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Abstract
Background: Adolescence is a stage of fast growth and development. Exposures during puberty 
can have long-term effects on health in later life. This study aims to investigate the role of adoles-
cent lifestyle in biological aging.
Methods: The study participants originated from the longitudinal FinnTwin12 study (n = 5114). 
Adolescent lifestyle-related factors, including body mass index (BMI), leisure-time physical activity, 
smoking, and alcohol use, were based on self-reports and measured at ages 12, 14, and 17 years. 
For a subsample, blood-based DNA methylation (DNAm) was used to assess biological aging with 
six epigenetic aging measures in young adulthood (21–25 years, n = 824). A latent class analysis was 
conducted to identify patterns of lifestyle behaviors in adolescence, and differences between the 
subgroups in later biological aging were studied. Genetic and environmental influences on biological 
aging shared with lifestyle behavior patterns were estimated using quantitative genetic modeling.
Results: We identified five subgroups of participants with different adolescent lifestyle behavior 
patterns. When DNAm GrimAge, DunedinPoAm, and DunedinPACE estimators were used, the class 
with the unhealthiest lifestyle and the class of participants with high BMI were biologically older than 
the classes with healthier lifestyle habits. The differences in lifestyle-related factors were maintained 
into young adulthood. Most of the variation in biological aging shared with adolescent lifestyle was 
explained by common genetic factors.
Conclusions: These findings suggest that an unhealthy lifestyle during pubertal years is associated 
with accelerated biological aging in young adulthood. Genetic pleiotropy may largely explain the 
observed associations.
Funding: This work was supported by the Academy of Finland (213506, 265240, 263278, 312073 to 
J.K., 297908 to M.O. and 341750, 346509 to E.S.), EC FP5 GenomEUtwin (J.K.), National Institutes 
of Health/National Heart, Lung, and Blood Institute (grant HL104125), EC MC ITN Project EPITRAIN 
(J.K. and M.O.), the University of Helsinki Research Funds (M.O.), Sigrid Juselius Foundation (J.K. 
and M.O.), Yrjö Jahnsson Foundation (6868), Juho Vainio Foundation (E.S.) and Päivikki and Sakari 
Sohlberg foundation (E.S.).

Editor's evaluation
This is an important article that is methodologically compelling that provides evidence that an 
unhealthy lifestyle during adolescence accelerates epigenetic age in adulthood and that these asso-
ciations are largely explained by the effect of shared genetic influences. The main strengths of this 
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article are the relatively large sample size, longitudinal assessment of lifestyle factors, and sophis-
ticated statistical analyses. The article will be of interest to a broad audience, including individuals 
working on methylation, epidemiology, and/or aging.

Introduction
Epidemiological studies of life course have indicated that exposures during early life have long-term 
effects on later health (Kuh et al., 2003). Unhealthy environments and lifestyle habits during rapid cell 
division can affect the structure or functions of organs, tissues, or body systems, and these changes 
can subsequently affect health and disease in later life (Biro and Deardorff, 2013; Power et  al., 
2013). For example, lower birth weight and fast growth during childhood predispose individuals to 
coronary heart disease and increased blood pressure in adulthood (Osmond and Barker, 2000). In 
addition to infancy and childhood, adolescence is also a critical period of growth.

Adolescence is characterized by pubertal maturation and growth spurts. Early pubertal develop-
ment is linked to worse health conditions, such as obesity and cardiometabolic risk factors in adult-
hood (Prentice and Viner, 2013). However, childhood obesity can lead to early onset of puberty, 
especially among girls (Li et al., 2017; Richardson et al., 2020), and, therefore, can confound the 
observed associations between early pubertal development and worse later health. Moreover, early 
pubertal development is linked to substance use and other risky behaviors in adolescence (Hartman 
et al., 2017; Savage et al., 2018), but the associations are partly explained by familial factors (Savage 
et al., 2018).

Many unhealthy lifestyle choices, such as smoking initiation, alcohol use, and a physically inactive 
lifestyle, are already made in adolescence and increase the risk of developing several noncommuni-
cable diseases over the following decades (Lopez et al., 2006). Once initiated, unhealthy habits are 
likely to persist into adulthood (Latvala et al., 2014; Maggs and Schulenberg, 2005; Rovio et al., 
2018; Salin et al., 2019). A recent systematic review showed that healthy habits tend to cluster during 
childhood and adolescence, and typically, about half of the adolescents fall into subgroups character-
ized by healthy lifestyle habits (Whitaker et al., 2021). However, small minorities of adolescents are 
classified as heavy substance users or as having multiple other risk behaviors (Whitaker et al., 2021). 
The long-term consequences of the accumulation of unhealthy adolescent behaviors on health in later 
life have been rarely studied.

An unhealthy lifestyle in adolescence can affect biological mechanisms of aging at the molec-
ular level and, subsequently, morbidity. Epigenetic alterations, including age-related changes in DNA 
methylation (DNAm), constitute a primary hallmark of biological aging (López-Otín et  al., 2013). 
Epigenetic clocks are algorithms that aim to quantify biological aging using DNAm levels within 
specific CpG sites. The first-generation clocks, Horvath’s and Hannum’s clocks, were trained to predict 
chronological age (Hannum et al., 2013; Horvath, 2013), whereas the second-generation clocks, such 
as DNAm PhenoAge and GrimAge, are better predictors of health span and lifespan (Levine et al., 
2018; Lu et al., 2019). For epigenetic clocks, the difference between an individual’s epigenetic age 
estimate and chronological age provides a measure of age acceleration (AA). The DunedinPoAm esti-
mator differs from its predecessors in that it has been developed to predict the pace of aging (Belsky 
et al., 2020). The pace of aging describes longitudinal changes over 12 years in several biomarkers 
of organ-system integrity among same-aged individuals. Recently, the DunedinPACE estimator, which 
constitutes an advance on the original DunedinPoAm, was published (Belsky et al., 2022). Duned-
inPACE was trained to predict pace of aging measured over 20-year follow-up, and only the reliable 
probes were used in the prediction. From the life-course perspective, epigenetic aging measures are 
useful tools to assess biological aging at all ages and detect changes induced by lifetime exposures.

Previous studies have linked several lifestyle-related factors, such as higher body mass index (BMI), 
smoking, alcohol use, and lower leisure-time physical activity (LTPA), with accelerated biological aging 
measured using epigenetic clocks (Oblak et al., 2021; Quach et al., 2017). However, most of these 
studies were based on cross-sectional data on older adults. The first studies on the associations of 
adolescent lifestyle-related exposures with biological aging assessed with epigenetic aging measures 
indicated that advanced pubertal development, higher BMI, and smoking are associated with accel-
erated biological aging in adolescence (Etzel et al., 2022; Raffington et al., 2021; Simpkin et al., 
2017).

https://doi.org/10.7554/eLife.80729
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The few previous studies conducted on this topic have focused on single lifestyle factors, and 
a comprehensive understanding of the role of adolescent lifestyle in later biological aging remains 
unclear. Our first aim is to define the types of lifestyle behavior patterns that can be identified in 
adolescence using data-driven latent class analysis (LCA). The second aim is to investigate whether the 
identified behavioral subgroups differ in biological aging in young adulthood and whether the associ-
ations are independent of baseline pubertal development. The third aim is to assess the genetic and 
environmental influences shared between biological aging and adolescent lifestyle behavior patterns.

Methods
The participants were Finnish twins and members of the longitudinal FinnTwin12 study (born during 
1983–1987) (Kaprio, 2013; Rose et al., 2019). A total of 5600 twins and their families initially enrolled 
in the study. At the baseline, the twins filled out the questionnaires regarding their lifestyle-related 
habits at 11–12 years of age, and follow-up assessments were conducted at ages 14 and 17.5 years. 
The response rates were high for each assessment (85–90%). In young adulthood, at an average 
age of 22  years, blood samples for DNA analyses were collected during in-person clinical studies 
after written informed consent was signed. The data on health-related behaviors were collected with 
questionnaires and interviews. A total of 1295 twins of the FinnTwin12 cohort were examined and 
measured either in-person or through telephonic interviews. DNAm was determined and biological 

eLife digest For most animals, events that occur early in life can have a lasting impact on individ-
uals’ health. In humans, adolescence is a particularly vulnerable time when rapid growth and devel-
opment collide with growing independence and experimentation. An unhealthy lifestyle during this 
period of rapid cell growth can contribute to later health problems like heart disease, lung disease, 
and premature death. This is due partly to accelerated biological aging, where the body deteriorates 
faster than what would be expected for an individual’s chronological age.

