
Lightweight Privacy-Preserving Ride-Sharing Protocols for
Autonomous Cars

Sara Ramezanian

sara.ramezanian@helsinki.fi

University of Helsinki

Helsinki Institute for Information Technology (HIIT)

Helsinki, Finland

Gizem Akman

gizem.akman@helsinki.fi

University of Helsinki

Helsinki Institute for Information Technology (HIIT)

Helsinki, Finland

Mohamed Taoufiq Damir

mohamed.damir@helsinki.fi

University of Helsinki

Helsinki Institute for Information Technology (HIIT)

Helsinki, Finland

Valtteri Niemi

valtteri.niemi@helsinki.fi

University of Helsinki

Helsinki Institute for Information Technology (HIIT)

Helsinki, Finland

Additively
homomorphic

encryption
fair pick-up

point detection

privacy-preserving
group forming

a b

keys PSI

hash

hash
hash

Figure 1: The figure illustrates a summary of our privacy-preserving ride-sharing protocol. Initially, the cars and passengers
are not grouped (Fig. 1.a). After applying our protocol, the cars are assigned to groups of passengers with similarity in their
journeys (Fig. 1.b).

ABSTRACT
Ride-sharing is a popular way of transportation that reduces traffic

and the costs of the trip. Emerge of autonomous vehicles makes

ride-sharing more popular because these vehicles do not require

a driver’s effort. Therefore, in order to find a suitable ride-share,

the service provider is not restricted to the driver’s trip. Thus, the

autonomous cars are more flexible with matching the passengers.

Passengers who want to participate in car-sharing send their trip

data to a ride-sharing service provider. However, the passenger’s

trip data contains sensitive information about the passenger’s lo-

cations. Multiple studies show that a person’s location data can

reveal personal information about them, e.g., their health condi-

tion, home, work, hobbies, and financial situation. In this paper,

we propose a lightweight privacy-preserving ride-sharing protocol

for autonomous cars. Contrary to previous works on this topic,

our protocol does not rely on any extra party to guarantee privacy

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CSCS ’22, December 8, 2022, Ingolstadt, Germany
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9786-5/22/12.

https://doi.org/10.1145/3568160.3570234

and security. Our protocol consists of two main phases: i) privacy-

preserving group forming, and ii) privacy-preserving fair pick-up

point selection. In addition to ride-sharing, the two phases of our

protocol can also be applied to other use cases. We have imple-

mented our protocol for a realistic ride-sharing scenario, where

1000 passengers simultaneously request a ride-share. Our evalu-

ation results show that the time and communication costs of our

protocol are such that it is feasible for real-world applications.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Autonomous Cars, Ride-Sharing, Privacy-Enhancing Technologies,

Location Privacy, Private Set Intersection, Lightweight Cryptogra-

phy.

ACM Reference Format:
Sara Ramezanian, Gizem Akman, Mohamed Taoufiq Damir, and Valtteri

Niemi. 2022. Lightweight Privacy-Preserving Ride-Sharing Protocols for

Autonomous Cars. In Computer Science in Cars Symposium (CSCS ’22), De-
cember 8, 2022, Ingolstadt, Germany. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3568160.3570234

https://orcid.org/0000-0002-5526-0817
https://orcid.org/0000-0001-8752-7232
https://orcid.org/0000-0003-3888-6751
https://orcid.org/0000-0002-3228-4904
https://doi.org/10.1145/3568160.3570234
https://doi.org/10.1145/3568160.3570234

CSCS ’22, December 8, 2022, Ingolstadt, Germany Ramezanian et al.

1 INTRODUCTION
Ride-Sharing Services (RSSs) have gradually attracted more users in

the past years. RRSs offer various advantages compared to classical

means of transportation, e.g., reduced traffic congestion, alleviated

parking shortages, and minimized transportation cost. Face to the

tremendous demand for such an alternative, ride-sharing companies

have been steadily growing across the globe, e.g., Bolt, Blablacar,

UberPool, Flinc, and LyftLineT. The global ride-sharing market size

was estimated at 84.30 billion USD in 2020, and it is expected to

reach 242.73 billion USD in 2028 [19]. In this work, we present a

ride-sharing scheme via autonomous cars that preserves the user’s

privacy. In this section, we first explain why preserving the user’s

privacy in the context of ride-sharing is important. Then, we explain

how autonomous vehicles change the existing ride-sharing schemes.

We then explain a broader related topic that is called location privacy.
At the end of the section, we give the list of our contributions.

1.1 Privacy-Preserving Ride-Sharing
Usually, a RSS operates as a middleman who connects drivers to

passengers via a mobile app. The service often requests the passen-

ger/driver to provide their trip data, i.e., the ride time, the pick-up

and drop-off locations. Accessing such information by a malicious

entity is a serious threat to the user’s privacy. Moreover, storing

such (valuable) data by RSSs in their centralized servers made RSSs

an attractive target for attackers. For example, in 2016, an attack on

Uber servers resulted in stealing the records of 57 million users and

drivers. More recently [37], the same company was a target of a

cyber-attack. The attack’s impact is still under investigation at the

time of writing. It is worth mentioning that such a type of attack

does not only affect the user’s privacy but might also cause financial

consequences for the company. For example, after the 2016 breach,

Uber admitted to hiding the attack and paid 148 million USD in

settlement with multiple U.S states [7]. Therefore, organizing a

privacy-preserving ride-sharing (PPRS) is beneficial for both the

service provider and its users.

1.2 Autonomous Cars and Ride-Sharing
Autonomous vehicles can positively impact our everyday lives in

many ways, such as less car accidents, safe mobility option for

non-ambulatory and elderlies, and helps fighting global warming

[2, 23]. An autonomous vehicle does not require a driver; therefore,

organizing a ride-share can be made regardless of the drop-off point.

Please note that with a regular car, the passengers should leave

the car before/at the same time as the driver. Therefore, compared

with the "classical" passenger/driver RSSs, organizing a ride-share

with an autonomous car is more flexible. Thus, we can expect even

bigger requests for ride-sharing via autonomous cars [11]. However,

designing a PPRS protocol for an autonomous car is more difficult

than the classical case because of the elimination of the driver (who

can play the role of a trusted third party in a PPRS protocol) and

the ambiguity of the drop-off points (and consequently the whole

trip route). In the present work, we focus on the users’ privacy and

propose a novel ride-sharing scheme for autonomous cars.

1.3 Location Privacy
The concept of privacy-preserving ride-sharing is a special case of a

wider research area that is called location privacy. A user’s location

data can potentially reveal sensitive information about the user,

such as their lifestyle, political and religious views, their (and their

close ones’) home/work locations, and their health and financial

situation [17, 28, 38]. The general approaches to preserve location

privacy are i) location obfuscation (hiding the exact location by

adding noise), ii) anonymity, and iii) utilizing cryptographical tech-

niques to encrypt the location [47]. To design a privacy-preserving

ride-sharing, one or several of the above general location privacy

approaches are used. In our protocol, we choose both anonymity

and cryptography to ensure the user’s privacy. Moreover, there has

been a trend to utilize a third party in privacy-preserving location-

related protocols [12]. However, utilizing a third party (such as a

trusted third party or a cloud) can cause additional security and

privacy challenges. For instance, the presence of a Trusted Third

Party (TTP) in a scheme can introduce more costs [26] and make

the scheme more prone to cyber-attacks [21, 26]. Although it is

popular, cloud computing can cause a series of privacy and security

challenges [34], such as insider attacks, denial of service attacks,

and permanent data loss. Therefore, we avoid utilizing any third

parties in our PPRS scheme.

1.4 Our Contributions
The list of our contributions is as follows:

• Wemodify the tree Diffie-Hellman (DH) group key exchange

protocol [41] such that the parties can generate the secret

key without the help of the server.

• We design a novel privacy-preserving group forming scheme.

In our scheme, we use our modified tree DH group key

exchange protocol, keyed hash function, and a private set

intersection protocol. This scheme can be applied to other

use cases than PPRS, e.g., potential partner suggestions on

dating apps.

• We propose a privacy-preserving fair pick-up point selection

protocol that utilizes additively homomorphic encryption.

This protocol also can be applied to other use cases, e.g.,

organizing a social gathering in a location that is fair for all

the participants.

• We propose a novel lightweight privacy-preserving ride-

sharing protocol for autonomous cars. For security and pri-

vacy reasons, we do not use any additional party in our

protocol. To the best of our knowledge, our protocol is the

first ride-sharing scheme to achieve privacy without relying

on any third party.

