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Abstract. Many physical implementations of quantum computers impose stringent

memory constraints in which 2-qubit operations can only be performed between

qubits which are nearest neighbours in a lattice or graph structure. Hence, before

a computation can be run on such a device, it must be mapped onto the physical

architecture. That is, logical qubits must be assigned physical locations in the

quantum memory, and the circuit must be replaced by an equivalent one containing

only operations between nearest neighbours. In this paper, we give a new technique

for quantum circuit mapping (a.k.a. routing), based on Gaussian elimination

constrained to certain optimal spanning trees called Steiner trees. We give a reference

implementation of the technique for CNOT circuits and show that it significantly out-

performs general-purpose routines on CNOT circuits. We then comment on how the

technique can be extended straightforwardly to the synthesis of CNOT+Rz circuits and

as a modification to a recently-proposed circuit simplification/extraction procedure for

generic circuits based on the ZX-calculus.
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1. Introduction

Quantum circuits give a de facto standard for representing quantum computations at

a low level. They consist of sequences of primitive operations, called quantum gates,

applied to a register of quantum bits, or qubits. Increasingly, noisy intermediate-scale

quantum (NISQ) computers with 10-80 qubits are becoming a reality. Popular physical

realisations such as superconducting quantum circuits [1, 2, 3] and ion traps [4, 5, 6, 7]

consist of qubits stored in the physical states of systems arranged in space, where two-

qubit operations are typically only possible between pairs of adjacent systems. Hence,

when it comes to actually running a quantum computation on these architectures,

logical qubits must be mapped to physical memory locations, and the circuit must be

modified to only consist of 2-qubit operations between adjacent qubits in the physical

architecture. Näıvely, this can be achieved by simply inserting swap gates to move

a pair of qubits next to each other before each 2-qubit operation. However, this

approach comes with an enormous overhead in terms of 2-qubit operations, each of

which introduces a great deal more noise than a single qubit operation on most realistic

architectures [5]. More sophisticated approaches incorporate techniques from computer

aided design [8] and machine-learning [9] in order to minimise the extra operations

needed by making good choices of initial and intermediate memory locations for the

qubits involved. Nevertheless, these are simply refinements of the basic ‘search and

swap’ approach. Most approaches only take the topological structure of the circuit into

account (i.e. which qubits are being acted upon) rather than semantic structure (i.e. the

unitary being implemented), and hence miss out on opportunities for more efficient

circuit mapping.

We present a new approach to quantum circuit mapping based on constrained

Gaussian elimination, and apply it in the simplest case of mapping CNOT circuits.

The main idea is to modify a familiar technique for synthesising CNOT circuits using

Guassian elimination in such that a way that primitive row operations (i.e. CNOT

gates) are only allowed between certain rows corresponding to neighbouring qubits.

Hence, non-local row operations must be propagated through intermediate rows. We

then give a simple strategy for identifying and using appropriate intermediate rows

based on certain minimal spanning trees called Steiner trees. Once we produce such a

spanning tree, we use CNOTs to propagate row operations down toward the leaves then

ultimately back up toward the root. The end result is CNOT circuit realising a given

parity map involving only nearest-neighbour interactions. To measure the effectiveness

of our approach, we produce many random CNOT circuits on 9, 16, and 20 qubits,

containing between 3 and 256 CNOT gates, and map them onto 5 different graph

topologies: 3 × 3 and 4 × 4 square lattices, 16-qubit architectures of the IBM QX-5

and Rigetti Aspen devices, and the 20-qubit IBM Q20 Tokyo architecture. To compare

the performance of our technique to general-purpose mapping techniques, we also map

these CNOT circuits with the Rigetti QuilC compiler and t|ket〉 by Cambridge Quantum

Computing. We chose these tools because they scale well to our larger test circuits and
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give state of the art results on a large set of benchmark circuits published by IBM [10].

Using these as a baseline, we find an average savings in 2-qubit gates of 48% over QuilC

and 36% over t|ket〉.
Since CNOTs and single-qubit operations are universal for quantum computation,

this already extends to a routine for mapping generic circuits: simply apply our routine

to CNOT-only sub-circuits. However, only circuits containing long sequences of CNOT

gates are likely to benefit from this näıve approach. To address this issue, we will

discuss in Section 4 how the techniques we describe can be extended to synthesis of

more general families of circuits. We note that our technique for CNOT circuits extends

straightforwardly to circuits consisting of CNOT and Z-phase gates using the phase

polynomial representation of these circuits (see e.g. [11]). We also suggest a technique

for mapping universal circuits by modifying recently-proposed method by one of the

authors [12] based on the ZX-calculus [13]. The extraction method from [12] has been

implemented (without topological constraints) in the PyZX [14] circuit optimiser, which

has already been very successful in reducing T-count for general Clifford+T circuits [15].

