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1 Introduction

A language is never immutable and uniform. The language we speak today is different from
the language spoken a hundred years ago; a person from Liverpool most likely uses a variety
of English that is distinctive from that of a Minnesotan speaker. Moreover, the language one
uses when writing a professional email is probably vastly different from how one would write
a casual, informal message to a close friend. These can all be seen as examples of language

variation. Language change is variation over time and can be observed by comparing historical
texts with contemporary ones, should such written records be available for the language in
question. Variation in modern languages is something we all can easily observe in our everyday
lives, although we may not always be aware of it. Most of us will instinctively use a slightly
different form of language when speaking with an elder or a child, and we might deduce that
a speaker is from a certain region by listening to how they speak. No one speaks—or writes—
exactly the same in every possible situation.

Text normalisation is the process of converting non-canonical written language to a standard-
ised form. This can happen in the form of transforming historical texts to contemporary writing,
or mapping user-generated content to a standard, “normal” text. Natural language processing
tools that have been trained on traditional text material often suffer from performance drops
when applied to non-standard language, such as social media data, and one way to overcome
this problem is text normalisation (Matos Veliz et al., 2019). A normalisation step can then be
applied to text like any other upstream component, such as tokenisation or named entity recog-
nition (NER), before downstream processes are introduced in the pipeline. Dialectal language,
both written and spoken, is a topic of interest in natural language processing, and such data also
typically requires a normalisation step before other tools or applications are implemented.

This thesis focuses on text normalisation in the context of Finnish dialects. Finnish is an agglu-
tinative and morphologically rich language, meaning that a considerable amount of grammatical
information is expressed already at the word level through a morphological process known as
agglutination. This typically results in a large inventory of possible word-forms, since the stem
of a word may be combined with one or more inflectional morphemes to indicate a variety of
grammatical or syntactic features, such as case, mood, person, or tense (Chahuneau et al., 2013;
Tsarfaty et al., 2013). Consequently, the probability of out-of-vocabulary (OOV) words is a
non-trivial challenge, especially when working with morphologically rich languages, and the
introduction of dialectal words and other non-standard language complicates the situation even
further. In the age of social media, dialectal language also finds its way onto communication
platforms more frequently, and the data available on dialectal language is steadily becoming
increasingly abundant.
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1.1 Motivation

Languages differ from each other in how their users tend to use non-standard language in writ-
ten form. In the case of Finnish, the spoken regional varieties differ greatly from the written
standard, and because of the phonemic nature of the Finnish orthography, these dialectal differ-
ences can also be expressed through writing (Hämäläinen et al., 2020b). Therefore, in informal
writing, people often tend to write words as they would pronounce them in real life. This differs
from the typical usage of English in that even though different varieties of the language can
have vastly different pronunciations of the same word, the spelling generally stays the same.
This makes Finnish a curious case for text normalisation studies, and papers have recently been
written on the topic: both on dialect text normalisation (Partanen et al., 2019), where dialectal
text is translated into Standard Finnish, and on dialect adaptation (Hämäläinen et al., 2020b),
where text written in Standard Finnish is instead adapted to different dialects.

Personally, there were mainly two separate but related motivations for choosing this topic: First,
the idea of working with Finnish, my native language, was very appealing to me. Second,
I have always been fascinated by different dialects and language variants, and I also speak a
regional variant that is slightly different from the standard colloquial dialect of Finnish. Looking
into the future, it would be rewarding to see, for example, an automatic speech recognition
system developed for Finnish that would understand not only the standard language, but also
the different spoken dialects. While I do not use speech data in my own experiments, automatic
speech recognition (ASR) and spoken dialects are discussed in Section 2.1.2, and it is a research
topic that I find definitely interesting. Should the opportunity arise, I would one day like to work
with dialectal speech and automatic speech recognition. However, for the scope of this thesis, I
will only focus on text data.

The paper written by Partanen et al. (2019) has also greatly influenced my thesis, and my own
experiments rely heavily on their work. In addition to research on the topic, Partanen et al.
have also released a text normalisation tool for Finnish as part of an open-source library called
Murre1, maintained by Mika Hämäläinen. The Murre tool can additionally be used to normalise
dialectal Swedish and historical Finnish, and there is also an option to generate different Finnish
dialects. I started my thesis by following in the authors’ footsteps, using the same dataset and
normalisation methods. One of the research questions I had from the start was whether I would
be able to replicate the results reported in their paper, and that was largely the driving force at
the beginning of my journey. I then continued with further experiments, mainly changing the
model architecture and adjusting the type of data that is fed to the models. The results obtained
from these experiments were then compared to the ones reported by Partanen et al. (2019).

1https://github.com/mikahama/murre
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1.2 Research Questions

As was already mentioned, my first task was to see whether I could replicate the results obtained
by Partanen et al. (2019). Afterwards, I used various different model architectures and input data
types to conduct further experiments, finally comparing the end results. My aim was to see if
these changes would have an effect on the prediction outputs generated by the models, and if
so, what kind of an effect: whether the different methods or input strategies would worsen the
results or improve them.

Thus, the research questions of this thesis are the following:

1. How does the model architecture or the input data influence dialect normalisation?

2. What can be done to improve Finnish dialect normalisation?

1.3 Structure of the Thesis

After the introductory chapter, the next section will focus on some of the related work that
has been done on the subject of text normalisation. I will first go through the different types
of text normalisation, or rather the various domains on which normalisation methods are most
often applied: historical text, spoken language, and user-generated content. After this, I will
also cover the different methods commonly used for text normalisation. In the following two
sections, I will describe the dataset and the methods I used to perform the experiments. Here,
I will also discuss the different metrics that I used in the evaluation process. After that, I will
discuss the results and findings. Finally, the last section will contain the conclusions drawn
from this thesis.
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2 Background & Related Work

2.1 Text Normalisation Applications

2.1.1 Historical Text

Normalisation of historical texts, or modernisation, is the task of converting historical word-
forms to their contemporary equivalents. Digitisation projects are happening all over the world,
allowing the utilisation of natural language processing tools and techniques on large collections
of historical documents. However, natural language processing of historical texts faces several
challenges, a major one of which is spelling variation (Piotrowski, 2012). Texts that predate
standardised orthography often differ significantly from modern ones in their spelling conven-
tions; moreover, even texts written in the same time period and by the same author can contain
a wide variety of different spelling choices. While there is a certain degree of variation in mod-
ern languages as well—for example, the so-called American and British spellings (color vs.
colour, gray vs. grey)—the variation found in spelling conventions is much rarer than it used
to be (Piotrowski, 2012). For example, in historical texts, the English word their can be found
written in several different forms, such as thir, thayr, theaire, and þere, to mention only a few
possible variations (Bollmann, 2019).

Several methods have been used in automatic text normalisation of historical texts. In a large-
scale comparison overview, Bollmann (2019) separates the different contemporary approaches
into five categories: substitution lists, rule-based methods, distance-based methods, statistical
models, and neural models. The different normalisation methods will be discussed in more de-
tail in Section 2.2, excluding the simplest technique, which will be covered here: substitution
lists, also known as lexical substitution or wordlist mapping. This is a conceptually very simple
approach that uses a precompiled dictionary to map historical word-forms to their normalised
forms. While this method might not be enough by itself, it can however be useful as a compo-
nent in a more complex normalisation system (Bollmann, 2019). Such approach is utilised in
the implementation of the Variant Detector (VARD) tool, trained on Early Modern English data
from the 16th–19th century (Rayson et al., 2005; Baron and Rayson, 2008), and the Norma tool,
originally developed and evaluated on Early New High German (Bollmann, 2012). In addition
to substitution lists, Norma uses both rule-based and distance-based algorithms, and VARD 2
includes a rule-based component. Rule-based and distance-based approaches will be explained
in Section 2.2.1.
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2.1.2 Spoken Language

Language variation was briefly mentioned in Section 1, and one form of language variation that
is probably familiar to most people is the use of dialects. While clear definitions can some-
times be challenging—what constitutes a language, where is the line between a language and a
dialect—dialects are usually seen as mutually intelligible varieties of one particular language.
Distinguishing features may occur on any level of language: phonology, morphology, syntax,
or lexicon. When the observable distinctions between dialects are mainly realised as differences
in pronunciation, the term accent may also be used instead. In any case, a dialect is a language
variety that is used by the members of a particular group of speakers: this can be a regional va-
riety, such as Liverpool English, or a variety that is otherwise characteristic of a specific group
of people, such as African-American Vernacular English. A dialect that is predominantly used
by a specific ethnic group is also known as an ethnolect, while a language variety associated
with a particular social group—for example, an age group or a social class—can also be called
a sociolect.

While sometimes the differences between dialects are relatively small or even barely noticeable,
sometimes these differences are substantial enough to affect intelligibility. However, humans
are remarkably skilled when it comes to languages. Language production is a natural and ef-
fortless task for most of us, but we also excel at understanding the language produced by others.
Even if a person is speaking in a way that is very different from our own—for example, using
unfamiliar dialectal words or unusual pronunciation—we may very well be able to understand
their speech without problems. The speech situation in itself already gives the interlocutors
context that helps in language comprehension: not only the topic, but also the physical location
in which the conversation takes place, the social roles of the participants, and so on. For ex-
ample, the sentence The thing is under the thing would make no sense without context, but if
the topic is a missing item and the location is a sparsely furnished room—perhaps the speaker
is even gesturing towards a table while they utter the sentence—the listener is quick to deduce
that the item they are looking for is probably found under the table. Speech errors are also
something that we all make from time to time, and these errors are generally not a problem for
the conversation partners. In addition to various contextual clues, all humans have a wide array
of general information available to us, both linguistic and non-linguistic; telling us whether an
utterance is grammatical according to the rules of the language that is being spoken, or whether
its contents are sensible based on our general understanding of the world.

Humans might be proficient in natural language understanding, but what about machines? What
about natural language processing? Let us imagine an application that accepts spoken human
commands as input. The application in question has been trained on large amounts of speech
data, but all or most of this data is gathered from speakers of a particular dialect. What happens
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when someone who speaks the same language, but a decidedly different dialect, tries to use this
application? If they speak with a distinct accent that the system has never before seen in its
training data, their input might be unintelligible for the system. The dialect speaker might then
choose to alter their own pronunciation to make it more understandable for the application, but
this can lead to frustration and a poor user experience. Furthermore, if the purpose of the tool
is to convert spoken language into written text, the system should be able to produce text that
is intelligible even to people who speak the language differently: in most cases, this means that
the output text is in standard language, which is often deemed the most “neutral” option.

Text-to-speech (TTS) and speech-to-text (STT) applications typically require the text to be in a
standardised form, regardless of the direction of the conversion. A text-to-speech system that
converts written language into synthesised human speech requires the input to be in a form that
the system understands; while a speech-to-text system—also called automatic speech recogni-
tion (ASR)—typically produces text in standardised writing as its output. As the natural spoken
language can be very different from the written standard, text normalisation is needed when
speech is converted to text. While normalising dialectal variants is a major part of ASR, there
are also other aspects to consider: for example, dates and numbers. The spoken English utter-
ance thirty-nine dollars and ninety-nine cents would typically not be written as such, but rather
the segment would be converted to a more conventional string of symbols, $39.99. Similarly,
the Finnish phrase kolmas toukokuuta ‘May the third’ would probably be transformed into 3.5.

in the written form.

Swiss German has been of special interest in the context of text normalisation: regional variation
is strong, and while the different dialects are widely used in spoken everyday communication,
there is no standard orthography (Samardžić et al., 2015; Nigmatulina et al., 2020). For this
reason, there is a growing interest for Swiss German in ASR technology as well. For exam-
ple, a choice has to be made as to how non-standardised input language is represented in the
system’s output. Nigmatulina et al. (2020) explore two different approaches: dialectal writing
and normalised writing. In their experiments, the dialectal writing composes of approximate
phonemic transcriptions that are meant to roughly correspond to the acoustic signal, whereas
the normalised writing resembles standard German. The latter provides some consistency, but
the correspondence between graphemes and the acoustic signal is less apparent. The situa-
tion with two different transcription strategies is to some extent similar to the Finnish language
dataset used in this thesis: the normalised annotation is close to Standard Finnish, while the
semi-narrow transcription resembles the original spoken samples. The dataset will be discussed
in more detail in Section 3.1.
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2.1.3 User-Generated Content

The ability to process and understand non-standard language is required in a variety of natural
language processing applications and tools. Such an application does not even need to be ad-
vanced enough to use speech data: the same problems described in Section 2.1.2 persist with
written language. Even if a language does have a standardised orthography, its speakers might
not be aware of all the writing conventions or choose to ignore those altogether. Again, con-
text matters: one would not be overly concerned about correct spelling and punctuation when
scribbling a quick note for a family member, but they might spend a considerable amount of
time writing a formal letter. These days, social media is also a major platform on which people
interact and communicate with each other. This particular platform has its own characteristics,
one of which is the informal and casual nature of the language people tend to use. Thus, social
media text can be drastically different when compared to texts from other domains.