The rest of the paper is organized as follows: Section 2 gives the

required preliminaries. In Section 3, we provide a closer look into

our research problem, and in Section 4, we present the prior related

work on the topic. Our novel protocol is presented in Section 5,

and our evaluation results on the protocol are given in Section 6.

We analyze the security and privacy of our protocol in Section 7.

Finally, the future work and conclusion are given in Section 8.

Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars CSCS ’22, December 8, 2022, Ingolstadt, Germany

2 PRELIMINARIES
This section provides the necessary preliminaries that are required

for the rest of the paper.

2.1 Keyed Hash Function
A keyed hash function is an algorithm that uses a secret key and a

one-way and collision-resistant hash function to create an output.

The secret key is shared between all the parties that are computing

the output [39].

2.2 Private Set Intersection (PSI)
Private Set Intersection (PSI) allows two parties (or more) to compute

the intersection of their sets without revealing any information

about the items that are not in the intersection. The efficiency of

a given PSI protocol depends on its respective scenario, see for

instance [30] and the references therein.

2.3 Dictionary Attack
A dictionary attack is a systematic brute-force approach of guessing

a secret, e.g., decrypting ciphertext, by trying a restricted subset of

possible solutions, e.g., keys.

2.4 Denial of Service (DoS)
A Denial of Service (Dos) attack is an attack that prevents users

from accessing a service by overwhelming the service’s physical re-

sources or network connections. In general, this is done by flooding

the service with user’s traffic requests. To prevent DoS attacks, the

service should be equipped with a mechanism that distinguishes

between legit and malicious requests. One way to do so is to use

anonymous tokens.

2.5 Anonymous Tokens
Anonymous tokens are lightweight, single-use anonymous cre-

dentials. Typically, a user receives a limited amount (less than the

amount required to perform a DoS attack) of anonymous tokens

when they prove to the service that they are legitimate user. There-

fore, the user can access the service anonymously during their

subsequent connections using these credentials [22].

2.6 Adversarial Model
A semi-honest adversary, a.k.a honest-but-curious, is a party that

follows the protocol specification exactly. However, they may try

to learn more information than allowed by investigating into the

messages they received. A stronger adversary model is malicious
adversary. A malicious party may deviate from the protocol specifi-

cation and uses more efficient attack strategies, e.g., manipulating

the protocol’s input/output. The above two adversarial models are

broadly accepted as the main adversary models in multi-party pro-

tocols [15].

2.7 Paillier Cryptosystem
Paillier Cryptosystem [29] is a widely adopted additively homomor-

phic probabilistic public-key encryption scheme. A probabilistic

public-key encryption scheme (𝐺𝑒𝑛, 𝐸, 𝐷), utilizes a key generation
algorithm𝐺𝑒𝑛 to create a pair of public and secret keys (𝑝𝑘, 𝑠𝑘). The

probabilistic encryption function 𝐸 takes three inputs: the public

key 𝑝𝑘 , a random string 𝑟 , and the plaintext𝑚, and outputs a cipher-

text 𝑐 = 𝐸𝑝𝑘 (𝑚, 𝑟). A crucial property of 𝐸 is the fact that encrypting

the same message twice results in two different ciphertexts. The de-

cryption function is denoted by 𝐷𝑠𝑘 (𝑐). For any plaintexts𝑚1,𝑚2,

Paillier cryptosystem has the following homomorphic property
1
:

𝐷𝑠𝑘 (𝐸𝑝𝑘 (𝑚1, 𝑟1) × 𝐸𝑝𝑘 (𝑚2, 𝑟2)) =𝑚1 +𝑚2 .

2.8 AES
The Advanced Encryption Standard (AES) [9] is a widely used

symmetric key block cipher. AES encrypts a plaintext block of 128

bits using either a 128, 192, or 256 bits key.

2.9 Diffie–Hellman Key Exchange Protocol
The Diffie–Hellman exchange protocol (DH) [10] goes as follows:

Let𝐺 be a finite cyclic group with order |𝐺 | generated by 𝑔. In order

to generate a shared secret key between two parties, 𝐴 and 𝐵, the

parties secretly choose integers 𝑠𝐴 and 𝑠𝐵 , respectively, at random

from the interval [0; |𝐺 | − 1]. Then, they compute 𝑔𝑠𝐴 and 𝑔𝑠𝐵 ,

respectively, and exchange these group elements over the public

channel. Finally, 𝐴 and 𝐵 compute the shared secret 𝐾𝐴 = (𝑔𝑠𝐵)𝑠𝐴
and 𝐾𝐵 = (𝑔𝑠𝐴)𝑠𝐵 , respectively. Note that 𝐾𝐴 = 𝐾𝐵 .

2.10 Key Derivation Function
A Key Derivation Function (KDF) is an algorithm that takes a given

secret as input, e.g., a secret password, and outputs a bitstring that

is suitable for some cryptographic operation. For example, a KDF

can be used to convert a Diffie-Hellman shared key to an AES key.

2.11 Tree Diffie-Hellman Group Key Exchange
Protocol

A Tree Diffie-Hellman Group Key Exchange protocol is a general-

ization of the DH protocol to 𝑛 parties. To establish a shared secret

key between 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , a binary tree is recursively con-

structed via the DH protocol on the multiplicative group modulo

a prime 𝑝 . One of the early examples of a tree-based group key

exchanges is [33] and a more in-depth analysis figures in [41]. The

protocol of [41] was designed in such a way that every user requires

to establish a 2-party DH key with a server. Several prior works on

the group key exchange protocol reduce/omit the role of the server,

such as [14] and [13]. These protocols could be used in our protocol

instead of our variant that is presented in Section 5.1. Various works

[8, 43] later extended the earlier methods to cover further security

and design properties, such as adding/removing parties, merging,

managing, etc. The main idea behind these works is to construct a

shared secret by a recursive use of the two parties Diffie-Hellman.

3 PROBLEM STATEMENT
In this section, we first discuss the privacy issues in ride-sharing

via autonomous cars. Then, we formalize the research problem.

As we mentioned in Section 1, at the time of writing, the com-

panies that offer ride-sharing services organize the trips without

considering the privacy of their users. More precisely, a user reveals

their identity, pick-up and drop-off locations, and time of travel

1
The equalities are taken modulo a given integer, see [29] for more detail.

CSCS ’22, December 8, 2022, Ingolstadt, Germany Ramezanian et al.

to the system. This information can reveal privacy-sensitive data

about the user, such as their home, workplace, hobbies, their chil-

dren’s schools and hobbies, and the exact time of the day when

they are not at home [24]. Revealing this private information in the

online world can cause unwanted tracking [3], stalking [4], and the

breach of the users’ health data [17]. Therefore, we aim to design

our privacy-preserving ride-sharing protocol in such a way that

after executing the protocol, the user’s identity, location, and time

of the trip remain private.

Unlike regular cars, autonomous vehicles do not require a driver.

Therefore, organizing ride-sharing requires different settings. With

a regular car, the vehicle is rented or owned by a driver. If the driver

wants to organize a ride-sharing, they should find other passengers

that have similarities in their journey to the driver. Usually, the

driver does not want to deviate from their route and prefers to pick

up passengers that are traveling on the same path as the driver.

Also, the drop-off points of the passengers should be similar or

before the driver’s destination. However, with an autonomous car,

the passengers can agree on one or more pick-up points, and the

car can go and pick them up. Moreover, the drop-off points of the

passengers can be different. The only requirement for the drop-

off points is that they should be in the same direction. Therefore,

we aim to design privacy-preserving techniques that enable the

server to group the passengers with similarity in their trips (initial

location, direction of the trip, date, and time) together. We also

want to enable the passengers to agree on a "fair" pick-up point in

a private way.

Before going any further, let us explain what we mean by a

"fair" pick-up point. A fair pick-up point is a location where its

distance from all the parties is fair. Moreover, the pick-up point

itself should be convenient, i.e., the point should be reachable easily

by an autonomous car.

We formalize the problem of privacy-preserving ride-sharing ar-

rangements for autonomous cars as follows:𝑛 users want to arrange

ride-sharing at different times, locations, and for different routes.