The paper is structured as follows. In Section 2.1 we give a brief background on the

theory of CNOT circuits and parity maps and provide the definitions of Steiner trees and

descending Steiner trees, which we will use in our synthesis algorithm. The algorithm

itself is described in Section 2.2, for the simpler case where the CNOT connectivity graph

contains a Hamiltonian path (as in all five of our benchmark architectures). In Section 3,

we give the results of our CNOT mapping procedure in five different architectures and

compare performance to the Quilc and t|ket〉 compilers. We then describe two extensions

in Section 4: to general graphs and to general circuits.

Related work. Most existing circuit mapping techniques are based on searching for the

optimal placement of swap gates and qubits. This can be described mathematically and

solved with a general solver or temporal planner [16, 17]. However, the search space for

finding optimal swap gates is exponential and these exact techniques will be intractable

for larger NISQ devices [18]. Thus, most recent approaches use heuristics to reduce the

search space [19, 18, 10]. This includes the IBM-QX contest-winning technique that is

based on the A*-search algorithm [8]. Ref. [20] gives an approach for realising arbitrary

parity-function oracles, subject to topological constraints, which are a special case of

the family of maps we consider. With most of these techniques, the size of the resulting

circuit is very sensitive to the original placement of the logical qubits on the device [21].

Although algorithms have been proposed to find an optimal initial placement a priori

[21], mapping techniques that have the freedom to build the initial placement while

routing find a better initial state [8]. Circuits can be routed even better if the initial

mapping is adjusted based on the fully routed circuit [19].

The authors of [22] have recently introduced a technique very similar to ours, which

was developed independently. Both their article and a preprint of this paper appeared

online within a few days of each other (our preprint [23] on 1/4/2019; [22] on 3/4/2019).

The two approaches differ in that we give a slightly different strategy for preserving



CNOT Circuit Extraction for Topologically-constrained Quantum Memories 4

the upper triangular form based on Hamiltonian paths (which we then generalise to

a recursive version based on a depth-first ordering). We also focus primarily on the

case of CNOT circuits and sketch extensions to the case of CNOT+Rz and universal

circuits using phase polynomials and the ZX-calculus, respectively. Ref. [22] covers

the CNOT and CNOT+Rz cases in detail, also relying on phase polynomials for the

latter. We additionally optimise over initial qubit locations, which produces signficant

improvements over the baseline compilers even for low CNOT counts (e.g. > 50%

improvement over Quilc with 8 CNOTs on IBM Q20). Finally, we compare performance

relative to state of the art general-purpose circuit compilers, whereas [22] uses the CNOT

circuit synthesis described in [24], along with a näıve mapping procedure, as its baseline.

2. Methods

2.1. Background: Parity maps and Steiner trees

Our approach to CNOT mapping is based on re-synthesising the CNOT circuit from

its corresponding parity map. By a parity map, we mean any reversible linear map

on bitstrings. That is, we mean a bijective mapping from N -bitstrings to N -bitstrings

where each bit in the output is a parity (i.e. XOR) of the input bits. It is a well-known

fact that such maps exactly correspond to the action of CNOT circuits on computational

basis states. It is therefore convenient to represent the action of a CNOT circuit on N

qubits as an N ×N matrix over GF(2).

If we consider an arbitrary such parity map, it is straightforward to check that

post-composing a CNOT gate with a control on the j-th qubit and the target on the

k-th qubit has the overall effect of adding the j-th row to the k-th row:

⊕P

..
.

..
.

..
.

..
.

..
.

..
.

P ′ ..
.

..
.=

i
j =⇒ P

Rj :=Rj+Ri
P ′

Hence, there is an evident way to construct a CNOT circuit that realises an arbitrary

parity matrix P . Simply perform Gauss-Jordan elimination on P , post-composing

CNOTs for each primitive row operation. In the end, we will obtain CP = 1, where C is

a known CNOT circuit. Then, P = C−1, where C−1 is obtained from C just by reversing

the order of CNOT gates. In other words, in order to synthesise a CNOT circuit which

realises parity map P , we simply perform Gauss-Jordan and store the primitive row

operations used. Then the CNOT circuit corresponds exactly to that sequence of row

operations, in reverse order. This technique, when combined with a simple heuristic for

choosing appropriate row operations, is able to obtain asymptotically optimal CNOT

realisations of a given parity map [24].

