
−K⊤

Z (T − t)
}

− I2×2
]
δ̂1,r,

(B.2.32)

24Note that the three deterministic functions, Āj , B̄j , and C̄j , in a.o. (B.1.29), depend for
j = 1, 2 on ω ∈ R. We have suppressed this dependency for notational simplicity.
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for all t ∈ [0, T ], in which at = δ̂0,r − αt + β⊤
t (Λ0 − σΠ) and ct = Λ0 − σΠ −

βt. Likewise, we have that the following holds true: E[(M
R
T

MR
t

)
p

p−1 | Ft] =

eÂ(t)+B̂(t)⊤Zt . Suppose that ã = p
p−1 δ̂0,r − 1

2
p

(p−1)2 (Λ0 − σΠ)⊤ (Λ0 − σΠ).
Then,Â (t) and B̂ (t) read for all t ∈ [0, T ] as follows:

Â (t) = −
∫ T

t

[
p

p− 1 B̂ (s)⊤ ΣZΛR0 − 1
2 B̂ (s)⊤

B̂ (s) + ã

]
ds,

B̂ (t) = p

p− 1K
⊤−1

Z

[
exp

{
−K⊤

Z (T − t)
}

− I2×2
]
δ̂1,r.

(B.2.33)

Now, from (B.1.21), let us note that the following holds:

dMR
− 1

p−1
t Yt

MR
− 1

p−1
t Yt

=
(
αt + δ̂0,r

p− 1 + 1
2

p

(p− 1)2 ΛR
⊤

0 ΛR0

+ 1
p− 1β

⊤
t ΛR0 +

[
β⊤
t + 1

p− 1ΛR
⊤

0

]
λj,t

+ 1
p− 1 δ̂

⊤
1,rZt

)
dt+

[
β⊤
t + 1

p− 1ΛR
⊤

0

]
dWXj

t ,

(B.2.34)

where ΛR0 = Λ0 − σΠ, and in which λ1,t = −(ΛR0 − βt − Σ⊤
Z B̃ (t) ) and λ2,t =

−( p
p−1 ΛR0 −Σ⊤

Z B̂ (t) ) for all t ∈ [0, T ]. Suppose that we write the instantaneous
drift term of the preceding SDE in (B.2.34) as follows: νj,t + 1

p−1 δ̂
⊤
1,rZt, where

νj,t is defined for j = 1, 2 and all t ∈ [0, T ] as:

νj,t = αt + δ̂0,r

p− 1 + 1
2

p

(p− 1)2 ΛR
⊤

0 ΛR0 + 1
p− 1β

⊤
t ΛR0 +

[
β⊤
t + 1

p− 1ΛR
⊤

0

]
λj,t,

(B.2.35)

Then, let us derive that the following holds true for all t ∈ [0, T ]:∫ T

t

1
p− 1 δ̂

⊤
1,rZsds =

∫ T

t

∫ s

0

1
p− 1 δ̂

⊤
1,re

−KZ (s−u)ΣZdWuds

= 1
p− 1 δ̂

⊤
1,rK

−1
Z

(
I2×2 − e−KZ [T−t]

)
Zt

+ 1
p− 1 δ̂

⊤
1,r

∫ T

t

K−1
Z

(
I2×2 − e−KZ [T−s]

)
ΣZdWs.

(B.2.36)
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As t 7→ K−1
Z

(
I2×2 − e−KZ [T−t])ΣZ characterises a deterministic function of

time, the latter integral is normally distributed – conditional on Ft. Hence:

log M
R

− 1
p−1

T YT

MR
− 1

p−1
t Yt

=
∫ T

t

(
−1

2

[
βs + 1

p− 1ΛR0
]⊤ [

βs + 1
p− 1ΛR0

]

+νj,s + 1
p− 1 δ̂

⊤
1,rZs

)
ds+

∫ T

t

(
β⊤
s + 1

p− 1ΛR
⊤

0

)
dWXj

s ,

(B.2.37)
holds for all t ∈ [0, T ]. As for the stochastic process in (B.2.36), we note that
t 7→ β⊤

t + ΛR⊤
0
p−1 + δ̂⊤

1,r

p−1K
−1
Z

(
I2×2 − e−KZ [T−t])ΣZ is a deterministic function of

time, to conclude that the process in (B.2.37) is normally distributed conditional
on Ft. This concretely means that the MR

− 1
p−1

T YT /M
R

− 1
p−1

t Yt process is log-
normally distributed, conditional on Ft, for all t ∈ [0, T ]. Let us recall that:

AT =

MR
− 1

p−1
T YT

MR
− 1

p−1
t Yt

≥ H−1 (X0)
1

p−1

MR
− 1

p−1
t Yt

 (B.2.38)

Hence, combining the preceding arguments/results, we can evaluate
X1 (AT | Ft) and X2 (AT | Ft) explicitly. That is:

Xj (AT | Ft) = Φ


− log

(
H−1(X0)

1
p−1

MR
− 1

p−1
t Yt

)
+ EXj

[
log MR

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣ Ft

]
√√√√√VarXj

log M
R

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣∣ Ft




.

(B.2.39)
In this identity, the variance term equates for j = 1, 2 and all t ∈ [0, T ] to:

VarXj

log M
R

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣∣ Ft

 =
∫ T

t

∥∥∥∥β⊤
s + 1

p− 1ΛR
⊤

0

+
δ̂⊤

1,r

p− 1K
−1
Z

(
I2×2 − e−KZ [T−s]

)
ΣZ

∥∥∥∥∥
2

R4

ds.

(B.2.40)
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Here, ∥·∥Rn is the n-dimensional Euclidean norm. Moreover, the expectation
on the right-hand side of (B.2.39) reads for j = 1, 2 and all t ∈ [0, T ] as:

EXj

log M
R

− 1
p−1

T YT

MR
− 1

p−1
t Yt

∣∣∣∣∣∣ Ft

 = 1
p− 1 δ̂

⊤
1,rK

−1
Z

(
I2×2 − e−KZ [T−t]

)
Zt

+
∫ T

t

(
νj,s − 1

2

∥∥∥∥βs + 1
p− 1ΛR0

∥∥∥∥2

R4

)
ds

+
δ̂⊤

1,r

p− 1

∫ T

t

K−1
Z

(
I2×2 − e−KZ [T−s]

)
ΣZλj,sds.

(B.2.41)

B.3 Derivation of (4.3.8)

Let us define f̂ (T,GT , JT ) = MR
p

p−1
T (MR

− 1
p−1

T YT − H−1 (X0)
1

p−1 )1{AT },
where GT = logMR

− 1
p−1

T YT and JT = logMR
p

p−1
T . As in Appendix B.1:

Xopt
t Mt = f̂ (t, g, j) = E

[
f̂ (T,GT , JT )

∣∣∣ Gt = g, Jt = j
]
. Then:

f̂ (t, g, j) = E
[
f̂ (T,GT , JT )

∣∣∣ Gt = g, Jt = j
]

= 1
2π

∫ ∞

−∞
f̂∗
κ (T, ω) ϕ̂T−t (−ω − iκ, g, j) dω,

(B.3.42)

for all t ∈ [0, T ], which is a direct result of the Fourier transform. In the latter
identity, f̂∗

κ (T, ω) is for some κ > 1 and all ω ∈ R given by:

f̂∗
κ (T, ω) =

∫ ∞

−∞
e(iω−κ)Gf̂ (T,G, J) dG

=
∫ ∞

−∞
e(iω−κ)G

(
eG − H−1 (X0)

1
p−1
)
1{G≥ 1

p−1 log H−1(X0)}dG

= −e(iω−κ+1) 1
p−1 log H−1(X0)

iω − κ+ 1 + H−1 (X0)
1

p−1
e(iω−κ) 1

p−1 log H−1(X0)

iω − κ
.

(B.3.43)
Here, we have:

ϕ̂T−t (ω, g, j) = E

[
MR

p−iω
p−1

T Y iωT

∣∣∣∣ Ft
]
, (B.3.44)
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for all t ∈ [0, T ]. Note that ϕ (G, J, g, j) characterises the conditional joint
density corresponding to GT and JT .

As the characterisation of ϕ̂T−t (ω, g, j) is similar to the one of ϕT−t (ω, g, j)
in Appendix B.1, we omit an elaborate derivation. Define the deterministic
function (t, ω) 7→ ât (ω):

ât (ω) = iωαt + 1
2 iω [iω − 1]β⊤

t βt − p− iω

p− 1 δ̂0,r

+ 1
2
p− iω

p− 1

[
p− iω

p− 1 − 1
]

ΛR
⊤

0 ΛR0 − (p− iω) iω
p− 1 β⊤

t ΛR0 .
(B.3.45)

Note that ât (ω) ∈ R. In addition to this, introduce the following two functions,
(t, ω) 7→ b̂t (ω) and (t, ω) 7→ ĉt (ω), with b̂t (ω) ∈ R2 and ĉt (ω) ∈ R2×2:

b̂t (ω) = p− iω

p− 1

(
−δ̂1,r +

[
p− iω

p− 1 − 1
]

Λ⊤
1 ΛR0 − iωΛ⊤

1 βt

)
, (B.3.46)

and
ĉt (ω) = 1

2
p− iω

p− 1

[
p− iω

p− 1 − 1
]

Λ⊤
1 Λ1. (B.3.47)

Then, postulate the next ansatz for Q̂ (t, Zt, ω) = ϕ̂T−t (ω, g, j):

Q̂ (t, Zt, ω) = exp
{
Â
Q̂

(t, ω) + B̂
Q̂

(t, ω)⊤
Zt + Z⊤

t ĈQ̂ (t, ω)Zt
}
, (B.3.48)

for all t ∈ [0, T ] and ω ∈ R. We assume that Â
Q̂

: [0, T ] × R → R, B̂
Q̂

:
[0, T ] × R → R2, and Ĉ

Q̂
: [0, T ] × R → R2×2 are deterministic functions of

time t ∈ [0, T ] and ω ∈ R alone. As Q̂ (t, Zt, ω)MR
p−iω
p−1

t Y iωt is a P-martingale,
we derive the following system of ODE’s:

Â′
Q̂

(t) = −B̂
Q̂

(t)⊤ ΣZΛ̂R
Q̂,t

(ω) − 1
2 B̂Q̂ (t)⊤

B̂
Q̂

(t) + ā
Q̂,t

(ω) ,

B̂′
Q̂

(t) =
(
p− iω

p− 1 Λ⊤
1 Σ⊤

Z +K⊤
Z − 2Ĉ

Q̂
(t)⊤

)
B̂
Q̂

(t) + b̄
Q̂,t

(ω) ,

Ĉ ′
Q̂

(t) = 2
(
K⊤
Z + p− iω

p− 1 Λ⊤
1 Σ⊤

Z

)
Ĉ
Q̂

(t) − 2Ĉ
Q̂

(t)⊤
Ĉ
Q̂

(t) − ĉt (ω) ,

(B.3.49)

155



Chapter 4. Investing Towards an Exogenous Reference Level

where we define:

ā
Q̂,t

(ω) = −ât (ω) − tr
(
Ĉ
Q̂

(t)
)
,

b̄
Q̂,t

(ω) = −b̂t (ω) − 2Ĉ
Q̂

(t)⊤ ΣZΛ̂R
Q̂,t

(ω) ,

Λ̂R
Q̂,t

(ω) = −p− iω

p− 1 [Λ0 − σΠ] + iωβt,

(B.3.50)

for all t ∈ [0, T ] and ω ∈ R. Note here that we suppress the dependencies of Â
Q̂

,
B̂
Q̂

, and Ĉ
Q̂

on ω ∈ R. Moreover, we have that: Â
Q̂

(T, ω) = 0, B̂
Q̂

(T, ω) = 02,
and Ĉ

Q̂
(T, ω) = 02×2, for all ω ∈ R. Note the similarity between this system

and the system in (B.1.29). Therefore, we only know that:

Â
Q̂

(t) = −
∫ T

t

[
−B̂

Q̂
(s)⊤ ΣZΛ̂R

Q̂,s
(ω) − 1

2 B̂Q̂ (s)⊤
B̂
Q̂

(s) + ā
Q̂,s

(ω)
]

ds.

(B.3.51)

Then, we are able to conclude by deriving that, for all t ∈ [0, T ] and ω ∈ R:

ϕ̂T−t (ω, g, j) =
∫ ∞

−∞

∫ ∞

−∞
eJeiωGϕ (G, J, g, j) dGdJ

= E

[
MR

p−iω
p−1

T Y iωT

∣∣∣∣ Ft
]

= Q̂ (t, Zt, ω)MR
p−iω
p−1

t Y iωt .

(B.3.52)

Appendix C Proofs II

C.1 Proof of Proposition 4.3.4

The proof of this proposition primarily consists in an application of Itô’s Lemma
to Xopt

t Mt. This enables us to analytically identify ψt. Therefore, let us start
by noting that Xopt

t Mt is for all t ∈ [0, T ] given by:

Xopt
t Mt = YtM

R
t P1 (t, Zt)

1
2π

∫ ∞

−∞
f∗
κ (T, ω)ϕ1,T−t (−ω − iκ, h) dω

−
(
ηopt

1
p
MR
t

) p
p−1

P2 (t, Zt)
1

2π

∫ ∞

−∞
f∗
κ (T, ω)ϕ2,T−t (−ω − iκ, h) dω,

(C.1.1)
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where ηopt = H−1 (X0). To identify ψt in (4.3.2), we must find the diffusion
coefficients for the latter process Xopt

t Mt. Making use of a simple application
of Itô’s Lemma, we find the subsequent SDE’s:

dYtMR
t P1

YtMR
t P1

=
(

−
[
ΛRt − βt

]⊤ + B̃ (t)⊤ ΣZ
)

dWt,

dMR
p

p−1
t P2

MR
p

p−1
t P2

=
(

− p

p− 1ΛR
⊤

t + D̂ (t)⊤ ΣZ
)

dWt.

(C.1.2)

Now, define for j = 1, 2, and all t ∈ [0, T ]:

Rj (t, Gt) = 1
2π

∫ ∞

−∞
f∗
κ (T, ω)ϕj,T−t (−ω − iκ, h) dω. (C.1.3)

Using an application of the multidimensional version of Itô’s Lemma, we are
able to derive that the SDE’s of these processes are given by:

dRj = ∂Rj
∂t

+ (∇GRj)⊤ dGt + 1
2 (dGt)⊤ (HGRj) dGt

= 1
2π

∫ ∞

−∞

(
f∗
κ (T, ω)ϕj,T−t (−ω − iκ, h)

[
B̄j (t)⊤ ΣZ

+2Z⊤
t C̄j (t)⊤ ΣZ + i (−ω − iκ)

(
β⊤
t + 1

p− 1ΛR
⊤

t

)])
dωdWt.

(C.1.4)

Note that t 7→ B̄j (t) and t 7→ C̄j (t) are assumed to incorporate the −ω − iκ

argument. For notational purposes, we denote the diffusion coefficient of the
preceding SDE as R̂j (t, ϕ, Zt). More concretely, we fix: dRj = R̂j (t, ϕ, Zt) dWt.
Combining terms, we consequently find that the following holds:

dYtMR
t P1R1 = YtM

R
t P1

[(
−
[
ΛRt − βt

]⊤
+B̃ (t)⊤ ΣZ

)
R1 + R̂j (t, ϕ, Zt)

]
dWt.

(C.1.5)

Likewise, we are able to derive the subsequent SDE:

dMR
p

p−1
t P2R2 = MR

p
p−1

t P2

[(
− p

p− 1ΛR
⊤

t +
[
B̂ (t)⊤

+2Z⊤
t Ĉ (t)⊤

]
ΣZ
)
R2 + R̂j (t, ϕ, Zt)

]
dWt.

(C.1.6)
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The sum of the SDE’s in (C.1.5) and (C.1.6) is identical to the SDE of Xopt
t Mt.

To conclude the proof of Corollary 4.3.5, we observe that ψt in (4.3.2) is
identical to the diffusion coefficient of the SDE for Xopt

t Mt:

ψ⊤
t dWt = dYtMR

t P1 (t, Zt)R1

(
t, Zt,M

R
p

p−1
t Yt

)
− H−1 (X0)

1
p−1 dMR

p
p−1

t P2 (t, Zt)R2

(
t, Zt,M

R
p

p−1
t Yt

)
.

(C.1.7)

C.2 Proof of Corollary 4.3.5

According to the Clark-Ocone formula, we have:

Xopt
T MT = X0 +

∫ T

0
E
[
DW
t X

opt
T MT

∣∣ Ft
]⊤ dWt, (C.2.8)

cf. Karatzas et al. (1991b) and Ocone and Karatzas (1991). Here, DW
t :

D1,2 ([0, T ]) → L2 (Ω × [0, T ])4 represents the Mallivain derivative kernel, where
D1,2 ([0, T ]) stands for the Sobolev-Watanabe space of all L2 (Ω × [0, T ])-valued
Mallivain differentiable processes. Hence, from (C.2.8), for all t ∈ [0, T ]:

ψt = E
[
DW
t X

opt
T MT

∣∣ Ft
]
. (C.2.9)

Then, we note that:

DW
t X

opt
T MT = MTDW

t

(
YTΠT −

(
H−1 (X0)MTΠT

) 1
p−1 ΠT

)
1{AT }

+
(
YTΠT −

(
H−1 (X0)MTΠT

) 1
p−1 ΠT

)
1{AT }DW

t MT .
(C.2.10)

Using the fact that DW
t HT = HTDW

t logHT , we are able to derive that the
following holds true for all t ∈ [0, T ]:

DW
t MT

MT
= −

[
δ⊤

1,rK
−1
Z [I2×2 − exp {−KZ (T − t)}] ΣZ

]⊤ − Λ0,

DW
t YTΠT

YTΠT
=
[
δ⊤

1,πK
−1
Z [I2×2 − exp {−KZ (T − t)}] ΣZ

]⊤ + σΠ + βt.

(C.2.11)

158



Appendix D Proofs III

Ultimately, we combine all preceding arguments to derive the relevant Malliavin
derivative of

(
H−1 (X0)MTΠT

) 1
p−1 ΠT . After re-arranging terms, we find the

weights in Corollary 4.3.5. The former reads for all t ∈ [0, T ]:

DW
t M

R
1

p−1
T ΠT

MR
1

p−1
T ΠT

= − 1
p− 1 (Λ0 − σΠ) +

[(
δ1,π − 1

p− 1 δ̂1,r

)⊤

K−1
Z [I2×2 − exp {−KZ (T − t)}] ΣZ

]⊤ + σΠ.

(C.2.12)

C.3 Derivation of (4.3.13)

The closed-form specification of Xopt
t Mt implicit in (4.3.8) reads as:

Xopt
t Mt = 1

2π

∫ ∞

−∞
f̂∗
κ (T, ω) ϕ̂T−t (−ω − iκ, g, j) dω

= 1
2π

∫ ∞

−∞
f̂∗
κ (T, ω) Q̂ (t, Zt,−ω − iκ)MR

p−i(−ω−iκ)
p−1

t Y
i(−ω−iκ)
t dω,

(C.3.13)
for all t ∈ [0, T ]. An application of Itô’s Lemma to Xopt

t Mt in (C.3.13) suffices
to conclude the proof. In particular, we find:

dXopt
t Mt = 1

2π

∫ ∞

−∞
f̂∗
κ (T, ω) Q̂ (t, Zt,−ω − iκ)MR

p−i(−ω−iκ)
p−1

t Y
i(−ω−iκ)
t[(

B̂
Q̂

(t,−ω − iκ) + 2Ĉ
Q̂

(t,−ω − iκ)Zt
)⊤

ΣZ

+
(
i [−ω − iκ]βt − p− i [−ω − iκ]

p− 1 ΛRt
)⊤
]

dωdWt.