For security and privacy reasons, the users do not want to reveal

any information about their locations and identities to each other or

anybody else. A server of a company with autonomous cars wants

to provide RSSs in a privacy-preserving way. The server wants to

group the users who have similarities in their trips (and therefore

can share a ride) together without learning any information about

their trips. After the server performs the privacy-preserving group

forming, the users of each group want to privately determine a

fair pick-up point to start their trip together. The pick-up point

selection should be made such that the users do not learn each

other’s locations. The server also remains oblivious to the users’

locations. Moreover, for privacy and security reasons that are men-

tioned in Section 1, we want to avoid utilizing any other party (e.g.,

cloud, proxy, and TTP) than the server and the passengers. Lastly,

we want to design our protocol in such a way that it can run in

real-time, i.e., with negligible time and bandwidth usage.

4 RELATEDWORK
The problem of designing a privacy-preserving ride-sharing pro-

tocol for both autonomous and regular cars has been studied pre-

viously. To organize a (privacy-preserving) ride-share, we require

a (privacy-preserving) technique to match the passengers who

have similar trip data, and a (privacy-preserving) scheme to de-

termine the pick-up points. Therefore, in this section, we review

some of the noteworthy articles on private group-forming tech-

niques, privacy-preserving pick-up points selection schemes, and

privacy-preserving ride-sharing protocols.

4.1 Privacy-Preserving Group Forming
The problem of finding nearby parties in a private manner is not

restricted to ride-sharing. This research problem is studied so that

the solutions can cover any use cases that require similarity tests

with respect to location. Some use cases are ride-sharing [16], lo-

cating nearby friends on social media [44], and potential partner

suggestions on dating apps [25]. One solution to the problem of

finding nearby parties is to perform a privacy-preserving proximity

test [20, 46]. However, proximity tests are usually performed be-

tween two parties; therefore extending the test to cover more than

two parties requires many pre-computations and several rounds of

communication. Moreover, the proximity tests may result in false

positives/negatives. Thus, these tests are not suitable for matching

passengers in a ride-sharing protocol.

He et al. proposed a three steps partner selection protocol for

the purpose of privacy-preserving ride-sharing for a regular car

[16]. Although their protocol does not introduce any false posi-

tive/negative and therefore is more practical than its predecessors,

they require that the driver and the riders reveal some information

about their pick-up and drop-off locations. The riders’ pick-up point

is determined by the driver, and therefore, the riders cannot pick

a fair pick-up location. Moreover, the protocol requires multiple

rounds of computation and communication between the server, the

driver, and the riders, which makes the protocol costly.

4.2 Privacy-Preserving Fair Pick-up Point
Selection

In most of the ride-sharing systems, the passengers’ pick-up points

are selected by the system or the driver, and the passengers cannot

select a "fair" pick-up point for themselves [1]. The concept of fair

pick-up selection is not limited to the ride-sharing organizations.

A fair meeting point selection is relevant to any scenario where

a group of entities (more than one) is required to be at a certain

place at a given time. Therefore, privacy-preserving fair meeting

point selection is studied independently from a specific use case

(e.g., ride-sharing). However, in most of the previous works, the

protocol relies on an additional party (than the server and the group

of people), such as a cloud or a TTP [31, 35, 42], and the protocols’

time complexities are not suitable for real-time location selection

[5, 31, 42].

In Section 5, we propose a lightweight fair meeting point selec-

tion protocol between a group of passengers and a server that does

not rely on any additional party and can perform in real time.

4.3 Privacy-Preserving Ride-Sharing
The following two approaches are common among prior works:

(1) Protocols involve additional party/parties than the passenger

and the server. In the context of privacy-preserving ride-

sharing, the encrypted trip data of several passengers should

Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars CSCS ’22, December 8, 2022, Ingolstadt, Germany

be checked against each other to find a possible match. One

way to preserve the privacy of the passengers against the

server is to utilize another entity to handle the secret key

that is used to encrypt the trip data, e.g., a third-party server

[18, 27, 35, 45], a primary passenger (driver) [32], and a cloud

[36].

(2) It is assumed that the server and all the passengers are semi-

honest [1, 18, 32, 45]. In the context of privacy-preserving

ride-sharing, it is realistic to assume that the server is semi-

honest because the server does not gain anything by disrupt-

ing its reputation. However, we cannot safely assume that

the passengers will not act maliciously.

In our protocol, we drop the assumption that the passengers are

always semi-honest. Also, we do not add any entities other than the

parties who are naturally part of the protocol, i.e., the server and

the passenger. Because, utilizing an extra party (such as a TTP or a

cloud) may introduce additional security and privacy challenges

to the system. For example, Utilizing a TTP/cloud in a scheme can

introduce more cyber-attacks [21, 26, 34]. Now, we take a closer

look at a previous work on privacy-friendly RSSs for an autonomous

car.

Sherif et al. proposed a privacy-preserving protocol to organize

a ride-sharing for a primary passenger via autonomous vehicles

[32]. Their protocol is between three different parties; a primary

passenger, a set of secondary passengers, and a server. Sherif et al.

assumed that the primary passenger rents/owns an autonomous

car and tries to find other passengers to share the ride with. Their

protocol is as follows: The primary passenger generates a secret key

and a group signature credentials and distributes the secret key and

the signature between all the other passengers that requested a ride-

share (secondary passengers). Then, all the passengers (primary and

secondary) encrypt their trip data with the primary user’s secret

key, send the data to the server, and the server performs a similarity

test over the encrypted data. The server does not have the secret key,

so it cannot learn any information about the trip from the encrypted

data. The server sends the result of the similarity test to the primary

passenger. Then, the primary passenger contacts the secondary

passengers, who can share a ride. Sherif et al. adversarial model is

semi-honest. However, this assumption is not always realistic for

the passengers, especially since the primary passenger broadcasts

the secret key and the group signature credentials to the secondary

passengers (up to 500 passengers). Moreover, it is not clear how the

primary passenger can securely deliver the key and signature to

the secondary passengers.

5 THE PROTOCOL
In this section, we present our privacy-preserving ride-sharing

protocol for autonomous cars. The protocol runs between the server

of a company and the customers of that company. The company

owns several autonomous cars. Among other services, the company

provides ride-sharing services in several cities. Let us assume that

the names of these cities are stored in a set𝐶 . The company’s server

divides the map of each city into subregions, e.g., squares with an

area of 1 𝑘𝑚2
. Each subregion has a number, and the map with its

numbered subregions is available to all the users of the service.

The company has several parking spots in different locations

that are distributed throughout the cities. When not in use, the

autonomous cars will drive themselves to the nearest free parking

spot, and if required, they recharge their batteries there as well.

The server makes the list of potential parking locations visible to

the users. Hereafter, if a customer of the company wants to utilize

the ride-sharing service, we call that user a passenger.
In this section, we first give a brief overview of our protocol to

provide an overall image of the different phases of the protocol.

Then, we explain the steps of the main phases of our protocol in

detail.

The protocol consists of a setup phase and two main phases. In

the setup phase, the passengers register to the ride-sharing system

by paying a fee. Then, for every ride, the passengers adopt a pseudo-

random identity so that they can utilize the system anonymously.

The passengers also obtain random-looking access tokens, which

are used together with pseudo-random identities to prove that there

is a valid customer behind the identity. An oblivious transfer is a

well-established cryptographic protocol that guarantees fetching

valid tokens without revealing any information to the server about

who gets which tokens. Each token can only be used once, and its

purpose is to reduce the potential for denial of service.

Still, in the setup phase, the server picks a non-deterministic

and additively homomorphic asymmetric cryptosystem, e.g., the

Paillier cryptosystem [29]. We assume that the public key for this

cryptosystem is 𝑝𝑘 , and 𝑠𝑘 is the secret key. The encryption and

decryption functions are 𝐸𝑝𝑘 and 𝐷𝑠𝑘 , respectively. The server

distributes the public key 𝑝𝑘 to all passengers.

The main phases of our protocol are the privacy-preserving

group forming (Phase 1) and the privacy-preserving fair pick-up

point selection (Phase 2). In Phase 1, the server groups the pas-

sengers based on the similarity of their intended journey with-

out learning any information about the journey, i.e., in a privacy-

preserving way. In this phase, the server categorizes the passengers

into groups (a maximum) of𝑚 people, where𝑚 is the capacity of

the autonomous cars (e.g., 𝑚 = 4). In each group, the preferred

pick-up locations of the passengers are likely to be close to each

other, the passengers’ journeys are roughly on the same path, and

the date and time of traveling are similar.