In this paper, we modify the question: how can we construct a CNOT realisation of

an arbitrary parity map if only certain CNOT gates are allowed? For example, suppose

we have 9 qubits arranged in a 3 × 3 grid, and we only wish to allow CNOTs between
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nearest neighbours. Clearly this problem is equivalent to asking: how do we perform

Gauss-Jordan elimination on a given GF(2)-matrix, when only certain primitive row

operations are allowed?

Clearly, our only recourse is to use more row operations in order to allow distant

rows to essentially be added together via some intermediate steps. We present a strategy

for doing this based on special kinds of spanning trees called Steiner trees.

Note that, by a graph we always mean an indirected, simple graph with no self-

loops, by a tree we mean a graph with no cycles, and by a root tree we mean a tree

with a chosen vertex called the root. For rooted trees, we use the standard terminology

of parent and child to denote vertices adjacent to a given vertex which are closer to or

farther from the root, respectively.

Definition 2.1. For a graph G and a subset S of the vertices VG of G, a Steiner tree T

is a minimal subgraph of G that is furthermore a tree and has the property that S ⊆ VT .

Computing Steiner trees is NP-hard in general and the related decision problem

is NP-complete [25]. Indeed, the Steiner tree problem can be seen as a generalisation

of the travelling salesperson problem, which allows an arbitrary tree to span a set of

vertices rather than a single path, which can be seen as a tree with no branching. In

practice, we will not need exactly optimal Steiner trees for our strategy to work, and

many efficient heuristics exist for computing approximate Steiner trees [26, 27]. For

our purposes, we use a very simple heuristic based on the Floyd-Warshall shortest-path

algorith [28] and minimal spanning trees.

A useful refinement of Steiner trees will be the following notion.

Definition 2.2. For a graph G, a total ordering ≤ of the vertices VG, and a subset

S ⊆ VG, a decreasing Steiner tree T is a minimal rooted subtree of G such that S ⊆ VT
and every vertex in T is larger its children with respect to ≤.

2.2. Constrained CNOT circuit extraction

In this section, we will describe the algorithm steiner-gauss, which performs Gauss-

Jordan elimination of a parity matrix using only nearest-neighbour row operations for a

given graph G. Consequently, this procedure can be used to synthesise a CNOT circuit

implementing a given parity map using only nearest-neighbour CNOTs. The algorithm

itself consists of two phases, steiner-down and steiner-up, which respectively

produce an upper triangular matrix and produce the identity matrix from an upper

triangular matrix.

Initially, we will consider only graphs G which have a Hamiltonian path, i.e. graphs

G which contain a connected path P that visits each of the vertices in G exactly once.



CNOT Circuit Extraction for Topologically-constrained Quantum Memories 6

For example, the 3× 3 grid:

G :=

0 1 2

5 4 3

6 7 8

has a Hamiltonian path given by [0, 1, 2, . . . , 8]. We will assume this path also provides a

total ordering ≤ on the vertices of G. We will remove the assumption of a Hamiltonian

path in the next section by providing a recursive algorithm capable of handling arbitrary

graphs.

We begin by labelling the rows of our parity map P by the vertices of the

constraint graph G. The first stage of our algorithm, steiner-down, computes an

upper triangular matrix. To do this, we wish to remove the non-zero elements below

the diagonal. We do this one column at a time, starting with column k := 0 and

proceeding left to right. Let S be the set containing k itself, as well as all of the vertices

j such that j > k and Pjk = 1. That is, S contains the diagonal element and all of the

rows which contain 1s below the diagonal. For example, in the following parity map,

S = {0, 2, 7}:

P =



1 0 1 1 1 1 0 0 1

0 1 1 0 1 1 1 1 0

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



0

1

2

3

4

5

6

7

8

G :=

0 1 2

5 4 3

6 7 8

These vertices are not adjacent in the graph, hence when we compute the Steiner tree

T containing S, we get some extra vertices, corresponding to rows that have 0s below

the diagonal:

P =



1 0 1 1 1 1 0 0 1

0 1 1 0 1 1 1 1 0

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



0

1

2

3

4

5

6

7

8

G :=

0 1 2

5 4 3

6 7 8

(1)

These extra vertices which need to be added to get a spanning tree are sometimes called

Steiner points. We consider the numbers in boxes above as decorating the corresponding

vertices of the Steiner tree T . Initially there some 0s in the Steiner tree corresponding

to Steiner points (and possibly the diagonal element), so we first ‘fill’ the Steiner tree.