(C.3.14)

Appendix D Proofs III

D.1 Derivation of (4.4.3)

We must determine ᾱ and β̄ such that the following holds:

E [aT ] = E [âT ] and E [aTZT ] = E [âTZT ] . (D.1.1)
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Therefore, we first determine the expectations for âT . Its first moment reads:

E [âT ] = C exp {ᾱ}E

[
exp

{
β̄⊤
∫ T

0
e−KZ (T−s)ΣZdWs

}]

= C exp
{
ᾱ+ 1

2 β̄
⊤

(∫ T

0
e−KZ (T−s)

[
e−KZ(T−s)

]⊤
ds
)
β̄

}
.

(D.1.2)

Now, define the change of measure from P to W (with W ∼ P), induced by
the following Radon-Nikodym derivative:

dW
dP

∣∣∣∣
Ft

= e
− 1

2 β̄
⊤
∫ t

0
eKZ (T −s)(eKZ (T −s))⊤ds+β̄⊤

∫ t

0
eKZ (T −s)ΣZ dWs , (D.1.3)

for all t ∈ [0, T ]. Straightforwardly, under the W measure, the following process
is a standard Brownian motion: WW

t = Wt −
∫ t

0 Σ⊤
Z

(
eKZ (T−s))⊤

β̄ds, for all
t ∈ [0, T ]. Using this change of measure, we find that E [âTZT ] reduces to:

E [âTZT ] = CE [âT ]E
[

âT
E [âT ]ZT

]
︸ ︷︷ ︸

=EW[ZT ]

= CE [âT ]
(∫ T

0
e−KZ (T−s)

[
eKZ (T−s)

]⊤
ds
)
β̄.

(D.1.4)

Then, we turn to the relevant expectations for aT . Similar to the identity in
(D.1.2), we are able to make use of the log-normality of PT,T +i

ΠT
to derive its

first moment. In concrete terms, its first moment is given by:

E [aT ] = C

τA∑
i=1

E

[
PT,T+i

ΠT

]
, (D.1.5)

where the expectation reads for all i = 1, . . . , τA:

E

[
PT,T+i

ΠT

]
= exp

{
AR (i) + 1

2B
R (i)⊤

×

(∫ T

0
e−KZ (T−s)

[
e−KZ (T−s)

]⊤
ds
)
BR (i)

}
.

(D.1.6)
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Following the derivation in (D.1.4), introduce:

dWi

dP

∣∣∣∣
Ft

= dW
dP

∣∣∣∣
Ft,β̄=BR(i)

, (D.1.7)

for all t ∈ [0, T ] and i = 1, . . . , τA. This process corresponds to
a change of measure from P to Wi (with Wi ∼ P), such that
WWi = Wt −

∫ t
0 Σ⊤

Z

(
eKZ (T−s))⊤

BR (i) ds is for all t ∈ [0, T ] and i = 1, . . . , τA
a Wi-standard Brownian motion. Using this change of measure, we are able to
deduce that E [aTZT ] is specified as follows:

E [aTZT ] = C

τ∑
i=1

E

[
PT,T+i

ΠT

]
E

[
PT,T+i/ΠT

E [PT,T+i/ΠT ]ZT
]

︸ ︷︷ ︸
=EWi [ZT ]

= C

τ∑
i=1

E

[
PT,T+i

ΠT

](∫ T

0
e−KZ (T−s)

[
eKZ (T−s)

]⊤
ds
)
BR (i) .

(D.1.8)

Finally, (4.4.3) follows from solving the following system:

ᾱ+ 1
2

∫ T

0
β̄⊤e−KZ (T−s)

[
e−KZ (T−s)

]⊤
β̄ds = log E [aT ]

C
,(∫ T

0
e−KZ (T−s)

[
eKZ (T−s)

]⊤
ds
)
β̄ = E [aTZT ]

E [aT ] .

(D.1.9)

D.2 Proof of Proposition 4.4.1

Define f̃ (T,HT ) = Xopt
T

ΠT

1
YT

= (1 − H−1 (X0)
1

p−1 MR
1

p−1
T

YT
)1AT

, where HT =

log (MR
− 1

p−1
T YT ). Then, by the definition of a CDF, we know that FX/Y (x) =

E[1{f̃(T,HT )≤x} | H0 = h] holds for all x ∈ R. Resorting to an application of
the Fourier transform, we derive for all x ∈ [0, 1):

FX/Y (x) = E
[
1{f̃(T,HT )≤x}

∣∣∣ H0 = h
]

= 1
2π

∫ ∞

−∞
f̃∗
κ (T, x, ω)ϕT (−ω − iκ, h) dω.

(D.2.10)
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Here, f̃∗
κ (T, ω) is for some κ < 0, all ω ∈ R and all x ∈ [0, 1) given by:

f̃∗
κ (T, x, ω) =

∫ ∞

−∞
e(iω−κ)H1{f̃(T,H)≤x}dH

=
∫ log H−1(X0)

p−1

−∞
e(iω−κ)HdH +

∫ Hx,p

log H−1(X0)
p−1

e(iω−κ)HdH

= 1
iω − κ

e(iω−κ)[ 1
p−1 log H−1(X0)−log(1−x)],

(D.2.11)

where Hx,p = log H−1(X0)
p−1 − log (1 − x). Clearly, f̃∗

κ (T, x, ω) is the Fourier
transform of e−κHT 1{f̃(T,H)≤x} with respect to HT . Moreover, we have that
ϕT is for all ω ∈ R specified as follows: ϕT (ω, h) =

∫∞
−∞ eiωHϕ (H,h) dH =

E[MR
− iω

p−1
T Y iωT ]. Note the similarity between ϕT and equation (B.1.31).

As in (B.1.29), we then introduce the following system of ODE’s:

Ā′ (t) = −iωB̄ (t)⊤ ΣZΛ̄R0,t − 1
2 B̄ (t)⊤

B̄ (t) + āt (ω) ,

B̄′ (t) =
(

− iω

p− 1Λ⊤
1 Σ⊤

Z +K⊤
Z − 2C̄ (t)⊤

)
B̄ (t) + b̄t (ω) ,

C̄ ′ (t) = 2
(
K⊤
Z − iω

p− 1Λ⊤
1 Σ⊤

Z

)
C̄ (t) − 2C̄ (t)⊤

C̄ (t) − ct (ω) .

(D.2.12)

Here, āt (ω) = −at (ω) − tr
(
C̄ (t)

)
holds, with:

at (ω) = iωαt + 1
2 iω [iω − 1]β⊤

t βt + iω

p− 1 δ̂0,r

− 1
2

iω

p− 1

[
− iω

p− 1 − 1
]

ΛR
⊤

0 ΛR0 + (iω)2

p− 1β
⊤
t ΛR0 .

(D.2.13)

In addition to this, b̄t (ω) = −bt (ω) − 2iωC̄ (t)⊤ ΣZΛ̄R0,t and
Λ̄R0,t = 1

p−1 [Λ0 − σΠ] + βt hold for all t ∈ [0, T ] and ω ∈ R. In these
expressions, we include the following specifications for bt (ω) and ct (ω):

bt (ω) = −iω
p− 1

(
−δ̂1,r +

[
−iω
p− 1 − 1

]
Λ⊤

1 ΛR0 − iωΛ⊤
1 βt

)
,

ct (ω) = −1
2

iω

p− 1

[
− iω

p− 1 − 1
]

Λ⊤
1 Λ1.

(D.2.14)
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The system of ODE’s in (D.2.12) is given for the deterministic functions,
Ā : [0, T ] × R → R, B̄ : [0, T ] × R → R2, and C̄ : [0, T ] × R → R2×2. Note
that we suppress the dependencies of these functions on ω ∈ R in (D.2.12).
Furthermore, we emphasise that Ā (T ) = 0, B̄ (T ) = 02 and C̄ (T ) = 02×2 hold.
Observe the similarity between this system and (B.3.49). Hence:

ϕT (ω, h) =
∫ ∞

−∞
eiωHϕ (H,h) dH = eÃ(0,ω)Y iω0 , where

Ā (t) = −
∫ T

t

[
−iωB̄ (t)⊤ ΣZΛ̄R0,t − 1

2 B̄ (t)⊤
B̄ (t) + āt (ω)

]
ds.

(D.2.15)

We derive fX/Y (x) for all x ∈ (0, 1) as follows:

fX/Y (x) = 1
2π

∫ ∞

−∞

∂

∂x
f̃∗
κ (T, x, ω)ϕT (−ω − iκ, h) dω

= 1
2π

∫ ∞

−∞

iω − κ

1 − x
f̃∗
κ (T, x, ω)ϕT (−ω − iκ, h) dω.

(D.2.16)

D.3 Proof of Corollary 4.4.2

Define h 7→ fh (h) as the PDF of HT = logMR
− 1

p−1
T YT . Then, by the law of

total probability for continuous functions, we have:

P

(
XT

ΠT

1
YT

≤ x

)
=
∫ log ηopt

p−1

−∞
P (0 ≤ x) fH (h) dh

+
∫ ∞

log ηopt
p−1

P

(
1 − ηopt

1
p−1

e−h ≤ x

)
fH (h) dh.