In Phase 2, with the help of the server, the passengers of each

group agree on a fair pick-up point in a private way. In other words,

the passengers together find a fair location for an autonomous

car to pick them up without revealing their initial locations to the

server, to each other, or to the car.

In the following subsections, we explain the main phases of our

protocol in detail.

5.1 Phase 1: Privacy-Preserving Group Forming
The server should group the passengers based on their preferred

pick-up points, drop-off locations, and time of travel. However, the

group forming should be done in such a way that the server does not

learn any of the above information about the passengers’ journeys.

Moreover, the group-forming process should be fast enough to be

used in real time. For these reasons, we propose a fast PSI protocol

with the help of a secure keyed hash function with the secret key

𝑘 . The key 𝑘 is a one-time secret key that is created by a batch of

CSCS ’22, December 8, 2022, Ingolstadt, Germany Ramezanian et al.

passengers for the purpose of performing one run of a PSI protocol.

Therefore, Phase 1 of our protocol has two sub-phases: generating

a shared secret key (Phase 1.a), and PSI (Phase 1.b).

5.1.1 Phase 1.a: Generating a Shared Secret Key. As mentioned be-

fore, each passenger has a pseudo-random identity and multiple

anonymous tokens. Therefore, the ride-sharing system can grant

access to valid passengers anonymously. We assume that the pas-

sengers let the server know about the city and date of their desired

journeys anonymously. Then, the server inserts the passengers that

want to travel in the same city (e.g., 𝑐 ∈ 𝐶) and on the same day

(e.g., 𝑑) in one set (e.g.,𝑀𝑐,𝑑). For simplicity, let us assume that there

are 𝑛 = 2
𝑎
passengers in 𝑀𝑐,𝑑 . The server proceeds by assigning

a unique ordering number from 1 to 𝑛 to each passenger in 𝑀𝑐,𝑑 ,

such that the passengers are ordered as 𝑃1 to 𝑃𝑛 .

In order to create a shared secret key 𝑘 , the passengers 𝑃1 to 𝑃𝑛
enter a variant of the Diffie-Hellman key agreement protocol of

Subsection 2.11 as follows:

(1) For 𝑖 = 1,, 2𝑎−1, passenger 𝑃2𝑖−1 and passenger 𝑃2𝑖 en-

gage in the 2-party Diffie-Hellman key exchange protocol

and create a shared secret key 𝑆2𝑖−1,2𝑖 = 𝑔𝑆2𝑖−1𝑆2𝑖 based on

locally generated random values 𝑆2𝑖−1 and 𝑆2𝑖 . The pair of
passengers 𝑃2𝑖−1 and 𝑃2𝑖 also compute a public key for the

next round (i.e., 𝑔𝑆2𝑖−1,2𝑖). Now, round 1 of the protocol is

finalized.

(2) For 𝑗 = 1, ..., 2𝑎−2, the passengers 𝑃4𝑗−3 and 𝑃4𝑗−1 exchange
their respective public keys, and so do the passengers 𝑃4𝑗−2
and 𝑃4𝑗 . Then the four passengers 𝑃4𝑗−3, 𝑃4𝑗−2, 𝑃4𝑗−1 and
𝑃4𝑗 compute their shared secret key 𝑆4𝑗−3,...,4𝑗 which is

equal to 𝑔𝑆4𝑗−3,4𝑗−2𝑆4𝑗−1,4𝑗 . They also compute their public

key 𝑔𝑆4𝑗−3,...,4𝑗 . Round 2 of the protocol is now finished.

(3) The protocol is continued in such a way that for any round

𝑏 < 𝑎 and for 𝑗 = 1, ..., 2𝑎−𝑏 , the passengers 𝑃
2
𝑏 · 𝑗−(2𝑏−1)

and 𝑃
2
𝑏 · 𝑗−(2𝑏−1+1) , the passengers 𝑃2𝑏 · 𝑗−(2𝑏−2) and

𝑃
2
𝑏 · 𝑗−(2𝑏−1+2) , ..., and the passengers 𝑃

2
𝑏 · 𝑗−2𝑏−1 and 𝑃2𝑏 · 𝑗

exchange their corresponding public keys. Then, they all are

able to generate a new shared secret key and a corresponding

public key, and round 𝑏 ends.

(4) The protocol is continued until round 𝑎, where a shared

secret key 𝑆1,· · · ,𝑛 is computed by all passengers 𝑃1 to 𝑃𝑛 .

The shared secret key 𝑘 that is required in Phase 1.b is equal to

𝑆1,...,𝑛 . Figure 2 illustrates the above procedure for eight parties.

5.1.2 Phase 1.b: Private Set Intersection. The passengers in the set

𝑀𝑐,𝑑 have created a shared secret key 𝑘 that can be used with a

keyed hash function 𝐻𝑘 . Now each passenger finds the subregions

corresponding to their desired pick-up points and chooses one

of the eight directions, north, northeast, east, southeast, south,

southwest, west, and northwest, as their trip direction. Then, the

passenger computes 𝐻𝑘 (subregion-number ∥ direction ∥ time) for
all the acceptable combinations of regions, directions and times,

and sends the hash values to the server.

After all the passengers have sent their sets of hash values to

the server, the PSI protocol is performed by the server. If there are

two or more passengers with the exact same hash digest(s), the

server groups them together. The formation of the groups should

be done in an optimized way. However, partitioning an arbitrary set

gs1s1

s5,6=gs5s6s1,2=gs1s2 s7,8=gs7s8s3,4=gs3s4

s1,...,8=gs1,...,4s5,...,8

s2 s3 gs4 gs8

gs1,...,8

gs7gs6gs5gs3gs2

s1,...,4=gs1,2s3,4

gs1,2 gs7,8gs5,6gs3,4

gs1,...4 gs5,...,8

P1 P3 P8P7P6P5P4P2

s4 s6s5 s8s7

s5,...,8=gs5,6s7,8

Figure 2: A Tree Diffie-Hellman Group Key Exchange for 8
Parties.

of passengers into groups of a fixed size based on their submitted

list of preferences is a notoriously difficult problem. One way to

approach this optimization problem is to reformulate it in a graph

theoretic setting. We consider two sets of vertices, P andH , where

the set P represents the passengers and H represents the set of

all submitted hashes. A Graph 𝐺 is constructed such that there is

an edge between 𝑥 ∈ P and 𝑦 ∈ H whenever 𝑦 is a hash value

submitted by the passenger 𝑥 . Clearly, the graph 𝐺 is bipartite, i.e.,

there is no edge between any two vertices in P (resp.H).

To partition passengers to groups of size 𝑚, with a common

submitted hash, it is enough to partition the vertices in P to dis-

joint subsets of size𝑚, such that the vertices in every subset are

all connected to at least one vertex in H . However, partitioning

bipartite graphs into sub-graphs consisting of𝑚 disjoint vertices

all connected to one vertex is an NP-complete problem for𝑚 ≥ 3,

see for instance [40] and the references therein.

We detail the algorithm that we used for optimized grouping in

Section 6 and leave further development on the topic of optimized

group forming for future work.

Please note that the number of passengers in each group cannot

be more than the capacity of the autonomous cars (𝑚 passenger).

Moreover, the shared secret key is used only once to group the

passengers. If grouping fails for a passenger, they re-enter Phase

1.a and compute a new shared secret key with different passengers.

Please also note that if grouping succeeds for a passenger and they

wish to arrange another ride-sharing, they require a new key.

The passengers that are successfully grouped together enter

Phase 2 of our protocol as follows.

5.2 Phase 2: Privacy-Preserving Fair Pick-up
Point Selection

In this subsection, we present a privacy-preserving fair pick-up

point selection protocol for ride-sharing with autonomous cars.

Phase 2 of the protocol computes the geometric center (centroid)

of the passengers’ locations in a privacy-preserving manner. If the

centroid is a convenient location for a vehicle to drive to, the passen-

gers’ pick-up point will be the centroid. Otherwise, the passengers

Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars CSCS ’22, December 8, 2022, Ingolstadt, Germany

can find the closest parking spot to their centroid. That parking

spot will be the passengers’ pick-up point.

As we explained earlier, after executing the first phase of our pro-

tocol, the passengers who require similar ride services are grouped

together. If the maximum capacity of a car is𝑚 passengers, then

the number of passengers in each group is𝑚′
, where 2 ≤ 𝑚′ ≤ 𝑚.