User-generated content (UGC) is any type of content that has been created by users on online
platforms. This includes not only text but also images, videos, and audio. One typical form
to produce text is via written computer-mediated communication (CMC), including formats
such as emails, instant messaging (IM), internet relay chat (IRC), and online message boards
(Thurlow et al., 2004). Recently, social media has grown to be a prominent part of how people
communicate online, and as such it has also become an important application domain for natural
language processing. Text typically seen on social media services, such as Twitter, contains a
plethora of linguistic challenges that are characteristic to the domain: this includes non-standard
and unconventional punctuation, spelling, and capitalisation, and even its own distinct vocabu-
lary and syntax (Eisenstein, 2013b). For example, I love you becomes i luv u, and I know right?

could be written as ikr???. Data containing large amounts of text like this can be problematic
for natural language processing tools that are trained solely on standard language, so often the
text goes through a normalisation step first.

The language that people use online does not need to be as extreme as these examples just given.
As was mentioned in Section 1.1, Finnish is an example of a language that can express much
of the spoken regional variation through writing. For example, the word näen /"næefln/ ‘I see’
is mostly pronounced in colloquial Finnish as /"næ:n/, and thus it could in informal context be
written as nään. Similarly, menetkö (sinä) ‘will you go’ could very well be shortened to meetkö

sä or even meeksä. Finnish is not an unique language in this sense: even English, despite not
having as straightforward a relationship between its phonology and orthography as Finnish does,
can express features of spoken language through writing. For example, Eisenstein (2013a) finds
that consonant cluster reduction, a phonological variable common in several English dialects,
can also be observed on Twitter data, and that its usage is sensitive to the surrounding linguistic
context, much like in spoken language.
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2.2 Text Normalisation Methods

2.2.1 Rule-based & Distance-based

Lexical substitution was already mentioned in Section 2.1.1 as the conceptually simplest form
of text normalisation. After substitution lists, rule-based methods are already a step further
into the realm of more complex systems: instead of simply consulting a wordlist, rule-based
approaches aim to find patterns and regularities between the differently spelled variants by fol-
lowing specifically tailored replacement rules (Bollmann, 2019). Distance-based methods, on
the other hand, utilise edit distance measures like the Levenshtein distance (Levenshtein, 1966)
to determine the relative differences between spelling variants. Both rule-based and distance-
based methods are also commonly found in an information retrieval (IR) context (Bollmann,
2019).

In the context of historical text normalisation, finite-state transducers have often been success-
fully utilised when approaching the problem with a rule-based solution. For example, Porta et
al. (2013) use weighted finite-state transducers to normalise old Spanish from the Middle Ages.
Their system uses an edit transducer and a set of rules expressing the phonetic and phonological
sound changes in Spanish to map the historical word-forms to their modern variants, and the
approach achieves higher accuracy when compared to the baseline Levenshtein distance model.
Similarly, Etxeberria et al. (2016) use weighted finite-state transducers and language models to
normalise Spanish, Basque, and Slovene.

Pettersson et al. (2013a) use a weighted Levenshtein-based algorithm to normalise historical
Swedish. Their approach includes edit operations for multiple characters in addition to single
edit operations, and they also use compound splitting to allow the system to normalise parts of
a compound word individually. While the traditional Levenshtein distance computation gives
all edit operations a cost of one, Pettersson et al. (2013a) assign lower weights for frequently
occurring edits in the training corpus, improving precision. Their system also outperforms a
previously implemented approach that uses a set of hand-written normalisation rules.

Rule-based and distance-based methods can also be combined, utilising the strengths of both
approaches. Adesam et al. (2012) use iterated Levenshtein distance alignment to align spelling
variants for old Swedish, and these character-aligned spelling variants are then used to derive
substitution rule sets. They experiment with three different rule sets: one with manually crafted
replacement rules, and two with automatically extracted substitutions. The hand-crafted rules
have higher precision, though the automatically extracted n-gram rules find more matches over-
all.
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2.2.2 Statistical Machine Translation

More recently, statistical machine translation (SMT) methods, and especially character-based
statistical machine translation (CSMT), have often been applied successfully to text normalisa-
tion tasks. Indeed, text normalisation can be seen as a translation task, in that the word-forms
have to be transformed, or “translated”, into their standardised forms. In a character-based ap-
proach, instead of simply treating a sentence as a sequence of tokens, every token is treated
as a sequence of characters. For this reason, the method is particularly effective at capturing
intra-word transformations, making it a suitable tool for text normalisation (Lusetti et al., 2018).
It can also be highly useful when working with low-resource languages: the vocabulary for a
CSMT system is small, just the set of characters used, so the model can learn sequence patterns
effectively even when available training data is scarce. Another advantage of character-based
models is their greater adaptability to out-of-vocabulary (OOV) words, since the transformation
patterns that the model has recognised and observed for certain strings of characters can also be
easily applied to unknown words (Lusetti et al., 2018; Hämäläinen et al., 2020b). The underly-
ing idea behind the SMT approach can be seen as a noisy channel model, which has also been
widely used in spelling correction, machine translation, and speech recognition (Lusetti et al.,
2018; Bollmann, 2018; Bollmann, 2019). Here, the idea is that the source word is in some way
scrambled or jumbled, and the system has to fix it. The desired end results is that the processed
source token is identical, or as close as possible, to the corresponding target word.

In historical text normalisation, character-based statistical machine translation methods have
been shown to achieve good results for a variety of languages: for example, Spanish (Sánchez-
Martínez et al., 2013), Icelandic and Swedish (Pettersson et al., 2013b), and Slovene (Scherrer
and Erjavec, 2013; Ljubešić et al., 2016). Sánchez-Martínez et al. (2013) also note that the sta-
tistical machine translation approach works well for modernisation purposes, because historical
text normalisation is essentially an asynchronous, non-deterministic, and monotonous process.
Asynchronous means that normalisation cannot be done on a simple grapheme-by-grapheme
basis: a digraph may translate to a monograph, and the other way around. Non-deterministic

means that the replacement rules are not set in stone and can in fact differ even in the same
context: in some cases, the old spelling of a word should be preserved in the normalised out-
put, while in others it should be translated into a different word-form. Monotonous means that
the character replacement rules do not generally tend to show a long range dependence on the
context (Sánchez-Martínez et al., 2013).

Pettersson et al. (2013b) apply the CSMT approach successfully to historical texts in both Ice-
landic and Swedish. They note that the training process of character-based SMT models used
for text normalisation tasks usually involves four basic steps: word alignment, character align-
ment, language modelling, and parameter tuning. Word alignment essentially builds the parallel
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training data for the translation models, creating word pairs from all corresponding words in the
data. The next step, character alignment, aligns all characters for the entire corpus after the
word pairs have been created. Once alignment is done both on word level and character level,
the next step is character-based language modelling. This is done by training language models
on monolingual data in the target language. The final task, parameter tuning, is done after the
language models have been trained, and it involves tuning these models on some development
data to ensure the best possible performance and results. Pettersson et al. (2013b) further note
that the text normalisation step is easily worthwhile when the aim is to apply modern NLP
tools such as taggers and parsers to analyse historical text, as the results are consistently better
with normalised text. They also find that even a small amount of word-aligned training data
is enough to achieve good results, and if no parallel data is available for training, automatic
sentence alignment methods may be used to create the necessary training data (Pettersson et al.,
2013b).

Scherrer and Erjavec (2013) describe two different experiments in their paper about normalis-
ing historical Slovene: one with a supervised setup, and one with unsupervised. The supervised
model is trained on bilingual data, as is usually the case with SMT systems. In this case, the
training data consists of word pairs composed of a historical word-form and its modern variant.
The unsupervised approach, on the other hand, uses monolingual data, imitating a case where a
bilingual training lexicon containing historical words and their associated contemporary word-
forms is not available for a given language. In this setup, a bootstrapping step is implemented:
each historical word is paired with a modern word-form that is deemed the most similar to it.
The similarity between the word pairs is computed using the BI-SIM measure (Kondrak and
Dorr, 2004), which captures the graphemic similarity between words by using character bi-
grams (Scherrer and Erjavec, 2013). The supervised approach yields consistently better results
when compared to the unsupervised setup, as can be expected, but the differences are less no-
table with more contemporary data. The lexicons of historical Slovene used in the experiments
contain material from various time periods: the earliest data is from the second half of the 18th

century, while the newest material is from the latter half of the 19th century. The more recent the
time period is, the closer the language in the corpora is to the contemporary language variant:
consequently, there are fewer character replacements for the modernisation model to learn, and
the results are usually better.

Ljubešić et al. (2016) apply the CSMT approach successfully to both historical and contempo-
rary Slovene. In addition to historical datasets, they use a social media dataset consisting of
Twitter tweets to normalise contemporary non-standard user-generated content. They note that
while tweets typically contain a fair amount of non-standard and dialectal language, there is also
a notable portion of tweets that consist of completely or mostly standard language. For this rea-
son, Ljubešić et al. (2016) classify the texts automatically into three different levels according
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to technical and linguistic standardness (Ljubešić et al., 2015). Technical standardness contains
features such as the use of punctuation, capitalisation, and the presence of spelling mistakes,
while linguistic standardness is more related to the linguistic knowledge of the writer. Au-
thors always make decisions—both conscious and unconscious—regarding the linguistic stan-
dardness of their texts: this involves features such as spelling, morphology, and word order
(Ljubešić et al., 2015). Ljubešić et al. (2016) prepare two datasets according to the automat-
ically calculated standardness scores of the tweets: the so-called easy dataset, consisting of
tweets that are both technically and linguistically standard, and the hard dataset, consisting of
technically standard but linguistically non-standard samples. In their experiments, they com-
pare both token-level and sentence-level approaches and find that a sentence-level system may
work better for datasets with high token-level ambiguity, of which their hard tweet dataset is an
example. The authors also note that their best performing model achieves good results for both
historical and contemporary datasets, so there is no need for two different systems for mod-
ernisation of historical texts and text normalisation of user-generated content (Ljubešić et al.,
2016).

Pettersson (2016) compares four different normalisation methods for historical texts: a rule-
based approach, a Levenshtein-based approach, a memory-based approach, and an SMT-based
approach. The rule-based method was developed for Swedish and, consequently, also evaluated
on Swedish only. The other approaches were all evaluated on five languages: English, Ger-
man, Hungarian, Icelandic, and Swedish. The multilingual evaluation also includes one more
approach: a combination of the Levenshtein-based and the memory-based methods. Petters-
son (2016) notes that the character-based SMT approach generally performed the best, though
the overall results of the different normalisation methods varied between languages. In the
case of Icelandic, for example, the Levenshtein-based normalisation method combined with a
memory achieves the best results. All the methods used in the multilingual setting are language-
independent and thus generally applicable to any language, even in cases where the amount of
available training data is scarce (Pettersson, 2016).

Character-based SMT has also been used for dialectal Swiss German (Samardžić et al., 2015).
Swiss German dialects are commonly spoken in the Northeastern parts of Switzerland, where
the sociolinguistic setting is a typical example of diglossia: Swiss German is the most common
and widely used vernacular language variety of the speech community at large, but the language
of choice in written contexts has traditionally been and still usually is Standard German. These
days, however, Swiss German is used increasingly in written contexts as well, especially in
computer-mediated communication (Lusetti et al., 2018). Consequently, this makes Swiss Ger-
man a language of interest, not only in dialectological studies, but also in the text normalisation
context: written Swiss German has no standardised orthography, so applying normalisation on
dialectal texts can be an especially challenging task. Moreover, the natural language process-
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ing tools developed for Standard German do not generally work particularly well with Swiss
German, as the differences between the dialectal variety and the standard language are quite
notable (Samardžić et al., 2015). The differences are not limited to lexicon and pronunciation
either, as there is considerable variation in both morphology and syntax as well. Occasional
intra-speaker variation can also be found, which causes further inconsistency in written Swiss
German. Samardžić et al. (2015) identify two separate challenges: lexical mismatches and word
boundaries. An example of a lexical mismatch is the Swiss German word öpper ‘someone’: its
semantic counterpart in Standard German would be jemand, though there is no etymological
relation between the two words. Such words can be normalised by forming pairs between the
semantically motivated variants, even though the similarity between the word-forms is lacking
on the surface level. Alternatively, the dialectal variant can be mapped to a historically com-
mon form that does not exist in the contemporary standard language: in this case, etwer. Word
boundaries also often behave differently in written Swiss German, and the general conventions
used in Standard German might not apply. For example, the phrase hettemers, written as one
word, corresponds to hätten wir es in Standard German. In this case, a choice has to be made
as to whether to keep the standard word boundaries or to follow the intuition of native speakers
(Samardžić et al., 2015).