(D.3.17)

Observe that this PDF is known for Λ1 = 04×2. Moreover, for the sake of
notational elegance, we make use of the fact that ηopt = H−1 (X0). Suppose
that h 7→ FH (h) denotes the CDF corresponding to the latter random variable.
Then, FX/Y (x) reads for all x ∈ [0, 1) as follows:

FX/Y (x) = 1 − P

(
eHT ≤ 1 − x

ηopt
1

p−1

)
. (D.3.18)
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Using the fact that MR
− 1

p−1
T YT is log-normally distributed (cf. Appendix B.2),

we can immediately evaluate the latter probability as follows for all x ∈ [0, 1):

FX/Y (x) = Φ


log ηopt

1
p−1

1−x − E
[
logMR

− 1
p−1

T YT

]
√
Var

[
logMR

− 1
p−1

T YT

]
 . (D.3.19)

In this identity, we have that the following is true:

E

[
logMR

− 1
p−1

T YT

]
= log Y0 +

∫ T

0

(
ν̂s − 1

2

∥∥∥∥βs + 1
p− 1ΛR0

∥∥∥∥2

R4

)
ds,

Var
[
logMR

− 1
p−1

T YT

]
=
∫ T

0

∥∥∥∥∥β⊤
s + ΛR⊤

0
p− 1 +

δ̂⊤
1,r

p− 1K̂Z,t,T

∥∥∥∥∥
2

R4

ds.

(D.3.20)
Here, for notational purposes, we define K̂Z,t,T = K−1

Z

(
I2×2 − e−KZ [T−t])ΣZ

and ν̂t = αt + δ̂0,r

p−1 + 1
2

p
(p−1)2 ΛR⊤

0 ΛR0 + 1
p−1β

⊤
t ΛR0 for all t ∈ [0, T ].

Concerning x 7→ fX/Y (x), we are able to derive the following:

fX/Y (x) = ∂

∂x
FX/Y (x)

= ∂

∂x
Φ (d0,T (x)) = ϕ (d0,T (x)) ∂

∂x
d0,T (x)

= ϕ (d0,T (x))

(1 − x)

√
Var

[
logMR

− 1
p−1

T YT

] , ∀ x ∈ (0, 1) .
(D.3.21)
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In spite of the overarching theme, it is not easy to draw general conclusions from
the combined chapters. All three core chapters touch upon duality techniques,
yet in slightly different ways. We elaborately addressed these differences in
Chapter 1. In fact, we argued that each chapter relates to a different part
of Figure 1.1. As this figure visualises the technical mechanism underscoring
duality, it is clear that the common grounds are far from trivially established.
Even within the confines of portfolio theory, duality encloses a wide array of
research domains. The variety of topics central to this dissertation exemplifies
the latter. Therefore, apart from some unspecific general comments on the
value of duality, we are not able to outline well-defined conclusive statements
that apply to all chapters. For comments of the former kind, one can consult
the introductory sections. Nevertheless, along the following three axes, we
can examine the chapters in a considerably more general manner: (i) portfolio
theory, (ii) specific duality domains, and (iii) the related outlook on future
research. For this reason, we divide our conclusion into three parts. Each part
concerns a particular duality-based and/or portfolio-linked avenue specific to
one of the core chapters. Per chapter, this distinction enables us to investigate
the implications of our findings for separate portfolio and/or duality areas.
These areas are by construction defined in a broad sense. In addition to
this, we are able to more precisely chalk out the corresponding outlook on
future academic research. On the grounds of these partitioned conclusions,
one can consequently obtain a more distinct perspective of this dissertation’s
contribution to the literature on duality and portfolio optimisation.

In accordance with the number of core chapters, we identify three areas of
portfolio theory and interrelated duality techniques. For Chapter 2, the area
of interest is covered by studies on dual-control approximate methods. These
methods rely on duality machinery to develop and possibly improve approx-
imations to optimal policy rules. In the context of finance and portfolio
optimisation, these rules straightforwardly concern investment and/or savings
decisions. For Chapter 3, the duality-linked domain abides by a more theo-
retical nature. Although the area of application pertains to habit formation,
the topic focuses on the mathematical heart of duality: the dual formulation.
In view of the formulation’s intimate link to the former topic, we identify the
area of interest as multiplicative habit formation. Despite this predominantly
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financial identification, we subsequently emphasise its relation to duality. For
Chapter 4, duality plays a supplementary role. As addressed in the introduc-
tion, this chapter has a clear practical purpose. In particular, we resort to a
sole application of martingale duality techniques to acquire optimal decision
variables. These decision variables are relevant for investors with preferences
that revolve around a reference level. By virtue of this applied relevance, the
central theme can be defined as a treatment of reference-dependent preferences.
Thereby, we aim to focus on the practical dimension of our results. Moreover,
due to the peculiar character of reference-dependent preferences, we are able to
specify interesting domains for duality-oriented research. The following sections
respect the previously employed order. That is, we address the generalised
themes chapter-by-chapter. Each section comprises of (i) a re-examination
of the chapter-specific conclusions, (ii) a discussion of its contribution to the
overarching theme, and (iii) a corresponding outlook on future research.

5.1 Dual-Control Methods
In Chapter 2, we developed an approximate dual-control method for constrained
investment-consumption problems. The method relies on a three-fold procedure
predicated on the duality relations unique to the artificial market. On the basis
of this procedure, the routine manages to generate closed-form approximations
to the optimal control variables. In order to measure the accuracy of these
approximations, the method simply examines the magnitude of the duality
gap. The approximating scheme has a wide range of application. It can
be applied to multi-dimensional markets with general return dynamics. The
corresponding trading constraints must attain values in a convex conic subset
of RN . Moreover, the agent’s preference qualification is allowed to be state-
dependent and may include a benchmark process or reference level. Due to
the additional incorporation of a labour income stream, the approximating
framework can indeed be applied to an abundance of relevant problems. In
the chapter at hand, we illustrated the method’s potential accuracy in a three-
dimensional market. More concretely, we relied on the environment proposed
by Cocco et al. (2005). To model the preferences, we made use of power utility
and the less well-known SAHARA function. Both functions included a strictly
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positive benchmark process. For a set of three different trading constraints,
the method demonstrated to work notably well. The annual welfare losses were
all smaller than 0.051% of the agent’s initial endowment.

This dual-control method constitutes a generalised variant of the one developed
by Bick et al. (2013). Their framework hinges on a similar approximating
principle. However, whereas our method is able to cover a large number of
constrained problems, theirs is more limited.1 Due to the significant interest in
models/situations of a more complicated type, it is clear that our approximate
method forms an important addition to the literature on dual-control machinery.
Dual-control methods are a relatively new phenomenon in the domain of
finance and portfolio optimisation. So far, some studies have been concerned
with this topic, but the field is far from saturated. The scarcity of studies
applies to both theoretical contributions and applied papers. We attribute this
scarcity to the abstract nature of duality per se and the fairly involved scheme
underpinning dual-control methods. For these reasons, most studies prefer
the conventional backward-induction techniques. Though understandable, in
view of a.o. this dissertation, dual-control methods come with indisputable
upsides. Compared to the conventional routines, Hambel et al. (2021) even
show that dual-control methods can be more accurate. In addition to this,
these duality-based schemes manage to render analytical insights and are
consequently easy to implement. While backward-induction techniques are
known to suffer from the curse of dimensionality, the aforementioned schemes
are able to cope with large dimensions. In fact, for the examples considered in
this dissertation, hardly any computational effort was required. With Chapter
2’s results at hand, we therefore conclude that dual-control methods can be of
utmost importance to the domain of portfolio optimisation.

On account of the latter, dual-control methods establish a promising branch
for future research. In this regard, we are able to distinguish two interesting

1The configuration of their study assumes a uni-dimensional market model with standard
CRRA preferences. The constraint set is held fixed at an example-specific version.
Furthermore, the postulates for their return dynamics involve constant drift and diffusion
terms. Despite these limitations, we note that their study pioneered the fundamental
principle corresponding to the approximating scheme. That is, it introduced the idea of
resorting to the artificial market to assemble analytical candidate solutions. Likewise, it
introduced the duality gap as a financially relevant performance indicator.
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areas: (i) applications of existing dual-control methods, and (ii) theoretical
extensions of the corresponding approximating principle. In order to clarify
the first item, let us restrict ourselves to the domain of Chapter 2. Our dual-
control method enables one to near-optimally solve constrained investment-
consumption problems in closed-form. Traditionally, studies on portfolio choice
were required to fall back on purely numerical routines to obtain the optimal
control variables. For this reason, there exists a great multitude of constrained
problems for which there is very little known about the analytical structure
of the related optimal solutions. With the help of our method, we are able to
disclose this structure and thereby gain valuable economic/financial insights
into the solutions’ underlying dynamics. Problems that may in this respect be
appealing to prospective studies are: Heston’s stochastic volatility model, utility-
maximisation for non-standard preferences in the presence of unhedgeable
risk-drivers, and life-cycle research under pre-fixed borrowing and short-selling
constraints. As for the second item, we note that the absence of closed-
form solutions is not unique to “plain” constrained investment-consumption
problems. Frameworks involving e.g. model and/or parameter uncertainty,
ambiguity aversion, S-shaped utility functions, proportional transaction costs,
or (multiplicative) habit formation may all suffer from the same analytical
issues. For the majority of these setups, in the spirit of Figure 1.1, it is possible
to outline a clearly defined duality mechanism. It could therefore be interesting
to develop dual-control machinery suitable for these configurations. This may
significantly improve our analytical understanding of these problems.

5.2 Multiplicative Habit Formation
In Chapter 3, we derived a dual formulation corresponding to the optimal
consumption problem with multiplicative habit formation. The multiplicative
habit component generates a value function that incorporates irremovable path-
dependency. In addition to this, due to the same component, the objective
is not fully concave. As a result of both attributes, applications of common
Lagrangian techniques fail to identify a dual problem. To account for the
path-dependent objective, we were required to resort to the less well-known
notion of Fenchel duality. This duality theorem can be regarded as a generalised
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version of the ordinary Legendre transform. Unlike Legendre, Fenchel is able
to cope with bounded linear maps as partial arguments of the optimisation
target. By means of this generalised notion, we were able to deduce a dual
formulation and prove that it satisfies strong duality. Naturally, the dual
problem gave rise to analytical specifications of the duality relations. These
relations were characterised by two identities that uncover the links between
optimal consumption, the habit level, and the duality process. From these
identities, we were able to concretise the true dynamics of the optimal control
variables. To exemplify the practical dimension of this theoretical result,
we developed a duality-based evaluation mechanism. It closely resembles
the scheme unique to standard dual-control methods. After some minor
modifications, the mechanism can indeed be employed as a dual-control routine.
For the near-optimal analytical approximation proposed by van Bilsen et
al. (2020a), we examined the evaluation mechanism. In agreement with the
approximation’s precision, the ensuing welfare losses were negligibly small.