That is, we add a row with a 1 to any neighbouring row in T with a 0. Since the tree is
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connected, after finitely many iterations this will propagate 1s into every location in T :



1 0 1 1 1 1 0 0 1

0 1 1 0 1 1 1 1 0

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



R1 :=R1+R0



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 1 1 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



R4 :=R4+R7



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



After that, we can ‘empty’ the Steiner tree by setting every location except for the

diagonal to zero. We do this by regarding the diagonal as the root of the tree. For each

leaf v in T with parent w, perform the row operation Rv := Rv + Rw, then remove v

from T . This terminates when there is only one vertex left in T , the root.



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

1 1 1 1 0 0 1 1 0

0 0 1 0 0 1 0 1 1



R7 :=R7+R4



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

1 0 0 0 1 1 1 0 1

0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

0 1 1 1 1 0 1 1 1

0 0 1 0 0 1 0 1 1



R2 :=R2+R1



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

0 1 0 1 1 1 0 1 0

0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

0 1 1 1 1 0 1 1 1

0 0 1 0 0 1 0 1 1



R4 :=R4+R1



1 0 1 1 1 1 0 0 1

1 1 0 1 0 0 1 1 1

0 1 0 1 1 1 0 1 0

0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 1 1 0

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

0 1 1 1 1 0 1 1 1

0 0 1 0 0 1 0 1 1



R1 :=R1+R0



1 0 1 1 1 1 0 0 1

0 1 1 0 1 1 1 1 0

0 1 0 1 1 1 0 1 0

0 1 0 0 0 0 0 0 0

0 1 0 1 1 0 1 1 0

0 0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1

0 1 1 1 1 0 1 1 1

0 0 1 0 0 1 0 1 1


Since we only perform row operations along edges of T , which are a subset of the

edges of G, the corresponding CNOTs in the circuit we synthesise will only be between

neighbouring qubits. For example, the six row operations above (read from right to left)

yield the following part of a CNOT circuit:

⊕

⊕

⊕

⊕

⊕

⊕

0

4

1
2

6
7

8

5

3

t1 t2 t3 t4

Note that in this phase, we have some freedom to choose which row operations to

perform. Here we have taken a greedy strategy for maximising the number of row

operations that can be done in parallel.

Having put the first column in upper triangular form, we delete the corresponding

root vertice from G and then proceed to the next column, building up our CNOT circuit

from right-to-left. Since we proceed in order along a Hamiltonian path, the graph never

becomes disconnected and always has a Hamiltonian path. Hence it is always possible

to find a Steiner tree for any combination of points. steiner-down terminates after

we remove the last vertex from G with a matrix in upper triangular form.
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The second stage of our algorithm, steiner-up, starts with the original graph G

and a parity map P in upper triangular form and removes any 1s that are above the

diagonal, yielding the reduced echelon form (which in our case is always an identity

matrix). It works in almost the same way, except that some care must be taken

not to destroy the existing upper triangular structure. To do this, we must always

perform decreasing row operations. That is, we must perform operations of the form

Rj := Rj +Ri only when j < i. This is where Definition 2.2 comes in. Starting with the

last column, let the set S consist of the diagonal element and the rows which contain 1s

above the diagonal. We then compute a decreasing Steiner tree for S whose root is the

diagonal element. This is always possible, because in the worse case we can just take

the Hamiltonian path for T , but in general we can take shortcuts. For example:

P =



1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 1 0

0 0 1 1 0 0 1 0 1

0 0 0 1 1 1 0 1 0

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



0

1

2

3

4

5

6

7

8

G :=

0 1 2

5 4 3

6 7 8

Here, we have S = {2, 4, 8} and T has vertices {2, 3, 4, 7, 8}. Note there is indeed a

smaller Steiner tree which does not contain vertex 7, but in that case 4 would need to

be a child of 3, hence it is not a decreasing Steiner tree.

