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Soil moisture has a fundamental influence on the processes
and functions of tundra ecosystems. Yet, the local dynam-
ics of soil moisture are often ignored, due to the lack of fine
resolution, spatially extensive data. In this study, we mod-
elled soil moisture with two mechanistic models, SpaFHy (a
catchment-scale hydrological model) and JSBACH (a global
land surface model), and examined the results in compari-
son with extensive growing-season field measurements over
a mountain tundra area in northwestern Finland. Our re-
sults show that soil moisture varies considerably in the study
area and this variation creates a mosaic of moisture condi-
tions, ranging from dry ridges (growing season average 12
VWC%, Volumetric Water Content) to water-logged mires
(65 VWC%). The models, particularly SpaFHy, simulated
temporal soil moisture dynamics reasonably well in parts of
the landscape, but both underestimated the range of vari-
ation spatially and temporally. Soil properties and topogra-
phy were important drivers of spatial variation in soil mois-
ture dynamics. By testing the applicability of two mechanis-
tic models to predict fine-scale spatial and temporal vari-
ability in soil moisture, this study paves the way towards
understanding the functioning of tundra ecosystems under

climate change.
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1 | INTRODUCTION

moisture is a crucial part of the hydrological cycle, influencing interactions between the land surface and atmo-
sphere (Robock et al., 2000; Koster et al., 2004; Seneviratne et al., 2010). In mountain tundra, the importance of
<~" moisture is highlighted in its connection with vegetation patterns and Earth surface processes (Aalto et al., 2013;
le Roux et al., 2013). It is also strongly linked to plant performance and ecosystem functionality, emphasising its eco-
.wo.cal relevance under contemporary climate change (Bjorkman et al., 2018). Tundra ecosystems are characterised
by 2 short but intensive growing season and a prolonged snowmelt period, which is strongly correlated with local
topography (Niittynen et al., 2018). In cold climates, topography also influences the distribution of a spatially uneven
organic layer (Seibert et al., 2007; Zhu et al., 2019). Processes linked to climate, varying topography and vegetation

-acteristics interact with soil moisture, causing spatial and temporal variation in its fine-scale patterns (Kemppinen
et al., 2018; Penna et al., 2009).

At large scales, the spatio-temporal variation of soil moisture follows general climatic conditions (Seneviratne
et al., 2010). However, at finer scales, its patterns are controlled by various landscape characteristics as well as local
ciii.jate. Water flows within and above ground are controlled partly by soil hydraulic properties, topography and inten-
sity of precipitation, while evapotranspiration is influenced by vegetation characteristics and radiation (Western et al.,
2002; Seneviratne et al., 2010). These fine-scale variations of soil moisture can be considerable, particularly in het-
erogeneous landscapes, such as in mountain tundra, and need to be understood when considering area-averaged soil

_isture variations at larger scales (Western et al., 2002). They also have important local ecosystem impacts. Spatio-
temporal variations of soil moisture are an important driver of greenhouse gas fluxes (Lohila et al., 2016; Virkkala,
27 0) as well as fine-scale patterns of vegetation properties (le Roux et al., 2013; Kemppinen, 2020). Therefore,
through various feedback mechanisms, soil moisture in the tundra plays an important role in global change and its

Jrate predictions are fundamental to our ability to understand tundra ecosystems now and in the future.

Mechanistic models are useful tools in examining dynamic and complex processes, such the hydrological cycle
(Abbott et al., 1986; Fatichi et al., 2016). Models depicting soil moisture dynamics have been developed for various
. jons, such as estimating global wetland areas, improving catchment scale flood forecasts and simulating fine-
scale species distribution patterns (Berthet et al., 2009; Maclean et al., 2012; Zhang et al., 2016). Therefore, the level of
de il in how and which hydrological processes are described varies even amidst similar models such as land surface
models (Dirmeyer et al., 2006; Koster et al., 2009; Romano, 2014). As a result, model comparison and evaluation
stu lies have found considerable differences when simulating soil moisture and its dynamics (Dirmeyer et al., 2004;
wch etal., 2016; Yuan and Quiring, 2017). In mountain tundra, where landscape heterogeneity is an important aspect
of so0il hydrology, evaluating soil moisture model performances requires spatially detailed measurements. Recent
elopments of in situ measurement techniques have improved the spatio-temporal resolution in which soil moisture
can be measured and in turn provide more a comprehensive understanding of soil moisture dynamics and model

.. ‘ormances (Kopecky et al., 2021; Vereecken et al., 2014; Wild et al., 2019).

