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In this article, we provide a holistic view of the Portable Operating System Interface (POSIX) abstractions
by a systematic review of their historical evolution. We discuss some of the key factors that drove the evolution
and identify the pitfalls that make them infeasible when building modern applications.

The POSIX standard [1] defines interfaces for a Unix-like operating system. Unix was the first operating
system written by programmers for programmers, and POSIX enables developers to write portable applica-
tions that run on different Unix operating system variants and instruction set architectures. The primary use
case for Unix was to multiplex storage (the filesystem) and provide an interactive environment for humans
(the shell) [2, 3]. In contrast, the primary use case of many contemporary POSIX-based systems is a service
running on a machine in a data center, which have orders of magnitude lower latency requirements. These
services cannot expect to run faster from year to year with increasing CPU clock frequencies because the end
of Dennard scaling circa 2004 implies that CPU clock frequencies are no longer increasing at the rate that
was prevalent during the commoditization of Unix. Furthermore, many argue that Moore’s Law is slowing
down, so the software can no longer expect to get faster by increased hardware optimizations, driven by
increased transistor density. As we move towards the post Moore’s Law era of computing, system designers
are starting to leverage devices such as fast programmable NICs, special-purpose hardware accelerators, and
non-volatile main memory to address the stringent latency constraints of applications.

[4] [5]

1 POSIX Evolution

POSIX’s abstractions – processes, filesystems, virtual memory, sockets, and threads – are based on the OS
abstractions of the different Unix variants in development between the 1970s and 1980s, such as Research
Unix, System V, BSD, SunOS, and others.

The use cases and hardware capabilities of their respective era influenced the abstractions. For example,
early Unix ran on PDP-11/20, a 16-bit computer with a single CPU and up to 248KiB of main memory [6].
As PDP-11/20 lacked memory protection, Unix did not support virtual memory, unlike contemporary OSes
of the time such as Multics. Although later PDP-11 variants, such as the PDP-11/70, had a memory mapping
unit (MMU) [7], virtual memory was not added to Unix until the emergence of the VAX architecture in the
late 1970s [4], which became the primary architecture for Unix at the time. Similarly, Unix did not have
a networking abstraction until the emergence of the Internet in the early 1980s, when 4.2BSD introduced
the sockets abstraction for remote inter-process communication to abstract TCP/IP networking protocols.
Likewise, Unix did not have a thread abstraction until the early 1990s, when multiprocessor machines became
more mainstream [8].

Filesystem

A filesystem is an abstraction to access and organize bytes of data on a storage device. This abstraction
and its I/O interface largely originate from Multics [9], and it was considered the most important abstrac-
tion in Unix [2, 10]. However, unlike Unix, which supported only synchronous I/O, Multics also supported
asynchronous I/O [11,12], a feature that would eventually be part of POSIX.
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Year Abstraction Example Interfaces Version

’69 Filesystem open, read, write V0
’69 Processes fork V0
’71 Processes exec V1
’71 Virtual memory break1 V1
’73 Pipes pipe V3
’73 Signals signal V4
’79 Signals kill V7
’79 Virtual memory vfork2 3BSD
’83 Networking socket, recv, send 4.2BSD
’83 I/O multiplexing select 4.2BSD
’83 Virtual memory mmap3 4.2BSD
’83 IPC msgget, semget, shmget SRV1
’87 I/O multiplexing poll SRV3
’88 Virtual memory mmap SunOS 4.0
’93 Async. I/O aio submit POSIX.1b
’95 Threads pthread create POSIX.1c

Table 1: Timeline of POSIX abstractions and interfaces. The abstractions were introduced in different
variants of Unix between the 1970s and 1990s. Filesystem and processes are fundamental interfaces that were
already present in V0. Virtual memory was introduced in 3BSD in the late 1970s and completed in 4.2BSD
and SunOS 4.0 in the 1980s. Networking support was added to 4.2BSD in the 1980s. Asynchronous I/O and
threads were introduced in the POSIX standard in the 1990s.
1The break system call was later renamed to brk and another variant sbrk was added. Both of them are now deprecated.
23BSD added support for paging-based virtual memory. They added the vfork system call to avoid implementing copy-on-write

for fork [4].
3Although mmap was designed in 1983, the proposed design was fully implemented in 1986 [5].