Once we have a decreasing Steiner tree, we can ‘fill’ the tree with 1s by decreasing

row operations. This is always possible since at this stage, the root always contains

a 1 and all edges from parents to children are decreasing. We can then ‘empty’ the

tree again just as we did in steiner-down, noting that every row operation at this

stage is applied from a parent to its child (and hence is decreasing). The resulting row

operations in the above example are thus:



1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 1 0

0 0 1 1 0 0 1 0 1

0 0 0 1 1 1 0 1 0

0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



R3 :=R3+R8 R7 :=R7+R8 R2 :=R2+R3 · · ·

· · · R4 :=R4+R7 R7 :=R7+R8 R3 :=R3+R8



1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 1 0

0 0 1 0 1 1 1 1 0

0 0 0 1 1 1 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1
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We can therefore prepend the following section to our CNOT circuit:

⊕

⊕

⊕

⊕

⊕

0

4

1
2

6
7

8

5

3

t1 t2 t3 t4

⊕

t5

Once a column is done, we can delete it from G and take the next highest column.

Again, since we traverse along a Hamiltonian path (backwards this time), the graph

G never becomes disconnected and always has a Hamiltonian path. steiner-up then

terminates with P equal to the identity matrix. The corresponding CNOT circuit then

implements the original parity map using only nearest-neighbour CNOT gates.

Much like other approaches, the size of the final circuit is very sensitive to the initial

layout of the logical qubits within the physical architecture, especially for relatively small

CNOT circuits. For us, a good choice of qubit positions means smaller Steiner trees,

which in turn means that fewer extra CNOTs are added. The placement of qubits on

the architecture is equivalent to permuting the rows and columns of the parity map

before applying the algorithm described above. Hence, we use a genetic algorithm [29]

to find an optimal permutation such that the resulting circuit contains as little gates as

possible.

3. Results

We work with a fixed set of randomly-generated CNOT circuits on 9, 16, and 20 qubits.

The 9-qubit CNOT circuits have either 3, 5, 10, 20 or 30 gates, whereas the other

circuits have either 4, 8, 16, 32, 64, 128 or 256 gates. For each of these gate counts, we

generated 20 different random circuits, yielding a test set of 380 random circuits.

We compared our algorithm to the QuilC [30] and t|ket〉 [10] compilers. The former

uses CZ gates as basic two-qubit gates instead of CNOT gates. Since a CNOT gate can

be formed by conjugating the target bit of a CNOT gate with Hadamards, the amount

of CZ gates can be compared directly to the amount of CNOT gates.

As architectures, we used a 9-qubit square grid, the 20-qubit IBM Q20 Tokyo,

a 16-qubit square grid, the IBM QX5 and the Rigetti 16Q Aspen architectures. Their

respective gate counts and percentage of added gates (overhead) can be found in Table 1

‡. For the genetic algorithm, we used different parameters depending on the size of the

architecture. For the 9-qubit architecture, we used a population of 30 and 15 iterations.

For the 16-qubit architectures, we used a population of 50 and 100 iterations. And for

the 20-qubit architecture, we used a population of 100 and 100 iterations. The constant

crossover and mutation probability had a constant value of 0.8 and 0.2, respectively. The

‡ All circuits can be found in QASM format at:

https://github.com/Quantomatic/pyzx/tree/steiner decomp/circuits/steiner

https://github.com/Quantomatic/pyzx/tree/steiner_decomp/circuits/steiner
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Architecture # QuilC t|ket〉 Steiner <QuilC <t|ket〉
9q-square 3 3.8 (27%) 3.6 (20%) 3 (0%) 21% 17%