The literature on habit formation is dominated by studies on additive mod-
els. In other words, for multiplicative setups there are not that many papers
available. This disproportionate representation can be attributed to two main
reasons. First, additive habit formation is mathematically easy to handle.
Due to the isomorphism advanced by Schroder and Skiadas (2002), a large
class of additive-linked problems can be solved in closed-form. Multiplicative
habit models are considerably more difficult to solve.2 Second, despite their
nearly synchronous introduction to the literature, compared to additive se-
tups, multiplicative models are a fairly recent phenomenon. In the ’90s, the
number of studies on additive habits rapidly increased after the contribution
by Detemple and Zapatero (1991). For the multiplicative class, it took more
than a decade after the high-impact paper by Abel (1990) for studies to pick
up the fundamental idea. Note that the latter reason is closely linked to the

2Contrary to the additive configurations, multiplicative habit models suffer from several
technical issues. These issues can all be related to the path-dependency and non-
concave objective function addressed in the main text. Standard solution techniques are
consequently not applicable to this type of habit formation. Even though certain numerical
routines are able to cope with these atypical features, the complicating attributes make
multiplicative models less appealing/accessible. More concretely, there does not exists a
multiplicative-adapted user-friendly isomorphism. Note that we have demonstrated how
this isomorphism ensues from the dual formulation in Chapter 1.
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former one. In Chapter 1, we have addressed the salient economic/financial
upsides of multiplicative habit formation. It is therefore unfortunate that the
technical intricacies associated with multiplicative setups withhold researchers
from studying these models. Nevertheless, to make the multiplicative domain
more comprehensible and accessible, the dual formulation comes in handy. Its
specification immediately opens doors to applications in the spirit of shadow
prices or martingale duality machinery. On a more secondary/indirect level,
the formulation can be employed to develop dual-control methods. In Chapter
2, we have lifted a corner of the veil corresponding to this dual-induced benefit.
Hence, by means of the novel dual formulation, we have made a big leap forward
on the subject of multiplicative-linked research potential.

As before, we are able to distinguish the preceding potential into two explicit
branches for future research: (i) applications of our strong duality result, and
(ii) theoretical extensions thereof to more involved frameworks. The former item
pertains to the economic/financial upsides of multiplicative habits addressed in
Chapter 1. In light of the many corresponding implications for applied research,
we restrict ourselves to an overview of three possible ramifications. The first one
ties in with Chapter 2, and concerns the development of dual-control methods.
These methods can easily be predicated on the foundation of our evaluation
mechanism.3 The second one touches upon the design of a martingale duality
framework adapted to multiplicative habit formation. For the additive setups,
this framework is given by Schroder and Skiadas (2002)’s isomorphism. In
this regard, the mere challenge for multiplicative configurations is the retrieval
of a Lagrangian-like functional from the dual formulation. The third and
last one is outlined by a more thorough economic inspection of the duality
relations and the related FOCs. On the basis of the corresponding identities, it
should be possible to derive in more concrete terms what the optimal decision
variables analytically entail. In fact, it may even be possible to characterise
optimal consumption in closed-form or as the solution to an FBSDE. With

3More concretely, at the end of our multiplicative treatment, we have shed light on the
evaluation mechanism necessary for these methods. The remaining ingredient for a
well-outlined dual-control routine is therefore a proper approximating principle. For
this reason, we are required to examine the duality relations and accordingly construct
approximate control variables. Some ideas for the creation of these approximations are:
first-order Taylor expansions around a primal-linked point, a similar expansion applied to
the optimal dual-control, or a log-normal postulate for optimal consumption.
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regard to the second item, we note that our strong duality result rests on the
assumption of market completeness. In a similar sense, we have identified the
preference qualification as the “simple” CRRA utility function. To broaden its
scope of application, one can enlarge this framework such that it accounts for
e.g. unhedgeable risk, more exotic preferences, and/or proportional transaction
costs. Extensions of this form open doors to novel dual-control methods. The
duality relations for these extended setups may additionally endow us with
relevant insights into the analytical structure of the optimal controls.

5.3 Reference-Dependent Preferences
In Chapter 4, we analysed an optimal investment problem over terminal wealth
alone. We considered the matter against the background of a pension fund that
attempts to meet its pre-defined liabilities. For this purpose, we introduced
a utility-maximising agent with reference-dependent preferences of the LPM
family. LPM operators are ordinarily employed as hedging criteria. However,
in the confines of preference qualifications, they can be utilised as functions
that accommodate a strong orientation towards some target. This target is
typically referred to as the reference level and can be identified as the pension
liabilities. Due to the person-specific and uncertain nature of the corresponding
objective, the ensuing optimisation problem bears immediate relevance to DC
pension schemes. On account of its frequent use in practice, we embedded the
LPM problem in the financial environment proposed by Koijen et al. (2009).
This model postulates an affine structure for the market prices of risk. As a
consequence, it is not possible to derive the specific distributional features of
the SPD process. To cope with these non-standard attributes, we resorted to
an application of the Fourier transform. Based on this application, we were
able to solve the LPM problem in closed-form. In our numerical study, we
characterised the reference level as a life annuity. Our findings suggested that
the LPM operator is able to notably improve the likelihood of achieving one’s
pension goals. Despite this outstanding outcome, the numerical results also
demonstrated that the framework is highly dependent on the estimates for
the market prices of risk. In addition to this, we showed that the numerically
assessed portfolio strategies may be difficult to implement in reality.

172



5.3 Reference-Dependent Preferences

The LPM operator marks a unique function in the domain of reference-
dependent preferences. In the literature on reference levels, preference qual-
ifications customarily incorporate convexity with respect to incurred losses.
In more precise terms, studies in this field usually rely on S-shaped utility
functions. While this convexity requirement can be aligned with the funda-
mental principles of prospect theory, a.o. Jarrow and Zhao (2006) argue that it
may be relaxed. The most important feature according to them is established
by the utility-related difference in evaluating equivalent gains and losses. For
the LPM operator, this is true in a fairly elegant yet atypical manner. By
assuming zero marginal utility for values of wealth above the reference level,
the LPM criterion significantly overestimates losses. It particularly means
that the agent is “satsified” when the target is achieved; the moment that
wealth falls below the reference level, the same agent becomes extremely con-
cerned. We stress that the LPM operator has only recently been identified
as a reference-dependent preference qualification. Due to this relatively novel
interpretation, our study forms an interesting addition to the applied literature
on portfolio-linked prospect theory. By virtue of the former property, we also
note that the operator is frequently used to model partial hedging problems.
The literature on partial hedging is dominated by theoretical treatments. In
consideration of our strong practical focus, the results of Chapter 4 constitute
a valuable addition to this literature. Likewise, departing from this practical
emphasis, our study generated useful insights for the pension industry. The
positive impact on a fund’s recovery potential is particularly relevant.

In Chapter 4, we were predominantly concerned with the practical implica-
tions of the LPM-optimal solutions. As a consequence, duality only served
a complementary purpose. For generalised frameworks, duality can play a
more prominent role on the subject of prospect theory. However, the convexity
features of the corresponding preference qualifications complicate immediate
applications of duality methods. For this reason, a promising branch for future
theoretical research concerns concavification and interlinked duality techniques.
The latter would boil down to the development of a duality framework suitable
for reference-dependent preferences of a more general type. Closely related
to this class of problems is the idea of probability weighting. Prospect theory
empirically demonstrates that individuals tend to overestimate small probabil-
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ity events. To incorporate this phenomenon into a utility-maximising setup,
one simply includes a weighting function in the target of optimisation. The
resulting objective is typically non-concave and complicated to handle. It is
therefore interesting to develop a duality configuration appropriate to probabil-
ity weighting setups. Consistent with the previous two themes, the construction
of these duality frameworks naturally gives rise to novel dual-control methods.
On a more applied note, we are able to identify the following three branches
for future research. Within the borders of Chapter 4, it might be worth it
to study different target-oriented preference qualifications. One could, for
example, measure the differences in performance for dual-CRRA, SAHARA,
and/or HARA-based kinked utility functions. Similarly, it may render useful
insights to employ other model specifications. The environment proposed by
Koijen et al. (2009) does not account for e.g. stochastic volatility or generally
defined reference levels. Last, as uttered at the end of Chapter 4, the LPM-
based portfolio strategies are hard to implement and highly dependent on the
estimates for the market prices of risk. For these two reasons, it makes perfect
sense to allow for trading constraints and/or robustness procedures.
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Summary

In this addendum, we provide a summary of this dissertation. We first address
the main overarching theme. Thereafter, we elaborate in a recapitulating man-
ner on the separate chapters central to the research output of this dissertation.
Consistent with its title, the theme of this doctoral thesis concerns Duality
Methods for Stochastic Optimal Control Problems in Finance. In particular, all
three core chapters touch upon convex duality against the economic/financial
background of portfolio optimisation. The literature on duality for investment-
consumption problems can be classified in accordance with the following three
categories: (i) applied studies, (ii) theoretical studies, and (iii) mixtures of
the previous two. This dissertation covered all three categories. Concretely,
in Chapter 2, we dealt with item (iii), and developed a dual-control mecha-
nism suitable for acquiring analytical near-optimal solutions to constrained
investment-consumption problems. In Chapter 3, covering item (ii), we derived
a dual formulation corresponding to an optimal consumption problem involving
multiplicative habit formation. In Chapter 4, which addressed item (i), we
made use of duality techniques to derive optimal policy rules for a pension fund
that offers a DC scheme. These three studies jointly constitute the research-
based nucleus of this thesis, i.e. its “core”. As an introduction to this core,
Chapter 1 expanded on the duality-linked theme in a rather general sense.
The introductory chapter thereby aimed to highlight what duality theoretically
entails and why it is practically useful. In addition to this, it supplied brief
synopses of the academic content addressed by the preceding three chapters.
Ultimately, in Chapter 5, we concluded this dissertation. Therein, we specifi-
cally focused on the contribution of the academically relevant output to the
literature on economic/financial duality. As Chapters 1 and 5 serve comple-
mentary roles with regard to the remainder of this thesis, we subsequently
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summarise Chapters 2, 3 and 4 at greater length. For smaller variants of
the following summaries, one can consult the abstracts at the beginning of
each core chapter. Correspondingly, for more extensive overviews, the distinct
paragraphs provided in the third section of Chapter 1 may be useful.

