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Abstract The notion of modularity has become a unify-

ing principle to understand structural and functional

aspects of biological organization at different levels of

complexity. Recently, deciphering the modular organiza-

tion of molecular systems has been greatly aided by net-

work theory. Nevertheless, network theory is completely

absent from the investigation of modularity of complex

macroscopic phenotypes, a fundamental level of organi-

zation at which organisms experience and interact with the

environment. Here, we used geometric descriptors of

phenotypic variation to derive a network representation of

a complex morphological structure, the mammalian man-

dible, in terms of nodes and links. Then, by integrating the

network representation and description with random matrix

theory, we uncovered a modular organization for the

mammalian mandible, which deviates significantly from an

equivalent random network. The modules revealed by the

network analysis correspond to the four morphogenetic

units recognized for the mammalian mandible on a

developmental basis. Furthermore, these modules are

known to be affected only by particular genes and are also

functionally differentiated. This study shows that the

powerful formalism of network theory can be applied to the

discovery of modules in complex phenotypes and opens the

possibility of an integrated approach to the study of mod-

ularity at all levels of organizational complexity.

Keywords Geometric morphometrics �
Correlation networks � Variational modularity �
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Introduction

Complex phenotypes that function as integrated and

cohesive units are heterogeneous systems with inherent

attributes of diversity, individuality of components, and

localized interactions among components (Wagner 1996;

Levin 2003). A fundamental challenge in evolutionary

biology is to identify such individual components as sets of

statistically correlated phenotypic traits that are loosely

coupled with other such sets of traits (Schlosser and

Wagner 2004). Sets exhibiting such properties are defined

as variational modules (Schlosser and Wagner 2004;

Wagner et al. 2007). Variational modularity plays a fun-

damental role in the evolution of species because patterns

of covariation at the phenotypic, macroscopic level may in

turn affect the evolution of molecular networks (Wagner

et al. 2007). In fact, the notion of modularity, in which the

elements in a system are grouped into highly connected

subsets (modules) that are more loosely connected to other

such groups (Schlosser and Wagner 2004), has become a

unifying principle to understand structure and function at
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different levels of biological organization (Raff 1996;

Winther 2001; Schlosser and Wagner 2004; Hintze and

Adami 2008). At the molecular level, the architecture of

developmental gene regulatory networks is modular, with

components that execute specific functions, such as the

specification of cell identity (Davidson and Levine 2008).

Protein–protein interaction networks are also highly mod-

ular in structure (Wang and Zhang 2007). Recently, the

statistical mechanical formalism of complex network

theory has proven useful to discover and characterize

modularity at the molecular level of organizational com-

plexity (Ravasz et al. 2002; Guimerà and Amaral 2005;

Newman 2006; Sales-Pardo et al. 2007; Kreimer et al.

2008; Ma’ayan 2009). Complex network theory, however,

is conspicuously missing from the study of modularity at

the phenotypic level, such as that of complex morphological

structures. The network formalism represents a potentially

powerful approach to the study of variational modularity

because its tools do not rely on any preconceived notion of

modularity (Newman 2006), leading to the detection of

modules based solely on the patterns of interaction (Hintze

and Adami 2008; Wang and Zhang 2007).

This article demonstrates for the first time the applica-

tion of complex network theory and random matrix theory

to the discovery and characterization of variational mod-

ularity. At this level of organizational complexity, the

elements, or nodes, are quantitative traits and the connec-

tions, or edges, are measured as statistical correlations

(Wagner et al. 2007). To achieve this goal, we used as a

reference the mammalian mandible, a model system for the

study of development and evolution of complex morpho-

logical structures (Atchley and Hall 1991; Hall 2003). The

shape of the mammalian mandible at the macroscopic,

morphological level reflects components whose individu-

ality traces back to separate populations of cells called

condensations. The formation and dynamics of condensa-

tions are, in turn, governed by different genes and gene

cascades (Hall 2003). Measures of morphological variation

in the mandible were derived from the methods of geo-

metric morphometrics (Bookstein 1991; Adams et al.