9q-square 5 10.82 (116%) 6.4 (28%) 5.2 (4%) 52% 19%

9q-square 10 20.08 (101%) 16.95 (70%) 11.6 (16%) 42% 32%

9q-square 20 46.24 (131%) 40.75 (104%) 25.85 (29%) 44% 37%

9q-square 30 72.89 (143%) 66.15 (121%) 35.55 (19%) 51% 46%

16q-square 4 6.14 (54%) 5.8 (45%) 4.44 (11%) 28% 23%

16q-square 8 19.68 (146%) 12.95 (62%) 12.41 (55%) 37% 4%

16q-square 16 48.13 (201%) 36.2 (126%) 33.08 (107%) 31% 9%

16q-square 32 106.75 (234%) 94.45 (195%) 82.95 (159%) 22% 12%

16q-square 64 225.69 (253%) 203.75 (218%) 147.38 (130%) 35% 28%

16q-square 128 457.35 (257%) 436.25 (241%) 168.12 (31%) 63% 61%

16q-square 256 925.85 (262%) 922.65 (260%) 169.28 (-34%) 82% 82%

rigetti-16q-aspen 4 7.05 (76%) 7.15 (79%) 4.15 (4%) 41% 42%

rigetti-16q-aspen 8 28.2 (253%) 17.2 (115%) 11.22 (40%) 60% 35%

rigetti-16q-aspen 16 69.15 (332%) 52 (225%) 33.95 (112%) 51% 35%

rigetti-16q-aspen 32 147.3 (360%) 144.95 (353%) 101.75 (218%) 31% 29%

rigetti-16q-aspen 64 324.6 (407%) 322.85 (404%) 189.15 (196%) 42% 41%

rigetti-16q-aspen 128 664.65 (419%) 666.15 (420%) 220.75 (72%) 67% 66%

rigetti-16q-aspen 256 1367.89 (434%) 1361.6 (432%) 222.15 (-13%) 84% 83%

ibm-qx5 4 6.75 (69%) 4.3 (8%) 4 (0%) 41% 7%

ibm-qx5 8 23.7 (196%) 14.75 (84%) 8.95 (12%) 62% 39%

ibm-qx5 16 60.5 (278%) 47.5 (197%) 26.55 (66%) 56% 44%

ibm-qx5 32 140.05 (338%) 122.95 (284%) 84.4 (164%) 40% 31%

ibm-qx5 64 301.05 (370%) 278.7 (335%) 152.65 (139%) 49% 45%

ibm-qx5 128 600.9 (369%) 597.65 (367%) 188.25 (47%) 69% 69%

ibm-qx5 256 1247.8 (387%) 1258.8 (392%) 193.8 (-24%) 84% 85%

ibm-q20-tokyo 4 5.5 (38%) 6.05 (51%) 4 (0%) 27% 34%

ibm-q20-tokyo 8 17.3 (116%) 12 (50%) 7.69 (-4%) 56% 36%

ibm-q20-tokyo 16 43.83 (174%) 29.05 (82%) 20.44 (28%) 53% 30%

ibm-q20-tokyo 32 93.58 (192%) 78.15 (144%) 66.93 (109%) 28% 14%

ibm-q20-tokyo 64 215.9 (237%) 181.25 (183%) 165.6 (159%) 23% 9%

ibm-q20-tokyo 128 432.65 (238%) 391.85 (206%) 237.64 (86%) 45% 39%

ibm-q20-tokyo 256 860.74 (236%) 789.3 (208%) 245.84 (-4%) 71% 69%

Table 1: The average number of CNOTs needed to map random circuits containing

‘#’ CNOT gates. The first column shows the architecture mapped to and the second

column the original number of CNOT gates. The remaining columns show the average

2-qubit gate count after mapping 20 random circuits and percent improvement in total

CNOT count of our approach vs. QuilC and t|ket〉. The percentages in parentheses

show mapping overheads (i.e. percentage of the original gate count that was added

during mapping), where negative overheads indicate a mapped circuit that is smaller

than the original.
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Figure 1: A plot of input vs. output CNOT gates when mapping on to a 9-qubit square

grid, when computing and re-synthesising the circuit, both in the unconstrained case

using the method described in [24] and respecting nearest-neighbour constraints using

our method.

values population and iteration were simply found by trial and error, and could probably

be tuned further. A larger population and more iterations improves the chances of

finding a better permutation, but increases the time that the algorithm needs to run.

Our running times range from a few seconds to about a minute on a mid-range laptop

computer from 2017.

Note that the overheads of our mapping process are sometimes negative. This is

because the process we use computes the parity map associated to a CNOT circuit

and re-synthesises the circuit using Gaussian elimination, as described in Sections 2.1

and 2.2. In the unconstrained case, Patel et al. [24] gave a heuristic for (re-)synthesising

generic CNOT circuits on n qubits with O(n2/ log(n)) CNOTs. Indeed, using their

algorithm for 9-qubit circuits, we see in Fig. 1 that the average CNOT count stabilises

around the asymptotic bound of 92/ log2(9) ≈ 25.6. Our approach also stabilises, but

at a higher number of CNOTs (∼ 42 for 9 qubits).

As a point of comparison, a näıve mapping procedure, such as the baseline procedure

described in [22], introduces an overhead of 4(d−1) CNOT gates per gate introduced by

the Patel et al. synthesis algorithm, where d is the length of the shortest path between

two qubits. Since the average Manhattan distance on a 9-qubit square is d = 2, we

expect the näıve method to stabilise at 25.6 · 4 · (2 − 1) ≈ 102 CNOT gates on the

9-qubit square.