The objectives of this study are to 1) quantify the spatio-temporal variability of soil moisture and its drivers
in-mountain tundra and 2) evaluate soil moisture simulations of two mechanistic models using high-resolution soil
moisture field measurements. To the best of our knowledge, this is the first time that extensive, high-resolution

observation data are used in detailed model-based analysis to unravel the mountain tundra soil moisture variability and
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drivers. One of the models, JSBACH, has been developed for use with large-scale climate models and concentrates on
interactions between the land surface and atmosphere (Reick et al., 2013). Understanding how variation in landscape
characteristics realises itself in model results is important in order to better understand what uncertainties relate
to large-scale simulations of the land surface. The other one, Spatial Forest Hydrology Model (SpaFHy), has been
developed for simulating catchment-level hydrology in boreal forests (Launiainen et al., 2019). The soil moisture

.imations in sloping terrain with patchy soil and vegetation require specific capabilities from models, some of which
~»~ found in the more soil-vegetation oriented models and some in hydrology oriented models. Here we assess the
impact of soil type, layers and implementation of topographical redistribution on soil moisture variation and test the
mo lels’ ability to characterise the spatial and temporal variation of soil moisture with literature-based parameters.
_.e also use a statistical model to examine which environmental variables, namely soil, topography and vegetation,

tribute most to the soil moisture variation, and whether these controls are well addressed in the models.

2 | MATERIALS AND METHODS

z.i | Study area

study area is located in a valley between Mount Saana and Mount Jehkas in northwestern Fennoscandia (69°03’
N 20°51’ E, Fig. 1). The region experiences a subarctic climate with monthly average temperatures ranging from
-12 9°CinJanuary to 11.2 °Cin July (averages during 1981-2010; Pirinen et al., 2012). The total annual precipitation
is 487 mm and snow covers the ground largely from October to May, although late-lying snowpacks can persist far
into the summer. The landscape is characterised by varying vegetation (Riihimaki et al., 2019), soil type, geomorphol-
ogy (le Roux and Luoto, 2014) and topography (Kemppinen et al., 2018). Vegetation consists mainly of dwarf-shrub
Ainated mountain heath with sporadic meadows and mires (Kemppinen et al., 2018; Riihimaki et al., 2019). The
ground surface consists of thin mineral and organic soil layers that are partly covered by eroded boulders and exposed
be rock. Tundra mires with thicker layers of organic soil have formed mainly in the valley and flat upland areas in the
west. The environmental variation is driven by fine-scale variation of topography, with relative elevation difference
_hing nearly 250 meters (Aalto et al., 2013; le Roux et al., 2013).
[Insert Figure 1]

2.2 | Study setting

In is study, we measured the local variation of top soil moisture using 50 soil moisture loggers (TMS-4 datalogger;
[OMST s.r.0., Prague, Czech Republic). They were installed in June 2018 and their locations recorded with an accuracy
< ¢ cmusing a hand-held Global Navigation Satellite System (GeoExplorer GeoXH 6000 Series; Trimble Inc., Sunnyvale,
_A, USA). The loggers were situated to represent the entire soil moisture gradient of the landscape (Fig. 1) based on
previous field studies in the area, with particular attention paid to the extremes: the water-logged peatlands (average
moisture level > 60 VWC% (Volumetric Water Content); 10 loggers) and the dry ridges and mountain tops (< 15
VWC%,; 10 loggers) (Happonen et al., 2019; Kemppinen et al., 2018, 2021). Some of the loggers are situated close to
.1 other rather than evenly around the study area in order to describe the very fine-scale patterns of soil moisture
variation caused by the spatially heterogeneous soil properties and topography of mountain tundra. They measure
me’sture to a depth of c. 14 cm below ground at 15 minute intervals (Wild et al., 2019). In the data processing, the
raw time-domain transmission data were calibrated into VWC using a conversion tool provided by the manufacturer.

The measurement uncertainties related to these loggers and their calibration have been discussed in Wild et al. (2019).
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Calibration curves were chosen based on field-quantified soil moisture measurements recorded with a hand-held time-
domain reflectometry sensor (FieldScout TDR 300; Spectrum Technologies Inc., Plainfield, IL, USA) during summer
2018 (four measurement campaigns in July-August). Of the 50 loggers, two were excluded from the analyses since
they had dislocated during the study period. Thus the final data consisted of 48 loggers.