2004). The geometric approach leads naturally to a network

representation of quantitative morphological variation:

samples of discrete points (landmarks) taken from pheno-

typic structures are the nodes and the edges are, as

required, the statistics of correlation (Wagner et al. 2007).

Here we integrate the tools of complex network theory and

geometric morphometrics to answer the following ques-

tions: Can structural modularity be uncovered from com-

plex morphological phenotypes? Is the modular structure

biologically meaningful in the sense of corresponding to

developmental, functional, and genetic units? Our results

demonstrate that complex network theory can be at least

as effective for the discovery and characterization of

variational modularity as it has been for the understanding

of the molecular level of organizational complexity.

Materials and Methods

Data

We analyzed a pooled sample of 51 male and female

specimens of the echimyid rodent Trinomys sp. (viz.,

T. albispinus, T. bonafidae, T. dimidiatus, T. elegans,

T. eliasi, T. iheringi, T. panema, T. paratus, T. setosus).

These species are closely related phylogenetically

(Galewski et al. 2005) and are very similar in mandibular

shape (Perez et al. 2009). The specimens included in this

study were adults defined by the presence of the third molar

with formed occlusal surfaces.

The mandible shape was captured as two-dimensional

(2D) coordinates in a lateral digital image view (Fig. 1).

Images of the mandible were obtained with an Olympus SP

350 digital camera. The x- and y-coordinates for 14 land-

marks were recorded using the tpsDIG 2.10 software

(Rohlf 2007). As in other studies, the landmarks defined

here were chosen on the expectation that they approximate

the skeletal regions derived from mesenchymal condensa-

tions involved in the development of the mammalian

mandible (Atchely and Hall 1991). The landmarks are

defined as follows: 1. The antero-dorsal border of the

incisive alveolus (AlvA1); 2. The boundary between the

molar alveolar and incisor alveolar on the dorsal curve of

the mandible (AlvA2); 3. The anterior edge of the tooth-

row (AlvP1); 4. The posterior edge of the tooth-row

(AlvP2); 5. The tip of the coronoid process (Coron1);

6. The anterior-most point on the curve of the coronoid pro-

cess (Coron2); 7. The anterior edge of the articular surface

of the condyle (Cond1); 8. The tip of the condylar process

(Cond2); 9. The posterior-most edge of the articular surface

of condyle (Cond3); 10. The anterior-most point on the

curve of the posterior boundary of the mandible (Ang1);

11. The tip of the angular process (Ang1); 12. The dorsal-

most point on the ventral border of horizontal ramus

(AlvP3); 13. The boundary between the incisor alveolar

and mandible corpus on the ventral curve of the mandible

(AlvP4). 14. The antero-ventral border of the incisive

alveolus (AlvA3).

Superimposition and Statistical Analyses

The x- and y-coordinates for the 14 landmarks of the

mandible were aligned by a Generalized Procrustes Anal-

ysis, whereby landmarks were optimally translated, scaled

and rotated using a least squares criterion (Bookstein 1991;

Adams et al. 2004). In addition, these coordinates were
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rotated around their common centroid to achieve the

occlusal plane (see Klingenberg et al. 2003). These pro-

cedures generate an arbitrary, but functionally significant,

orientation of the landmark coordinates, allowing compare

with previous studies of rodent mandible (e.g. Klingenberg

et al. 2003). The superimposition analyses were performed

with the CoordGen6f software (Sheets 2003). Finally, we

measured the associations among landmark coordinates

using Pearson correlations and covariances. We used both

measures because the correlations among landmark coor-

dinates could have a major dependence on the orientation

of the coordinate axes (Klingenberg and Zaklan 2000). In

order to control for mean differences of the landmark

coordinates among Trinomys species, correlations and

covariances were estimated using residuals from the mean

for each species (Marroig and Cheverud 2001; Porto et al.

2008). The residuals were calculated with a General Linear

Model. The correlations and covariances obtained describe

the linear relationship between two landmark coordinates.

These statistics have been widely used in correlation net-

works analyses (Steinhauser et al. 2008).