We recall from the setup phase of our protocol that the server

distributed the public key 𝑝𝑘 for the Paillier cryptosystem to all

passengers. The passengers use the public key 𝑝𝑘 to encrypt their

initial location and consequently hide their locations from each

other. However, if the passengers send their encrypted locations

to each other via an insecure channel, the server can obtain the

encrypted locations and decrypt them with its secret key.

Therefore, we require that the passengers in each group com-

municate with each other via an end-to-end encrypted channel.

Thus, they require a shared secret key 𝑘′, which is only known

to them, to encrypt the channel. To create the shared secret key

𝑘′, the server assigns another unique ordering number from 1 to

𝑚′
to each passenger in each group. Then, the passengers enter

in another Diffie-Hellman tree group key exchange protocol and

together create the key 𝑘′. Then, the passengers utilize a key deriva-
tion function with the key 𝑘′ to derive the AES key. Finally, AES

encryption is used to encrypt the messages that the passengers

send to each other in Phase 2.

The initial location of passenger 𝑃𝑖 is denoted by (𝑥𝑖 , 𝑦𝑖). The
passengers compute their centroid in a privacy-preserving way as

follows:

(1) One of the passengers (e.g., 𝑃1) picks two positive random

numbers 𝑟1 and 𝑟2, creates an initial vector𝑊 = (𝑟1, 𝑟2), and
sends this vector to other passengers 𝑃2,...,𝑃𝑚′ in the group.

(2) Each passenger 𝑃𝑖 encrypts their initial location (𝑥𝑖 , 𝑦𝑖) with
the server’s public key 𝑝𝑘 , obtaining (𝐸𝑝𝑘 (𝑥𝑖), 𝐸𝑝𝑘 (𝑦𝑖)). The
passenger first sends hash values computed from these two

encrypted coordinates to other passengers. Once the passen-

ger 𝑃𝑖 has received such hash values from all other passen-

gers, 𝑃𝑖 sends the actual encrypted coordinates 𝐸𝑝𝑘 (𝑥𝑖) and
𝐸𝑝𝑘 (𝑦𝑖) to all other passengers.

(3) Each passenger computes

𝐸𝑝𝑘 (𝑥1)𝐸𝑝𝑘 (𝑥2) ...𝐸𝑝𝑘 (𝑥𝑚′)𝐸𝑝𝑘 (𝑟1) = 𝑅1
𝐸𝑝𝑘 (𝑦1)𝐸𝑝𝑘 (𝑦2) ...𝐸𝑝𝑘 (𝑦𝑚′)𝐸𝑝𝑘 (𝑟2) = 𝑅2 .

(4) Passengers send (𝑅1, 𝑅2) to the server.

(5) The server decrypts (𝑅1, 𝑅2), checks that all the values sent
by the passengers decrypt to same plain texts, and sends the

results back to the passengers. The decryptions of 𝑅1 ans 𝑅2
are:

𝐷𝑠𝑘 (𝑅1) = 𝑥1 + 𝑥2 + ... + 𝑥𝑚′ + 𝑟1
𝐷𝑠𝑘 (𝑅2) = 𝑦1 + 𝑦2 + ... + 𝑦𝑚′ + 𝑟2

(6) The passengers compute

(𝐷𝑠𝑘 (𝑅1) − 𝑟1)/𝑚′ = 𝑥
centroid

(𝐷𝑠𝑘 (𝑅2) − 𝑟2)/𝑚′ = 𝑦
centroid

(7) The passengers can find the closest parking location to their

centroid together, or accept the centroid as a convenient

pick-up point.

Our protocol can be easily used for the case where an owner of

an autonomous car wants to share a ride with other passengers. In

this case, the owner registers their car in the server’s ride-sharing

system and enters the protocol as a regular passenger. After execut-

ing the protocol, when the time of the trip arrives, the car drives its

owner to the selected pick-up point and collects other passengers.

A summary of our protocol is illustrated by Figure 3.

6 PERFORMANCE EVALUATION
In this section, we evaluate the time and bandwidth usage of our

protocol. In our performance evaluation, we adopt the following

parameters: The size of the modulo 𝑝 in DH is 2048 bits, and there

are𝑛 = 2
10 = 1024 passengers participating in the DH-tree.Without

loss of generality, we assume that the area of the city is 300 𝑘𝑚2
.

Therefore, there are 300 subregions in each city. Please note that

the number of subregions does not affect the performance of our

protocol. In our protocol, we group the passengers based on their

pick-up points and the similarity of their destinations, which is

independent of the size of the city. We utilize SHA-256 for the

keyed hash function. The server groups the passengers into groups

of a maximum of 4. The size of modulo 𝑁 2
in Paillier is 4096 bits.

The time complexity of the protocol depends on the processor that

a party (a passenger or a server) utilizes. For a realistic evaluation,

we execute the protocol on a PC (laptop). The operating system

(OS) is Windows 10, and it runs on an x86-64 Intel Core i5 processor

clocked at 2.7 GHz with a 4 MB L3 cache. The passenger and the

server use a single thread to perform the required computations.

In the setup phase, the server needs to compute several anony-

mous tokens for each passenger. The process of creating, distribut-

ing, and verifying the anonymous tokens is quick (in the order of

`s for each passenger) [22]. Therefore, in this section, we focus on

the cryptographic and optimization parts of our protocol, which

are the most time-consuming parts.

6.1 Phase 1
In Phase 1, in order to create a shared secret key 𝑘 , each passenger

sends log𝑛 DH public keys to other passengers that are participat-

ing in the DH-tree. Therefore, each passengers sends log 2
10 = 10

public keys, which is 2.5 KB. To calculate the key 𝑘 , each passenger

computes 2 log𝑛 modular exponentiation, and log𝑛 modular multi-

plications. The computation of modular multiplication is fast (less

than 1 `s), thus, the costs of them is negligible. Each exponentiation

takes 0.002 seconds, therefore, each passengers require 20(0.002)

= 0.04 s to compute 𝑘 . Computing the outcome of a keyed hash

function is extremely fast (on average, 0.5 `s). In our protocol, each

passenger only requires to compute a small number of hash values;

therefore, the required time to compute the hashes is negligible.

Each hash value is of size 256 bits. Therefore, the size of a passen-

ger’s set is less than 0.5 KB. The server performs PSI and forms the

groups in an optimized way.

6.1.1 Optimized Grouping Algorithm. Our algorithm to group pas-

sengers based on their sets’ intersection in an optimized way is

presented in the following. The passengers’ anonymous ids are

denoted by 𝑃1,...,𝑃𝑛 , and the set of their hash values denoted by

{ℎ1, ℎ2, · · · , ℎ𝑒 }, where each ℎ𝑖 ∈ {0, 1}256. Note that 𝑒 is the num-

ber of hash values in a passenger’s set, and therefore, it depends

CSCS ’22, December 8, 2022, Ingolstadt, Germany Ramezanian et al.

AliceOther Passengers Server

1) Wants to share a ride

4) Creates pseudo_random
identity (e.g., usr_123)

2) Authenticates Alice
3) Creates anonymous tokens

0) Paillier public and private keys

Registration request

Anonymous tokens, public key

Anonymous request to join DH-tree + city + date

S
etup P

hase

h public keys

h public keys

h' public keys

h' public keys

(h = log n)

6) Chooses a secret key si and
participates in DH-tree as Pi

7) Computes key k
8) Computes keyed hashes of her trip data

5) Creates an ordering number i for
an anonymous passenger usr_123

9) Forms the groups in optimal way
based on PSI

10) Creates an ordering number i'

 i

The group member's anonymous id, i'

A set of hash digests

Hashes of all passengers in the group

DH-Tree for
n parties
P1, ... ,Pn

P
hase 1

(h' = log m')

r1, r2, and their encryptions

encryptions of hashes

encrypted coordinates

DH-Tree for
m' parties
P1, ... ,Pm'

P
hase 2

17) Removes random values and
computes the "fair" pick-up point

11) Chooses another secret key s'i' and
participates in DH-tree as Pi'

12) Computes secret k' to create an
end-to-end secure channel with other

passengers
13) Picks random values r1, r2

14) Uses public key to encrypt coordinates,
hashes of coordinates, and r1, r2

15) Computes final encrypted vector

16) Decrypts vector
Decrypted vector

Encrypted vector

Decrypted vectors

Encrypted vectors

Figure 3: The figure shows a summary of the steps that a certain passenger (Alice) and a server take in our privacy-preserving
ride-sharing protocol for autonomous cars.

on the flexibility of the passenger’s request. For our setting, we

assume that 1 ≤ 𝑒 ≤ 4.