2.3 | Modelinput data

[Insert Table 1]

Environmental data required by SpaFHy and JSBACH were obtained from remote sensing techniques and field
surveys (Table 1). The soil data, consisting of a rasterized classification of the surficial deposits (Fig. 1) and point
isurements of the mineral and organic layer depths, have been described in detail by Kemppinen et al. (2018). In
the brief, the surficial deposit map was created using field surveys and aerial images (0.5 m * 0.5 m resolution) provided
uy the National Land Survey of Finland. Three layer depth measurements ina 1 m * 1 m plot were taken every 50
meters from the whole study area. Three soil types were then defined for both models. Glacial till, fluvial deposits
boulders from the surficial deposits map were classified as mineral soils and peat deposits as peat soils. A third
soil type was defined as a mixture of organic and mineral soil based on the average proportion of each layer. This soil
. 2 was classified as a combination from the surficial deposits map and vegetation type map as meadow and mire
vegetation overlaying mineral soil (glacial till, fluvial deposits or boulders). Soil parameters for SpaFHy were kept close
te-those used in Launiainen et al. (2019). While a full sensitivity analysis for soil parameters was outside the scope
of this study, we adjusted the field capacity in peat soils following a sensitivity analysis (Figure Al). This was done
because the original parameters led to noticeably drier VWC% which is likely due to differences in peat soil properties
In this study area. Soil type specific parameters for JSBACH were taken from Hagemann and Stacke (2015) (Table A1).
Both models describe vegetation by type and coverage. To create a raster of vegetation types, we utilised a
Random Forest (RF) model trained by vegetation observations and five PlanetScope images (resolution 3 m * 3 m)
fr= 1 growing season 2018 (Breiman, 2001; Planet Team, 2017). The RF model was run 100 times by bootstrapping
the training data. The final pixel values were determined as the most common class value from a five-class vegetation
_sification including meadows, deciduous shrubland, evergreen shrubland, barren tundra and wetlands. In SpaFHy,
the parameters (Table A1) for these classes were obtained from the literature (Launiainen et al., 2019; Lin et al., 2015;
Poj. et al., 2000; Starr et al., 2008). In JSBACH, we used the plant functional types of peatland (wetland class), C3
ieadow class) and tundra (deciduous and evergreen shrubland) with their default parameter values (Kattge
et al., 2009; Knorr et al., 2010). To estimate vegetation cover, we calculated the Normalized Difference Vegetation

In<' :x (NDVI) from a Sentinel-2 image taken in August 2019 (ESA, 2021) using Eq. (1)

NIR —red

NDVI = o’ 1)
wh=re NIR and red refer to the near infrared and red bands (Huete et al., 2002). For SpaFHy, the maximum leaf area
2x (LAI) was then calculated from NDVI and the vegetation type map based on an approach by Street et al. (2007).
Topography variables were calculated from a LiDAR-based (light detection and ranging) Digital Elevation Model
~M; horizontal resolution 2 m *2 m, vertical resolution 30 cm; NLS, 2020). SAGA Wetness Index (SWI) (B6hner and
Selige, 2006) can be used as a proxy for soil moisture similarly as the original Topographic Wetness Index (TWI) (Beven
an Kirkby, 1979). However, SWI is an algorithm specific to SAGA GIS (Conrad et al., 2015) and is a modified version
of the Multiple-flow Freeman algorithm (FD8f) (Freeman, 1991). Different from FD8f, SWI uses a modified catchment

area. Thus, SWI produces a spatially smoothed TWI distribution, that is, a smooth stream network (Kopecky et al.,
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2021). This means that compared to the original TWI, SWI allows low-lying flat areas close to flow channels to have
higher index values (Bohner and Selige, 2006). We calculated SWI using t-value 10 (that is, the suction effect) and a
filled DEM following Wang and Liu (2006) in SAGA GIS hydrology module (Bohner and Antoni¢, 2009) with specific
catchment area and local slope methods following Eq. (2)

1 Bexp(20P) 1 Bexp(20P)
SCAm = SCAmax o~ forSCA < SCAmax —
20 20 @)
SCAm
I=1
Sw ntan(ﬁ)

where SCA and SC Ay, are the specific and modified specific catchment areas, g is the slope angle and tan(g) is the
local slope (Béhner and Selige, 2006).

The shadowing influence of topography on incoming solar radiation was calculated for each month of the year
from the DEM using the potential incoming solar radiation module with a sky view factor option and lumped atmo-
snheric transmittance in the RSAGA package (Bohner and Antonié¢, 2009). The monthly values were then divided
by the potential radiation received by a flat surface in the same latitude, and interpolated to obtain daily correction
f~ ors for incoming solar radiation at each grid-cell for both models.