De Clercq et al. (2013) use statistical machine translation methods to normalise Dutch user-
generated content. Their training data contains text messages, tweets, and message board posts
from a social networking site. Such text material is typically particularly noisy, including mis-
spellings, unconventional capitalisation, and emoticons. Other characteristics commonly ob-
served in the mentioned domains include the conscious omission of words or characters, un-
conventional spelling at the lexical level—for example, spelling gelijk ‘like, similar’ as lyk—
and the frequent and highly productive use of abbreviations and acronyms, such as LOL or smh

in English. In the case of Dutch, one feature of written informal speech specific to the language
is the concatenation of tokens, which causes clitics and pronouns to disappear on the surface:
for example, writing khou instead of ik hou ‘I love’, or edde instead of heb je ‘do you have’.
De Clercq et al. (2013) focus on text messages in their experiments, and they process the data
through a cascaded SMT system consisting of two different modules: first, a token-based SMT
model, and a character-based SMT module following after that. Both unigram and bigram mod-
els were tested for the character-based approach. The authors find that the cascaded approach
yields the best results when compared to simple token-based, unigram-based, and bigram-based
systems.
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2.2.3 Neural Machine Translation

Following SMT, neural machine translation (NMT) has reached state-of-the-art results in many
natural language processing tasks. Similarly to CSMT, character-based neural machine trans-
lation (CNMT) can be used to effectively capture the variation in word-forms. Partanen et al.
(2019) use character-based NMT in a text normalisation task to normalise Finnish dialects, find-
ing that the bidirectional recurrent neural network (BRNN) architecture achieves good results.
Moreover, they experiment with three different normalisation levels—word-level, chunk-level,
and sentence-level—and find that the models trained on chunked data yield the best results. I
aim to replicate their approach in my own experiments, so the dataset and the methods they use
are discussed in greater detail in Section 3.

Similarly, Hämäläinen et al. (2020a) use character-based neural machine translation methods to
normalise Finland Swedish dialects. The Swedish dialects spoken in Finland differ considerably
from the Swedish language variants spoken in Sweden, and the variation between dialects is
great even within the borders of Finland, which can be attributed to the wide geographical span
of the Swedish speaking communities and Finland’s low popular density. Hämäläinen et al.
(2020a) use input data consisting of chunks of varying lengths to train the models, similar to the
approach used in Partanen et al. (2019). However, they find that the word-level model achieves
better results than the models trained on longer segments, which is different from the earlier
conclusions presented by Partanen et al. (2019). One possible cause is the difference in training
data sizes: with smaller training set sizes, the model does not benefit from a larger context, and
too much context can in fact have a negative effect on model performance (Hämäläinen et al.,
2020a).

Character-based NMT methods have also been applied to historical text normalisation. Boll-
mann and Søgaard (2016) use a bi-directional long short-term memory (BiLSTM) network to
normalise historical German, and they also experiment with a multi-task learning (MTL) setup.
In multi-task learning, a model is trained on one or more auxiliary tasks in addition to its pri-
mary task to improve its overall performance: in essence, the model is trained on two datasets in
parallel. Bollmann and Søgaard (2016) define spelling normalisation within a given historical
text as their main task, while normalisation within related domains—for example, texts from
the same time period—are considered the model’s auxiliary tasks. The results are compared to
those obtained by two baseline methods, the Norma tool (Bollmann, 2012) and a tagger based
on conditional random fields (CRFs). Since the MTL approach cannot be applied to the other
methods, Norma and the CRF-based tagger are also evaluated with augmented data, so a ran-
dom sample of 10k examples from all texts is added to the training set. However, the results
show that the additional normalisation data generally does not help the Norma tool and the CRF
tagger: on the contrary, it may even lower the prediction accuracy. The BiLSTM model con-
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sistently outperforms the two baseline methods, and while the accuracy of the model improves
with multi-task learning for some texts, it decreases for others.

Bollmann et al. (2017) also apply a multi-task learning approach to a BiLSTM model to nor-
malise historical German, but they define their auxiliary task as a sequence prediction task where
characters are mapped to phonemes. This is done by using a simple grapheme-to-phoneme dic-
tionary as auxiliary data, and the model has to learn to predict the correct sequence of phonemes
based on an input sequence of graphemes. The prediction results show that the base BiLSTM
model benefits from beam search, lexical filtering, and an attention mechanism, but adding at-
tention to the model trained with multi-task learning actually lowers its accuracy. Bollmann et
al. (2017) observe similarities between multi-task learning and attention mechanisms, and they
further hypothesise that the multi-task learning already takes care of focusing attention during
the training process, which is why combining the approach with a separate attention mechanism
hurts the final score. Bollmann et al. (2018) further observe that multi-task learning is especially
beneficial to text normalisation when the target data is very scarce.

Domingo and Casacuberta (2018) compare SMT and NMT methods for modernisation purposes
for historical Spanish and Slovene, finding that the SMT approach yields better results in their
experiments. They also compare token-based and character-based approaches, and they con-
clude that the character-based methods outperform the the word-based models, especially with
smaller corpora. This is to be expected, considering the fact that most changes occur at a charac-
ter level in text normalisation tasks. Interestingly, even a simple statistical dictionary approach
can yield satisfactory results in the absence of more advanced text normalisation methods: here,
the dictionary is built by looking at the frequency of the spelling changes inspected in the train-
ing corpora. Going through a document, each word is checked for a translated counterpart in the
dictionary. Then, if a match is found, the word is substituted with its corresponding translation;
if there are no matches, the word is left as is. The statistical dictionary approach manages to
achieve considerable improvements when compared to the baseline, even if the results are not
quite as good as those obtained by the more advanced SMT and NMT models (Domingo and
Casacuberta, 2018).

Çolakoğlu et al. (2019) also compare NMT and SMT methods to normalise non-canonical writ-
ten Turkish and find that their SMT model performs better than the NMT model. Their machine
translation approach also outperforms the cascaded approach used by Torunoǧlu and Eryiǧit
(2014), formerly considered the state-of-the-art approach for Turkish text normalisation. Like
Finnish, Turkish is a morphologically rich and highly agglutinative language, and the challenges
in text normalisation are therefore closely related. Another example of a language with mor-
phological inflection is Japanese. In the case of Japanese, there is the additional challenge of
the characteristics of the writing system: written Japanese lacks explicit word boundaries, so
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word segmentation is a non-trivial task in Japanese language processing. Ikeda et al. (2016)
use the encoder-decoder neural network architecture to normalise Japanese social media texts,
comparing their model to two baseline methods: a rule-based system, and an approach based on
character-level conditional random fields (CRFs). The encoder-decoder model performs poorly
on small corpora, but the results improve when the amount of training data increases. Saito et
al. (2017) aim to tackle the problem of insufficient training data sizes with data augmentation:
they extract morphological conversion patterns from a small dataset, and these patterns are then
used to generate augmented data.

Whereas Domingo and Casacuberta (2018) and Çolakoğlu et al. (2019) find that the SMT ap-
proach yields better results in their text normalisation experiments, Lusetti et al. (2018) state
that the encoder-decoder methods they use to normalise Swiss German text messages outper-
form their SMT model. They also report that the normalisation errors encountered in the pre-
dicted outputs produced by the models are rather similar in both approaches. For example,
both the SMT and NMT models struggle with ambiguity, such as when a source token has more
than one possible normalisation form. Irregularities and non-standard vowel reduplication often
encountered in casual, informal text—for example, writing bitteeeee instead of bitte—are also
challenging for the models. One of the corpora that Lusetti et al. (2018) use also contains a fair
amount of emojis, but both models process and normalise these without problems. This is a
positive finding, as it means that there is no need for an extra preprocessing step consisting of
removing emojis from the source data before feeding it to the models.

Similarly, Hämäläinen et al. (2018) compare different normalisation methods for historical En-
glish and report that the NMT approach outperforms the other methods in their experiments.
They evaluate three different approaches: a rule-based finite-state transducer, a distance-based
approach, SMT, and NMT. In the rule-based approach, the replacement rules for character se-
quences are based on VARD 2 (Baron and Rayson, 2008), and a finite-state transducer is built
by using HFST (Lindén et al., 2013). The edit-distance approach is based on the Levenshtein
distance, and the list of normalisation candidates is filtered down by context and estimated pro-
nunciation. Both the SMT and NMT methods are character-based. Comparing the results of the
individual approaches, the NMT method is the one that yields the best results, but Hämäläinen
et al. (2018) also experiment with combining the different approaches to harness the individual
strengths of the various methods. The evaluation of this combined approach is done by picking
the best normalisation from the list of candidates suggested by all the different models. First,
possible non-words produced by the machine translation approaches are filtered out by attempt-
ing to map the outputs to the Oxford English Dictionary entries. Next, the best candidate is
chosen by using one of three alternative methods: voting, weighted voting, and a Markov chain.
The simple voting mechanism picks the normalised output that is most often suggested by the
different methods: if three approaches produce the exact same predicted normalisation and one
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approach results in a different output, the normalisation candidate with three votes behind it
wins. The weighted approach is otherwise the same, but it is weighted according to the reported
accuracies of the individual methods to ensure that the normalisation methods with the highest
accuracies have more sway over the voting results. The third method, the Markov chain ap-
proach, picks the most likely normalisation based on context, meaning that it simply looks at
the probability at which a given token follows another in a sequence. Comparing the accuracies
of the combined approach resulting from the different decision-making methods, it seems that
the weighted voting performs the best. Hämäläinen et al. (2018) state that there is still room for
improvement, but since all of the methods do have their own strengths when it comes to text
normalisation, it seems like a worthwhile task to try to combine them.

Tang et al. (2018) compare a baseline SMT system by Pettersson et al. (2014) and several dif-
ferent NMT architectures for historial text normalisation. Similar to Pettersson et al. (2014),
they conduct the experiments on five different languages: English, German, Hungarian, Ice-
landic, and Swedish. The NMT architectures are the following: vanilla recurrent neural net-
work (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and Transformer.
The authors also compare different attention mechanisms: no attention and soft attention for the
RNN-based models, and the multi-headed self-attention mechanism of the Transformer model.
In the end, they conclude that the NMT models consistently outperform the SMT approach in
terms of character error rate (CER). However, they also note that NMT models are more likely
to generate incorrect normalisations of unchanged spellings: that is, the models predict a change
in a character sequence, when the historical spelling should actually be identical to its modern
counterpart. For this reason, Tang et al. (2018) propose a hybrid method using both NMT-based
methods and a dictionary-based method. They also find that vanilla RNNs are competitive with
the more advanced GRU and LSTM architectures in some cases. Transformer models, having
very fine-grained self-attention and multi-headed attention mechanisms, generally perform bet-
ter than RNN-based models with soft attention, but only when the amount of training data is
large enough. The authors also compare character-level models to subword-level models with
LSTMs. The subword units are generated with a byte pair encoding (BPE) algorithm with
different vocabulary sizes, and the results show that subword-level models can outperform the
character-level models when the BPE vocabulary is small enough. Large training sets cause
data sparsity, so setting the BPE vocabulary size too high yields worse accuracy results when
compared to the character-based models.

Bollmann (2018) compares the encoder-decoder architecture to two different systems for his-
torical text normalisation: Norma (Bollmann, 2012) and cSMTiser (Ljubešić et al., 2016). The
Norma tool is a combination of wordlist mapping, rule-based approaches, and distance-based
approaches, while cSMTiser is a tool that uses established statistical machine translation soft-
ware, such as Moses (Koehn et al., 2007). The comparison is done on eight different languages:

18



English, German, Hungarian, Icelandic, Portuguese, Slovene, Spanish, and Swedish. Both
word accuracy and character error rate (CER) are measured in evaluation. The results show that
the character-based SMT approach outperforms the NMT methods on all datasets except the
German corpus, even when the NMT models are extensively tuned for the normalisation task.
Closer inspection reveals that the higher word accuracy of the CSMT approach is mostly due
to its better performance on OOV words: for this reason, Bollmann (2018) suggests that any
historical text normalisation system could benefit from a wordlist mapping component.