(1) The server receives the passengers’ hash values. Then, it cre-

ates one bucket for each unique hash and maps the buckets

to the passenger. For instance, if hash value ℎ11 is in the sets

of the passengers 𝑃102, 𝑃54, and 𝑃9, they will be mapped to

bucket ℎ11.

After the above step, the passengers are categorized based on

whether they have a certain hash value. However, these categories

may have more than𝑚 passengers, and/or there are passengers that

are in more that one category. To resolve these issues, the server

performs the following steps.

(2) The server removes the buckets containing only one passen-

ger, then computes the union of all passengers that are in

the remaining buckets.

(3) If a passenger is not in the above union, they cannot be in

any group. The server informs them that there is no possible

ride-share for them. If they wish, they can re-enter Phase 1

later.

If possible, the server creates groups of maximum capacity (𝑚).

The server also prioritizes passengers that have more hash values.

Please recall that more hash values in a set mean that the passenger

is more interested in finding a ride-share. in their sets.

(5) The server computes the number of times that each passen-

ger appears in different buckets. Let us call this number the

degree of a passenger.
(6) The server starts grouping from buckets with the maximum

number of passengers. If a bucket contains more than 𝑚

passengers (e.g., 𝑚
′′
), the server picks 𝑚 passengers with

the least amount of degree, and forms a group. Then the

server subtracts 1 from the degree of the remaining𝑚
′′ − 𝑛

passengers. The server also removes the𝑚 passengers that

are grouped from all the other buckets.

Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars CSCS ’22, December 8, 2022, Ingolstadt, Germany

(7) The server repeats the above step until the grouping is not

possible anymore. Then, the algorithm ends, and if there are

any passengers that are not in any group will be informed.

They can try the protocol again later.

For executing the above algorithm, the server requires 0.25 sec-

onds to group 1024 passengers. Thus, in Phase 1, a passenger’s time

complexity is 0.04 s, and the communication complexity is 3 KB.

For the server, the required time to perform Phase 1 is 0.25 seconds,

and the bandwidth usage is less than 0.25 KB as the server only

sends two ordering numbers, 𝑖 and 𝑖′, and a maximum of 3 ids.

6.2 Phase 2
In Phase 2, the passengers of each group require to compute a key

𝑘′. If there are 4 passengers in each group, each passenger sends

4 public keys (in total 1 KB) and performs 8 modular exp., which

takes 0.016 s. Computing the end-to-end encryption with AES is

extremely fast, and therefore, the time complexity of it is negligible.

Each passenger performs 2 Paillier encryptions that take 0.112 s

and sends 2 ciphertexts of size 4096 bits to other passengers. One

of the passengers requires performing an extra 2 encryptions to

encrypt 𝑟1 and 𝑟2, that takes an extra 0.112 s. This passenger sends

to all the other passengers 𝑟1, 𝑟2, and their encryptions, which are

in total 1.5 KB. Each passenger performs 8 modular multiplications

that take 0.0004 s and sends the final result of 4096 bits to the server.

Therefore, the communication and computation complexities for a

passenger in the worth case are 5 KB and 0.24 s, respectively. The

server decrypts two ciphertexts in 0.33 s and sends 0.5 KB to each

passenger (2 KB in total).

The total time and communication complexities of our protocol

for the server (for a passenger) are 0.58 seconds (0.28 seconds) and

2.25 KB (8 KB), respectively. Table 1 compares the security, privacy,

fairness, usability, and costs of our protocol with the prior art.

7 SECURITY AND PRIVACY ANALYSIS
We analyze the security and privacy of our privacy-preserving ride-

sharing protocol in this section. We first examine the security and

privacy of each part of the protocol against a semi-honest server.

Then, we change the point of view and analyze each part of the

protocol against semi-honest and malicious passengers.

Our model is based on the assumption that the server of the

ride-sharing company is honest-but-curious (i.e., it is semi-honest).

The company’s business model is to provide ride-sharing services

with autonomous cars while, at the same time, protecting the pri-

vacy of passengers. Moreover, as mentioned in Section 1, in order

to avoid certain cyber-attacks, the company may not even want

to store users’ personal information. Hence, the company adver-

tises its service as a privacy-preserving ride-sharing system. If at

any point of operation, it turns out that the company does not

follow the protocol or diverges from it (e.g., due to a successful

cyber-attack), the company can harm its prestige and may lose its

customers. Therefore, considering the server as a semi-honest party

is a sensible assumption. However, we cannot similarly assume that

all the passengers are honest or even semi-honest. Thus, in our

analyses, we consider both semi-honest and malicious passengers.

In the setup phase, each passenger reveals the city and the date

of their trip to the server while keeping their identity anonymous.

Because the information is coarse-grained and is revealed anony-

mously, the privacy or security of the passenger is not violated.

Theorem 7.1. After executing Phase 1.a, i) the semi-honest server
does not learn the shared secret key 𝑘 of 𝑛 passengers nor any of the
passengers’ secret keys, ii) a semi-honest/malicious passenger cannot
learn the secret key of other passengers.

Proof. The security of Phase 1.a lies in the fact that the Diffie-

Hellman tree group key exchange protocol is secure [6]. Therefore,

the semi-honest server cannot learn any of the passengers’ secret

keys nor the final key 𝑘 . Moreover, the passengers, semi-honest or

malicious, cannot learn each other’s secret keys. □

The passengers do not reveal their identity either to each other

or to the server. Anonymity typically helps in launching Denial of

Service attacks. However, a malicious passenger cannot perform an

effective DoS attack against the server because the number of their

anonymous tokens is not big enough to perform such an attack.

Theorem 7.2. After executing Phase 1.b, i) the semi-honest server
does not learn any information about the passengers’ trip, ii) a semi-
honest/malicious passenger cannot learn any information about other
passengers’ trips.

Proof. The security of Phase 1.b relies on the security proper-

ties of keyed hash functions. The one-wayness of hash functions

makes it impossible for the server to learn the function’s input by

investigating its output. Please note that because the server does

not have the key 𝑘 , it cannot perform a dictionary attack on the

hash values. Therefore, the server does not learn any information

about a trip from its corresponding hash value. As the communi-

cation between the server and an individual passenger is through

a secure channel, the passengers cannot obtain each other’s hash

values. Note that they cannot obtain these with the help of the

server because the server is assumed to be semi-honest. □

Theorems 7.1 and 7.2 show that by executing Phase 1, the server

groups the passengers without learning the passengers’ exact or

approximate locations or times of the planned trips. Moreover,

the passengers do not learn any information about each other’s

journeys. Therefore, running Phase 1 can successfully group the

passengers in a secure and private manner.

Theorem 7.3. After executing Phase 2, i) the server neither learns
the passengers’ initial locations nor their centroid, ii) a semi-honest/
malicious passenger cannot learn the other passengers’ locations.

Proof. The security of Phase 2 relies on the security of the

Paillier cryptosystem. The random values 𝑟1 and 𝑟2 in the vector

𝑊 hide the locations of the passengers and the centroid from the

server. Moreover, using the secure channel prevents the server from

learning anything about the process of computing the components

of vector𝑊 . It is clear that the semi-honest passengers do not learn

each others’ locations because their coordinates are encrypted, and

they do not have the Paillier private key.

Because hash values of the encrypted coordinates have to be sent

and received before the actual encrypted coordinates are shared,

malicious passenger has to commit to the values they intend to

send before they see anybody else’s encrypted values. This implies

CSCS ’22, December 8, 2022, Ingolstadt, Germany Ramezanian et al.

Table 1: Comparison of our protocol with the prior art. The order of time complexity is the total costs of pre-computation,
off-line and on-line phases of the protocols. Each column presents a different property. The best performance in each column
is remarked with bold font.

Protocols

Properties Requires Extra Works for Anonymity False The Order of Time The Order of Communication Secure Against A Fair Pick-up

Protocol Party Autonomous Cars Positive/Negative Complexities Complexities Malicious Passenger Point

[32] Yes Yes Yes No Minute MB No No

[45] Yes No No No Hour MB No Yes
[18] Yes No No Yes Minute MB No No

[35] Yes No Yes Yes Minute MB Yes Yes
Ours No Yes Yes No Second KB Yes Yes

a malicious party cannot deviate too much from what an honest

party would do in the protocol. They can still send something else

instead of encryptions of their real coordinates, but this attack

is just equivalent to lying about one’s location in the first place.