One way to track the effects of lifestyle on biological aging is by measuring epigenetic changes. 
Epigenetic changes consist on adding or removing chemical ‘tags’ on genes. These tags can switch 
the genes on or off without changing their sequences. Scientists can measure certain epigenetic 
changes by measuring the levels of methylated DNA – DNA with a chemical ‘tag’ known as a methyl 
group – in blood samples. Several algorithms – known as ‘epigenetic clocks’ – are available that esti-
mate how fast an individual is aging biologically based on DNA methylation.

Kankaanpää et al. show that unhealthy lifestyles during adolescence may lead to accelerated aging 
in early adulthood. For their analysis, Kankaanpää et al. used data on the levels of DNA methylation 
in blood samples from 824 twins between 21 and 25 years old. The twins were participants in the 
FinnTwin12 study and had completed a survey about their lifestyles at ages 12, 14, and 17.

Kankaanpää et al. classified individuals into five groups depending on their lifestyles. The first three 
groups, which included most of the twins, contained individuals that led relatively healthy lives. The 
fourth group contained individuals with a higher body mass index based on their height and weight. 
Finally, the last group included individuals with unhealthy lifestyles who binge drank, smoked and did 
not exercise.

After estimating the biological ages for all of the participants, Kankaanpää et al. found that both 
the individuals with higher body mass indices and those in the group with unhealthy lifestyles aged 
faster than those who reported healthier lifestyles. However, the results varied depending on which 
epigenetic clock Kankaanpää et al. used to measure biological aging: clocks that had been developed 
earlier showed fewer differences in aging between groups; while newer clocks consistently found that 
individuals in the higher body mass index and unhealthy groups were older. Kankaanpää et al. also 
showed that shared genetic factors explained both unhealthy lifestyles and accelerated biological 
aging.

The experiments performed by Kankaanpää et al. provide new insights into the vital role of an indi-
vidual’s genetics in unhealthy lifestyles and cellular aging. These insights might help scientists identify 
at risk individuals early in life and try to prevent accelerated aging.

https://doi.org/10.7554/eLife.80729
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aging was assessed for 847 twins, out of which 824 twins had also information on lifestyle-related 
habits in adolescence. Data collection was conducted in accordance with the Declaration of Helsinki. 
The Indiana University IRB and the ethics committees of the University of Helsinki and Helsinki Univer-
sity Central Hospital approved the study protocol (113/E3/2001and 346/E0/05).

DNAm and assessment of biological age
Genomic DNA was extracted from peripheral blood samples using commercial kits. High molecular 
weight DNA samples (1 μg) were bisulfite converted using EZ-96 DNA methylation-Gold Kit (Zymo 
Research, Irvine, CA) according to the manufacturer’s protocol. The twins and co-twins were randomly 
distributed across plates, with both twins from a pair on the same plate. DNAm profiles were obtained 
using Illumina’s Infinium HumanMethylation450 BeadChip or the Infinium MethylationEPIC BeadChip 
(Illumina, San Diego, CA). The Illumina BeadChips measure single-CpG resolution DNAm levels across 
the human genome. With these assays, it is possible to interrogate over 450,000 (450k) or 850,000 
(EPIC) methylation sites quantitatively across the genome at single-nucleotide resolution. Of the 
samples included in this study, 744 were assayed using 450k and 80 samples using EPIC arrays. Meth-
ylation data from different platforms was combined and preprocessed together using R package minfi 
(Aryee et al., 2014). We calculated detection p-values comparing total signal for each probe to the 
background signal level to evaluate the quality of the samples (Maksimovic et al., 2016). Samples of 
poor quality (mean detection p>0.01) were excluded from further analysis. Data were normalized by 
using the single-sample Noob normalization method, which is suitable for datasets originating from 
different platforms (Fortin et al., 2017). We also used Beta-Mixture Quantile (BMIQ) normalization 
(Teschendorff et al., 2013). Beta values representing CpG methylation levels were calculated as the 
ratio of methylated intensities (M) to the overall intensities (beta value = M/(M + U + 100), where U is 
unmethylated probe intensity). These preprocessed beta values were used as input in the calculations 
of the estimates of epigenetic aging.

We utilized six epigenetic clocks. The first four clocks, namely, Horvath’s and Hannum’s epigenetic 
clocks (Hannum et al., 2013; Horvath, 2013) and DNAm PhenoAge and DNAm GrimAge estimators 
(Levine et al., 2018; Lu et al., 2019), produced DNAm-based epigenetic age estimates in years by 
using a publicly available online calculator (https://dnamage.genetics.ucla.edu/new) (normalization 
method implemented in the calculator was utilized, as well). For these measures, AA was defined 
as the residual obtained from regressing the estimated epigenetic age on chronological age (AAHor-

vath, AAHannum, AAPheno, and AAGrim, respectively). The fifth and sixth clocks, namely, DunedinPoAm and 
DunedinPACE estimators, provided an estimate for the pace of biological aging in years per calendar 
year (Belsky et al., 2020; Belsky et al., 2022). DunedinPoAm and DunedinPACE were calculated 
using publicly available R packages (https://github.com/danbelsky/DunedinPoAm38; Belsky et al., 
2020 and https://github.com/danbelsky/DunedinPACE; Belsky et  al., 2022, respectively). The 
epigenetic aging measures were screened for outliers (>5 standard deviations away from mean). One 
outlier was detected according to DunedinPACE and was recoded as a missing value.

The components of DNAm GrimAge (adjusted for age) were also obtained, including DNAm-
based smoking pack-years and the surrogates for plasma proteins (DNAm-based plasma proteins): 
DNAm adrenomedullin (ADM), DNAm beta-2-microglobulin (B2M), DNAm cystatin C, DNAm growth 
differentiation factor 15 (GDF15), DNAm leptin, DNAm plasminogen activator inhibitor 1 (PAI-1), and 
DNAm tissue inhibitor metalloproteinases 1 (TIMP-1).

Lifestyle-related factors in adolescence
BMI at ages 12, 14, and 17 years
BMI (kg/m2) was calculated based on self-reported height and weight.

LTPA at ages 12, 14, and 17 years
The frequency of LTPA at the age of 12 years was assessed with the question ‘How often do you 
engage in sports (i.e., team sports and training)?’ The answers were classified as 0 = less than once 
a week, 1 = once a week, and 2 = every day. At ages 14 and 17 years, the question differed slightly: 
‘How often do you engage in physical activity or sports during your leisure time (excluding physical 
education)?’ The answers were classified as 0 = less than once a week, 1 = once a week, 2 = 2–5 times 
a week, and 3 = every day.

https://doi.org/10.7554/eLife.80729
https://dnamage.genetics.ucla.edu/new
https://github.com/danbelsky/DunedinPoAm38
https://github.com/danbelsky/DunedinPACE
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Smoking status at ages 14 and 17 years
Smoking status was determined using the self-reported frequency of smoking and classified as 0 = 
never smoker, 1 = former smoker, 2 = occasional smoker, and 3 = daily smoker.

Alcohol use (binge drinking) at ages 14 and 17 years
The frequency of drinking to intoxication had the following classes: ‘How often do you get really 
drunk?’ 0 = never, 1 = less than once a month, 2 = approximately once or twice a month, and 3 = 
once a week or more.

Pubertal development at age 12 years
Baseline pubertal development was assessed using a modified five-item Pubertal Development Scale 
(PDS) questionnaire (Petersen et al., 1988; Wehkalampi et al., 2008). Both sexes answered three 
questions each concerning growth in height, body hair, and skin changes. Moreover, boys were asked 
questions about the development of facial hair and voice change, while girls were asked about breast 
development and menarche. Each question had response categories 1 = growth/change has not 
begun, 2 = growth/change has barely started, and 3 = growth/change is definitely underway, except 
for menarche, which was dichotomous, 1 = has not occurred or 3 = has occurred (see also Wehka-
lampi et al., 2008). PDS was calculated as the mean score of the five items, and higher values indi-
cated more advanced pubertal development at age 12 years.