Chapter 2

In Chapter 2, we developed a dual-control method applicable to a broad
class of constrained utility-maximisation problems. Its mechanism rests on a
generalisation of the approximating routine proposed by Bick et al. (2013). In
order to adequately outline the details underpinning this scheme, we are obliged
to look more closely at duality in the context of portfolio optimisation. Due
to the inclusion of trading restrictions, constrained investment-consumption
problems are difficult to solve. The mathematical complexity associated with
a derivation of optimal solutions is almost entirely attributable to the non-
uniqueness of equivalent martingale measures. Namely, since the market is
constrained and therefore incomplete, there exist infinitely many martingale
measures. The most optimal or “least-favourable” martingale measure can be
determined by an appropriate minimisation procedure of the dual formulation.
However, in most cases, the ensuing first-order conditions cannot be solved in
closed-form. In fact, for particular specifications of the conic constraint set, it
is not even possible to derive such conditions. As the optimal dual controls
give rise to optimal primal rules, the latter phenomena directly encumber
a derivation of the optimal decision variables. That is, unless one is able
to analytically spell out the dual-optimal martingale measure, closed-form
expressions for the primal-optimal investment-consumption strategies are not
available. For this reason, most constrained utility-maximisation problems lack
analytical tractability and are solved by means of computationally demanding
numerical machinery. The general absence of analytical solutions and the
interrelated need for numerically intense approaches are two major issues in
the applied domain of constrained utility-maximisation.

Our dual-control method deals with the aforementioned issues and manages
to generate near-optimal closed-form solutions in a highly efficient way. To

192



Chapter 3

this end, it makes use of three-fold approximating scheme. First, it recognises
that all analytical nuisance stems from the dual. Therefore, it analytically
approximates the optimal dual controls by a modified minimisation procedure
of the dual formulation. In particular, it restricts the set of dual controls to a
tractable analogue and optimises the dual problem accordingly. The resulting
dual approximations bring forth closed-form candidates for the optimal primal
controls. To make these candidates admissible in the primal environment, they
have to be slightly adjusted. In other words, the “raw” candidate solutions
generally fail to satisfy the trading/liquidity constraints. Consequently, in the
second step, our method projects the candidate solutions into the admissibility
set to arrive at near-optimal controls that are primal-feasible. In the third and
final step, the approximating routine measures the accuracy of these approxi-
mate solutions by a financial evaluation of the corresponding duality gap. As
a result, the dual-control method concretely renders analytical approximate
policy rules that are accompanied by a “hard” guarantee concerning their accu-
racy. In the numerical illustrations, the method proved to work well. For the
examples under scrutiny, the approximating method resulted in annual welfare
losses smaller than 0.051% of the agent’s initial endowment. Our conclusive
statement on the possible accuracy of the dual-control method is supported by
the variety of examined trading constraints and the technical complexity of
both the financial environment and the preference qualifications.

Chapter 3
In Chapter 3, we studied the optimal consumption problem with multiplica-
tive habit formation. The habit-linked literature is dominated by studies on
additive models. In these models, an agent is assumed to derive utility from
the difference between consumption and the habit level. While additive con-
figurations are easy to handle in a mathematical sense, they lack economic
relevance. As most utility functions only admit strictly positive arguments,
consumption is namely required to exceed the habit level at all times. For this
reason, in additive frameworks, the habit component is typically interpreted as
a subsistence level. Such identifications are plausible from macro-related per-
spectives, wherein one examines the optimal consumption patterns of nations
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or large-scaled populations. However, in the confines of a micro-linked setup
suitable for e.g. individuals and/or households, similar interpretations cannot
be upheld. More specifically, the endogeneity of the habit level complicates such
economic/financial identifications of the habit level. Therefore, when studying
individuals and/or households, the habit component is generally characterised
as a person-specific standard of living. The artificial lower bound imposed
upon consumption correspondingly implies that the utility-maximising agent
is obliged to consume at least as much as his/her standard of living. Even
though this corresponds to a fairly ideal situation, it is not realistic. Adverse
shifts in the financial circumstances can always urge a person to scale down
consumption below the level to which he/she has become accustomed. Hence,
despite the mathematical elegance involved with solving additive problems,
they are not economically/financially relevant for all environments.

To arrive at a setup that manages to relax the unnatural lower bound imposed
upon consumption, one can make use of multiplicative habit models. In these
models, an agent is assumed to derive utility from the ratio of consumption to
the habit level. This ratio is strictly positive for any budge-feasible consumption
strategy. Due to the latter property, the ratio can be incorporated into most
conventional preference qualifications. As a consequence, in multiplicative
frameworks, consumption is not required to exceed a peculiar lower bound. On
account of the relaxation of this bound, the aforementioned frameworks gain a
significant amount of economic relevance. The habit-linked configuration is now
amenable to micro-related situations consistent with small households and/or
individuals. In spite of the ensuing economic advantages, the multiplicative
habit models come at a high technical cost. By virtue of the mathematically
complicated objective function, consumption problems involving multiplicative
habit formation cannot be solved in closed-form. Most studies on multiplicative
models therefore resort to numerical applications or the design of approximate
solutions. Ordinarily, parts of the mathematical complexity related to the opti-
mal consumption problem are addressed or facilitated by the dual formulation.
However, for this problem, there is no dual problem known. In Chapter 3,
we filled this gap in the literature, and made an entire branch of dual-related
applications accessible, by deriving a corresponding dual formulation. We did
so by means of a “concavification” procedure and the less well-known notion of
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Fenchel duality. This strong duality result gave rise to a myriad of interesting
implications. In our study, we exclusively focused on the duality relations and
an evaluation mechanism commonly associated with dual-control methods.

Chapter 4

In Chapter 4, we analysed an optimal terminal wealth problem from an applied
point of view. More concretely, we examined a utility-maximising pension fund
that operates in conformity with a DC scheme. Terminal wealth setups can
easily be identified with the individual-specific nature of conventional DC plans.
On the grounds of the personally oriented specification of most preference
functions, a participant’s attitude towards risk can be included in a very
precise manner. This possibility is of significant importance to DC providers,
as the participating agents are generally required to carry all retirement-
linked risk. The target of optimisation consequently outlines a person-specific
function adapted to the preference/risk profile of a unique individual. Another
important attribute inherent in a great majority of DC setups is the notion of
underfunded starting positions. Individuals typically enter DC schemes with
relatively high expectations regarding their retirement wealth. These practically
unrealistic outlooks on pension goals result in an initial “mismatch” between the
participant’s contributions and his/her expectations. Translated into financial
jargon, this mismatch can be characterised as an underfunding situation. That
is, the pension fund is not in possession of sufficient funds to risk-neutrally cover
the pension liabilities/goals. Even if the participants’ prospects are adapted
to reality, pension funds are still confronted with challenges concerning these
retirement goals. These challenges may arise due to a.o. detrimental changes
in the economic circumstances. In the context of utility-maximisation, the
underfunding positions can easily be accommodated. Given the correspondingly
realistic model setup, in Chapter 4, we aimed to answer the following practically
relevant question: Is it possible to increase the likelihood of achieving one’s
pension goals using target-oriented preferences?

To be able to answer this question, we considered the LPM operator as a
goal-based preference function. This operator essentially specifies a mathe-

195



Summary

matical criterion suitable for problems in the domain of partial hedging. At
the same time, its technical definition includes a parameter that accounts
for one’s personal risk tolerance. By reason of its specification as a hedging
criterion, the LPM operator is strongly target-oriented. In conjunction with
the person-specific nature implied by the preference parameter, the LPM func-
tion is exceptionally appropriate for modelling DC frameworks. Consistent
with its specification as a hedging criterion, the LPM operator incorporates a
so-called reference level. This reference level is unique to individuals and can
be modelled as an explicit retirement goal. For this reason, in our study, we
identified the reference level as a person-specific life annuity. We investigated
the corresponding utility-maximisation problem in the financial environment
proposed by Koijen et al. (2009). Their market model is employed by a.o. the
Dutch central bank (DNB) and therefore constitutes a financially meaningful
framework. In this environment, the market prices of risk are assumed to be
affine in a mean-reverting stochastic process. As an immediate consequence,
it is not possible to derive the exact distributional features of the stochastic
deflator process. Due to its significant impact on the general optima in the
area of continuous-time portfolio optimisation, the latter complicates an ana-
lytical retrieval of closed-form solutions. Nevertheless, using inverse Fourier
techniques, we were able to derive analytical expressions for the optimal policy
rules. Furthermore, we managed to disentangle the distributional properties of
retirement wealth in closed-form. Our numerical results demonstrated that the
LPM operator is able to significantly improve the likelihood of achieving one’s
pension goals. Despite this potentially great performance, we also showed that
the optimal policy rules are highly sensitive to the estimates for the market
prices of risk and may be difficult to implement in reality.
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Valorisation