However, as a result, the malicious party only learns the centroid

computed as if they would be in another location than where they

actually is. □

Theorem 7.3 shows that by executing Phase 2, the passengers

can arrange a fair pick-up point without learning each other’s exact

or approximate locations and without revealing any information

about their trip to the server. Therefore, by running Phase 2, the

passengers can successfully arrange the pick-up point in a secure

and private manner.

In Phase 1, if the server starts to act maliciously, it can learn the

key 𝑘 either by colluding with one of the malicious passengers, or

by participating in the key agreement protocol as a passenger. A

malicious server who obtained the key 𝑘 can compute all the pos-

sible combinations of the hash values 𝐻𝑘 (𝑘 ∥ subregion-number ∥
direction ∥ time). Then, the malicious server can perform the dic-

tionary attack and learn the input values. However, the passengers

utilize the system anonymously in this phase. Thus, the information

that is revealed to the server by a successful dictionary attack is

still anonymous, so that it would not jeopardize the privacy of the

passengers too much.

In Phase 2, if there are𝑚′
passengers in a group and𝑚′ − 1 pas-

sengers collude with each other and reveal their initial locations to

each other, they can learn the location of the remaining passenger

based on information about the centroid. Similar situation may

occur when a malicious passenger registers to the system multi-

ple times and obtains several anonymous identities. However, the

passengers are grouped anonymously and based on an optimized

matching algorithm. Therefore, the conspiring passengers have

only moderate chances to be grouped together. In addition, they

have no control on who would be the remaining anonymous pas-

senger whose initial location they would learn. Because the attack

requires using tokens, it has a notable cost, and the cost-benefit

ratio for the attacker does not seem to be good.

In Phase 2, there is a special scenariowhere amalicious passenger

may be able to cheat and move the centroid closer to their initial

location. In this scenario, the malicious passenger knows that there

cannot be any passengers in a certain area 𝐴 that is close to the

malicious passenger. For instance, the passenger is close to sea

shore. Then, the malicious passenger enters Phase 2 with false

coordinates that represent a point inside 𝐴. Thus, the malicious

party manipulates the computation of the centroid such that the

pick-up point would likely be closer to them
2
. However, if the other

passengers are close to the malicious passenger, the pick-up point

might fall in the area 𝐴 (inside the sea!), and the passengers will

realize that there is a malicious party in the group. In this case,

the passengers send the encryptions of the coordinates of other

passengers to the server. The server decrypts the coordinates and

finds the malicious party. Please note that in the context of ride-

sharing, a passenger books their prospective trip beforehand, hence

uses an expected future location as an initial location. Therefore, in

general, it does not make much sense to even try to verify whether

the input location in Phase 2 is correct.

8 CONCLUSION
The paper presented our novel lightweight privacy-preserving ride-

sharing protocol for autonomous cars. Our protocol is between a

set of passengers and a server, and contrary to most of the previous

related works, it does not require an extra party to provide pri-

vacy and security. Moreover, we have presented two novel privacy-

preserving protocols for group forming (in Phase 1) and fairmeet-up

point detection (in Phase 2). In addition to ride-share organizations,

the protocols of Phases 1 and 2 can be used in other use cases.

We suggested a modification to the DH-tree group key pro-

tocol that does not require a server. We also used an optimized

group-forming algorithm in our protocol. Future work could try

to investigate further into the topics of group key agreements and

optimized group forming, as both of these topics have several use

cases for autonomous cars.

We assume that the server is honest-but-curious. However, as

we explained, it is not realistic to assume that all the passengers

follow the protocol honestly. We analyzed the privacy and security

of our protocol and proved that our protocol provides protection

against malicious passengers.

We have implemented our protocol and evaluated its perfor-

mance for a realistic scenario where 1000 passengers simultane-

ously request a ride-share in a city with an area of 300 𝑘𝑚2
. The

results of our experiments show that our protocol can be used in

real life to organize ride-shares with autonomous cars in a privacy-

friendly manner. In other words, the cost of our protocol is feasible

in practice. Moreover, we compared several properties of our proto-

col with the prior art. Our comparison shows that despite the fact

that we do not use any extra party in our protocol and we cover

malicious passengers in addition to semi-honest ones, our protocol

outperforms the prior art.

2
Please note that the malicious party still cannot learn other passengers’ initial

locations.

Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars CSCS ’22, December 8, 2022, Ingolstadt, Germany

REFERENCES
[1] Ulrich Matchi Aïvodji, Sébastien Gambs, Marie-José Huguet, and Marc-Olivier

Killijian. 2016. Meeting points in ridesharing: A privacy-preserving approach.

Transportation Research Part C: Emerging Technologies 72 (2016), 239–253.
[2] Saeed Asadi Bagloee, Madjid Tavana, Mohsen Asadi, and Tracey Oliver. 2016.

Autonomous vehicles: challenges, opportunities, and future implications for

transportation policies. Journal of modern transportation 24, 4 (2016), 284–303.

[3] Syagnik Banerjee. 2019. Geosurveillance, location privacy, and personalization.

Journal of Public Policy & Marketing 38, 4 (2019), 484–499.

[4] Leila Benarous and Benamar Kadri. 2022. Obfuscation-based location privacy-

preserving scheme in cloud-enabled internet of vehicles. Peer-to-Peer Networking
and Applications 15, 1 (2022), 461–472.

[5] Igor Bilogrevic, Murtuza Jadliwala, Vishal Joneja, Kübra Kalkan, Jean-Pierre

Hubaux, and Imad Aad. 2014. Privacy-preserving optimal meeting location

determination on mobile devices. IEEE transactions on information forensics and
security 9, 7 (2014), 1141–1156.

[6] Timo Brecher, Emmanuel Bresson, and Mark Manulis. 2009. Fully robust tree-

Diffie-Hellman group key exchange. In International Conference on Cryptology
and Network Security. Springer, 478–497.

[7] Ryan Browne. 2022. Uber investigates cybersecurity incident after reports of

a hack on the company. https://www.cnbc.com/2022/09/16/uber-investigates-

cybersecurity-incident-after-reports-of-a-hack.html

[8] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin Mil-

ner. 2018. On ends-to-ends encryption: Asynchronous group messaging with

strong security guarantees. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. 1802–1819.

[9] Joan Daemen and Vincent Rijmen. 2013. The Design of Rijndael AES – The

Advanced Encryption Standard. (2013).

[10] Whitfield Diffie and Martin E Hellman. 2022. New directions in cryptography.

In Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman.
365–390.

[11] Fábio Duarte and Carlo Ratti. 2018. The impact of autonomous vehicles on cities:

A review. Journal of Urban Technology 25, 4 (2018), 3–18.

[12] Per Hallgren, Martin Ochoa, and Andrei Sabelfeld. 2015. Innercircle: A paralleliz-

able decentralized privacy-preserving location proximity protocol. In 2015 13th
Annual Conference on Privacy, Security and Trust (PST). IEEE, 1–6.

[13] Lein Harn, Ching-Fang Hsu, and Bohan Li. 2018. Centralized group key estab-

lishment protocol without a mutually trusted third party. Mobile Networks and
Applications 23, 5 (2018), 1132–1140.

[14] Lein Harn and Changlu Lin. 2014. Efficient group Diffie–Hellman key agreement

protocols. Computers & Electrical Engineering 40, 6 (2014), 1972–1980.

[15] Carmit Hazay and Yehuda Lindell. 2010. A note on the relation between the

definitions of security for semi-honest and malicious adversaries. Cryptology
ePrint Archive (2010).

[16] Yuanyuan He, Jianbing Ni, Xinyu Wang, Ben Niu, Fenghua Li, and Xuemin

Shen. 2018. Privacy-preserving partner selection for ride-sharing services. IEEE
Transactions on Vehicular Technology 67, 7 (2018), 5994–6005.

[17] Jianbo Huang, Liang Chang, Long Li, and Xuguang Bao. 2020. An Adaptive

Dummy-based Mechanism to Protect Location Privacy in Smart Health Care

System. In 2020 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery (CyberC). IEEE, 92–97.

[18] Junxin Huang, Yuchuan Luo, Ming Xu, Bowen Hu, and Jian Long. 2022. pShare:

Privacy-Preserving Ride-Sharing System with Minimum-Detouring Route. Ap-
plied Sciences 12, 2 (2022), 842.