Computation of the Optimal Correlation Coefficient

Threshold

In the network representation of the mammalian mandible,

the nodes are the anatomically defined landmarks points

(Fig. 1) and the links among the landmarks were estimated

as Pearson correlation coefficients. For construction of the

correlation networks (Wagner et al. 2007; Steinhauser et al.

2008), the associations among landmark coordinates were

combined into a square and symmetrical matrix with n

landmark coordinates (n 9 n relationship matrix). The

application of graph analyzing methods requires the con-

version of the relationship matrix into a (n/2 9 n/2) binary

adjacency matrix A (Steinhauser et al. 2008) of landmarks.

Particularly, we then quantified the modularity of the

mandible network using the algorithm of Guimerà and

Amaral (2005), which is the most accurate method avail-

able in the literature to date (Danon et al. 2005). This

algorithm nevertheless operates on binary matrices and, as

a consequence, the matrix of Pearson correlation coeffi-

cients must be converted into a matrix of zeros and ones,

the adjacency matrix (Albert and Barabási 2002). This is a

crucial step in the correlation network analysis because the

correlation threshold used for the discretization has to be

chosen optimally (Steinhauser et al. 2008). The correlation

threshold is the absolute value of correlation coefficient, r,

below which a statistical interaction between nodes, that is,

landmark points, is regarded as nonexistent and a value of

zero is entered into the adjacency matrix (Steinhauser et al.

2008). In the opposite case, a value of 1 is assigned to the

adjacency matrix. The binary adjacency matrix A has

dimension n/2 because we used landmarks as the nodes and

there are two associations (one for each landmark coordi-

nates) that define the connection between two landmarks.

Because a PROTEST analysis (with 10,000 permutations;

Peres-Neto and Jackson 2001) showed a high and signifi-

cant association between correlation and covariance

matrices (r = 0.6404; P = 0.0001), we used the correla-

tion matrix in the analyses.

Here we introduce a new two-step procedure to find the

optimal correlation threshold. In the first step, we derived an

interval for the optimal correlation threshold from the

numerical behavior of the eigenvalues of adjacency matrices

for different values of correlation thresholds (r), varying in

their absolute values from r = 0.05 through 1.00, at 0.05

increments (Table 1). For a correlation threshold of

r = 0.05, almost all eigenvalues of the corresponding

adjacency matrix are identical. This happens because most

elements in the correlation matrix exceed the correlation

threshold of r = 0.05 and, consequently, most entries in the

corresponding adjacency matrix will be ones (Table 1). As

the correlation threshold increases from r = 0.10 to 0.20,

the eigenvalues begin to vary in magnitude and as one gets

to r = 0.25 all eigenvalues of the corresponding adjacency

matrices are different (Table 1). A similar result is obtained

for a correlation threshold of r = 0.70. Here all coefficients

in the correlation matrix are smaller than the correlation

threshold and, consequently, the corresponding adjacency

matrix will have zeros in all entries (Table 1). Therefore, all

eigenvalues of the adjacency matrix for this correlation

threshold will also be zero. As the correlation threshold

decreases from r = 0.65 to 0.50, the homogeneity of the

eigenvalues of the corresponding adjacency matrices also

decreases. Finally, at r = 0.45, most eigenvalues are dif-

ferent (Table 1). This numerical experiment demonstrates a

change in the behavior of the correlation thresholds as

inferred from variation in the magnitude of the eigenvalues

of the corresponding adjacency matrices, and reveals an

interval, from r = 0.25 to 0.45, which should contain the

optimal correlation threshold. This interval was further

narrowed using the criterion of statistical significance

Fig. 1 The fourteen two-dimensional landmarks defined for the

mandible
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(Steinhauser et al. 2008). At an alpha value of 0.05 and given

our sample size, we arrive at r = 0.35 as the lowest sig-

nificant correlation in our correlation matrix, resetting the

correlation threshold interval between r = 0.35 and 0.45. In

the second and final step, we used Guimerà and Amaral0s
(2005) algorithm to find out which value of r inside this

interval maximizes the statistic of modularity, M (see

below). For the values of r used, 0.35, 0.40, and 0.45, the M

statistic was calculated as 0.19, 0.36, 0.58, respectively.