4. Extensions

4.1. Mapping to general graphs

We can extend to graphs that do not contain a Hamiltonian path by using a recursive

version of the algorithm described in Section 2.2. For this, we will define parametrised

versions, steiner-down(k, V ) and steiner-up(k, V,W ), of the procedures from

Section 2.2. In both cases, the procedures now take a parameter k which gives
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the current vertex/column on which to perform the downward or upward Gaussian

elimination, respectively. They are also given a set V ⊆ VG over which all operations

are restricted. Hence, rather than progressively deleting vertices from G, we start with

V := VG and progressively remove vertices from V . The second procedure, steiner-up,

also has a parameter W ⊆ V where the Steiner tree and row operations are allowed to

be non-descending. That is, all edges in the rooted Steiner tree T must be descending

unless both vertices adjacent to that edge are in W . Similarly, we require that row

operations should be descending unless the rows corresponding to both vertices are in

W .

Let G be an undirected graph and R a spanning tree. Fix some leaf of R and

number the vertices consecutively by depth-first traversal (DFT), ensuring that each

vertex is labelled after its children (i.e. post-ordering). We then choose vertex 0 as the

root of R. Such a numbering has the property that removing vertices in ascending order

never results in a disconnected graph. Here are some examples:

0

2

1
3

4
5

6
9

8

7 10

0

1

2

3

4

5

7 6

11 12 10 9 8

13 15 17 19 20

14 16 18

Note that, since we use a post-ordering, the starting point of the DFT will not end up

as the root of R. In the graphs above, the starting points for the DFT end up labelled

10 and 20, respectively, whereas the root of R is always taken to be 0.

For a parity map P whose rows are labelled by the vertices of G, the recursive

version of the previous procedure, called steiner-gauss-rec, is defined as follows:

(i) For each k ∈ G (in ascending order), apply steiner-down(k, {j | j ≥ k}).
(ii) If R is empty, we are done. Otherwise pick the maximal vertex k ∈ R and maximal

leaf k′ ∈ R.

(iii) Let W be the set of vertices in the shortest path from k′ to k (inclusive). Apply

steiner-up(k′, VR,W ).

(iv) Apply steiner-gauss-rec on the subgraph of G restricted to W .

(v) Remove k′ from R and go to 2.

Note that, when the spanning tree R is actually a Hamiltonian path, it will always be

the case that k = k′, hence the recursive part is trivial and it reduces to the algorithm

described in Section 2.2. If k is not a leaf, note that, because of our choice of numbering,

the set W is maximal in VR with respect to ≤. This corresponds to a block matrix B

in the bottom-right corner of the region of P which is not yet ‘finished’. That is, P
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decomposes as:

P =


P ′

B
0

0 1

0


Note there are zeroes to the left of B because step 1 made P upper-triangular. Step 3

makes everything above Pk′,k′ into 0, but it might mess up the upper-triangular structure

of B itself, since we allow non-decreasing row operations between vertices in W . Hence,

the recursive call in step 4 fixes B up afterwards. At this point, the k′-th row and column

only contain a single 1 and since it is a leaf, k′ will not be needed for another Steiner tree.

Hence it is ‘finished’, so we can remove it from R. Note that, in successive iterations of

this procedure, B might not necessarily consist of consecutive rows/columns, but it will

always contain all of the maximal ‘unfinished’ rows/columns in R. Hence, the reasoning

is identical.

Since each iteration of steps 2-5 removes a vertex from R and the recursive call

in step 4 is always restricted to a proper subgraph of the current graph, the procedure

terminates when R is empty and P is in reduced echelon form.

4.2. Mapping from general circuits

We can also extend the technique we proposed for CNOT circuits to more general

families of circuits: namely CNOT+Rz circuits and even generic Clifford+Rz circuits.

We first explain the simpler case, as it does not require going outside of the circuit

model. By Rz gates, we mean a Z-phase rotation by a generic phase α:

RZ [α] :=

(
1 0

0 eiα

)
Certain special cases have common names in quantum circuit literature, e.g. S := RZ [π

2
]

and T := RZ [π
4
]. As explained in e.g. [11], circuits consisting of CNOT gates and

arbitrary Z-phase rotations can be described efficiently in two parts: a GF(2)-linear

map describing the action of the circuit on basis states and a set of pairs of the form

(α, v) where α ∈ [0, 2π) is an angle and v is a vector in GF(2) describing the parity of

input states on which that angle is applied.