Lifestyle-related factors in young adulthood at age 21–25 years
BMI (kg/m2) was calculated based on the measured height and weight.

LTPA was assessed using the Baecke questionnaire (Baecke et al., 1982). A sport index was based 
on the mean scores of four questions on sports activity described by Baecke et al., 1982 and Mustelin 
et al., 2012 for the FinnTwin12 study. The sport index is a reliable and valid instrument to measure 
high-intensity physical activity (Richardson et al., 1995).

Smoking was self-reported and classified as never, former, or current smoker.
Alcohol use (100% alcohol grams/day) was derived from the Semi-Structured Assessment for the 

Genetics of Alcoholism (Bucholz et al., 1994) and based on quantity and frequency of use and the 
content of alcoholic beverages, assessed by trained interviewers.

Statistical analysis
Patterns of lifestyle behaviors in adolescence
To identify the patterns of lifestyle behaviors in adolescence, an LCA was conducted, which is a data-
driven approach to identify homogenous subgroups in a heterogeneous population. The classification 
was based on BMI and LTPA at ages 12, 14, and 17 years and smoking status and alcohol use at ages 
14 and 17 years (10 indicator variables). All variables were treated as ordinal variables, except for 
continuous BMI. The classification was based on the thresholds of the ordinal variables and the means 
and variances of BMI.

An LCA model with 1–8 classes was fitted. The following fit indices were used to evaluate the 
goodness of fit: Akaike’s information criterion, Bayesian information criterion (BIC), and sample size-
adjusted BIC. The lower values of the information criteria indicated a better fit for the model. More-
over, we used the Vuong–Lo–Mendell–Rubin likelihood ratio (VLMR) test and the Lo–Mendell–Rubin 
(LMR) test to determine the optimal number of classes. The estimated model was compared with the 
model with one class less, and the low p-value suggested that the model with one class less should be 
rejected. At each step, the classification quality was assessed using the average posterior probabilities 
for most likely latent class membership (AvePP). AvePP values close to 1 indicate a clear classification. 
In addition to the model fit, the final model for further analyses was chosen based on the parsimony 
and interpretability of the classes.

Differences in biological aging
The mean differences in biological aging between the lifestyle behavior patterns were studied using 
the Bolck–Croon–Hagenaars approach (Asparouhov and Muthén, 2021). The class-specific weights 
for each participant were computed and saved during the latent class model estimation. After that, 

https://doi.org/10.7554/eLife.80729


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health

Kankaanpää et al. eLife 2022;11:e80729. DOI: https://doi.org/10.7554/eLife.80729 � 6 of 25

a secondary model conditional on the latent lifestyle behavior patterns was specified using weights 
as training data: Epigenetic aging measures were treated as distal outcome one at a time, and the 
mean differences across classes were studied while adjusting for sex, age and baseline pubertal devel-
opment. Similarly, the mean differences in the components of DNAm GrimAge and lifestyle-related 
factors in young adulthood were studied. The models of epigenetic aging measures were additionally 
adjusted for BMI in adulthood. To evaluate the effect sizes, standardized mean differences (SMDs) 
were calculated.

Genetic and environmental influences
Genetic and environmental influences on biological aging in common with lifestyle behavior patterns 
were studied using quantitative genetic modeling. For simplicity, we adjusted the epigenetic aging 
variables for sex, age, and baseline pubertal development prior to the analysis.

We first carried out univariate modeling to study genetic and environmental influences on epigen-
etic aging measures (Neale and Cardon, 1992). The variance in the epigenetic aging measures was 
decomposed into the latent variables representing additive genetic (A), dominant genetic (D), or 
shared environmental (C) and non-shared environmental (E) components (ACE model or ADE model). 
The sequences of the models were fitted (ACE, ADE, AE, CE, and E). Because dominance in the 
absence of additive effects is rare, the model including D and E components (DE-model) was omitted. 
We used Satorra–Bentler scaled chi-squared (χ2) test, comparative fit index (CFI), Tucker–Lewis index 
(TLI), root mean square error of approximation (RMSEA), and standardized root-mean-square residual 
(SRMR) to evaluate the goodness of fit of the models. The model fits the data well if the χ2 test is not 
statistically significant (p>0.05), CFI and TLI values are close to 0.95, the RMSEA value is below 0.06, 
and the SRMR value is below 0.08 (Hu and Bentler, 1999). Moreover, BIC was used to compare non-
nested models. A lower BIC value indicates a better model fit. The most parsimonious model with the 
sufficient fit to the data was considered optimal.

On the one hand, as described above, total variance in biological aging was decomposed in the compo-

nents explained by genetic, shared, and unshared environmental factors 
‍

(
a2

Tot + c2
Tot + e2

Tot

)
(= VarTot)‍ 

(Figure 1A). On the other hand, we can use the secondary model to study the differences in biological 
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Figure 1. Decomposition of (A) total variation in biological aging and (B) the variation of the residual term.

https://doi.org/10.7554/eLife.80729
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aging between the adolescent lifestyle behavior patterns, as described above, and decompose the 
variance in biological aging into the variance explained by the adolescent lifestyle behavior patterns 

‍Var(Model
)
‍
 and the variance of the residual term 

‍Var(Res
)
‍
. We also conducted univariate modeling for the 

residual term of biological aging, which corresponds to the variation in biological aging not explained 

by the adolescent lifestyle behavior patterns 
‍

(
a2

Res + c2
Res + e2

Res

)
‍
 (= ‍VarRes‍) (Figure 1B). The residual 

terms were obtained by specifying a latent variable corresponding to the residuals of the secondary 
model described above (without including covariates), and the factor scores were saved. Finally, the 
proportion of variation in biological aging explained by the genetic factors shared with adolescent 

lifestyle patterns was evaluated as follows: 
‍

(
a2

Tot − a2
Res

)
/ VarTot.‍ The proportion of variation in epigen-

etic aging explained by the environmental factors was evaluated similarly. These proportions reflect 
the extent to which the same genetic/environmental factors contribute to the association between the 
adolescent lifestyle patterns and biological aging (i.e., size of the genetic and environmental correla-
tions between the phenotypes).

Missing data were assumed to be missing at random (MAR). The model parameters were esti-
mated using the full information maximum likelihood (FIML) method with robust standard errors. 
Under the MAR assumption, the FIML method produced unbiased parameter estimates. The standard 
errors of the latent class models and secondary models were corrected for nested sampling (TYPE = 
COMPLEX). Descriptive statistics were calculated using IBM SPSS Statistics for Windows, version 20.0 
(IBM Corp, Armonk, NY), and further modeling was conducted using Mplus, version 8.2 (Muthén and 
Muthén, 1998).

Results
The descriptive statistics of the study variables are presented in Table  1. A total of 5114 twins 
answered questionnaires on lifestyle-related behaviors during their adolescent years at least once. 
For 824 twins, epigenetic aging estimates were obtained. The mean age (SD) of the twins having 
information on biological aging was 22.4 (0.7) years. The means of the epigenetic age estimates were 
estimated as follows: Horvath’s clock 28.9 (3.6), Hannum’s clock 18.2 (3.3), DNAm PhenoAge 13.0 
(5.3), and DNAm GrimAge 25.2 (3.3) years. The intraclass correlation coefficients (ICCs) of epigenetic 
aging measures were consistently higher in MZ twin pairs than in DZ twin pairs (Table 2). This suggests 
an underlying genetic component in biological aging. The correlations between the different epigen-
etic aging measures ranged from –0.12 to 0.73. The lowest correlation was observed between AAHorvath 
and DunedinPoAm and between AAHorvath and DunedinPACE. All other correlations were positive. The 
highest correlations (>0.5) were observed between AAHannum and AAPheno, AAGrim and DunedinPoAm, 
and DunedinPoAm and DunedinPACE.