In this attachment, we address the possible impact of this dissertation on both
society and the non-academic industry. Despite the thoroughly technical nature
of the overarching theme, each core chapter can be related to a topic of practical
importance. In fact, all topics concern optimisation problems with regard to
portfolio choice and/or savings decisions. The latter phenomena constitute
crucial parts in the lives of individuals and institutional investors alike. We
are therefore able to evaluate the societal and/or industry-linked impact of
this dissertation along a wide array of practical dimensions. In an attempt to
classify the corresponding domains of impact, we narrow the subjects of this
valorisation down to three interlinked and substantial fields: (i) the pension
industry, (ii) asset-liability management, and (iii) the (re-)insurance industry.
We believe that this categorisation is meaningful, as most individuals are either
directly or indirectly affected by at least one of the aforementioned domains.
In addition to this, for a great majority of people, the mere connection to
portfolio choice problems is established through one of the preceding items.
Against the former background, it is noteworthy that this research has actively
contributed to the Dutch debate on pension reforms. As a companion paper to
Chapters 2, 3 and 4, we have co-authored an industry-oriented article that was
conducive to the new Dutch pension agreement.1 On the grounds of the pension

1This research was financially supported by the Network for Studies on Pensions, Aging
and Retirement (NETSPAR). NETSPAR forms a platform on which researchers and
practitioners contribute to both academic and pension-related discourse. NETSPAR
thereby aims to bridge the gap between academia and the industry. Under the umbrella
of the NETSPAR-linked theme “Design of Pension Contracts in Incomplete Markets
and under Uncertainty”, we have written this dissertation. Parts of this research have
accordingly been presented at numerous NETSPAR seminars and conferences. The article
mentioned in the main text concerns Balter et al. (2020) and appeared in NETSPAR’s
Design Series. Their Design Series consists of articles that bear relevance to the Dutch
pension debate. Subsequently, we address our article’s content in more detail.
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industry’s close ties to a.o. asset-liability management and (re-)insurance, the
foregoing contribution exemplifies this dissertation’s impact on the remaining
two domains. In the sequel, we visit the separate fields and elaborate on the
impact associated with the core chapters.

Pension Industry

All chapters included in this dissertation address problems that are relevant
to the pension industry. We first focus on the distinct chapters and then
comment on the previously mentioned article. Pension funds are in general
concerned with acquiring the best possible replacement ratios. In doing so,
they have to deal with multiple sources of unhedgeable risk. The ensuing
incompleteness can be attributed to e.g. mortality risk or extremely long-
dated/illiquid cash-flows. In addition to this, most pension funds in the EU-
area are legally obliged to keep up with clearly defined solvency requirements.
These requirements pose direct restrictions upon the funds’ feasible set of policy
rules. The corresponding situation can therefore be modelled by an ordinary
constrained terminal wealth or utility-maximisation framework. In that regard,
it is clear that the topic central to Chapter 2 becomes highly relevant. We
recall that this chapter introduces an approximate dual-control method suitable
for constrained optimal control problems. Its mechanism manages to generate
near-optimal approximations to the optimal decision variables in closed-form.
The advantages associated with this approximating routine are highly beneficial
to the pension industry. It concretely enables pension funds to reduce the
real-time computational effort required to implement their investment policies.
For similar reasons, the dual-control method furnishes analytically tractable
and useful insights regarding the impact of market incompleteness on their
executed policy rules. Moreover, the mechanism endows a fund with an explicit
framework appropriate for effectively managing non-traded risk-drivers. Due to
the cumbersome nature of market incompleteness, specifically in the pension-
linked context, such a framework constitutes a valuable asset.

In Chapters 3 and 4, we studied utility-maximisation problems involving differ-
ent types of reference levels. Chapter 3 concerned a theoretical treatment of
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multiplicative habit formation. The reference level was accordingly defined as
an endogenous or internal process. In accordance with the concept of habit
formation, we specified utility with respect to consumption over the entirety
of the trading interval. For the corresponding optimal consumption problem,
we derived a dual formulation. This primarily theoretical result gave rise to
numerous applications/insights of practical importance. From a pension fund’s
perspective, the most meaningful attributes are given by the semi-analytical
specification of optimal consumption and the dual-induced evaluation mecha-
nism. To this end, it is important to note that the habit formation framework
can be employed to study the optimal consumption/savings behaviour required
to ensure person-specific satisfaction with regard to one’s standard of living.2

In a pension-linked configuration, this setup consequently allows for the ex-
act calculation of individually optimal deposits into e.g. a DC scheme. Due
to the semi-analytical specification of the optimal consumption process, the
fund is able to infer more precisely how these optimal deposits are affected
by changes in the financial circumstances. This closed-form element therefore
enables a fund to raise realistic expectations on the subject of the participant’s
defined contributions. The evaluation mechanism can be utilised to gauge the
approximate closed-form contributions’ accuracy. Since it is difficult to handle
problems of this kind analytically, the preceding evaluation routine saves time
and opens doors to the construction of more tractable deposit-related poli-
cies. The latter touches upon the creation and implementation of dual-control
methods adapted to setups involving multiplicative habit formation.

In Chapter 4, we made use of an exogenous or externally defined reference level.
Moreover, instead of consumption over the trading interval, the agent was
assumed to derive utility from terminal wealth alone. The exogenous nature
of the reference level fits well in the confines of a terminal wealth problem.

2We stress that this point of view is unique to the multiplicative branch within the literature
on habit formation. In additive setups, an agent is required to keep consumption above
the habit level at all times. As a consequence, it is hard to interpret the habit component
as a standard of living. Adverse changes in the financial circumstances are very likely to
negatively affect an individual’s savings behaviour. One may realistically be required to
scale down consumption below the level to which he/she has become accustomed. Due to
the evident relation to pension contributions, it is clear that the additive framework is
too restrictive for individual-specific pension schemes. The multiplicative setup is in that
respect useful, as it allows for consumption below the habit component. This attribute
makes the setup amenable to interpretations provided in the main text.
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Specifically in the context of a DC scheme, the latter configuration admits a
variety of pertinent interpretations. In the chapter of interest, we predominantly
concentrated on the situation for a pension fund offering a DC scheme. For this
purpose, we identified the reference level as an individual-specific life annuity.
Moreover, to model the agent’s preferences, we relied on the LPM operator.
This operator outlines a partial hedging criterion adjusted for the agent’s risk-
tolerance. The target of optimisation correspondingly accommodates a strong
orientation towards the predefined reference level. By means of this unique
operator, we studied whether it is possible to improve the likelihood of achieving
one’s pension goals. In consideration of the new Dutch pension agreement, this
study is highly relevant for two concrete reasons. First, in conformity with the
new agreement, retirement wealth is adjusted based on the fund’s performance
over the life-cycle. Furthermore, the participant’s contributions are more or
less held fixed throughout the entire accumulation phase. The nature of the
ensuing scheme closely resembles the DC configuration at the heart of our
chapter. Second, in line with the corresponding shift in risk from the employer
to the employee, the new agreement puts more emphasis on the participant-
specific preferences. Qualifications adapted to an individual’s personal risk
profile should generate retirement-linked outcomes adequate for his/her specific
situation. The LPM framework clearly allows for a person-specific identification
of preferences, whilst retaining the possibility of favourable pension outcomes.
Apart from some technical downsides3, Chapter 4 indeed demonstrates that
the LPM criterion can significantly improve the likelihood of achieving one’s
desired pension target. Chapter 4’s setup could therefore be interesting to
pension funds operating in a.o. the Dutch second pillar.

The industry-oriented paper accompanying Chapters 2, 3 and 4 is closely linked
to the previous topic. This article is written by Balter et al. (2020) and carries
the title “Investing for Retirement with an Explicit Benchmark”. It concretely
studies the impact of a goal-based utility function on the recovery potential of

3These downsides concern the optimal policy rules. The numerical results of Chapter
4 namely revealed that the optimal solutions are highly sensitive to the estimates for
the market prices of risk. Moreover, in light of particular solvency requirements, the
numerically assessed investment strategies are difficult to implement in practice. Both
downsides can easily be handled by slight modifications of the optimisation framework.
We have addressed potential modifications in Chapter 5.
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a pension fund. For this purpose, the paper relies on a DC setup similar to
Chapter 4. The primary differences consist in the preference qualifications and
the postulates underpinning the financial environment. Whereas the former
chapter resorts to the market proposed by Koijen et al. (2009), the industry-
oriented article utilises an ordinary uni-dimensional Black-Scholes model. The
corresponding stylised market suffices to appropriately convey the benefits asso-
ciated with the target-oriented preference function. Unlike the aforementioned
chapter, the article makes use of a novel utility qualification: the dual-CRRA
function. As the name suggests, this preference qualification constitutes a
minor modification of the ordinary CRRA operator. It incorporates two CRRA
functions with different coefficients of relative risk-aversion. Depending on
whether retirement wealth exceeds a prefixed benchmark, utility is derived from
either of the two CRRA operators. This newly defined preference paradigm
correspondingly allows one to explicitly characterise an individual’s prefer-
ences around a reference level or target. For this reason, a pension fund is
merely required to estimate/calibrate two preference-linked parameters, i.e.
the separate coefficients of risk-aversion. In the context of a DC scheme, we
identified the reference level as a person-specific life annuity. Moreover, we
studied a participant who becomes notably less risk-averse when wealth falls
below the reference level. This risk-related behavior approaches the gamble-
for-resurrection phenomenon unique to prospect theory. The numerical results
suggested that the dual-CRRA function is capable of substantially improving a
pension fund’s recovery potential. This improvement was based on relative per-
formance with respect to the ordinary CRRA operator. Even though our study
can be embedded in a larger body of similar NETSPAR-linked contributions, it
was part of an explicit discussion that led to the new pension agreement. The
clause on more individual-specific and preference-linked investment strategies
can particularly be related to the article at hand.