The Transformer (Vaswani et al., 2017) neural network architecture has achieved state-of-the-art
results in various natural language processing tasks. However, while the model architecture has
been shown to outperform RNN-based encoder-decoder and sequence-to-sequence (Seq2Seq)
models in many word-level tasks, it still often falls behind when the task requires a character-
based approach, such as text normalisation. Wu et al. (2021) show that batch size is a crucial hy-
perparameter in the performance of a character-based Transformer, and their Transformer model
manages to outperform the RNN-based baseline methods in their experiments on four different
character-level tasks: grapheme-to-phoneme conversion, morphological inflection, translitera-
tion, and historical text normalisation. Their approach is also utilised in my own experiments,
and I will go through the parameters in more detail in Section 3.2.1.
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3 Methods

3.1 Data

The data used in this study is the Samples of Spoken Finnish corpus2 (Institute for the Lan-
guages of Finland, 2014). It is based on a series of booklets that were published between
1978 and 2000, each booklet covering about two hours’ worth of dialectal speech in transcribed
form. The modern digital corpus covers 50 Finnish rural municipalities, each of which in-
cludes two dialect samples. The whole corpus contains 696,376 transcribed words, of which
684,977 include a normalised word-form in Standard Finnish. The transcriptions are done in a
semi-narrow manner, containing non-standard annotations that aim to capture the phonetic and
prosodic features of dialectal speech (Hämäläinen et al., 2020b). The data is already tokenised,
and the transcribed texts are aligned with their normalised counterparts on word level, forming
a parallel dataset: this makes the corpus well-suited for text normalisation tasks.

The transcribed data has been normalised according to a set of guidelines made for this specific
dataset and task (Vilkuna, 2014). While the normalisation process is fairly simple and straight-
forward for many tokens—for example, changing the dialectal form kohvi ‘coffee’ to the Stan-
dard Finnish variant kahvi—sometimes the standardisation task is more complex. For instance,
the correspondence is not always one-to-one: the dialectal word-form ennenkö ‘before; prior to’
translates into two separate tokens, ennen kuin, in written Standard Finnish. Sometimes the ex-
act meaning behind word-forms can be ambiguous, and linguistic features such as grammatical
case or tense are not immediately obvious. For example, Standard Finnish makes the distinction
between present tense and past tense in sanovat / sanoivat ‘they say / they said’, but a dialec-
tal variant may simply use one word-form, sanovat, to include both. In this case, grammatical
tense is inferred from other parts of the utterance. Additionally, the inventory of inflectional and
derivational suffixes in Finnish is fairly large, but spoken language and some dialects typically
cut the suffix short. This is especially the case with common and frequently used words, and the
feature is characteristic of certain dialects, most notably the Southwest Finnish dialects. This
habit of dropping the final sounds from the end of the word blurs the distinction between word-
forms and causes further ambiguity: meil can mean either meillä ‘on/at us’ or meille ‘to/for us’,
and context is needed to interpret the intended meaning (Vilkuna, 2014).

The Finnish language also makes use of clitics, which are syntactically independent but phono-
logically dependent morphemes. Their usage, however, may differ between dialects and the
standard language. For example, according to the guidelines, the common dialectal variant type
onks is systematically normalised as onkos in the data (Vilkuna, 2014). The simple neutral

2http://urn.fi/urn:nbn:fi:lb-201407141
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version of this word-form would be onko, which is a combination of the third-person singular
present form of the verb olla ‘to be’ and the interrogative clitic -ko. The dialectal variant and its
chosen standardised version, however, also ostensibly contain the clitic -s. One of the functions
of this clitic is to soften an order or a question, and it can also serve as a way to make the tone
of the whole utterance more familiar. In dialectal usage, however, the final -s does not neces-
sarily carry any meaning typical of the clitic: rather, the utterance can be a completely neutral
question, despite the fact that the additional clitic is present on the surface. Here, a decision
has been made to always systematically include the final clitic in the normalised word-form,
because trying to infer the intended tone and meaning from the utterances can be a challenging
and also rather sensitive task (Vilkuna, 2014).

To train the models, the sentences in the data are randomly sorted and then split into training,
test, and validation sets. The training set contains 70% of the original sentences, while the test
and validation sets are 15% each: this follows the same split that was used by Partanen et al.
(2019). The models are trained on character level, so words are always split into characters by
white spaces, both on the source side and the target side. For example, the word koira ‘dog’
becomes k o i r a. If the input contains more than one token, word boundaries are indicated with
an underscore character (_): for example, k o i r a _ j u o k s e e _ . ‘dog runs’. As the data is
already tokenised, punctuation marks are also treated as individual tokens. Sentence boundaries
are marked with an artificially empty line, the special tag <BLANK>: the main purpose of this
is to help with constructing the sentences back at the original places before evaluation. A spe-
cial tag is used, mainly because in my experiments a simple blank line proved to be somewhat
unreliable as a sentence boundary marker, resulting in poor model performance. Similarly, con-
verting all text to lowercase seemed to affect the results negatively. Therefore, letter case is left
as is: in the data, proper nouns are capitalised according to the writing conventions of Standard
Finnish, so named entities such as the names of people and places start with an uppercase char-
acter. The first word of a sentence is not capitalised, except in the case of interviewer utterances:
this is an interesting convention used in the corpus, highlighting the two different roles of the
original recorded speech situation. One could argue that only the sentences with a role labelled
as an interviewee should be considered in the training data, since these utterances are the point
of interest in this study. However, I have opted to include the interviewer utterances as well, as
these are also examples of spoken Finnish. The script I used to preprocess the data is written in
the Python programming language.

I also experiment with different input strategies, meaning that the models are trained by feeding
them either one whole sentence or a subset of a sentence at a time. The sentence-level models
have an input of one sentence at a time, and the tokens are separated by underscores as previ-
ously described. The word-level models receive single tokens as input, so no word boundary
markers are needed, but the characters are still separated by white spaces. On chunk level, I
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experiment with different setups: I replicate the 3-chunk approach that Partanen et al. (2019)
used in their experiments, but I additionally train a set of models with chunks of 2, 4, and 5,
to see if changing the chunk size yields different results. An example of the source and target
input tokens in chunks of 3 can be seen in Table 1. I also experiment with a sliding/rolling win-
dow approach: instead of splitting the sentences into separate chunks, I use a sliding window to
determine the subsets. Therefore, the earlier example of the short sentence consisting of three
tokens, k o i r a _ j u o k s e e _ ., with a chunk size of 2 would yield the following overlapping
subsets: k o i r a _ j u o k s e e ; j u o k s e e _ .. A more extensive example can be seen in Table
2. The downside of this approach is that it causes the training set sizes to grow considerably,
since every token is repeated in the input data. The original training data set contains 35k par-
allel rows on sentence level, and the amounts grow incrementally for the various subsets: the
approximate training set sizes for different setups can be seen in Table 3.

3.2 Models

3.2.1 Neural Network Models

I use the OpenNMT toolkit (Klein et al., 2017) to train the neural network models. Two of
the architectures are similar to what was used in the experiments conducted by Partanen et al.
(2019); namely, the bidirectional recurrent neural network (BRNN) model and the Transformer
model. In addition to these models, I perform experiments with a simple unidirectional RNN
model and a convolutional neural network model. Each model will be trained on six different
types of sequences: words, sentences, and differently sized chunks (2, 3, 4, 5). Moreover, the
RNN and BRNN models will be trained on two different sets of data: the transcribed version that
includes detailed linguistic transcription markings, and the corresponding simplified data that
lacks these transcriptions. An example of the transcribed source input tokens and the aligned
simplified tokens can be seen in Table 4. My initial hypothesis is that the models trained with
the more detailed, transcribed data will consistently achieve better results, but I am interested
to see how notable the differences are. The RNN, BRNN, and Transformer models will further
be trained on data that consists of chunks of varying lengths with a rolling/sliding window,
and these results will be compared to the results obtained from the models trained on separate
chunks without the overlapping window. It is possible that the models with a rolling window
approach outperform the regular chunk-level models, since they have more information on the
context around the target tokens. In the preliminary experiments, the convolutional models
generally seemed to perform rather poorly, which is why no further experiments with the sliding
window approach are conducted with this particular model architecture. All models are trained
for the default 100,000 training steps.
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Source Target

s i t ä _ e i _ m a k s a n s i t ä _ e i _ m a k s a

' n y k k ä ä N _ k ö _ , n y t k ä ä n _ k u i n _ ,

' s a t à - _ , _ - k a k s k y m m e n t ä ' v i i s - _ , _ s a t a k a k s i k y m m e n t ä v i i s i

m a r k k a a _ ' l i t r a _ ' m a a l i ( ö l i j y h ä n m a r k k a a _ l i t r a _ m a a l i ö l j y h ä n

o N _ " k o l o m a n n e l l a _ s a j a L L A o n _ k o l m a n n e l l a _ s a d a l l a

. .

<BLANK> <BLANK>

e i _ . e i _ .

<BLANK> <BLANK>

k y l l ä _ s e _ ' ò ĺ k y l l ä _ s e _ o l i

' k o v o
ˆ
a _ e n - _ , k o v a a _ - _ ,

' ’ e n n e ’ _ ' ’ a i
ˇ
k a a n

ˇ
_ s e e n n e n _ a i k a a n _ s e

' e l ä m ä _ , _ i h m i s i l L A ¨ e l ä m ä _ , _ i h m i s i l l ä

. .

<BLANK> <BLANK>

' m i n a _ h a n o _ e i h ä m m i n ä _ s a n o i _ e i h ä n

' m i n ä _ " s i t ä _ h o k s a n n u m i n ä _ s i t ä _ h o k s a n n u t

e t t ä _ ' s e _ n y t e t t ä _ s e _ n y t

' s i n n e k _ k u _ s e s i n n e _ k u n _ s e

' j ä i _ ' s i t t e _ h ä n j ä i _ s i t t e n _ h ä n

' l a s k i _ " m a a t a k _ k u l a s k i _ m a a t a _ k u n

, _ ' j a l a t _ t u l i , _ j a l a t _ t u l i

" k i p e ( ä k s _ . k i p e ä k s i _ .

<BLANK> <BLANK>

j a _ m u s t i i _ m y s s y l ö i j a _ m u s t i a _ m y s s y j ä

j a _ o ĺ _ . j a _ o l i _ .

<BLANK> <BLANK>

' s a - _ , _ ' s a u ´ - - _ , _ -

, . , .

Table 1: An example of the preprocessed input training data, when the input format is chunks
of 3. Sentences are separated by a special tag <BLANK>, and word boundaries are indicated
by an underscore character. Characters are separated by white spaces.
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Source Target

' è i _ a n n a k _ k i r v e s t ä e i _ a n n a _ k i r v e s t ä

a n n a k _ k i r v e s t ä _ p i j e l l ä a n n a _ k i r v e s t ä _ p i d e l l ä

k i r v e s t ä _ p i j e l l ä _ . k i r v e s t ä _ p i d e l l ä _ .

<BLANK> <BLANK>

' e i _ ' s e _ o l p e i _ s e _ o l e

' s e _ o l p _ ' p i t k ä s e _ o l e _ p i t k ä

o l p _ ' p i t k ä _ ' m a t k a o l e _ p i t k ä _ m a t k a

' p i t k ä _ ' m a t k a _ . p i t k ä _ m a t k a _ .

<BLANK> <BLANK>

' j u u _ , _ n i i n j u u _ , _ n i i n

, _ n i i n _ < o l ì § , _ n i i n _ o l i

n i i n _ < o l ì § _ j a n i i n _ o l i _ j a

< o l ì § _ j a _ ' n y t t o l i _ j a _ n y t

j a _ ' n y t t _ < o n j a _ n y t _ o n

' n y t t _ < o n _ n i i n n y t _ o n _ n i i n

< o n _ n i i n _ , o n _ n i i n _ ,

n i i n _ , _ " t a v à t t o m a s t i n i i n _ , _ t a v a t t o m a s t i

, _ " t a v à t t o m a s t i _ , a s ù n ˘ § n o i t a , _ t a v a t t o m a s t i _ a s u n t o j a

" t a v à t t o m a s t i _ a s ù n ˘ § n o i t a _ ' j o t a v a t t o m a s t i _ a s u n t o j a _ j o

a s ù n ˘ § n o i t a _ ' j o _ e t a s u n t o j a _ j o _ e t t ä

' j o _ e t _ . j o _ e t t ä _ .

<BLANK> <BLANK>

Table 2: An example of the preprocessed input training data, when the input format is chunks
of 3 with a rolling window.