Therefore, the estimated optimal correlation threshold was

r = 0.45 (P = 0.005) for a largest maximum M of 0.58.

Variational Modularity and Network Analyses

Network modularity was computed using a simulated

annealing algorithm (Guimerà et al. 2004; Guimerà and

Amaral 2005). Simulated annealing allowed us to estimate

the modularity of any network generated using the optimal

interval defined above without an a priori specification of

the number of modules (Guimerà and Amaral 2005). The

value of the modularity, M (Guimerà et al. 2004), for the

matrix A was calculated as

M ¼
XNm

s¼1

ls

L
� ds

2L

� �2
" #

ð1Þ

where Nm is the number of modules, L is the number of

edges in the network, ls is the number of edges between

nodes in module s, and ds is the sum of the degrees of the

nodes in module s. Then, in order to test the significance

of the modular structure of the original network, we

calculate the modularity for 1,000 random graphs with the

same degree (connectivity) distribution as the original

network.

The deviation from the random structure of the adja-

cency matrix of the mandible network generated for the

optimal correlation threshold was also investigated using

methods from random matrix theory (Albert and Barabási

2002; de Aguiar and Bar-Yam 2005). The smoothed den-

sity of eigenvalues of the adjacency square matrix A is

defined as

qe kð Þ ¼ 1

N

XS

i

de k� kið Þ ð2Þ

where ki are the eigenvalues, and N is the total number of

nodes in the network. de is a normalized Gaussian whose

width e controls the smoothness of density function

(de Aguiar and Bar-Yam 2005). The smoothed density of

eigenvalues allows a visual characterization of the network.

In order to use it as a benchmark we also described the

structure of the random (Wigner) matrix for our network

(see additional details in Albert and Barabási 2002;

de Aguiar and Bar-Yam 2005). A related approach basedT
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on the eigenvalues distribution has been used previously to

describe relationship matrices (Wagner 1984).

The network analyses were performed with Netcarto

(Guimerà and Amaral 2005; Guimerà et al. 2004), Spectral

series (de Aguiar and Bar-Yam 2005) and Pajek 1.23

software (Batagelj and Mrvar 2008). Procrustes analyses

were performed using function protest in the vegan pack-

age for the R-system (Oksanen et al. 2008).

Results and Discussion

Application of the procedure described here yielded an

estimated optimal correlation threshold of r = 0.45 (P =

0.005) for a largest maximum M of 0.58. The significance

of the modular structure of the mandible network calcu-

lated with the optimal correlation threshold of r = 0.45

was then assessed by comparing it with a random network

of the same size and distribution of links per node as the

mandible network. The modularity of the mandible net-

work (M = 0.58) is significantly larger than that of the

random network, for which M = 0.44 (confidence interval;

0.40–0.48). The deviation from randomness of the mandi-

ble network was also assessed graphically by plotting the

level spacing distribution of the eigenvalues of the adja-

cency matrix generated from the optimal correlation

threshold for r = 0.45. This technique, originally from

random matrix theory (Mehta 2004), has been used

recently to investigate the topology and structure of

molecular networks (de Aguiar and Bar-Yam 2005; Palla

and Vattay 2006). For the randomized adjacency matrix of

the mandible network generated for the optimal correlation

threshold (r = 0.45), the level spacing distribution follows

the well-known Wigner0s semicircle law (Fig. 2a). On the

other hand, the level spacing distribution for the eigen-

values of the mandible network with an estimated M of

0.58 deviates remarkably from Wigner0s semicircle

(Fig. 2b). Therefore, Guimerà and Amaral0s (2005) algo-

rithm and random matrix theory are useful to study the

modular structure of the mammalian mandible network.

The deviation from the random graph implies that the

graph representing the mandible has an internal structure,

whose modular nature was discovered using Guimera

and co-workers’ network method (Guimerà et al. 2004;

Guimerà and Amaral 2005). We identified four modules in

the mammalian mandible by Guimerà and Amaral0s (2005)

algorithm for the optimal partition of the network in terms

of landmarks points, as follows (Fig. 3): Landmarks

AlvA1, AlvA3 and Cond3; landmarks AlvA2, AlvP1,

AlvP2, AlvP3, and AlvP4; landmarks Coron1, Coron2,

Cond1, and Ang1; and landmarks Cond2 and Ang2.