Patterns of lifestyle behaviors
Increasing the number of classes continued to improve AIC, BIC, and ABIC (Table 3). However, the 
VLMR and LMR tests indicated that even a solution with four classes would be sufficient. In the fifth 
step, a class of participants with high BMI was extracted. Previous studies have shown the role of 
being overweight or obese in biological aging (Lundgren et al., 2022). After including the sixth class, 
the information criteria still showed considerable improvement, but the AvePPs for several classes 
were below 0.8. For these reasons, and to have adequate statistical power for subsequent analyses, 
a five-class solution was considered optimal. The AvePPs ranged from 0.78 to 0.91 for the five-class 
solution, indicating reasonable classification quality.

Of the participants, 32% fell into the class of healthiest lifestyle habits (C1) (see Figure 2, and the 
distributions of indicator variables according to the adolescent lifestyle behavior patterns in Table 4). 
They had normal weight, on average, and were more likely to engage in regular LTPA compared 
to the other groups; most of them were non-smokers and did not use alcohol regularly. Every fifth 
(19.9%) participant belonged to the second class (C2), characterized by the low mean level of BMI in 
the range of normal weight for children (low-normal BMI) (Cole et al., 2007). They also had healthy 
lifestyle habits, but they were not as physically active as the participants in class C1. The participants 
placed in the third class (C3, 22.8%) had lifestyle habits similar to those of the participants in class 
C1; however, they had a higher level of BMI in the range of normal weight for children (high-normal 
BMI). About every tenth (9.5%) of the participants belonged to the fourth class (C4), with the highest 
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Table 1. Descriptive statistics of the adolescent lifestyle-related variables in all twins and in the 
subsample of twins with information on biological aging.

All twins (n = 5114) Subsample (n = 824)

n Mean (SD) or % n Mean (SD) or %

Zygosity 4852 824

 � MZ 1650 34.0 335 40.7

 � Same-sex DZ 1603 33.0 262 31.8

 � Opposite-sex DZ 1599 33.0 227 27.5

Sex 5114 824

 � Female 2584 50.5 470 57.0

 � Male 2530 49.5 354 43.0

At age 12

 � Pubertal development (1–3) 5111 1.6 (0.5) 823 1.6 (0.5)

 � Body mass index 4913 17.6 (2.6) 793 17.7 (2.6)

 � Leisure-time physical activity 5038 813

 � Less than once a week 1877 37.3 295 35.3

 � Once a week 2499 49.6 416 51.2

 � Every day 662 13.1 102 12.5

At age 14

 � Body mass index 4473 19.3 (2.7) 787 19.5 (2.6)

 � Leisure-time physical activity 4590 799

 � Less than once a week 688 15.0 110 13.8

 � Once a week 796 17.3 149 18.6

 � 2–5 times a week 2182 47.5 370 46.3

 � Every day 924 20.1 170 21.3

 � Smoking status 4570 800

 � Never 3954 86.5 687 85.9

 � Former 296 6.5 57 7.1

 � Occasional 122 2.7 24 3.0

 � Daily smoker 198 4.3 32 4.0

 � Alcohol use (binge drinking) 4565 796

 � Never 3501 76.7 602 75.6

 � Less than once a month 756 16.6 135 17

 � Once or twice a month 275 6.0 50 6.3

 � Once a week or more 33 0.7 9 1.1

At age 17

 � Body mass index 4158 21.4 (3.0) 760 21.4 (2.7)

 � Leisure-time physical activity 4208 766

 � Less than once a week 748 17.8 132 17.2

 � Once a week 686 16.3 130 17.0

 � 2–5 times a week 1977 47.0 363 47.4

Table 1 continued on next page
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level of BMI (high BMI). At each measurement point, the mean BMI level exceeded the cutoff points 
for overweight in children (Cole et al., 2007). The prevalence of daily smoking was slightly higher in 
C4 compared to classes C1, C2, and C3. Of the participants, 15.9% were classified into the subgroup 
characterized by the unhealthiest lifestyle behaviors (C5). Most of them were daily smokers and used 
alcohol regularly at the age of 17. They also had a lower probability of engaging in regular LTPA 
compared to the other groups; however, they were of normal weight, on average.

Boys were slightly over-represented in the classes that were most physically active (C1, C3) and had 
the highest levels of BMI (C3, C4) (percentage of boys: C1: 57.2%; C3: 51.5%; and C4: 52.7%), and 
under-represented in the classes with lowest levels of BMI (C2) and the unhealthiest lifestyle behavior 
pattern (C5) (C2: 42.7%; C5: 44.1%). There were also differences in pubertal development at base-
line between the groups. The subgroups with the highest levels of BMI (C3, C4) and the class with 

All twins (n = 5114) Subsample (n = 824)

n Mean (SD) or % n Mean (SD) or %

 � Every day 797 18.9 141 18.4

 � Smoking status 4190 762

 � Never 2419 57.7 454 59.7

 � Former 493 11.8 83 10.9

 � Occasional 213 5.1 48 6.3

 � Daily smoker 1065 25.4 176 23.1

 � Alcohol use (binge drinking) 4217 766

 � Never 881 20.9 152 19.8

 � Less than once a month 1807 42.9 340 44.4

 � Once or twice a month 1240 29.4 222 29.0

 � Once a week or more 289 6.9 52 6.8

MZ, monozygotic twins; DZ, dizygotic twins; SD, standard deviation.

Table 1 continued

Table 2. The intraclass correlation coefficients (ICCs) of epigenetic aging measures by zygosity and correlation coefficients between 
the measures (n = 824).

ICCs (95% CI) Correlation coefficients (95% CI) off-diagonal and means (standard deviations) on the diagonal

MZ twin pairs
DZ twin 
pairs AAHorvath AAHannum AAPheno AAGrim DunedinPoAm DunedinPACE

AAHorvath 0.71 (0.63, 0.79)
0.40 (0.24, 
0.55) 0.00 (3.51)

AAHannum 0.66 (0.56, 0.76)
0.32 (0.16, 
0.48)

0.40 (0.33, 
0.48) 0.00 (3.27)

AAPheno 0.69 (0.60, 0.78)
0.16 (0.00, 
0.33)

0.36 (0.29, 
0.44) 0.61 (0.56, 0.66) 0.00 (5.25)

AAGrim 0.72 (0.63, 0.80)
0.35 (0.15, 
0.55)

0.08 (0.01, 
0.16) 0.32 (0.24, 0.40) 0.39 (0.33, 0.46) 0.00 (3.24)

DunedinPoAm 0.62 (0.52, 0.71)
0.42 (0.24, 
0.60)

–0.05 (-0.12, 
0.03) 0.20 (0.13, 0.27) 0.41 (0.35, 0.47) 0.57 (0.52, 0.63) 1.00 (0.07)

DunedinPACE 0.71 (0.64, 0.78)
0.46 (0.31, 
0.61)

–0.04 (–0.11, 
0.04) 0.30 (0.22, 0.38) 0.49 (0.43, 0.55) 0.55 (0.49, 0.61) 0.62 (0.57, 0.67) 0.88 (0.10)

CIs were corrected for nested sampling.
CI, confidence interval; AA, age acceleration; MZ, monozygotic; DZ, dizygotic.
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unhealthiest lifestyle habits (C5) were, on average, the most advanced in pubertal development (mean 
PDS, C3: 1.67 95% CI: [1.63–1.71], C4: 1.69 [1.64–1.74]; and C5: 1.68 [1.63–1.72]), while the class with 
the healthiest lifestyle pattern (C1) and that with the lowest level of BMI (C2) were less advanced in 
pubertal development (C1: 1.53 [1.50–1.56]; C2: 1.44 [1.41–1.47]).

The distribution of lifestyle behavior patterns in the subsample of participants having information 
on biological aging was very similar to that in the large cohort data (C1: 33.0%; C2: 16.6%; C3: 20.6%; 
C4: 10.1%; C5: 19.7%). In the subsample, the differences in lifestyle-related factors were maintained 
well over the transition from adolescence to young adulthood (Figure 2—figure supplement 1).