Input data Training size

Words 590k
Chunks of 2 303k 553k
Chunks of 3 208k 520k
Chunks of 4 161k 487k
Chunks of 5 132k 456k
Sentences 35k

Table 3: Training set sizes. For chunk-level input data, the different training set sizes of the
rolling window approach can be seen on the right-most column.
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Source hän <oN ko- , semmoϑek kursik käynny , sitt <etÄ
Simplified hän on ko- , semmosek kursik käynny , sitt etÄ
Target hän on - , semmoiset kurssit käynyt , sitten että

Table 4: An example from the training data showing the differences between the transcribed
dialectal source tokens, the simplified source tokens without linguistic transcription markers,
and the corresponding normalised target tokens.

LSTM (Long Short-Term Memory) is a recurrent neural network architecture with feedback
connections (Hochreiter and Schmidhuber, 1997). This is the vanilla RNN model used in my
experiments, and it is trained using the OpenNMT (Klein et al., 2017) default settings. Both
the encoder and the decoder have two layers, and the attention mechanism is the general global
attention model by Luong et al. (2015). The bidirectional model (BiLSTM) uses mostly the
exact same settings as the unidirectional one, the only difference being that it is bidirectional:
the input data is processed in two directions, both forwards and and backwards. From now on,
the bidirectional recurrent neural network model used in this work will be mostly referred to as
BiLSTM; however, when comparing the results in Section 4, I will refer to the similar architec-
ture used by Partanen et al. (2019) as BRNN to stay consistent with the authors’ terminology.

The third model architecture is a Transformer. Here, the models are trained using two different
setups. In the first approach, I train the models using parameters that mimic the setup presented
by Vaswani et al. (2017), which should also be fairly close to what Partanen et al. (2019) used
in their experiments: six layers both in the encoder and the decoder, a word embedding size of
512, and a scaled dot product attention mechanism with self-attention. Each of the six layers in
the encoder and decoder stacks has two sublayers, which consist of a multi-head self-attention
mechanism layer and a position-wise connected feed-forward network layer with the dimen-
sionality of 2048 (Vaswani et al., 2017). The decoder also has a third sublayer for attention,
which is performed over the output of the encoder stack. The optimiser is Adam with β1 = 0.9
and β2 = 0.98, and the dropout rate is Pdrop = 0.1. The learning rate is 2 with 4000 warmup
steps and the Noam decay method. Usually, the learning rate is set quite low with Adam: the
typical value is 0.001. However, in my preliminary experiments, I noticed that the Transformer
models performed exceptionally poorly, and increasing the learning rate seemed to improve the
results. Similarly, batch size is increased to 1000, because smaller batch sizes seemed to affect
the prediction results negatively.

The second Transformer setup is inspired by Wu et al. (2021). In their experiments, the authors
find that batch size has a significant impact on the performance of character-based Transformer
models. They set the batch size to 400, when the size of the training set is rather small, only
10k. They also use an overall smaller Transformer: four layers in the encoder and the decoder,
four self-attention heads instead of eight, and an embedding size of 256. The hidden size of the
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feed-forward layer is 1024. I try to replicate their setup and parameter settings in my own work.
However, in the preliminary experiments, I found that a batch size of 400 produced rather poor
results, so I increased the batch size to 4000: this is significantly higher than what Wu et al.
(2021) used in their experiments, but it seemed to work better for my models. One reason for
this may be the amount of available training data: the training set size for my models is larger,
which is probably why a larger batch size yields better results. I also use a slightly larger batch
size of 1000 in the other Transformer setup, because a smaller batch size value seemed to lead
to poor results, as was described earlier in the previous paragraph. The optimiser settings are
the same as for the other Transformer setup: Adam with β1 = 0.9 and β2 = 0.98, and a higher
learning rate of 2.

The fourth architecture used in these experiments is a convolutional model (LeCun and Bengio,
1995) following the setup presented by Gehring et al. (2017). Some parameter values are taken
from Yolchuyeva et al. (2018). The model has 6 convolutional layers and a kernel width of 3,
and the layers use 512 hidden units and 256 embedding dimensions. The optimiser settings are
Adam with the values of β1 = 0.9 and β2 = 0.999 and a learning rate of 0.001. The sentence-
level model proved particularly challenging in my experiments, and despite some extensive
hyperparameter tuning, I was not able to get any reasonable results. Therefore, in the case of
the sentence-level model, I will report and evaluate the results for the model that is trained using
only the default parameter values: for example, stochastic gradient descent (SGD) is used as
the optimisation method instead of Adam. Other convolutional models—that is, the word-level
model and the different chunk-level models—are trained using the parameters described earlier.

3.2.2 Statistical Machine Translation Model

In addition to the neural network models, I use a character-based statistical machine translation
approach to normalise Finnish dialects. Several authors have evaluated and compared both SMT
and NMT methods in text normalisation tasks, and some have reported better results with the
SMT approach: for example, Domingo and Casacuberta (2018) and Çolakoğlu et al. (2019). In
my experiments, I use Moses (Koehn et al., 2007), a standard open-source toolkit for statistical
machine translation. In the SMT pipeline, Moses is used for phrase extraction and decoding.
MGIZA++ (Gao and Vogel, 2008), a multi-threaded implementation of GIZA++ (Och and Ney,
2003), is used for character alignment. For language modelling, I use KenLM (Heafield et al.,
2013), and minimum error rate training (MERT) is used as a tuning algorithm for the language
model. In the case of SMT, the input data is only processed one sentence at a time, and smaller
subsets—words and chunks—are not used as input in my experiments. However, the method
is still character-based, so characters are separated by white spaces, and token boundaries are
indicated by underscore characters, similar to the input data used by the NMT models.
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3.3 Evaluation

Partanen et al. (2019) use the word error rate (WER) to evaluate their results. WER is a metric
commonly used to measure the accuracy of text normalisation or automatic speech recognition
systems, based on the Levenshtein distance metric (Levenshtein, 1966). The calculation can be
formulated as follows:

WER =
S+D+ I
S+D+C

(1)

where S is the number of substitutions, D is the number of deletions, I is the number of in-
sertions, and C is the number of correct words. Thus, the smaller the value is, the better the
score is. I use WER to measure the performance of my models, but I will additionally use two
other evaluation metrics for the sake of comparison: BLEU and CHRF. BLEU (Papineni et al.,
2002) is a widely popular evaluation metric in machine translation, and CHRF (character n-gram
F-score) (Popović, 2015) has been shown to work particularly well with morphologically rich
languages. The BLEU metric ranges from 0 to 1, where the score of 1 would mean that the texts
that are being compared would essentially be identical. For both BLEU and CHRF, the higher
the score is, the better it is, while the opposite is true for WER.

The input data has been preprocessed as described in Section 3.1: sentences are tokenised, and
tokens are split into characters separated by white spaces. In the case of longer segments—that
is, chunks and whole sentences—tokens are also separated by underscore characters. Therefore,
the models generate similarly constructed outputs. Before evaluation, the predictions produced
by the models go through a corresponding but opposite process: that is, the white spaces be-
tween characters are removed, so that k o i r a becomes koira again. Similarly, word boundary
markers and the special sentence boundary tokens are removed. The desired end result is a
collection of standardly formed sentences, one sentence per line.

In the next section, I will report and evaluate the results. Unless otherwise indicated, the Trans-
former models mentioned in the following section are of the smaller architecture, with fewer
layers and a larger batch size. This is because the small model architecture seemed to yield over-
all better results than the large model. However, I will also briefly compare the results obtained
by the two different Transformers. Therefore, if needed, these two model types will be referred
to as the ‘Small Transformer’ and the ‘Large Transformer’, according to the overall architecture
used in the models. Still, a simple ‘Transformer’ will also refer to the Small Transformer.
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4 Results & Discussion

The initial results generally seem to follow the same pattern that was reported by Partanen et al.
(2019): the BiLSTM model trained on chunks of 3 performs the best, as can be seen in Table
5. It achieves the lowest WER score, and the highest BLEU and CHRF scores. The results of the
BiLSTM and Transformer models can be compared to the results by Partanen et al. shown in
Table 6. As a reminder, it should be noted that the Transformer model mentioned here and used
in my experiments is the Small Transformer: the architecture is slightly different from the one
described in Partanen et al. (2019), but it seemed to yield better results, which is why I chose
to use it here for comparison. However, the recurrent neural networks should be fairly similar,
as they are trained using mostly only the default settings. Nevertheless, I was not able to get
as good WER scores as Partanen et al. did for their best performing models: this may be due
to some slight differences in the model settings, such as the values used for hyperparameters or
optimisation. It is, however, worth mentioning that both sentence-level models seem to achieve
rather good results, when compared to the corresponding WER scores reported by Partanen
et al. For example, the sentence-level BiLSTM (BRNN) model has a WER socre of 9.16, while
Partanen et al. report a WER score of 46.52 for their sentence-level model. I am not quite sure
why this happens, as the training and testing sets should be rather similar in our cases, and
encoder-decoder models typically struggle with long sequences.

BiLSTM Transformer

WER BLEU chrF WER BLEU chrF

Words 8.76 83.1 94.5 8.68 83.3 94.6
Chunks of 3 7.89 84.8 95.2 8.04 84.5 95.1
Sentences 9.16 84.6 94.2 10.74 83.3 93.1

Table 5: Results of the initial experiments, following the same setup that was used by Partanen
et al. (2019). Both the BiLSTM and Transformer architecture chunk-level models outperform
the word-level and sentence-level models in terms of accuracy.

No normalization Words Chunks of 3 Sentences
BRNN Transformer BRNN Transformer BRNN Transformer

WER 52.89 6.44 6.34 5.73 6.1 46.52 53.23

Table 6: Results reported by Partanen et al. (2019, p. 144).

One notable feature of this particular dataset is that the sentences can vary highly in terms of
length: some consist of only one token, while others are well over 1,000 characters long, though
the latter occurs much more infrequently. The data is transcribed from spoken speech, so some
utterances result in sentences that seem overly long in written form, possibly affecting model
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performance. In machine translation, a fixed maximum length limit is sometimes set to discard
these cases of extra long sentences in order to mitigate the effect: this can be done either in the
training phase or in testing. Alternatively, long sentences can be truncated according to a set
limit, or they can be simply ignored. In the OpenNMT settings, the default maximum prediction
length is 250, which was not changed in my experiments. There is also a minimum prediction
length: by default, the value of this is 0, but I increased the value to 2 for the sentence-level
Transformer, because the model generated an alarming amount of empty lines on default set-
tings. Arguably, this may skew the results, as all other models use the default minimum length
value for prediction. Moreover, changing the value may have caused some erratic behaviour:
while going through the prediction outputs produced by the models, I noticed that my sentence-
level Transformer had a habit of cutting some sentences abruptly very short. In some cases,
these predictions end up being only a few tokens long, sometimes even only a few characters,
although the corresponding target sentences are much longer. These instances may be the cases
where the model would have generated empty lines on the default prediction settings. However,
when the model does manage to predict the whole sentence, the output generally looks fine, and
the heavily truncated outputs seem to be a rare enough occurrence that the overall score is not
affected too much. The accuracy is still inferior to the word-level and chunk-level models, and
the sentence-level BiLSTM model as well, but the differences are rather small.

As predicted, models trained on transcribed data consistently outperform those trained on sim-
plified data, as can be seen in Table 7. This means that the models seem to benefit from a more
detailed source input, which makes sense. Consequently, different training data, such as texts
solely from social media, where no such linguistic transcriptions can be found, could produce
very different results. Possible future work could entail combining these two approaches: using
both phonetic transcriptions from spoken speech and user-generated content in the training set.

LSTM LSTM-simple-data

WER BLEU chrF WER BLEU chrF

Words 7.92 84.1 94.4 8.34 83.3 94.1
Chunks of 3 7.83 84.2 94.3 8.16 83.7 94.1
Sentences 9.09 83.9 93.4 9.31 83.5 93.3

BiLSTM BiLSTM-simple-data

WER BLEU chrF WER BLEU chrF

Words 7.71 84.5 94.5 8.02 83.9 94.3
Chunks of 3 6.82 86.2 95.2 7.07 85.8 95.0
Sentences 8.11 86.1 94.2 8.27 85.9 94.1

Table 7: Results of the LSTM and BiLSTM models, comparing the models trained on simplified
data to the models that are trained on transcribed data.
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The experiments with the rolling/sliding window approach yield rather interesting results, and
the different evaluation scores can be seen in Table 8. The unidirectional LSTM method seems
to benefit from the sliding context window on smaller chunks, with the 2-chunk model even
achieving a better accuracy than the regular 5-chunk model. The scores of the two different 5-
chunk models are in fact almost identical for the LSTM architecture. On the other hand, while
the bidirectional BiLSTM method also benefits slightly from the rolling window approach on
chunks of 2, the regular variants outperform the corresponding sliding window models on longer
chunks. Finally, the Transformer models trained on chunks with a rolling window consistently
yield better results than the corresponding regular models. However, the difference is more
noticeable with smaller chunks, and the scores of the 5-chunk Transformer models are almost
identical: this behaviour is similar to the LSTM models. Overall, the regular 5-chunk BiLSTM
model without the sliding window approach still achieves the best score, when compared to the
Transformer and LSTM models trained on overlapping chunks.