These modules correspond with four morphogenetic units

recognized for the mandible (Atchley and Hall 1991;

Cheverud 2004), namely, the incisor and molar alveolar

units and the anterior and posterior regions of the processes

in the ascending ramus.
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B

Fig. 2 a The smoothed density of eigenvalues for the randomized

adjacency matrix. b The smoothed density of eigenvalues of the

adjacency matrix of landmarks of the mandible

Fig. 3 The network for the adjacency matrix of landmarks of the

mandible. The different colors represent the modules identified with

the Guimerà et al. (2004) algorithm. The dashed lines represent

connections between modules. (Color figure online)
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The variational modules revealed in the mammalian

mandible by complex network methods can be related to

other levels of organizational complexity. At the genetic-

molecular level, knockout experiments in mice demon-

strate that some genes affect only particular mandible

units. For example, the msx-1 gene has effects on the

teeth and associated alveolar bone, whereas the TGFß-2

gene is required for the growth of the three processes in

the ascending ramus (Hall 2003). More generally, several

studies of quantitative trait loci (QTL) by Cheverud and

collaborators have shown that gene effects tend to be

limited to specific developmental regions of the mandible

(Cheverud et al. 1997; Ehrich et al. 2003; Cheverud

2004). In particular, Cheverud (2004) pointed out that

27% of studied QTL affected some individual mandible

units (i.e. coronoid, condylar and angular process, incisor

and molar alveolar), 44% have effects on the alveolar

region or the posterior processes and 29% affect the

whole dentary bone.

At the developmental, histogenic history level there is

also evidence of modularity for the mandible. The ramal

processes form by intramembranous ossification and then

the cartilage is replaced by bone through endochondral

ossification. The alveolar region, however, forms by

intramembranous ossification, but from a condensation of

cells that also differentiates into the fibroblasts of the

periodontal ligament (Hall 2003). Finally, the mandible has

regions that are functionally differentiated, thus displaying

functional modularity (Cheverud 2004; Wagner et al.

2007). The posterior processes serve as a region for muscle

attachment: the temporalis muscle is inserted into the de

coronoid process, the lateral pterygoid is inserted into the

condylar process, and the masseter and medial pterygoid

muscles are inserted into the angular process and the cor-

pus mandibular. In addition, the anterior portion of the

mandible serves as the support for the incisor and molar

teeth.

In summary, variational modularity could be influenced

directly or indirectly by genetic, developmental and

functional factors (Cheverud 2004; Hallgrimsson et al.

2007; Wagner et al. 2007). For example, maintenance of

bone morphology depends on continuing interactions with

tooth and muscle (Atchley and Hall 1991; Hall 2003;

Cheverud 2004). The genetic and functional evidence of

mouse mandible structure corresponds with our results,

suggesting the importance of the muscle and teeth

attachment region, as well as gene effects, to explain the

variational modularity in the mammalian dentary bone.

The modularity that we see in the mandible could result

from the overlaying of these genetic, developmental and

environmental factors and processes appearing during

ontogeny, which determine the pattern of modularity

among morphometric traits (Hallgrimsson et al. 2007;

Mitteroecker and Bookstein 2009). Therefore, the mech-

anisms by which genetics, development and function

contribute to the formation and maintenance of variational

modularity could be relevant for understanding morpho-

logical variability and the evolutionary change. Never-

theless, it should be kept in mind that the multiple factors

determining modularity can produce the same association

structure (Hallgrimsson et al. 2007; Mitteroecker and

Bookstein 2009).

The statistical mechanical formalism of complex net-

work theory provides a powerful and robust insight into

patterns of variational modularity and promises a new

avenue to understand the origin and maintenance of phe-

notypic organization. This framework entails questions of

detection and description of patterns of modularity and

represents a critical initial step to test hypotheses about the

factors and processes which determine modularity (Levin

1992). Moreover, the network approach may allow future

studies to compare modularity across different levels of

biological complexity.
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