The meteorological data for January 2015-September 2019 were obtained from the Finnish Meteorological In-
stitute’s Kilpisjarvi kylakeskus meteorological station (69°02’ N 20°47' E, 480 m a.s.l.; Finnish Meteorological Insitute,
2020) ca. 1.5 km southwest from the centre of the study area. The daily variables used were air temperature (°C),
precipitation (mm d~'), relative humidity (%), wind speed (m s~'), wind direction (°) and air pressure (hPa). Global

ation (W m~2) was extracted from the 10 km * 10 km gridded dataset provided by Finnish Meteorological Insitute
(20.9).

2 | Models
241 | SpaFHy

The Spatial Forest Hydrology Model (SpaFHy) is a semi-distributed hydrological model developed to simulate evapo-
trar spiration and water balance in a boreal forest landscape (Launiainen et al., 2019). It has been tested both at the
1d at the catchment level at various sites in Finland, including a catchment similar to this study area. SpaFHy
consists of three submodules that simulate water balance above ground, within topsoil and within the catchment.
Al ve-ground processes are included in the canopy module, which describes the processes related to vegetation,
ground surface and snowpack. Vegetation is divided into classes, which in this study include deciduous and conif-
erc Is shrubland and mire vegetation. These differ mainly in their seasonal cycle, water usage and photosynthetic
_apacities. Soil moisture is depicted as a two-layer bucket model which consists of an organic top layer and a root
layer. The organic top layer is a shallow layer (4 cm) with soil properties similar to peat soils. The root layer depth
> set to 20 cm to keep it close to the measured soil moisture. Finally, the TOPMODEL submodule links the grid
cell water balance conceptually with the catchment-scale water balance through the subsurface storage bucket. The
.Jration deficit of each grid cell is linked to the average saturation deficit of the whole catchment subsurface storage
so that grid cells with higher index values, in this study SWI values, are more likely to be saturated (Launiainen et al.,
2079). This allows accumulation of soil water in lowland areas with high SWI values and dynamic formation of water-
saturated areas. Using SWI instead of TWI means that soil water should accumulate more evenly in flatland areas with

high index values. In general, this modelling approach allows recognising and describing the landscape-level hetero-
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geneity in biogeophysical conditions through geospatial data and remote sensing methods and linking this variability
to a spatially explicit mechanistic model in order to better understand landscape-level hydrological processes.
SpaFHy was run in daily time steps as a catchment-scale version. For input data, it requires raster files of maximum
LAI for each vegetation class, as well as canopy height, soil type, SWI and masks of the catchment area and water
boc'ies. Spatial resolution was set to 10 m * 10 m. Canopy height was set to 0.5 m as its influence is negligible in low

_getation (Launiainen et al., 2019).

242 | JSBACH

J5BACH is the land surface model of the Max Planck Institute for Meteorology (MPI-M) Earth System Model (Gior-

aetal, 2013; Reick et al., 2013). It describes processes involved in the interactions between the lower level of the
atmosphere and land surface and has been used in several studies simulating biogeophysical and -chemical processes,
.woiuding hydrological research (GoRling and Reick, 2011; Gao et al., 2016; Heidkamp et al., 2018). Structurally, JS-
BACH consists of several submodules that describe the terrestrial energy balance, heat transfer and water budget,

atation dynamics and phenology, carbon cycle over land, land cover change and surface albedo (Béttcher et al.,
2016; Groner et al., 2018; Hagemann and Stacke, 2015; Heidkamp et al., 2018; Raddatz et al., 2007; Thum et al.,

1). Vegetation is described through plant functional types, which are included in each grid cell as overlapping tiles.
Each grid cell, of user-defined resolution, can thus have several vegetation types.

In JSBACH, the vertical movement of soil moisture is depicted through one-dimensional Richard’s equation which
is typically used in soil moisture modelling to study processes related to interactions between land surface and atmo-
sphere (Romano, 2014). In the new hydrology scheme developed by Hagemann and Stacke (2015), the soil profile
consists of five layers with increasing depths up to 10 m, improving descriptions of bare soil evaporation and soil

.sture buffering. Soil properties in each layer are kept constant. The actual soil depth is controlled through a soil
depth variable and a root depth variable controls the depth from which transpiration may occur. Water flow between
gri  cells is not accounted for and each grid cell acts as a separate hydrological unit.

Here, JSBACH was run as an offline version with user-generated meteorological forcing data with modules bethy,

nology, albedo and yasso turned on. The model was run over 210 independent grid cells to allow for spatial
variation in the input data, namely in soil properties, vegetation characteristics and topographical shading of solar
raa:ation. Unlike in global simulations with spatially averaged soil properties, specific soil classes were used to describe

litions in the landscape. Surface parameters were taken from Hagemann (2002) using parameters for fens and
bogs, upland tundra and polar deserts (Table A1). Minimum soil and rooting depths were set to 0.5 m as soil depths
les than 0.5 m led to negligible transpiration and canopy conductance rates. A spin-up run of three years prior to
the study period was performed for both models in order to equilibriate slowly changing variables. To visualize spatial

var ation in JSBACH, the point-based results were mapped to matching environmental conditions in the study area.