Asset-Liability Management
Even though asset-liability management, henceforth ALM, constitutes a crucial
practice within the pension industry, we are able to highlight some unique
corresponding aspects of impact related to this dissertation. For this reason,
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it is noteworthy that the practice of ALM is not unique to pension funds.
In the domains of, for instance, (re-)insurance, banking or trading, ALM
plays a prominent role as well. We are best able to stress the impact of this
dissertation on the domain of ALM along the lines of Chapters 2 and 4. In
Chapter 2, we developed a dual-control method suitable for utility-maximisation
frameworks involving convex trading constraints. Constraints of this kind can be
modelled to account for solvency requirements and/or (partially) unhedgeable
risk-drivers. For example, by enforcing restrictions upon investments in well-
defined volatility derivatives, one arrives at a model with non-traded volatility
risk. Similar reasoning applies to e.g. mortality risk or inflation risk. By
the same token, the former type of constraints can be employed to keep an
investor from taking (extremely) large and/or short positions in any of the
traded assets. As practitioners in the field of ALM are generally confronted
with such restrictions/requirements, our duality framework bears significant
relevance to this domain. The latter also held true for the pension industry.
However, ALM as such entails a larger body of (un)hedgeable risk factors. In
addition to this, the ALM-specific interpretation of the utility-maximisation
framework considerably differs from the pension-related one. Consistent with
the configuration of Chapter 4, due to the possibly person-specific nature of a
utility function, the most obvious pension-linked interpretation pertains to a
DC setup. Therein, terminal wealth should be identified as retirement wealth,
and the reference level as a person-specific pension goal. To make the setup
amenable to ALM in a broader sense, this interpretation has to be generalised.
Terminal wealth ought to be identified as the asset process, and the reference
level(s) as the liability process. The preference function can correspondingly
be specified in a “risk-neutral” manner by means of e.g. hedging operators
or mean-variance criteria. Note here that our dual-control method applies to
generally defined state-dependent utility qualifications incorporating exogenous
benchmark variables governed by broadly specified semi-martingales.

The relevance of Chapter 2 for the extensive field of ALM is straightforward and
resembles the pension-linked importance. More specifically, the dual-control
method endows asset-liability managers with a tractable and time-efficient
tool for calculating/implementing the optimal investment strategies. Both
the efficiency and the tractability are attributable to the closed-form nature
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of the ensuing near-optimal policy rules. These features save time and allow
the managers to clearly communicate the details underpinning their strategy-
linked choices. Furthermore, due to the solutions’ analytical tractability, the
“black box” surrounding the conventional numerical applications disappears.
In other words, the exact impact of particular model specifications on the
approximate decision variables is clear and explainable. Similarly, comparative
analyses amongst a set of dual-induced strategies is fairly uncomplicated and
consequently facilitates the construction of unique policy rules. On a slightly
less fundamental level, Chapter 4’s impact on ALM can be situated in the use of
goal-based hedging criteria. We recall that this chapter studied the possibility
of improving a pension fund’s recovery potential using a strongly target-oriented
LPM operator. Akin to the preceding dual-control method, this setup can easily
be adapted to a more general ALM problem. Under a modified identification
of the terminal wealth process as well as the reference level, the setup can be
aligned with general ALM frameworks. As a result, the aforementioned recovery
potential coincides with a solvency ratio quantifying the degree up to which an
institution is able to meet its liabilities. Given the numerically verified positive
impact of the LPM operator on the recovery potential, it is clear that this target-
oriented function is also able to positively affect the preceding solvency ratio.
By means of different hedging benchmarks, our study consequently suggests
that asset-liability managers are capable of improving their results/performance.
On account of the endogeneity of the reference level in Chapter 3, the link of this
chapter to ALM is not clearly visible. Nevertheless, for situations wherein asset-
liability managers are required to withdraw capital from their asset process(es),
the multiplicative dual formulation can come in handy. Particularly in the
spirit of possible dual-control mechanisms, this framework can be employed
to facilitate numerical computations in an analytical-friendly manner. As this
closely resembles the conceptual impact of the approximating routine developed
in Chapter 2, we do not elaborate on the technical details.

Insurance Industry
Great parts of the (re-)insurance industry are concerned with the design and
related pricing of products. Well-known products crucial to the life and non-life
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sectors are health insurances and car insurances, respectively.4 More abstract
and technical products are handled by re-insurers, which may entail e.g. the
evaluation of options on risk carried by an insurer. In pricing these products,
the insurance industry as well as the re-insurance industry are obliged to
deal with a great body of unhedgeable risk-drivers. For life-linked setups,
products straightforwardly hinge upon a.o. mortality/longevity risk. Likewise,
in configurations relevant for the non-life branch, claim sizes and corresponding
frequencies are typically subject to unhedgeable sources of uncertainty. Due
to the involvement of (partially) non-traded risk-drivers, the aforementioned
pricing process is highly nontrivial. In agreement with our analysis on optimal
investment in the presence of trading constraints, this process generally requires
computationally demanding applications that lack analytical tractability. Put
differently, the risk-neutral evaluation of insurance-linked products can be time-
consuming and may pose mathematical challenges. In an attempt to tackle
both issues in a relatively understandable manner, the dual-control method
central to Chapter 2 proves useful. Moreover, to improve the performance of
replicating strategies associated with particular products, the results in Chapter
4 are helpful. We note that the technical finding outlined in Chapter 3 is not
compatible with conventional pricing schemes. By virtue of the endogeneity
of internal habit components, the framework cannot be reconciled with most
evaluation methods. Therefore, in the sequel, we solely elaborate on the precise
impact of Chapters 2 and 4 on the (re-)insurance industry.

On account of the universal mechanism underscoring pricing routines, we
subsequently do not distinguish between insurers and re-insurers. For the
same reason, the impact of this dissertation on general pricing techniques
reaches beyond the insurance industry. Investment banks or private investors
can possibly benefit from our research as well. However, in view of the
fact that (re-)insurance companies occupy a substantial part of the market
for financial/actuarial products, we confine ourselves to an impact-related

4In this regard, we deem it noteworthy that almost all EU-citizens are in possession of at
least a health insurance. In, for example, the Netherlands and Germany, having a health
insurance is required by law. Similarly, although not necessarily enforced by legislation,
most individuals in possession of a car have an automobile insurance. In addition to these
widespread products, a great amount of people wish to purchase e.g. mortgage-linked
insurances, life insurances, or personal liability insurances. This stresses the omnipresence
of insurance products and their importance for society.
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assessment of this sector alone. The latter choice is corroborated by the large
amount of individuals who are actively involved in the purchasing process of
insurance-linked products, e.g. health insurances or car insurances.

We have already addressed the possible computational and mathematical issues
involved with the pricing procedure of insurance-linked products. The bur-
densome nature of this process is principally attributable to the partial or full
non-tradeability of certain risk-drivers. In the confines of utility-maximisation,
the dual-control method developed in Chapter 2 is capable of coping with
this unhedgeability in a tractable and efficient way. For the upsides of this
dual-control method, one can visit the preceding sections or Chapter 1. Hence,
to underline the relevance of this duality mechanism for pricing schemes, we
must disclose the link between utility-maximisation and risk-neutral evaluation
techniques. As it is debatable whether investors at insurance companies can be
classified as risk averse or risk-seeking individuals/agents, preference qualifica-
tions do not appear to be the greatest targets of optimisation. Nevertheless, the
generality of the utility operators included in our dual-control framework allows
for more “risk-neutral” objective functions. Examples of such operators include,
but are not limited to, the LPM criterion from Chapter 4 or concavified variants
of the celebrated mean-variance function. We recall that the state-dependent
preference qualifications in Chapter 2 may incorporate exogenous benchmark
processes or reference levels. Therefore, under the additional identification of
these reference levels as insurance products, the utility-maximisation problem
reduces to a setup suitable for finding the best replicating strategies. These
replicating strategies would correspond to a fixed initial endowment. To find
the “best” price, the (re-)insurer can determine this endowment in such a
manner that the replacement ratio exceeds 100% with a probability of, say,
99%. The latter implies that, in 99% of the cases, the near-optimal analytical
replicating strategy generates a proper (partial) hedge against the uncertainty
induced by the product. As a result, the corresponding price seems appropriate.
The outcomes reported in Chapter 4 demonstrate that a pricing approach of
this kind is able to render viable outcomes.

In a similar fashion, one can adapt our dual-control mechanism to utility
indifference pricing techniques. These setups do not necessarily depend on
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“risk-neutral” characterisations of the preference functions. In fact, this pricing
technique makes explicit use of Inada-type utility functions in an attempt to
compute fair evaluations of partially non-traded insurance products. Utility
indifference pricing works along the lines of two interrelated problems as follows.
In the first problem, one simply solves for the optimal trading strategy. Utility
is here derived from terminal wealth alone. Taking into account this is far from
straightforward in the presence of non-traded risk, our dual-control method
comes in useful. In the second problem, one also solves for the optimal trading
strategy. However, the agent is endowed with his/her initial capital minus a
constant amount of monetary units. In addition to this, utility is derived from
terminal wealth plus the insurance product. For reasons addressed around the
first problem, our dual-control method may be utilised to arrive at tractable
near-optimal solutions for the relevant policy rules. According to the principle
of indifference pricing, the fair price for the preceding product is equal to
the aforementioned amount of monetary units. This amount must namely be
determined such that the objective functions of both problems are equal to
each other. Indifference pricing typically relies on utility functions from the
exponential family to derive closed-form expressions. Other utility functions
in general pose problems with regard to an analytical retrieval of optimal
replicating strategies and/or indifference prices. Our approximating routine
enlarges this narrow class of applications. The (re-)insurance industry can
consequently employ our dual-control routine to find tractable indifference
prices in an efficient way for a considerably larger class of (more realistic)
utility choices. This shows how our research facilitates and improves the
financial/actuarial fair pricing of insurance products. The fair nature benefits
both the (re-)insurers and the large number of insured agents.
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