LSTM LSTM-overlapping

WER BLEU chrF WER BLEU chrF

Chunks of 2 7.89 84.2 94.3 7.69 84.5 94.5
Chunks of 3 7.83 84.2 94.3 7.70 84.5 94.5
Chunks of 4 7.86 84.2 94.3 7.89 84.1 94.3
Chunks of 5 7.85 84.3 94.3 7.85 84.2 94.3

BiLSTM BiLSTM-overlapping

WER BLEU chrF WER BLEU chrF

Chunks of 2 7.06 85.8 95.0 6.97 85.9 95.1
Chunks of 3 6.82 86.2 95.2 6.95 86.0 95.1
Chunks of 4 6.65 86.6 95.3 6.97 86.9 95.1
Chunks of 5 6.52 86.8 95.4 6.90 86.1 95.1

Transformer Transformer-overlapping

WER BLEU chrF WER BLEU chrF

Chunks of 2 8.40 83.8 94.9 8.04 84.4 95.1
Chunks of 3 8.04 84.5 95.1 7.86 84.8 95.2
Chunks of 4 7.90 84.8 95.2 7.72 85.1 95.3
Chunks of 5 7.64 85.3 95.4 7.63 85.2 95.4

Table 8: Results of three different model architectures: LSTM, BiLSTM, and the Transformer.
Here, the results of the regular chunk-level models are compared to the models that are trained
on chunks with a rolling/sliding window.

Regarding the two different Transformer setups, the Small Transformer seems to yield overall
better results. The best score is obtained by the chunk-5 models of both architectures, with some
slight variation between the other chunk-level models. However, there are notable differences
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between the Small Transformer and the Large Transformer when it comes to the word-level and
sentence-level models. Interestingly, the Small Transformer outperforms the Large Transformer
on both word level and sentence level by a rather large margin, while the scores obtained by the
chunk-level models are very similar to each other. The word-level Large Transformer model
performs exceptionally poorly when compared to the corresponding Small Transformer model:
the WER score of 14.97 obtained by the word-level model is even worse than the sentence-
level score, 14.32. The difference in scores is similar in the case of the sentence-level models.
However, both sentence-level models also generated a rather large amount of empty lines on the
default settings during testing, which is why the minimum prediction length was increased for
prediction for both models. Nevertheless, the sentence-level Small Transformer achieves better
results.

Small-Transformer Large-Transformer

WER BLEU chrF WER BLEU chrF

Words 8.68 83.3 94.6 14.97 70.9 87.6
Chunks of 2 8.40 83.8 94.9 8.02 83.9 94.2
Chunks of 3 8.04 84.5 95.1 7.99 83.9 94.3
Chunks of 4 7.90 84.8 95.2 8.03 83.9 94.2
Chunks of 5 7.64 85.3 95.4 7.90 84.2 94.3
Sentences 10.74 83.3 93.1 14.32 80.0 88.8

Table 9: Results of the Transformer models.

Comparing all the model architectures that were used in my experiments, the BiLSTM method
seems to achieve the overall best results. The different architectures and their evaluation scores
can be seen in Table 10. The performance of the convolutional models is especially weak when
compared to the other methods: this could possibly be fixed or improved with some intensive
fine-tuning, but I was not able to get better scores than the ones reported here, even after trying
several different model settings. It should be noted that the sentence-level convolutional model
is trained using slightly different parameters than the word-level and chunk-level models, for the
sole reason that the default settings were the only way for me to obtain any kind of results on the
sentence level. I tried the default settings also on the word-level and chunk-level convolutional
models, but the results were slightly worse than the ones reported here. The Transformer model
architecture also proved particularly challenging in terms of hyperparameters: however, in the
end, I managed to get better results with a larger batch size and a higher learning rate. The
results obtained by the statistical machine translation method can be seen in Table 11: when
compared to the best-performing NMT model, the BiLSTM model, the SMT approach does not
yield desirable results. However, the SMT method is only evaluated on sentence level: this is
because it did not seem like smaller segments of data inputs would yield reasonable results, at
least with the script I used for training and testing.
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Regarding the different input types, chunk-level normalisation methods seem to consistently
outperform both word-level and sentence-level systems on all model architectures, although the
differences are rather small with the unidirectional LSTM model. However, it is interesting to
note that the BiLSTM model seems to benefit from longer sequences, as the model trained on
chunks of 5 scores better when compared to the models that are trained on smaller chunks. Still,
sentence-long sequences hurt the score. This would suggest that a certain amount of context is
necessary for the models to generate good predictions, but too much context can in fact affect
the results negatively. The ideal length of the context window may be linked to the amount of
training data, as suggested by Hämäläinen et al. (2020a).

LSTM BiLSTM

WER BLEU chrF WER BLEU chrF

Words 7.92 84.1 94.4 7.71 84.5 94.5
Chunks of 2 7.89 84.2 94.3 7.06 85.8 95.0
Chunks of 3 7.83 84.2 94.3 6.82 86.2 95.2
Chunks of 4 7.86 84.2 94.3 6.65 86.6 95.3
Chunks of 5 7.85 84.3 94.3 6.52 86.8 95.4
Sentences 9.09 83.9 93.4 8.11 86.1 94.2

Transformer Convolutional

WER BLEU chrF WER BLEU chrF

Words 8.68 83.3 94.6 19.17 64.2 88.2
Chunks of 2 8.40 83.8 94.9 16.03 70.1 89.1
Chunks of 3 8.04 84.5 95.1 18.07 67.3 87.7
Chunks of 4 7.90 84.8 95.2 19.25 65.7 86.9
Chunks of 5 7.64 85.3 95.4 20.59 64.1 86.0
Sentences 10.74 83.3 93.1 46.29 39.7 68.4

Table 10: Results of the different NMT model architectures. The overall best scores measured
in three different evaluation metrics have been bolded.

BRNN SMT

WER BLEU chrF WER BLEU chrF

Words 7.71 84.5 94.5
Chunks of 3 6.82 86.2 95.2
Sentences 8.11 86.1 94.2 10.53 80.0 93.5

Table 11: SMT results.

In the following section, I will go through the prediction outputs generated by the models in
greater detail and describe some normalisation errors found in the predictions. Unless otherwise
indicated, the models mentioned in this manual error analysis are of the BiLSTM architecture.
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4.1 Manual Error Analysis

Some common error types can be found when taking a closer look at the predicted outputs
produced by the models, and these errors generally seem to fall in line with the findings reported
by Partanen et al. (2019). Many dialectal variants of single words match their Standard Finnish
counterparts, so in many cases the regional word-forms end up requiring no changes at all. Most
of the changes required between the source and target are individual insertions, replacements or
deletions, especially at the end of the word.

Partanen et al. (2019) specifically mention the following error types:

Sporadic vowel lengthening Finnish distinguishes between short and long vowels, and this
distinction is realised in writing as doubled characters. Thus, tuli ‘fire’ and tuuli ‘wind’
are both written and pronounced differently. In the training data used here, however, there
are instances of vowel lengthening that does not mark phonological contrast. Since the
data is transcribed from spoken speech, such sporadic long vowels may simply be a sign
of the speaker emphasising this particular part of the utterance in an unconventional way.
This kind of behaviour is highly irregular and, consequently, difficult to predict.

Compound words Finnish utilises compounding, and this is a highly productive word forma-
tion process in the language. Long character sequences can possibly be challenging for a
normalisation model to learn, as there is more room for irregular transformation patterns.

Long vowel sequences Standard Finnish vowel sequences correspond to diphthongs in many
dialects, or they may be broken up by an internal -h-. This forms multiple transformation
patterns, possibly proving difficult for the models to learn.

Ambiguous word-forms As was mentioned in Section 3.1, the fairly common habit of drop-
ping or shortening morphological suffixes causes ambiguity between word-forms. For
example, the dialectal word-form meil can translate either to the adessive form meillä or
the allative variant meille.

Sandhi Various sandhi phenomena are very common and frequent in Finnish. Sandhi means
sound changes between morphemes and individual words: in the Finnish language, these
phonological processes can be split into assimilation and gemination. An example of
assimilation would be the labialisation of the consonant sequence /np/ in olenpa, resulting
in olempa. As an example of gemination, the word-initial /p/ in tule pian is usually
pronounced as a lengthened consonant at the word boundary, resulting in tulep pian.
These sound changes are not represented in the standard orthography, but especially intra-
word sandhi may be written down in informal contexts—for example, the aforementioned
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olempa instead of olenpa, or tännekkin instead of tännekin. The training data consists of
transcribed spoken speech, so sandhi sound changes are also marked down on the source
side, and there are numerous instances of such phonological phenomena.

The sporadic vowel lengthening that Partanen et al. (2019) mention observing can also be found
in the test set I used for my models. There is an instance of an inflected dialectal pronoun variant
hee, which has the target translation of heidän ‘their’. The 5-chunk BiLSTM model leaves this
word-form as is, while the word-level and 3-chunk models transform it into he, which would be
the uninflected word-form with the meaning of ‘they’ in Standard Finnish. This could be related
to the dialectal pronoun variant heet Partanen et al. (2019) mention in their findings. There are
also a few instances of non-standard extra long vowels: eeei instead of ei, and eeehä instead of
eihän, both cases uttered by the same speaker. Both words have the basic meaning of ‘no’, but
the latter is additionally followed by the emphatic clitic -han, surfacing as -hän because of vowel
harmony. Both of these examples seem like cases of sporadic, emphatic vowel lengthening, but
the models have no problems normalising them. There is even an instance of a particularly
emphatic ‘no’ in the test data: 'eee('ei!. This is, again, correctly normalised as ei! by all models.

A related phenomenon is the tendency for long vowel sequences to surface either as diphthongs
or a word-internal /h/ in dialectal speech. For example, there is an instance of the Standard
Finnish word varmaan ‘probably’ being represented as varmahal in the test data, and another
instance of the word maailma ‘world’ surfacing as moalima. Both words receive correct predic-
tions by the BiLSTM models. However, the dialectal word-form "soah̀aaNk̀oon, which should
be transformed into saadaankohan, is incorrectly translated as saavaankoon by the 5-chunk
model. Here, the first diphthong is correctly interpreted as a long /a/, but the word-final clitic
-han surfacing as a long vowel proves difficult for the model. Other models struggle with this
particular word as well: alternative predictions produced by the different models can be seen in
Table 12. While the output generated by the 5-chunk model is not a valid Finnish word-form,
the transformation patterns it seems to follow do make certain sense: the base verb saada ‘get;
receive’ can go through the sound change from [d] to [v] when forming the active present par-
ticiple of the verb, saava. For example, Lapsi haluaa saada lahjoja ‘The child wants to get gifts’
vs. Lahjoja saava lapsi ‘The child who gets gifts’. This word-form can also go through case
declension: Hän tutustui lahjoja saavaan lapseen ‘S/he got to know the child who gets gifts’.
Additionally, the word-final -koon can be used to form the passive imperative: Saakoon lahjoja

‘Let her/him get gifts’. However, these two sequences do not fit together, and the resulting
output saavaankoon, suggested by the model, is decidedly ungrammatical. Another example
of an invalid prediction is the one generated by the 3-chunk model, saahankohan: here, the
long vowel sequence in the middle of the source token is transformed into a short /a/, and the
resulting -han- can possibly be interpreted as an extra clitic, rendering the prediction ungram-
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matical. On the other hand, the word-level model shortens the token radically into saankaan.
This is a perfectly valid inflected form of the base verb saada ‘get; receive’, but the meaning
is very different from the intended target and, in the context of this particular sentence, rather
nonsensical. Both word-forms are a bit difficult to translate on their own, but the target token
contains two clitics—first, the clitic -ko to form a question, and then -han to soften the question,
expressing politeness—while the predicted output contains a different clitic, -kaan, expressing
wonder and surprise.

Source minä, 'kys̆syy multa että, "soah̀aaNk̀oon 'sitä.
Target minä, kysyy minulta että, saadaankohan sitä.
BiLSTM-W minä, kysyy minulta että, saankaan sitä.
BiLSTM-3 minä, kysyy minulta että, saahankohan sitä.
BiLSTM-5 minä, kysyy minulta että, saavaankoon sitä.
BiLSTM-Sent minä, kysyy minulta että, saadaanko sitä.