The filesystem abstraction also includes files, directories, special files [2], and hard and symbolic links [13].
A file in a filesystem is a sequence of bytes that the OS does not interpret in any way [2]. This enables OSes
to represent hardware devices as special files, and the interfaces to operate on files have become the defacto
interfaces for I/O devices.

The filesystem abstraction enables easy integration of I/O devices. However, it can become a bottleneck
for fast I/O devices [14,15,16,17].

Processes

A process is an abstraction for the execution of an application in a system. Specifically, the application is
represented as an image that abstracts its execution environment comprising of, among others, the program
code (text), processor register values, and open files [2]. This image is stored in the filesystem, and the OS
ensures that the executing part of the process image resides in memory. The process abstraction has been
around since early Unix [2], and it has become vital for time-sharing of computing and I/O resources.

This abstraction has its roots in multi-programming which was a technique developed in the mid-1950’s
to improve hardware utilization while performing I/O [18]. Early Unix running on PDP-7 supported only
two processes, one for each terminal attached to the machine [19]; later versions of Unix that were designed
to run on the PDP-11 could keep multiple processes in memory.

A process is a processor-centric abstraction that is extremely useful for applications built with the as-
sumption that the execution of the process image is done only on the CPUs. However, the prevalence of
hardware devices such as graphics processing units (GPUs), tensor processing units (TPUs), and various
other special-purpose accelerators for offloading computation are challenging this assumption.
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Virtual memory

Virtual memory is an abstraction that creates an illusion of a memory space that is as large as the storage
space [20]. It emerged from the need to automatically take advantage of the speed of the main memory
and the cheap storage capacity. The concept of virtual memory dates back to the early 1960s: page-based
virtual memory was first introduced in 1962 in the Atlas Supervisor [21], and Multics also supported virtual
memory [22].

Virtual memory was added to Unix in the late 1970s, almost a decade after its inception. At its inception,
the Unix process address space was divided into three segments: program text (code) segment that was
shared between all processes but not writable, process data segment that was read/write but private, and
stack segment. The sbrk system call could grow and shrink the process data segment. However, motivated
by the need to run programs that required more storage than the main memory capacity at the time (e.g.,
Lisp), the MMU in the VAX-11 architecture made paging-based virtual memory possible [4, 23].

This abstraction decouples two related two concepts: address space, i.e., the identifiers to address memory,
and memory space, i.e., the physical locations to store data. Historically, this decoupling had three main
objectives: (1) promote machine independence with an address space that is independent of the physical
memory space, (2) promote modularity by allowing programmers to compose programs from independent
modules that are linked together at execution time, and (3) make it possible to run large programs that
would not fit in the physical memory (e.g., Lisp programs). Other benefits of virtual memory include running
programs of arbitrary size, running partially loaded programs, and changing memory configuration without
recompiling programs. Virtual memory is considered to be a fundamental operating system abstraction, but
current hardware and application trends are challenging its core assumptions.

Inter-process communication (IPC)

Abstractions for inter-process communication enable one or more processes to interact with each other.
Early versions of Unix supported signals and pipes [2]. Signals enabled programmers to programmatically
handle hardware faults, and this mechanism was generalized to allow a process to notify other processes.
For instance, a shell process can use signals to stop processes. Pipes are special files that allow processes
to exchange data with each other. Pipes do not allow arbitrary processes to exchange data, because a pipe
between two processes must be set up by their common ancestor.

With the limitations of pipes and signals, sockets were added to BSD to provide a uniform IPC mechanism
for both local and remote processes, i.e., processes running on different host machines. Sockets have become
the standard way of networking, however they are not as widely used as platform-specific IPC mechanisms
for local IPC [24].

The mmap interface for shared memory was envisioned as a IPC mechanism [25,26], but never quite caught
on. Additional IPC mechanisms (semaphores, IPC-specific interface for shared memory, and message queues)
were added in POSIX.1b, released in 1993, but have since then been largely replaced by vendor-specific IPC
mechanisms [24].