Differences in biological aging
There were differences among the classes in AAPheno (Wald test: p=0.006), AAGrim (p=2.3e-11), Duned-
inPoAm (p=3.1e-9), and DunedinPACE (p=5.5e-7) in the models adjusted for sex, age, and baseline 
pubertal development. There were no differences in biological aging when Horvath’s clock (p=0.550) 
and Hannum’s clock (p=0.487) were used. The overall results considering AAGrim, DunedinPoAm, and 
DunedinPACE were very similar (Figure 3 and Table 5).

The group with the unhealthiest lifestyle pattern (C5) was, on average, 1.7–3.3  years biologi-
cally older than the groups with healthier lifestyle patterns and normal weight (C1–C3) when DNAm 
GrimAge was used to assess biological aging (Table 5, M1). Moreover, the unhealthiest group had, an 
average, 2–3 weeks/calendar year faster pace of biological aging, as measured with DunedinPoAm. 
The differences in DunedinPACE were very similar to those observed in DunedinPoAm, but there 
was no difference between the unhealthiest class (C5) and the class with a healthy lifestyle and high-
normal BMI (C3) and, moreover, the difference between the healthiest class (C1) was not significant 
at 0.01 level.

When DNAm GrimAge was used, the group with a high BMI (C4) was, on average, 1.8–2.4 years 
biologically older than the two groups with healthier lifestyle patterns (C1 and C2) (Table 5, M1). 
When measured with the DunedinPoAm estimator, the class had, on average, 3–4 weeks/calendar 
year faster pace of aging, and when measured with the DunedinPACE estimator, it had 4–5 weeks/
calendar year faster pace of aging. Moreover, when DunedinPoAm and DunedinPACE were used, 
the class had approximately 3 weeks/calendar year faster pace of aging compared to the group with 
healthy lifestyle with normal-high BMI (C3), and when DunedinPACE was used, the class had 2 weeks/
calendar year faster pace of aging compared to the group with unhealthiest lifestyle pattern (C5). 
When DNAm PhenoAge was used to assess biological aging, only the group with a high BMI stood 
out. The group was biologically 2.0–2.5 years older than the groups with lower mean levels of BMI 
(C1–C2, C5). Based on the estimation results of the models, baseline pubertal development was asso-
ciated with advanced biological aging only when Hannum’s clock was used to derive biological AA 
(standardized regression coefficient B = 0.10 [0.01–0.18]).

Table 3. Model fit of the latent class models (n = 5114).

AIC BIC ABIC VLMR LMR Class sizes AvePP

128842 129012 128929

122533 122880 122711 <0.001 <0.001 74.0%, 26.0% 0.95, 0.92

119937 120460 120206 <0.001 <0.001 44.9%, 40.5%, 14.6% 0.88, 0.89, 0.93

118030 118729 118389 <0.001 <0.001 36.4%, 32.7%, 16.7%, 14.2% 0.83, 0.86, 0.87, 0.92

117167 118043 117617 0.529 0.530 32.0%, 22.8%, 19.9%, 15.9%, 9.5% 0.78, 0.82, 0.85, 0.88, 0.91

116526 117578 117076 0.169 0.170 31.5%, 18.5%, 15.7%, 14.0%, 12.7%, 7.7% 0.77, 0.84, 0.83, 0.78, 0.78, 0.90

116099 117328 116731 0.043 0.044 21.0%, 17.5%, 15.2%, 13.8%, 12.9%, 12.8%, 6.9% 0.73, 0.82, 0.70, 0.77, 0.83, 0.83, 0.91

115695 117101 116418 0.407 0.408 20.3%, 16.2%, 13.6%, 13.5%, 12.3%, 11.3%, 9.3%, 3.4% 0.72, 0.75, 0.82, 0.71, 0.83, 0.80, 0.82, 0.89

AIC, Akaike’s information criterion; BIC, Bayesian information criterion; ABIC, sample size-adjusted Bayesian information criterion; VLMR, Vuong–Lo–
Mendell–Rubin likelihood ratio test; LMR, Lo–Mendell–Rubin-adjusted likelihood ratio test; AvePP, average posterior probabilities for most likely latent 
class membership.
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Figure 2. Classes with different lifestyle patterns (n = 5114). Mean and probability profiles (95% confidence intervals) of the indicator variables utilized in 
the classification: (A) body mass index, (B) regular leisure-time physical activity (LTPA) (several times a week), (C) daily smoking, and (D) regular alcohol 
use (once a month or more). For categorical variables, the probabilities of belonging to the highest categories are presented.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The estimation results of a latent class analysis (LCA) model with five classes.

Figure supplement 1. Lifestyle-related factors in adulthood (21–25 years) according to the adolescent lifestyle behavior classes in the subsample of 
participants with information on biological aging (n = 824).

Figure supplement 1—source data 1. Means and 95% confidence intervals of the lifestyle-related factors in adulthood according to the adolescent 
lifestyle behavior classes (BCH approach).
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Table 4. The classes with different adolescent lifestyle behavior patterns (n = 5114).

C1 (32.0%) C2 (19.9%) C3 (22.8%) C4 (9.5%) C5 (15.9%)

Est 95% CI Est 95% CI Est 95% CI Est 95% CI Est 95% CI

Body mass index

 � At age of 12 years 16.8 15.7, 17.9 15.2 14.7, 15.7 19.1 17.5, 20.7 22.7 21.7, 23.8 17.2 16.9, 17.5

 � At age of 14 years 18.6 17.6, 19.5 16.7 16.0, 17.3 20.9 19.2, 22.6 24.8 23.3, 26.2 18.9 18.6, 19.2

 � At age of 17 years 20.8 19.7, 22.0 18.8 18.1, 19.4 22.6 21.6, 23.7 27.1 25.0, 29.2 20.6 20.3, 20.9

Leisure-time physical activity

 � At age of 12 years

 � Less than once a week 0.29 0.22, 0.37 0.45 0.39, 0.51 0.35 0.26, 0.43 0.44 0.37, 0.50 0.44 0.39, 0.48

 � Once a week 0.54 0.48, 0.59 0.46 0.41, 0.50 0.52 0.47, 0.56 0.47 0.39, 0.54 0.46 0.41, 0.50

 � Every day 0.17 0.14, 0.21 0.09 0.04, 0.14 0.14 0.07, 0.21 0.10 0.06, 0.13 0.11 0.08, 0.14

 � At age of 14 years

 � Less than once a week 0.08 0.05, 0.11 0.17 0.12, 0.22 0.14 0.07, 0.22 0.18 0.13, 0.23 0.27 0.22, 0.31

 � Once a week 0.14 0.07, 0.20 0.20 0.17, 0.24 0.16 0.10, 0.23 0.23 0.17, 0.28 0.20 0.16, 0.23

 � 2‒5 times a week 0.52 0.45, 0.59 0.45 0.41, 0.49 0.51 0.43, 0.59 0.43 0.37, 0.49 0.40 0.35, 0.45

 � Every day 0.27 0.23, 0.30 0.18 0.13, 0.23 0.19 0.12, 0.25 0.17 0.12, 0.21 0.14 0.10, 0.17

 � At age of 17 years

 � Less than once a week 0.10 0.05, 0.14 0.19 0.14, 0.23 0.13 0.06, 0.20 0.27 0.19, 0.35 0.35 0.29, 0.40

 � Once a week 0.15 0.11, 0.18 0.18 0.15, 0.21 0.15 0.11, 0.19 0.18 0.14, 0.23 0.19 0.15, 0.23

 � 2‒5 times a week 0.50 0.44, 0.56 0.45 0.41, 0.49 0.53 0.48, 0.57 0.44 0.36, 0.52 0.36 0.32, 0.41

 � Every day 0.26 0.22, 0.29 0.18 0.13, 0.23 0.20 0.12, 0.27 0.11 0.07, 0.15 0.10 0.07, 0.13

Smoking status

 � At age of 14 years

 � Never 0.99 0.98, 1.00 0.98 0.95, 1.00 0.97 0.95, 1.00 0.83 0.74, 0.93 0.33 0.24, 0.43

 � Former 0.01 0.00, 0.02 0.02 0.00, 0.03 0.02 0.00, 0.04 0.09 0.04, 0.14 0.29 0.24, 0.34

 � Occasional 0.00 0.01 –0.01, 0.02 0.00 0.00, 0.01 0.04 0.01, 0.07 0.13 0.10, 0.16