Table 12: An example sentence from the test data, showing the detokenised source and target
tokens, and the predictions generated by different models. The source token "soah̀aaNk̀oon
contains a diphthong and two long vowels: all models interpret the dialectal diphthong correctly,
transforming it into the corresponding long vowel found in Standard Finnish, but the other two
vowel sequences prove challenging for the models.

The data contains multiple instances of very long words and compound words. Many of these
are actually numbers spelled out: for example, the year 1878 is written as tuhatkahdeksansa-

taaseitsemänkymmentäkahdeksan. Consequently, the models have never encountered an actual
number sequence in the training data. Similarly, dates are always written out as words rather
than numbers: kahdeskymmenesneljäs päivä heinäkuuta instead of 24.7. The Finnish numerals
are, however, generally highly systematic, even when inflected, so the models do not seem to
have problems with them. There are a few instances of incorrect predictions: for example, the
5-chunk model translates sataanelijääkymmentä incorrectly as sataneljäkymmentä, in its basic
non-inflected form, even though the target is in the partitive case, sataaneljääkymmentä. Some
examples of long numerals, both correctly and incorrectly translated, can be seen in Table 13
and Table 14.

Long nouns, especially rare ones, receive more consistently incorrect predictions. For instance,
the test set has the Standard Finnish word kreikkalaiskatolilaiseksihan—a dated term for a
member of the Orthodox Church, inflected and also combined with a clitic—represented as
reikalaiskatońilaiseksha. The character l surfacing as ń in the middle of the word seems like a
rather irregular transformation pattern, possibly a speech error. The 5-chunk model translates
this sequence of characters into reikälaiskatonilaiseksihan, interpreting the start of the word,
reika, incorrectly as reikä ‘hole’, and violating the rules of Finnish vowel harmony in the pro-
cess. The word-level model strips the final clitic -han off the word-form but manages to inflect
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Source no 'kyl nes 'siin <olìk
Target no kyllä ne siinä olivat
BiLSTM-W no kyllä ne siinä oli
BiLSTM-3 no kyllä ne siinä olivat
BiLSTM-5 no kyllä ne siinä oli
BiLSTM-Sent no kyllä ne siinä oli
Source 'kahδeNåymne, 'jokùssi olì likì "kolmeNåymneNåi
Target kahdenkymmenen, jokusia oli liki kolmenkymmenenkin
BiLSTM-W kahdenkymmenen, jokusia oli liki kolmenkymmenenkin
BiLSTM-3 kahdenkymmenen, jokusia oli liki kolmenkymmenenkin
BiLSTM-5 kahdenkymmenen, jokusia oli liki kolmenkymmenenkin
BiLSTM-Sent kahdenkymmenen, jokusia oli liki kolmenkymmenenkin
Source mut, ol semmoϑϑì 'hyvì ja,
Target mutta, oli semmoisia hyviä ja,
BiLSTM-W mutta, oli semmoisia hyvin ja,
BiLSTM-3 mutta, oli semmoisia hyvin ja,
BiLSTM-5 mutta, oli semmoisia hyviä ja,
BiLSTM-Sent mutta, oli semmoisia hyviä ja,

Table 13: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. In the middle section of the
table, there are two examples of a numeral being translated correctly by all compared models:
'kahδeNåymne and "kolmeNåymneNåi. In the top part of the table, however, there is an example
of a conjugated verb affected by word-boundary sandhi: the target token is olivat ‘be-PST-3PL’,
but three models translate the source token into the corresponding singular word-form oli ‘be-
PST-3SG’.

the word according to the rules of Standard Finnish: reikalaiskatonilaiseksi. Uncommon words
like these are often challenging for the models to learn, especially if they contain multiple dif-
ferent character transformation patterns.

There are a few examples of rare word-forms that only occur in the test set and never in the
training data: for example, an old dialectal word myöläkkä, the meaning of which I was re-
grettably unable to find. This word is the same on the source and target sides, but the models
are unable to normalise it correctly. There are valiant efforts, though, and the models do give
predictions that seem to make sense and follow the phonotactic rules of the Finnish language,
even if the outputs are not actual recognisable words. Examples of these generated outputs can
be seen in Table 15. Sometimes the words themselves are not necessarily uncommon, but the
form they take on the source side may be unconventional: such is the case with -kevväimestä,
normalised as keväästä ‘spring-PTV’. Here, the models seem to focus on different parts of the
character sequence, possibly confused by the initial hyphen used as a linguistic transcription
marker. The 5-chunk model offers keväistä ‘springlike-PTV’ as a prediction, which is visually
quite close to the intended normalisation, the only difference being a matter of one character—
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Source men kaks sit soδàs jà,
Target meni kaksi sitten sodassa ja,
BiLSTM-W meni kaksi sitten sodassa ja,
BiLSTM-3 meni kaksi sitten sodassa ja,
BiLSTM-5 meni kaksi sitten sodassa ja,
BiLSTM-Sent meni kaksi sitten sodassa ja,
Source kolmàs kual ny viimmeis talvel...
Target kolmas kuoli nyt viimeis talvella...
BiLSTM-W kolmas kuoli nyt viimeissä talvella...
BiLSTM-3 kolmas kuoli nyt viimeistä talvella...
BiLSTM-5 kolmas kuoli nyt viimeissä talvella...
BiLSTM-Sent kolmas kuoli nyt viimeis talvella...
Source semne ko ol kuutkymmentkolmì käy(vä).
Target semmoinen kun oli kuuttakymmentäkolmea käyvä.
BiLSTM-W semmoinen kun oli kuutkymmentäkolme käydä.
BiLSTM-3 semmoinen kun oli kuutkymmentäkolmia käydä.
BiLSTM-5 semmoinen kun oli kuutkymmentäkolmea käydä.
BiLSTM-Sent semmoinen kun oli kuutkymmentäkolmea käydä.

Table 14: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. In the bottom section
of the table, there is an example of a numeral receiving incorrect predictions by all models:
kuutkymmentkolmì. In the same section, the final active present participle käy(vä) is incorrectly
interpreted as an uninflected verb.

still, the output itself is a valid Finnish word-form, albeit a different word class than the intended
target token. The word-level model, on the other hand, normalises the word-form as seitsemän-

väimestä: a combination of seitsemän ‘seven’ and a nonsensical but phonologically possible
ending -väimestä. The 3-chunk level model suggests viimeisestä ‘last-PTV’: this is, again, a
perfectly valid Finnish word-form, but the meaning is completely different. Other predictions
can be seen Table 15.

Ambiguous word-forms also prove challenging for the models. The aforementioned example
of meil can be found in the training data: in Table 17, there is an example of the chunk-5 model
predicting the noun case of the word correctly, while the other models suggest a wrongly in-
flected word-form. The sandhi phenomena further complicate ambiguities between word-forms.
For example, kymmentäkään vuotta is realised as kymmentäkkääv vuotta in the dialectal tran-
scriptions, exhibiting gemination both on a morpheme boundary and the word boundary. This
particular case receives the correct prediction, and the model knows to substitute the word-final
character v with the genitive suffix -n. As an example of an incorrect prediction, kakskymmen-

täkakskil lypsävätä is translated as kaksikymmentäkaksikin lypsävää: here, the model interprets
the word-final characters as the clitic -kin, even though the word should be in its basic form,
kaksikymmentäkaksi. The sandhi example that Partanen et al. (2019) give can also be found in
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Source alakuja ai-, alakutala-, tuota, -kevväimestä
Target alkujaan -, alku, tuota, keväästä
BiLSTM-W alkuja -, -, tuota, seitsemänväimestä
BiLSTM-3 alkuja -, -, tuota, viimeisestä
BiLSTM-5 alkuja -, -, tuota, keväistä
BiLSTM-Sent alkuja -, -, tuota keväimestä
Source sillä eij <oom 'myöläkkä niin
Target sillä ei ole myöläkkä niin
BiLSTM-W sillä ei ole myödenkään niin
BiLSTM-3 sillä ei ole myöden niin
BiLSTM-5 sillä ei ole myödenkään niin
BiLSTM-Sent sillä ei ole myödenkään niin
Source se 'reijällaita niin s <eij
Target se reiänlaita niin se ei
BiLSTM-W se reiänlaita niin se ei
BiLSTM-3 se reiänlaita niin se ei
BiLSTM-5 se reiänlaita niin se ei
BiLSTM-Sent se reiänlaita niin se ei

Table 15: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. There are two cases of
rare word-forms, -kevväimestä and 'myöläkkä, that get incorrectly translated by all models.

my test data: 'vuoristol 'laitaa. In this case, the target token for the first word-form is vuoris-

ton ‘mountain-GEN’, but the genitive suffix -n disappears from the surface form because of
the sound change caused by the following word. In my experiments, the word-level model in-
correctly interprets this word-form as vuoristolla ‘mountain-ADESS’, but all the other models
predict the output correctly. A similar example of incorrect predictions can be seen in Table
18: here, the target token tallin ‘stable-GEN’ is realised as 'tallil because of the sandhi influence
caused by the following token, "laatti(alle. The word-level model offers the word-form tallilla

‘stable-ADESS’, while the sentence-level and chunk-5 models suggest a different prediction,
tallille ‘stable-ALL’. However, the 3-chunk level predicts the output correctly.

An interesting example is the dialectal word ku (realised as ko in some dialects): in Standard
Finnish, kuin ‘as’ and kun ‘when’ are spelled and pronounced differently, but in spoken collo-
quial Finnish the distinction is not usually made, resulting in an identical word-form. The word
has several slightly differing meanings and grammatical functions, and as such it is considerably
common in speech and can have various surface forms. This case is also specifically mentioned
in the normalisation guidelines that were used for the dataset: in ambiguous cases, a choice has
been made in favour of kun, because it covers a wider array of functions and use cases (Vilkuna,
2014). In my experiments, the models seem to have difficulties detecting whether the shortened
dialectal ku should be normalised as kuin or kun, resulting in some ungrammatical sentences.
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Source näkyy "lehess <olevan että "siell
Target näkyy lehdessä olevan että siellä
BiLSTM-W näkyy lehdessä olevan että siellä
BiLSTM-3 näkyy lehdessä olevan että siellä
BiLSTM-5 näkyy lehdessä olevan että siellä
BiLSTM-Sent näkyy lehdessä olevan että siellä
Source <olih vielä 'ollu, "rulli 'matkassa
Target oli vielä ollut, trulli matkassa
BiLSTM-W olisi vielä ollut, trulli matkassa
BiLSTM-3 olisi vielä ollut, rulli matkassa
BiLSTM-5 olisi vielä ollut, rulli matkassa
BiLSTM-Sent olisi vielä ollut, rulli matkassa
Source ku lamphaaN karittaN kylijek kerìnyh
Target kun lampaan karitsan kyljet kerinnyt
BiLSTM-W kun lampaan karitsan kylje kerinnyt
BiLSTM-3 kun lampaan karitsan kylje kerinnyt
BiLSTM-5 kun lampaan karitsan kylje kerinnyt
BiLSTM-Sent kun lampaan karitsan kylje kerinnyt
Source semmosem "pläsin että ne on
Target semmoisen pläsin että ne on
BiLSTM-W semmoisen läsin että ne on
BiLSTM-3 semmoisen läsin että ne on
BiLSTM-5 semmoisen läsin että ne on
BiLSTM-Sent semmoisen pläsin että ne on
Source o-, vähhääkhä jääny vilLAA, "villaa
Target -, vähääkään jäänyt villaa, villaa
BiLSTM-W -, vähänhän jäänyt villaa, villaa
BiLSTM-3 -, vähääkään jäänyt villaa, villaa
BiLSTM-5 -, vähääkään jäänyt villaa, villaa
BiLSTM-Sent -, vähääkään jäänyt villaa, villaa
Source siihem, "pilkav vaim 'mitä̀ hään
Target siihen, pilkan vain mitä hän
BiLSTM-W siihen, pilkan vain mitä hän
BiLSTM-3 siihen, pilkan vain mitä hän
BiLSTM-5 siihen, pilkan vai mitä hän
BiLSTM-Sent siihen, pilkan vai mitä hän

Table 16: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. There are cases of sandhi
at several word boundaries: for instance, lamphaaN karittaN kylijek kerìnyh. The word-final
consonants of the first two tokens are velarised, but the models have no problems recognising
the transformation pattern from N to n. However, each model fails to normalise the third word-
form of the sequence correctly: kylijek is consistently translated as kylje, which is not a valid
Finnish word.
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Source no, a kyl "meil 'riitti
Target no, a kyllä meille riitti
BiLSTM-W no, a kyllä meillä riitti
BiLSTM-3 no, a kyllä meillä riitti
BiLSTM-5 no, a kyllä meille riitti
BiLSTM-Sent no, a kyllä meillä riitti
Source ko myö, 'myö vietii 'teält
Target kun me, me vietiin täältä
BiLSTM-W kun me, me vietiin täältä
BiLSTM-3 kun me, me vietiin täältä
BiLSTM-5 kun me, me vietiin täältä
BiLSTM-Sent kun me, me vietiin täältä
Source "kolkyönt säkkii "perunŏà, ja "possut.
Target kolmekymmentä säkkiä perunaa, ja possut.
BiLSTM-W kolmekymmentä säkkiä perunaa, ja possut.
BiLSTM-3 kolmekymmentä säkkiä perunaa, ja possut.
BiLSTM-5 kolmekymmentä säkkiä perunaa, ja possut.
BiLSTM-Sent kolmekymmentä säkkiä perunaa, ja possut.