Threads and Asynchronous I/O

Threads and asynchronous I/O are the latecomer abstractions in POSIX for addressing the demands for
parallelism and concurrency.

The traditional UNIX process offered a single thread of execution. This inability to support concurrent
threads of execution makes a single UNIX process unfit for exploiting the parallelism offered by multiple
computing cores. One way to exploit the parallelism is to fork multiple processes but this requires the forked
processes to communicate with each other using IPC mechanisms, which are in turn inefficient.

The POSIX asynchronous I/O (AIO) interface was designed to address this growing demand for a non-
blocking I/O interface that can be leveraged to improve concurrency. This interface enables processes to
invoke I/O operations that are performed asynchronously. However, it can block under various circumstances,
and it requires at least two system calls per I/O: one to submit a request, and the other to wait for its
completion.

In POSIX, threads emerged in the early 1990s from the need to support parallelism of multicore hardware
and enable application-level concurrency [8, 27]. Unlike processes, threads run in the same address space.
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Caching Sync Copies Complexity
read/write kernel yes yes low
mmap kernel yes no medium
DIO user yes no medium
AIO/DIO user no no high
io uring kernel/user no yes/no high

Table 2: I/O access methods in Linux.

POSIX threads can be implemented in different ways: 1-on-1: Every thread runs in their own kernel thread;
N -on-1: All threads run in a single kernel thread; andN -on-M : N threads runs inM kernel threads [27,28,29].
Managing parallelism in user space is essential for high performance [27]. However, mainstream POSIX OSes
settled on the 1-on-1 threading model, citing simplicity of implementation [30, 31]. Regardless, application
architectures that use a large amount of threads, such as the staged event-driven architecture (SEDA) [32],
are inefficient because of thread overheads [33]. Many high-performance applications are therefore adopting
a thread-per-core model where the number of threads equals the number of processing cores, and providing
their own interfaces for concurrency [34,35].

2 Transcending POSIX

Offloading Computation

The POSIX process is a CPU-centric abstraction because CPUs were the central and primary computation
resource for many decades of Unix evolution. However, offloading computation from CPUs to domain-
specific coprocessors and accelerators such as GPUs for graphics and parallel computing, and NICs for
offloading packet processing has become mainstream [36]. The CPU is, therefore, increasingly a coordinator
for orchestrating computation across these resources, and the computing power of CPUs is increasingly being
used by applications solely to orchestrate the computation across a variety of hardware resources.

However, POSIX does not have the machinery to address coprocessors or accelerators. Consequently,
all compute elements that are not the CPU, are treated as I/O devices. The applications therefore need to
upload the code and data to the accelerator using an userspace API that integrates with the operating system
kernel via an opaque system call such as fcntl(). For example, there are APIs such as OpenCL and CUDA
for GPGPUs and Vulkan and others for graphics programming [37]. These APIs have to handle things like
memory and resource management because POSIX doesn’t natively support this type of hardware.

Asynchronous I/O

Asynchronous I/O has its roots in Multics [11,12]. However, POSIX I/O calls have their roots in Unix whose
I/O interface was synchronous. Consequently, the POSIX read/write system calls are synchronous and they
result in copying data from the kernel page cache. Synchronous interfaces are a bottleneck for fast I/O and
they require applications to use threads for application-level concurrency and parallelism. The mmap interface
is faster than the traditional read/write because it avoids the system call overhead and copies between
the kernel and user space. However, I/O with mmap is synchronous and has more complex error handling.
For instance, on a disk full a write would return with an error code, while mmap-based I/O would require
handling a signal. In contrast, Direct I/O (DIO) allows applications to use the same read and write system
calls while bypassing the page cache. However the buffer management and caching is performed in user
space. The Asynchronous I/O (AIO) interface provides a new set of system calls that allow the userspace
application to submit I/O asynchronously with the io submit system call and poll for I/O completion with
the io getevents system call. However, Linux’s AIO implementation has some problems: it copies up to
104B of descriptor and completion metadata in each system call, and the system calls tend to block at
times [38].