 � Daily smoker 0.00 0.00 0.00, 0.01 0.00 0.04 0.00, 0.07 0.25 0.19, 0.31

 � At age of 17 years

 � Never 0.69 0.61, 0.77 0.73 0.65, 0.81 0.68 0.59, 0.78 0.50 0.41, 0.59 0.03 0.00, 0.06

 � Former 0.12 0.09, 0.15 0.09 0.05, 0.13 0.12 0.07, 0.16 0.11 0.06, 0.16 0.15 0.12, 0.19

 � Occasional 0.06 0.04, 0.07 0.04 0.02, 0.06 0.04 0.01, 0.06 0.05 0.02, 0.07 0.07 0.05, 0.10

 � Daily smoker 0.13 0.08, 0.18 0.14 0.09, 0.18 0.17 0.09, 0.24 0.34 0.24, 0.44 0.74 0.69, 0.79

Alcohol use (binge drinking)

 � At age of 14 years

 � Never 0.88 0.85, 0.91 0.94 0.90, 0.97 0.84 0.79, 0.89 0.76 0.69, 0.83 0.23 0.15, 0.31

 � Less than once a month 0.11 0.08, 0.14 0.05 0.02, 0.08 0.13 0.09, 0.17 0.18 0.12, 0.24 0.46 0.41, 0.51

 � Once or twice a month 0.01 0.00, 0.02 0.02 0.00, 0.03 0.03 0.01, 0.04 0.05 0.02, 0.08 0.27 0.22, 0.32

 � Once a week or more 0.00 0.00 0.00 0.00 0.00, 0.01 0.04 0.02, 0.06

 � At age of 17 years

 � Never 0.21 0.18, 0.25 0.33 0.26, 0.41 0.22 0.16, 0.28 0.23 0.15, 0.30 0.01 0.00, 0.02

Table 4 continued on next page
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According to the previous literature, it is controversial whether childhood obesity has a direct 
effect on later health or whether the association is fully mediated by BMI in adulthood (Park et al., 
2012). The role of adult BMI may depend on which disease outcome is studied (Richardson et al., 
2020). After additionally adjusting the model for BMI in adulthood, the differences in AAPheno and 
DunedinPACE between the class of participants with high BMI (C4) and those with lower BMI (C1, C2, 
C5) were attenuated (Table 5, M2). This finding suggests that the observed differences in biological 
aging probably are fully mediated by BMI in adulthood. However, the differences in biological aging 
were only slightly attenuated when the DNAm GrimAge and DunedinPoAm estimators were used, 
suggesting that childhood overweight may leave permanent imprint on biological aging assessed with 
these measures. However, when DNAm GrimAge was used, the difference between the classes C4 
and C1 was not significant at 0.01 level.

In our study, high standard deviations of epigenetic age estimates were observed. Therefore, 
variation in AA measures may largely be attributable to technical variation, which is not biologically 
meaningful. Recently developed principal component (PC)-based clocks are shown to improve the 
reliability and validity of epigenetic clocks (Higgins-Chen et al., 2022). We therefore replicated our 
main analyses using PC-based epigenetic clocks (data not shown). The standard deviations of epigen-
etic age estimates were similar or even higher compared with those obtained with the original clocks, 
but the correlations between AA measures assessed with different clocks were consistently higher 
when PC-based epigenetic clocks were used. Importantly, the observed associations with the adoles-
cent lifestyle behavior patterns did not substantially change.

Differences in DNAm-based plasma proteins and smoking pack-years
Overall, after controlling for sex, age, and baseline pubertal development, there were differences 
in DNAm-based ADM (Wald test: p=0.010), B2M (p=0.014), and Packyrs (p=1.3e-5), but not in 
DNAm-based cystatin C (p=0.140), GDF15 (p=0.228), Leptin (p=0.228), PAI-1 (p=0.055), and TIMP-1 
(p=0.089) between the adolescent lifestyle behavior patterns. The class with the unhealthiest lifestyle 
habits (C5) differed unfavorably from the other classes only by DNAm smoking pack-years while the 
class of participants with high BMI (C4) stood out by several DNAm-based plasma proteins including 
DNAm ADM, PAI-1, and TIMP-1 (Figure 3—figure supplement 1).

Genetic and environmental effects
Twin pairs with biological aging data on both members of the pair were used in the quantitative 
genetic modeling to estimate the genetic and environmental components of variance for biological 
aging (n = 154 monozygotic and 211 dizygotic pairs). The model including additive genetic and non-
shared environmental component (AE model) was considered optimal for all the epigenetic aging 
measures (Table 6). Generally, ACE and ADE fit the data about as well, and models without genetic 
component (CE model) provided significantly worse fit. Based on these results, AE model was also 
chosen for the further modeling of the residual term of biological aging. Genetic factors explained 
62–73% of the total variation in biological aging depending on the estimator. The rest of the variation 
(27–38%) was explained by unshared environmental factors.

The proportion of the total variation in biological aging in early adulthood explained by adoles-
cent lifestyle behavior patterns was 3.7% for AAPheno, 16.8% for AAGrim, 15.4% for DunedinPoAm, 

C1 (32.0%) C2 (19.9%) C3 (22.8%) C4 (9.5%) C5 (15.9%)

Est 95% CI Est 95% CI Est 95% CI Est 95% CI Est 95% CI

 � Less than once a month 0.48 0.43, 0.52 0.45 0.40, 0.49 0.46 0.41, 0.52 0.41 0.35, 0.47 0.26 0.22, 0.31

 � Once or twice a month 0.28 0.24, 0.32 0.18 0.12, 0.24 0.28 0.23, 0.33 0.29 0.23, 0.35 0.51 0.46, 0.55

 � Once a week or more 0.03 0.00, 0.06 0.04 0.02, 0.06 0.03 0.00, 0.06 0.08 0.04, 0.11 0.22 0.18, 0.26

Mean and probability profiles of the indicator variables utilized in the classification.
BMI, body mass index; Est, estimated mean or probability; CI, confidence interval; C1, the class with the healthiest lifestyle pattern; C2, the class 
with low-normal BMI; C3, the class with healthy lifestyle and high-normal BMI; C4, the class with high BMI; C5, the class with the unhealthiest lifestyle 
pattern.

Table 4 continued
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Figure 3. Mean differences between the adolescent lifestyle behavior patterns in biological aging measured with (A) DNAm PhenoAge, (B) DNAm 
GrimAge, (C) DunedinPoAm, and (D) DunedinPACE estimators (n = 824). The analysis was adjusted for sex (female), standardized age, and baseline 
pubertal development. Means and 95% confidence intervals are presented. C1, the class with the healthiest lifestyle pattern; C2, the class with low-
normal body mass index (BMI); C3, the class with a healthy lifestyle and high-normal BMI; C4, the class with high BMI; C5, the class with the unhealthiest 
lifestyle pattern; AA, age acceleration.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Means and 95% confidence intervals of biological aging according to the adolescent lifestyle behavior patterns (BCH approach).

Figure supplement 1. DNA methylation (DNAm)-based plasma proteins and smoking pack-years according to the adolescent lifestyle behavior 
patterns (n = 824).

Figure supplement 1—source data 1. Means and 95% confidence intervals of DNA methylation (DNAm)-based plasma proteins and smoking pack-
years according to the adolescent lifestyle behavior patterns (BCH approach).

https://doi.org/10.7554/eLife.80729
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Table 5. Differences in biological aging between classes with different adolescent lifestyle behavior patterns.