Table 17: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. In the top section of the
table, there is an example of the dialectal word-form meil receiving incorrect predictions by all
but the chunk-5 model.

Source tonnet tonne, sinnet 'tallil "laatti(alle ja
Target tuonne tuonne, sinne tallin lattialle ja
BiLSTM-W tuonne tuonne, sinne tallilla lattialle ja
BiLSTM-3 tuonne tuonne, sinne tallin lattialle ja
BiLSTM-5 tuonne tuonne, sinne tallille lattialle ja
BiLSTM-Sent tuonne tuonne, sinne tallille lattialle ja
Source siit ne 'se(attii 'hyvin "sekonee ja
Target sitten ne seattiin hyvin sekoineen ja
BiLSTM-W sitten ne seattiin hyvin sekoineen ja.
BiLSTM-3 ja sitten ne seattiin hyvin sekoineen ja.
BiLSTM-5 sitten ne seattiin hyvin sekoineen ja.
BiLSTM-Sent sitten ne sekattiin hyvin sekoineen ja.

Table 18: An example of a part of a sentence from the test data, showing the detokenised source
and target tokens, and the predictions generated by different models. There is an example of the
source token 'tallil receiving incorrect predictions due to the sandhi phenomenon happening at
the word boundary.

Some examples of this can be seen in Table 19. Here, the source and target tokens are com-
pared to the prediction outputs produced by the 3-chunk model. At lines 2 and 5, the dialectal
ku receives different predictions, but these predictions do not match the target normalisation. At
line 15, there is a different dialectal variant of the same word, köm, most likely influenced by
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the surrounding sounds in this particular utterance: here, the model does recognise the word as
a variation of ku/ko, but again the prediction ends up being an incorrect one.

The first two sentences of the previous set of examples can also be seen in Table 20: this time,
illustrating the predictions generated by the BiLSTM model trained on longer segments of data
(N=5). The model makes the same mistakes on the first few rows as the other chunk-level model,
but köm at line 9 is correctly normalised as kuin. This may be a case of lucky chunking process:
when the sentences have been tokenised and separated into chunks, köm has been paired with
the word ennen in the same context window, whereas on the chunks of 3 approach these two
words have been severed from each other. The phrase ennen kuin ‘before’ is most likely a fairly
common occurrence on the target side of the training data—on the other hand, ennen kun would
be highly atypical and potentially ungrammatical—so context clues may guide the model to
correctly choose kuin instead of kun. The opposite may be true for line 5 in Table 19 and line 3
in Table 20: both chunk windows happen to include the word niin preceding the key word ku.
This is again a rather frequent combination of words, which is typically realised as niin kuin ‘as
if’ in Standard Finnish, and the models have probably learnt this pattern from the training data.
In this particular case, however, niin is tied to the verb before it rather than to the following
conjunction, describing the intensity of the action, and kun has the standard meaning of ‘when’,
separate from the preceding word. This would be a case of an unlucky chunking process: both
models are making a very sensible educated guess as to what the normalised form of ku should
be, based on the training data, but in this case the prediction turns out to be incorrect.

Regarding this so-called unlucky chunking process, input data that utilises the sliding/rolling
window approach could possibly solve problems like the one described earlier. In theory, mod-
els that have been trained with this type of data have more information on the context around
the target token, and they have more examples of ambiguous word-forms in different positions
inside a sentence. However, looking at the predictions, the 5-chunk model with an overlapping
window also struggles with the aforementioned case of kun vs. kuin: in fact, the predictions
generated by the model are exactly identical to the outputs shown in Table 20.

In Table 19, there is also an example of the model translating the token työ ‘work’ as te ‘you-
PL’. This is an interesting case of overlearning: in Eastern Finnish dialects, the short vowels
of the plural personal pronouns are replaced with the diphthong yö. Thus, me becomes myö, te

becomes työ, and so on. The word työ also means ‘work’ and, in Standard Finnish and many
other dialects, this is the sole meaning of the word, without the additional meaning of the plural
personal pronoun ‘you’. However, the model has encountered the pattern enough times that it
applies the transformation rule to the characters even when this is not needed.
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Source Prediction Target
1 eikä se tài

˘
la eikä se taida eikä se taida

2 niin niukkoakkaa ku niin niukkaakaan kun niin niukkoakaan kuin
3 toi... se toi... se tuo... se
4 niukkuu, ja niukkua, ja niukkoo, ja
5 irvistelie niiN ku irvistelee niin kuin irvistelee niin kun
6 sillej juomaakii viep sille juomaakin vie sille juomaakin vie
7 nin, se niin, se niin, se
8 irvistie nii että irvistiä niin että irvistää niin että
9 luulie että se luulia että se luulee että se

10 purie mut ei puree mutta ei puree mutta ei
11 os sentä purru ole sentään purrut ole sentään purrut
12 . . .
13 sittes seki ostettihij sitten sekin ostettiin sitten sekin ostettiin
14 jo talooksi enneN jo taloksi ennen jo taloksi ennen
15 köm m<oon kun minä olen kuin minä olen
16 tähän tullu. tähän tullut. tähän tullut.
17 mutta, mutta mutta, mutta mutta, mutta
18 , kunn<ei , kun ei , kun ei
19 sitä rahaa tahtonus sitä rahaa tahtonut sitä rahaa tahtonut
20 saaran niin sitten saada niin sitten saada niin sitten
21 taharottihij jotta päästääs tahdottiin jotta päästää tahdottiin jotta päästäisiin
22 piijaksi. piiaksi. piiaksi.
23 kài

˘
työ oĺpa kai te olipa kai työ olipa

24 hiäv vài
˘
kka miNkälàista hän vaikka minkälaista hän vaikka minkälaista

25 ni, se niin, se niin, se
26 piti käsin tehä. piti käsin tehdä. piti käsin tehdä.
27 . . .

Table 19: An example of the detokenised chunk-level (N=3) source and target tokens, and the
predictions generated by the model. Errors in the prediction output have been bolded.

Source Prediction Target
1 eikä se tài

˘
la niin niukkoakkaa eikä se taida niin niukkaakaan eikä se taida niin niukkoakaan

2 ku toi... se niukkuu kun toi... se niukkuu kuin tuo... se niukkoo
3 , ja irvistelie niiN ku , ja irvistelee niin kuin , ja irvistelee niin kun
4 sillej juomaakii viep nin, sille juomaakin vie niin, sille juomaakin vie niin,
5 se irvistie nii että luulie se irvisti niin että luulee se irvistää niin että luulee
6 että se purie mut ei että se puree mutta ei että se puree mutta ei
7 os sentä purru. ole sentään purrut. ole sentään purrut.
8 sittes seki ostettihij jo talooksi sitten sekin ostettiin jo taloksi sitten sekin ostettiin jo taloksi
9 enneN köm m<oon tähän ennen kuin minä olen tähän ennen kuin minä olen tähän

10 tullu. tullut. tullut.

Table 20: An example of the detokenised chunk-level (N=5) source and target tokens, and the
predictions generated by the model. Errors in the prediction output have been bolded.
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5 Conclusion

In this thesis, I have attempted to replicate the results that have been reported in previous work
on Finnish dialect text normalisation by Partanen et al. (2019). The authors use neural machine
translation methods to normalise Finnish dialects, obtaining very good results in the process.
The chosen model architectures are the bidirectional recurrent neural network (BRNN) and the
Transformer. The results show certain similarities when compared, all experiments indicating
that the BRNN model outperforms other character-based machine translation architectures in
dialectal text normalisation. However, the evaluation scores obtained from my experiments are
considerably lower than those reported by Partanen et al. It is difficult to say why this is the case,
as there are various possible reasons as to why my models performed poorly in comparison.
The dataset is the same, so the training data that is fed to the models should be fairly similar.
There may, however, be some differences regarding the hyperparameter values or other model
settings: these may affect the results, despite the models sharing the same general architecture.
The evaluation processes may also be slightly different: for example, I have chosen to include
punctuation marks in the prediction outputs that are used for evaluation, and punctuation is also
detokenised according to standard writing conventions. The sentences are also not lowercased,
so the training set retains instances of capitalised words, such as names.

I have also conducted further experiments with different neural network models and a statistical
machine translation approach. The neural network architectures that are used in the experiments
are the recurrent neural network (RNN) model and the convolutional model, in addition to the
BRNN and Transformer models that were also used by Partanen et al. (2019). The vanilla
RNN model is outperformed by the more advanced BRNN model, although the differences in
the evaluation scores are rather small. In the end, I was not able to get good results with the
convolutional models, despite trying out several different parameter settings. I also had no luck
with the SMT approach: when the final results of the NMT and SMT methods are compared,
the NMT models generally seem to outperform the SMT approach.

I have also used two different Transformer setups, and the results obtained by these models were
then compared and evaluated. In my experiments, the Transformer with smaller dimensions and
fewer layers outperforms the larger Transformer model. The smaller Transformer also uses a
larger batch size, which may have a positive effect on the model performance, as noted by Wu et
al. (2021). Even though the final differences in the evaluation scores are very small, especially
with the various chunk-level models, this is a positive finding: smaller Transformers result in
models that train faster and require less disk space. With some fine-tuning, Transformers may
even be competitive with the RNN-based methods. In my experiments, however, the BRNN
method outperforms both Transformer models.
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In addition to different model architectures, I have also experimented with different input strate-
gies. In this work, I use the same input strategies as Partanen et al. (2019): word-level, chunk-
level, and sentence-level training data. Additionally, I use chunks of 2, 4, and 5. I also exper-
imented with a rolling/sliding window approach. One of the key findings is that chunk-level
training data seems to work consistently better than word-level and sentence-level methods in
text normalisation tasks. In this work, I have also demonstrated that the neural network models
might even benefit from longer input chunks, with the BRNN model trained on chunks of 5
outperforming the similar model that was trained only on chunks of 3. However, the size of the
training set may be crucial regarding the optimal input type and the length of the character seg-
ments, and smaller chunks may be the preferred option when the amount of available training
data is scarce.

Active research has been done on the topic of Finnish dialect normalisation, and there are also
existing tools for the task, such as the Murre normaliser tool by Partanen et al. (2019). Future
work could entail focusing on more contemporary data, such as social media texts, or spoken
language. For example, the dataset used in this thesis, the Samples of Spoken Finnish Corpus
(Institute for the Languages of Finland, 2014), contains dialectal speech that is already quite dif-
ferent from the spoken Finnish variants of today. Dialect normalisation continues to be a topic
of interest; not only in the context of Finnish, but other languages as well. For example, there
has been recent work done on Estonian dialect normalisation, where the Finnish dialect genera-
tion models developed by Hämäläinen et al. (2020b) are used to convert Standard Estonian into
a pseudo-dialect to combat data sparsity (Hämäläinen et al., 2022). Dialects are indeed often
under-resourced in natural language processing, and generating synthetic data can potentially
help in developing tools and applications for dialectal data. Low-resource languages such as
Veps or Votic, both relatives of Finnish and Estonian, could benefit from a similar approach.
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Ljubešić, Nikola, Katja Zupan, Darja Fišer, and Tomaž Erjavec (2016). “Normalising Slovene
data: historical texts vs. user-generated content”. In: Proceedings of the 13th Conference

on Natural Language Processing (KONVENS 2016), volume 16 of Bochumer Linguistische

Arbeitsberichte. Bochum, Germany, pp. 146–155.

Luong, Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective Approaches to
Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, pp. 1412–1421. DOI: 10.18653/v1/D15-1166. URL: https:
//aclanthology.org/D15-1166.

Lusetti, Massimo, Tatyana Ruzsics, Anne Göhring, Tanja Samardžić, and Elisabeth Stark (2018).
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