[19] Fortune Business Insights. 2022. Ride sharing market size, share and covid-19
impact analysis. https://www.fortunebusinessinsights.com/ride-sharing-market-

103336

[20] Kimmo Järvinen, Ágnes Kiss, Thomas Schneider, Oleksandr Tkachenko, and

Zheng Yang. 2018. Faster privacy-preserving location proximity schemes. In

International Conference on Cryptology and Network Security. Springer, 3–22.
[21] Tobias Jeske. 2011. Privacy-preserving smart metering without a trusted-third-

party. In Proceedings of the International Conference on Security and Cryptography.
IEEE, 114–123.

[22] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-

mous tokens with private metadata bit. In Annual International Cryptology Con-
ference. Springer, 308–336.

[23] Miltos Kyriakidis, Riender Happee, and Joost CF de Winter. 2015. Public opinion

on automated driving: Results of an international questionnaire among 5000

respondents. Transportation research part F: traffic psychology and behaviour 32
(2015), 127–140.

[24] Donghe Li, Qingyu Yang, Dou An, Wei Yu, Xinyu Yang, and Xinwen Fu. 2018.

On location privacy-preserving online double auction for electric vehicles in

microgrids. IEEE Internet of Things Journal 6, 4 (2018), 5902–5915.
[25] Marco Maier, Lorenz Schauer, and Florian Dorfmeister. 2015. Probetags: Privacy-

preserving proximity detection using wi-fi management frames. In 2015 IEEE
11th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). IEEE, 756–763.

[26] Macià Mut-Puigserver, Miquel A Cabot-Nadal, andMMagdalena Payeras-Capellà.

2020. Removing the trusted third party in a confidential multiparty registered

eDelivery protocol using blockchain. IEEE Access 8 (2020), 106855–106871.
[27] Mahmoud Nabil, Ahmed Sherif, Mohamed Mahmoud, Ahmad Alsharif, and Mo-

hamed Abdallah. 2019. Efficient and privacy-preserving ridesharing organization

for transferable and non-transferable services. IEEE Transactions on Dependable
and Secure Computing 18, 3 (2019), 1291–1306.

[28] Iynkaran Natgunanathan, Abid Mehmood, Yong Xiang, Longxiang Gao, and Shui

Yu. 2018. Location privacy protection in smart health care system. IEEE Internet
of Things Journal 6, 2 (2018), 3055–3069.

[29] Pascal Paillier and David Pointcheval. 1999. Efficient public-key cryptosystems

provably secure against active adversaries. In International conference on the
theory and application of cryptology and information security. Springer, 165–179.

[30] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2018. Scalable private set

intersection based on OT extension. ACM Transactions on Privacy and Security
(TOPS) 21, 2 (2018), 1–35.

[31] Hua Shen, Mingwu Zhang, Hao Wang, Fuchun Guo, and Willy Susilo. 2020. A

lightweight privacy-preserving fair meeting location determination scheme. IEEE
Internet of Things Journal 7, 4 (2020), 3083–3093.

[32] Ahmed BT Sherif, Khaled Rabieh, Mohamed MEA Mahmoud, and Xiaohui Liang.

2016. Privacy-preserving ride sharing scheme for autonomous vehicles in big

data era. IEEE Internet of Things Journal 4, 2 (2016), 611–618.
[33] David G Steer, Leo Strawczynski, Whitfield Diffie, and M Wiener. 1988. A secure

audio teleconference system. In Conference on the Theory and Application of
Cryptography. Springer, 520–528.

[34] Nalini Subramanian and Andrews Jeyaraj. 2018. Recent security challenges in

cloud computing. Computers & Electrical Engineering 71 (2018), 28–42.

[35] Hongliang Sun, Linfeng Wei, Libo Wang, Juli Yin, and Wenxuan Ma. 2022. A

Trusted and Privacy-Preserving Carpooling Matching Scheme in Vehicular Net-

works. Journal of Information Security 13, 1 (2022), 1–22.

[36] Iraklis Symeonidis, Dragos Rotaru, Mustafa A Mustafa, Bart Mennink, Bart

Preneel, and Panos Papadimitratos. 2021. HERMES: Scalable, Secure, and Privacy-

Enhancing Vehicular Sharing-Access System. IEEE Internet of Things Journal 9, 1
(2021), 129–151.

[37] Uber team. 2022. Security update. https://www.uber.com/newsroom/security-

update/

[38] Hien To, Gabriel Ghinita, and Cyrus Shahabi. 2014. A framework for protecting

worker location privacy in spatial crowdsourcing. Proceedings of the VLDB
Endowment 7, 10 (2014), 919–930.

[39] James M Turner. 2008. The keyed-hash message authentication code (hmac).

Federal Information Processing Standards Publication 198, 1 (2008), 1–13.

[40] René Van Bevern, Robert Bredereck, Laurent Bulteau, Jiehua Chen, Vincent

Froese, Rolf Niedermeier, and Gerhard J Woeginger. 2017. Partitioning perfect

graphs into stars. Journal of Graph Theory 85, 2 (2017), 297–335.

[41] Debby Wallner, Eric Harder, and Ryan Agee. 1999. Key management for multicast:
Issues and architectures. Technical Report.

[42] Xiaofen Wang, Yi Mu, and Rongmao Chen. 2016. One-round privacy-preserving

meeting location determination for smartphone applications. IEEE Transactions
on Information Forensics and Security 11, 8 (2016), 1712–1721.

[43] Chung Kei Wong, Mohamed Gouda, and Simon S Lam. 2000. Secure group

communications using key graphs. IEEE/ACM transactions on networking 8, 1

(2000), 16–30.

[44] Xi Xiao, Chunhui Chen, Arun Kumar Sangaiah, Guangwu Hu, Runguo Ye, and

Yong Jiang. 2018. CenLocShare: A centralized privacy-preserving location-

sharing system for mobile online social networks. Future Generation Computer
Systems 86 (2018), 863–872.

[45] Haining Yu, Hongli Zhang, Xiangzhan Yu, Xiaojiang Du, and Mohsen Guizani.

2020. PGRide: Privacy-preserving group ridesharing matching in online ride

hailing services. IEEE Internet of Things Journal 8, 7 (2020), 5722–5735.
[46] Yao Zheng, Ming Li, Wenjing Lou, and Y Thomas Hou. 2015. Location based

handshake and private proximity test with location tags. IEEE Transactions on
Dependable and Secure Computing 14, 4 (2015), 406–419.

[47] Xiaoyan Zhu, Haotian Chi, Ben Niu, Weidong Zhang, Zan Li, and Hui Li. 2013.

Mobicache: When k-anonymity meets cache. In 2013 IEEE Global Communications
Conference (GLOBECOM). IEEE, 820–825.

https://www.cnbc.com/2022/09/16/uber-investigates-cybersecurity-incident-after-reports-of-a-hack.html
https://www.cnbc.com/2022/09/16/uber-investigates-cybersecurity-incident-after-reports-of-a-hack.html
https://www.fortunebusinessinsights.com/ride-sharing-market-103336
https://www.fortunebusinessinsights.com/ride-sharing-market-103336
https://www.uber.com/newsroom/security-update/
https://www.uber.com/newsroom/security-update/

	Abstract
	1 Introduction
	1.1 Privacy-Preserving Ride-Sharing
	1.2 Autonomous Cars and Ride-Sharing
	1.3 Location Privacy
	1.4 Our Contributions

	2 Preliminaries
	2.1 Keyed Hash Function
	2.2 Private Set Intersection (PSI)
	2.3 Dictionary Attack
	2.4 Denial of Service (DoS)
	2.5 Anonymous Tokens
	2.6 Adversarial Model
	2.7 Paillier Cryptosystem
	2.8 AES
	2.9 Diffie–Hellman Key Exchange Protocol
	2.10 Key Derivation Function
	2.11 Tree Diffie-Hellman Group Key Exchange Protocol

	3 Problem Statement
	4 Related Work
	4.1 Privacy-Preserving Group Forming
	4.2 Privacy-Preserving Fair Pick-up Point Selection
	4.3 Privacy-Preserving Ride-Sharing

	5 The Protocol
	5.1 Phase 1: Privacy-Preserving Group Forming
	5.2 Phase 2: Privacy-Preserving Fair Pick-up Point Selection

	6 Performance Evaluation
	6.1 Phase 1
	6.2 Phase 2

	7 Security and Privacy Analysis
	8 Conclusion
	References