Linux’s io uring interface aims to address these shortcomings, and provide a true asynchronous I/O
interface [38]. It was first introduced in the Linux kernel version 5.1, and it uses two lockless single-producer
single-consumer (SPSC) queues for communication between the kernel and user space [39]. One queue is
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for I/O submission, and it is written to by the application and read by the kernel, while the other queue is
for I/O completion, and this queue is written by the kernel and read by the application. Depending on the
use case, the application can configure an io uring instance to operate either as interrupt-driven, polled,
or kernel-polled. The io uring interface allows a thread to submit I/O requests and keep performing other
tasks until the OS notifies it that the I/O operation is complete

Bypassing POSIX I/O

The POSIX I/O model assumes that the kernel performs the I/O, which transports the data to user space
for further processing. However, the model does not scale very well for high arrival rates, so one of the early
examples for bypassing the POSIX I/O interfaces is the BSD Packet filter (BPF). BPF facilitates user-level
packet capture by filtering packets inside a pseudo-machine that runs in the kernel [40]. Packet capture
applications first command the kernel to make copies of the packets that arrive at the network interface card
(NIC): one copy traverses the network protocol stack, while the other traverses the pseudo-machine. The
BPF pseudo-machine executes packet filtering code compiled from a high-level description language before
sending the filtered packets to the user space. The Extended Berkeley Packet Filter (eBPF) builds on BPF
and allows applications to execute sandboxed programs either in an in-kernel virtual machine or on hardware
capable of running the programs [41]. This enables applications to offload the I/O activities such as network
protocol processing and implementing the filesystem in user space. Specifically, eBPF enables applications to
completely bypass the POSIX abstractions for I/O and implement them in user space. eBPF complements
existing kernel-bypass approaches such as DPDK and SPDK that enables applications to by-pass the kernel
for networking an storage I/O [42,43].

Beyond the Machine Abstraction

POSIX provides abstractions for writing applications in a portable manner across Unix-like operating system
variants and machine architectures. However, contemporary applications rarely run on a single machine.
They increasingly use remote procedure calls (RPC), HTTP and REST APIs, distributed key-value stores,
and databases, all implemented with a high-level language such as JavaScript or Python, running on managed
runtimes. These managed runtimes and frameworks expose interfaces that hide the details of their underlying
POSIX abstractions and interfaces. Furthermore, they also allow applications to be written in a programming
language other than C, the language of Unix and POSIX. Consequently, for many developers of contemporary
systems and services, POSIX is largely obsolete because its abstractions are low-level and tied to a single
machine.

Nevertheless, the cloud and serverless platforms are now facing a problem that operating systems had
before POSIX: their APIs are fragmented and platform-specific, making it hard to write portable applications.
Furthermore, these APIs are still largely CPU-centric, which makes it hard to efficiently utilize special-purpose
accelerators and disaggregated hardware without resorting to custom solutions. For example, JavaScript is
arguably in a similar position today as POSIX was in the past: it decouples the application logic from the
underlying operating system and machine architecture. However, the JavaScript runtime is still CPU-centric,
which makes it hard to offload parts of a JavaScript application to run on accelerators on the NIC or storage
devices. Specifically, we need a language to express application logic that enables compilers and language
run times to efficiently exploit the capabilities of the plethora of hardware resources emerging across different
parts of the hardware stack. At the same time, it would be an an interesting thought experiment to ponder
how different would the hardware design of these devices be without the CPU-centrism in POSIX.

3 Concluding Remarks

POSIX has become the standard for operating systems abstractions and interfaces over the decades. Two
drivers for the design of the abstractions are the hardware constraints and the use cases of the time. Today,
the speed balance between I/O and compute is shifting in favor of I/O, which is partly why coprocessors and
special-purpose accelerators are becoming more mainstream. Therefore, we argue that the POSIX era is over,
and future designs need to transcend POSIX and re-think the abstractions and interfaces at a higher level.
We also argue that the operating system interface has to change to support these higher level abstractions.
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