AAPheno AAGrim DunedinPoAm DunedinPACE

Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD

C2 vs. C1

 � M1 –0.55
–2.15, 
1.06 –0.10 –0.57

–1.37, 
0.23 –0.18 –0.01 –0.03, 0.01 –0.14 –0.03 –0.05, 0.00 –0.30

 � M2 –0.13
–1.79, 
1.54 –0.02 –0.54

–1.38, 
0.29 –0.17 –0.01 –0.03, 0.01 –0.14 –0.01 –0.04, 0.02 –0.10

C3 vs. C1

 � M1 1.04
–0.54, 
2.63 0.20 0.97

–0.01, 
1.95 0.30 0.00 –0.02, 0.02 0.00 0.02 –0.01, 0.04 0.20

 � M2 0.60
–1.01, 
2.21 0.11 0.94

–0.10, 
1.97 0.29 0.00 –0.02, 0.02 0.00 0.00 –0.03, 0.03 0.00

C4 vs. C1

 � M1 1.97
0.44, 
3.50 0.38 1.83

0.74, 
2.91* 0.56 0.05 0.03, 0.07* 0.71 0.07 0.04, 0.11* 0.70

 � M2 0.66
–1.31, 
2.63 0.13 1.73

0.26, 
3.21 0.53 0.04 0.01, 0.07* 0.57 0.02 –0.02, 0.07 0.20

C5 vs. C1

 � M1 –0.36
–1.76, 
1.04 –0.07 2.70

1.74, 
3.66* 0.83 0.04 0.02, 0.07* 0.57 0.03 0.00, 0.06 0.30

 � M2 –0.45
–1.82, 
0.93 –0.09 2.69

1.73, 
3.66* 0.83 0.04 0.02, 0.06* 0.57 0.03 0.00, 0.06 0.30

C3 vs. C2

 � M1 1.59
–0.07, 
3.25 0.30 1.54

0.58, 
2.50* 0.48 0.01 –0.01, 0.04 0.14 0.04 0.01, 0.07* 0.50

 � M2 0.73
–1.10, 
2.55 0.14 1.48

0.36, 
2.60* 0.46 0.01 –0.02, 0.03 0.14 0.01 –0.03, 0.04 0.10

C4 vs. C2

 � M1 2.52
0.85, 
4.18* 0.48 2.40

1.28, 
3.51* 0.74 0.07 0.04, 0.09* 1.00 0.10 0.06, 0.14* 1.00

 � M2 0.79
–1.59, 
3.16 0.15 2.27

0.59, 
3.95* 0.70 0.05 0.02, 0.09* 0.71 0.03 –0.02, 0.08 0.30

C5 vs. C2

 � M1 0.19
–1.40, 
1.77 0.04 3.27

2.32, 
4.23* 1.01 0.06 0.03, 0.08* 0.86 0.06 0.03, 0.09* 0.60

 � M2 –0.32
–1.97, 
1.33 –0.06 3.24

2.21, 
4.27* 1.00 0.05 0.03, 0.08* 0.71 0.04 0.01, 0.07 0.40

C4 vs. C3

 � M1 0.93
–0.82, 
2.67 0.18 0.85

–0.45, 
2.16 0.26 0.05 0.03, 0.08* 0.71 0.06 0.02, 0.10* 0.60

 � M2 0.06
–1.91, 
2.03 0.01 0.79

–0.68, 
2.26 0.24 0.05 0.02, 0.08* 0.71 0.02 –0.02, 0.07 0.20

C5 vs. C3

 � M1 –1.40
–2.99, 
0.18 –0.27 1.73

0.62, 
2.84* 0.53 0.04 0.02, 0.07* 0.57 0.02 –0.02, 0.05 0.20

 � M2 –1.05
–2.63, 
0.54 –0.20 1.76

0.63, 
2.88* 0.54 0.05 0.02, 0.07* 0.71 0.03 0.00, 0.06 0.30

C5 vs. C4

Table 5 continued on next page
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and 10.5% for DunedinPACE (Figure 4). The association between adolescent lifestyle patterns and 
biological aging in early adulthood was largely explained by shared genetic influences; the genetic 
factors shared with adolescent lifestyle explained 3.7, 13.1, 12.6, and 10.5%, respectively, of the total 
variation in biological aging. Depending on the biological aging estimate, only 0–3.7% of the total 
variation in biological aging was explained by (unshared) environmental factors shared with adoles-
cent lifestyle patterns. The rest of the total variation in biological aging was explained by genetic and 
(unshared) environmental factors unique to biological aging.

Discussion
We conducted a twin study with a longitudinal lifestyle follow-up during the adolescent years and 
measured biological aging from genome-wide DNAm data using the most recent epigenetic aging 
clocks. Our findings supported previous studies, which showed that lifestyle-related behaviors tend 
to cluster in adolescence. In our study, most participants generally followed healthy lifestyle patterns, 
but we could also identify a group of young adults characterized by higher BMI (10% of all partici-
pants) in adolescence, as well as a group (16% of all participants) with more frequent co-occurrence 
of smoking, binge drinking, and low levels of physical activity in adolescence. We observed differ-
ences in biological aging between the classes characterized by adolescent lifestyle patterns in young 
adulthood, but the differences depended on the utilized epigenetic aging measure. Both the class 
with the overall unhealthiest lifestyle and that with a high BMI were biologically 1.7–3.3 years older 
than the classes with healthier lifestyle patterns when DNAm GrimAge was used to assess biological 
aging (AAGrim). Moreover, they had 2–5 weeks/calendar year faster pace of biological aging (Duned-
inPoAm). The class with high BMI was biologically the oldest one when and DNAm PhenoAge and 
DunedinPACE were used. There were no differences when Horvath’s and Hannum’s clocks were used 
to estimate biological aging. The differences in lifestyle-related factors were maintained well over the 
transition from adolescence to young adulthood. However, genetic factors shared with adolescent 
lifestyle explained most of the observed differences in biological aging.

In our study, when the most recently published epigenetic aging measures were used, the class 
with the unhealthiest lifestyle was biologically 1.7–3.3 years older (AAGrim) and had 2–3 weeks/calendar 
year faster pace of biological aging (DunedinPoAm) than the classes with healthier patterns. These 
measures can predict mortality and morbidity, especially cardiometabolic and lung diseases (Belsky 
et al., 2020; Belsky et al., 2022; Lu et al., 2019). A previous meta-analysis focusing on adults in a 
wide age range (17–99 years) showed that the number of healthy lifestyle behaviors is inversely asso-
ciated with all-cause mortality risk (Loef and Walach, 2012). The mortality risk was up to 66% lower 
for individuals having multiple healthy behaviors compared to those adhering to an unhealthy lifestyle 
(smoking, low or high levels of alcohol use, unhealthy diet, no physical activity, and overweight). The 
accumulation of multiple unhealthy lifestyle habits during lifetime probably has a more detrimental 
effect on biological aging as well than any single lifestyle habit. However, our approach did not allow 
us to disentangle the effects of single lifestyle habits on biological aging. Our results suggest that 
the unhealthy lifestyle-induced changes in biological aging begin to accumulate in early life. These 
changes might predispose individuals to premature death in later life.

AAPheno AAGrim DunedinPoAm DunedinPACE

Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD Diff 95% CI SMD

 � M1 –2.33
−3.84, 
–0.82* –0.44 0.88

–0.32, 
2.07 0.27 –0.01 –0.03, 0.02 –0.14 –0.04 –0.08, 0.00 –0.40

 � M2 –1.10
–3.01, 
0.80 –0.21 0.96

–0.51, 
2.44 0.30 0.00 –0.03, 0.03 0.00 0.01 –0.04, 0.05 0.10

AA, age acceleration; BMI, body mass index; Diff, difference; CI, confidence interval; SMD, standardized mean difference; C1, the class with the 
healthiest lifestyle pattern; C2, the class with low-normal BMI; C3, the class with healthy lifestyle and high-normal BMI; C4, the class with high BMI; 
C5, the class with the unhealthiest lifestyle pattern; M1, model was adjusted for sex, age, and pubertal status at age 12; M2, model was additionally 
adjusted for BMI in adulthood.
*The corresponding 99% confidence interval did not overlap zero.