First, note that it is straightforward to efficiently calculate the behaviour of

CNOT+Rz circuits on computational basis states. One simply labels the input wires

by variables (x0, . . . , xn−1) and propagates these labels from left-to-right using the rule

that RZ [α] does not change the labels, whereas CNOT sends labels (x, y) on its inputs

to labels (x, x⊕ y) on its outputs:

RZ [α]

RZ [β]⊕

⊕

⊕ RZ [γ]

RZ [δ]

x0

x1

x2

x3

x0 ⊕ x1
x0

x2

x0 ⊕ x1 ⊕ x2

x2 ⊕ x3

x0

x2

x2 ⊕ x3
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We can then read off the output basis state from the final labels on the wires and the

parities associated with each phase from the wire that the phase gate is on. For example,

the circuit above acts as follows on computational basis states:

|x0, x1, x2, x3〉 7→ ei[α·x0+β·(x0⊕x1)+γ·(x0⊕x1⊕x2)+δ(x2⊕x3)]|x0, x0 ⊕ x1 ⊕ x2, x2, x2 ⊕ x3〉 (2)

for all xi ∈ {0, 1}. The expression φ in eiφ above dictates how the phase depends on

the input basis state, and is sometimes referred to as a phase polynomial. Clearly the

relevant data for the overall unitary is the (GF(2)-linear) action on basis states as well as

this phase polynomial. We can then represent a parity of input variables as a bitstring,

e.g. x0 ⊕ x2 ⊕ x3 is the bitstring (1, 0, 1, 1), indicating this parity depends on the first,

third, and forth input variables. Hence data associated with the map (2) is a parity

matrix P action on basis states and a set of angle/vector pairs P giving the terms of

the phase polynomial:P =


1 0 0 0

1 1 1 0

0 0 1 0

0 0 1 1

 , P =

α ·


1

0

0

0

 , β ·


1

1

0

0

 , γ ·


1

1

1

0

 , δ ·


0

0

1

1





Much like the CNOT case, there is an evident circuit extraction procedure based on

Gaussian elimination for CNOT+Rz maps. One can use CNOT gates to perform

primitive row operations on sets of parity vectors to reduce them to unit vectors, which

then correspond to applying RZ [α] gates on single qubits. If this Gaussian elimination

is performed using the steiner-gauss procedure, these primitive row operations, and

hence the synthesised circuit, will respect nearest-neighbour constraints, just as in the

CNOT case.

A very similar procedure based on Gaussian elimination is described in a recent

article by one of the authors [12] as a means of extracting a quantum circuit from a

simplified tensor-network-like representation called a ZX-diagram. The extraction phase

proceeds from right-to-left on a directed acyclic graph, and exploits the fact that post-

composing CNOT gates is able to perform primitive row operations on the adjacency

matrix of the graph:

..
.

M

..
.

..
. D = ..

.

M ′

..
.

..
.

⊕D

This rule follows from a graph-theoretic transformation on ZX-diagrams called pivoting.

While the details of how this actually works are not relevant here, an important

observation is that this procedure makes use of Gaussian elimination to produce

CNOT gates, so substituting the steiner-gauss algorithm immediately gives a circuit

extraction procedure that respects nearest-neighbour constraints of the architecture.
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Since the technique described in [12], and the corresponding PyZX circuit optimisation

tool [14], take an arbitrary quantum circuit as input, this will give a general-

purpose, optimising routine for circuit mapping. We leave a detailed exposition (and

implementation) of this technique for future work.

5. Conclusions and Future Work

We have demonstrated a CNOT circuit mapping procedure that significantly out-

performs existing compilers on memory architectures whose graphs contain a

Hamiltonian path. We have also outlined extensions of this technique to arbitrary

graphs and to arbitrary circuits. In addition to implementing the extensions outlined

in the previous section, an interesting direction for future work is to focus not only

on decreasing two-qubit gate count, but also in decreasing gate depth and/or overall

fidelity loss due to gate errors. With the incredibly short coherence times characteristic

of superconducting hardware, gate depth is likely to play an even more important

role than gate count to practical realisation of quantum computations in the coming

years [10]. It also comes with a unique set of challenges, as parallel gates can interfere

with each other if they are mapped to neighbouring locations on some architectures [31].

Another notable feature of current hardware is not all qubits are created equal:

performing 2-qubit gates between certain pairs of qubits can be done with much higher

fidelities than others, depending on implementation details or even random variance

in the manufacturing processes of superconducting chips [32]. While the optimisation

techniques used in this paper are very simple, a topic of future work is to apply much

more powerful machine learning and/or constraint satisfaction techniques in order to

take these factors into account.
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