Table 5 continued
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To the best of our knowledge, this is the first study to investigate common genetic influences 
underlying lifestyle clusters and biological aging. Our results suggest genetic correlation between 
adolescent lifestyle and biological aging; individuals who are genetically prone to unhealthy lifestyles 
or overweight in adolescence are also susceptible to faster biological aging later in young adulthood. 
The shared genetic influences on two phenotypes may be due to several scenarios (Solovieff et al., 
2013). They may arise from genetic pleiotropy; in this case, the genes may be a common cause for 
both adolescent lifestyle and biological aging. Another possible reason is causal relation between the 
phenotypes. In this case, genetic factors may affect adolescent lifestyle, which lies on the causal path 
to biological aging (or vice versa). However, for the relationship to be causal, it is necessary that there 
are shared environmental influences on the phenotypes (De Moor et al., 2008). In our study, envi-
ronmental influences shared with adolescent lifestyle on biological aging were observed only when 
DNAm GrimAge and DunedinPoAm estimators were used. In line with our study, McCartney et al., 
2021 showed that there are shared underlying genetic contributions between single lifestyle factors 
and biological aging (AAGrim, AAPheno) using polygenetic risk scores for epigenetic AA. Their Mendelian 
randomization analysis also suggested causal influences of BMI and smoking on biological aging, but 
only when DNAm GrimAge was used.

To the best of our knowledge, this is also the first study reporting the association between adoles-
cent BMI (relative weight) and biological aging in later life. Previous systematic reviews have concluded 
that being overweight or obese in childhood and adolescence has a consistent impact on mortality 

3.7

13.1

3.7

12.6

2.8

10.5

0

10

20

30

AA PhenoAge AA GrimAge DunedinPoAm DunedinPACE

%

Genetic factors Environmental factors

Figure 4. Proportions of the total variation in biological aging explained by genetic and (unshared) environmental factors shared with adolescent 
lifestyle patterns among young adult twin pairs (MZ n = 154, DZ n = 211). The results are based on the model including additive genetic and non-shared 
environmental component (AE model). AA, age acceleration.

The online version of this article includes the following source data for figure 4:

Source data 1. Genetic and environmental factors underlying the association between adolescent lifestyle patterns and biological aging.
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and morbidity in later life (Park et al., 2012; Reilly and Kelly, 2011). In particular, the associations with 
cardiometabolic morbidity are well-established, but the results of the studies investigating the associ-
ations independent of adult BMI are inconclusive (Park et al., 2012). A more recent study showed that 
early-life body size indirectly predisposes coronary artery disease and type 2 diabetes through body 
size in adulthood rather than having a direct effect (Richardson et al., 2020). Our results considering 
biological aging are in line with the existing literature but depend on the epigenetic clock utilized. In 
our study, the participants assigned to the class that was, on average, overweight in adolescence were 
biologically older (based on AAPheno, AAGrim, DunedinPoAm, and DunedinPACE) in young adulthood 
compared to the classes of normal weight and healthy lifestyle habits. The group stood out, especially 
when AAPheno and DunedinPACE were used to measure biological aging, but adult BMI explained the 
observed differences in these measures. Practically all variance of AAPheno and DunedinPACE shared 
with adolescent lifestyle was explained by shared genetic factors. Therefore, these measures probably 
capture aspects of biological aging that are attributed to genetic factors shared with BMI. Mainly, the 
differences in AAGrim and DunedinPoAm did not attenuate after additionally controlling for adult BMI, 
suggesting that higher BMI in adolescence has a direct long-term effect on biological aging measured 
with these epigenetic clocks.

LTPA is associated with a lower risk of mortality and cardiovascular diseases (Li et al., 2013; Löllgen 
et al., 2009). Twin studies and genetically informed studies have suggested that genetic pleiotropy can 
partly explain these frequently observed associations (Karvinen et al., 2015; Sillanpää et al., 2022). 
Previous studies have shown that LTPA is also associated with slower biological aging (Kankaanpää 
et al., 2021). In this study, lower levels of physical activity in adolescence were closely intertwined with 
other unhealthy behaviors. To fully understand the role of adolescence physical activity in later biolog-
ical aging would require a more comprehensive analysis of activity patterns, intensities, and modes, as 
well as subgroup analyses that account for other lifestyle factors, such as diet.

Adolescent smoking behavior and alcohol use appeared to be strongly clustered, in line with the 
findings of a recent systematic review (Whitaker et al., 2021). For this reason, the associations of 
smoking and alcohol use with biological aging might be difficult to disentangle. Smoking is the most 
detrimental lifestyle factor, and its association with accelerated biological aging has been frequently 
reported (Oblak et al., 2021). However, the results obtained for the association between alcohol use 
and biological aging remain unclear (Oblak et al., 2021). A recent study showed that smoking has 
a causal effect on AAGrim, whereas alcohol use did not exhibit such effect (McCartney et al., 2021). 
Epigenetic methylation changes due to alcohol seem to be much fewer in number and magnitude 
compared to smoking exposure (Stephenson et al., 2021). In our study, the unhealthiest lifestyle 
class, in which smoking and alcohol use co-occurred, exhibited accelerated biological aging, especially 
when GrimAge and DunedinPoAm were used. These epigenetic aging measures are highly sensitive 
to tobacco exposure (Belsky et al., 2020; Lu et al., 2019). DNAm GrimAge is a composite biomarker 
comprising seven DNAm surrogates for plasma markers and smoking pack-years, which can predict 
the time to death (Lu et al., 2019). DunedinPoAm utilizes a specific CpG site (located within the gene 
AHRR), the methylation of which is strongly affected by tobacco exposure (Belsky et al., 2020). For 
these reasons, most of the variation in biological aging, which is explained by environmental factors 
shared with adolescent lifestyle, is probably due to smoking exposure.

To better understand the observed differences in biological aging, we also studied differences in 
DNAm-based surrogates included in the DNAm GrimAge estimator (Figure 3—figure supplement 
1). Surprisingly, the class with the unhealthiest lifestyle pattern differed unfavorably from those with 
healthier habits only in DNAm-based smoking pack-years. The class with a high BMI had increased 
levels of several DNAm-based plasma markers, including DNAm PAI-1 and TIMP-1, which are associ-
ated with markers of inflammation and metabolic conditions (Lu et al., 2019). These findings support 
the suggestions that AAGrim is a useful biomarker for cardiovascular health and a potential predictor of 
cardiovascular disease already in young adulthood (Joyce et al., 2021).

Recent studies have yielded inconsistent results regarding the association between pubertal timing 
and biological aging (Hamlat et al., 2021; Maddock et al., 2021). In our models studying the differ-
ences in biological aging across adolescent lifestyle patterns, pubertal development at the age of 
12 was not associated with accelerated biological aging in young adulthood (except for AAHannum). 
Moreover, the class with a high BMI included participants with advanced pubertal development, which 
might reflect the common genetic background underlying BMI and age at menarche (Kaprio et al., 

https://doi.org/10.7554/eLife.80729
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1995). All these findings support the studies showing that childhood obesity, which tracks forward 
into adulthood, explains the observed associations between advanced pubertal status and worse 
cardiovascular health (Bell et al., 2018) and can further reflect the genetic architecture underlying 
BMI, pubertal development, and worse health (Day et al., 2015).

Our study has the following major strengths. Adolescent lifestyle-related patterns were identified 
using population-based large cohort data (N ~ 5000), with longitudinal measurements of lifestyle-
related factors assessed using validated questionnaires. Response rates were high and the distribution 
of the lifestyle-related patterns in the subsample of twins with information on biological aging was 
similar to the distribution in large cohort data, supporting the generalizability of our findings. More-
over, adolescent lifestyle behavior patterns were identified using data-driven LCA. This approach 
enabled us to use all available data on adolescent lifestyle-related behaviors and identify the patterns 
without using artificial cutoff points for the variables. The reciprocal associations between different 
lifestyle-related factors, as well as their joint association with biological aging, are complex, and indi-
vidual associations are difficult to interpret. However, our approach produced results with easy inter-
pretation. The data were prospective, and biological aging was assessed with novel epigenetic aging 
measures, including a recently published DunedinPACE estimator. Furthermore, for the first time, 
we could evaluate the proportions of genetic and environmental influences underlying adolescent 
lifestyle as a whole in relation to biological aging by using quantitative genetic modeling. However, 
our study also has some limitations. Adolescent lifestyle-related behaviors were self-reported and, 
therefore, might be susceptible to recall bias and bias through social desirability.

In conclusion, later biological aging reflects adolescent lifestyle behavior. Our findings advance 
research on biological aging by showing that a shared genetic background can underlie both adoles-
cent lifestyle and biological aging measured with epigenetic clocks.
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