2...3 | Statistical model

Field data was used to address the drivers of soil moisture variation using a Generalised Additive Model (GAM). It

< ws for non-linearity in the relationship between response and predictor variables by splitting the regression line
into segments to which the regression line is fitted using a user-controlled smoothing function (Hastie and Tibshirani,
1297). We modelled the spatial variation of growing season average soil moisture and the temporal range of variation
(growing season maximum VWC% - growing season minimum VWC%) as a function of organic soil depth (up to 80 cm),

vegetation cover (%), topographical shading of incoming solar radiation, elevation and SWI. The variables describing
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soil and topography are commonly used in soil moisture research (Kemppinen et al., 2018; Williams et al., 2009).
Vegetation cover has a more complex relationship with soil moisture but was used as a predictor variable due to its
influence on temporal soil moisture dynamics in the mechanistic models used in this study.
The model was fitted using the mgcv package in R (version 3.4.4; Wood, 2011; R Development Core Team, 2020),
with maximum degrees of smoothing restricted to three. The response variables were log-transformed to approximate
_imal distribution and then transformed back before plotting them. Effect sizes for each predictor were calculated
b2o2d on the predicted minimum and maximum VWC% and range of VWC% over the field data while other terms
were held constant at their mean values. To quantify observation-related uncertainty in model estimates, we used a
bor tstrap sampling with 200 repetitions. A similar model was developed for the results of SpaFHy and JSBACH using
_ull porosity, vegetation cover, SWI (in SpaFHy) and solar radiation as the predictor variables in order to estimate the
* " lence of these variables in the mechanistic models.

2.5 | Analysis of results

measurements and model simulations were grouped into three regimes in order to reduce uncertainty related to

the accuracy of single logger data and to examine temporal variation of soil moisture. As soil conditions influenced
logger and model average VWC% considerably (Fig. A2), the field measurements were classified based on organic
layer depth to xeric (organic depth < 5 cm, 20 loggers), mesic (organic depth 5-25 cm, 18 loggers) and hydric (organic
denth > 25 cm, 10 loggers) regimes. Model results were classified similarly based on soil type. Growing-season
months with no extensive snow cover (July-September) in 2018 and 2019 were selected for further analysis. For
JSBACH, the weighted average VWC% of the top two soil layers (6 and 25 cm thick) was calculated (center depth 16
ciy, and the same was done for SpaFHy for the top and root zone layers (center depth 12 cm)(Table A1). In order
- _stimate soil moisture variation in the landscape, we calculated growing season averages from July-September
2018-2019 and used range of variation VWC% of the same time period as a measure of temporal variation. To
she v the temporal correlation between the timeseries of modelled and measured VWC%, measurements and model
ouputs were averaged over the regimes. Then the growing season average of each timeseries was deducted from
1 averaged timeseries for simpler plots and the amount of explained variance (R?) by a linear regression model was

calculated in each regime.

o | RESULTS

~
'y

Temporal variation of soil moisture

The temporal patterns of soil moisture are distinctively different among the moisture regimes (Fig. 2, Fig. A3 and Table
,. According to field measurements, the xeric regime has on average 14 VWC% throughout the growing season. There
is little variation in the VWC% but clear short-term responses to precipitation events. In the mesic regime, average
V' C% is 26 %, and in the hydric regime 61 %. Variation between growing season months is higher in the hydric
regime, with August being the driest month (10 VWC% variation). In the xeric and mesic regimes, monthly averages
7 nearly constant (1-2 VWC% variation) and range of variation over the whole growing season is low (15 VWC%).
Apart from one logger, the time series measured in the xeric regime are closer to each other compared to the hydric
and mesic regimes.
[Insert Figure 2]

The modelled temporal variation of soil moisture followed the characteristics of these regimes reasonably closely
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(Fig. 2 and Fig. 3). Average growing season soil moisture ranged between 17-60 VWC% in JSBACH and 15-48
VWC% in SpaFHy (Table 2). Modelled range of variation was lower than the measured range in all regimes, with
JSBACH closer to measurements in the mesic (JSBACH 12 VWC%, measured 16 VWC%) and hydric (12 VWC% and
44 \/WC%) regimes and SpaFHy in the xeric regime (10 VWC% and 15 VWC%). Variation between monthly averages
wa: low (< 3 VWC%) in all regimes, although variation was higher in the hydric regime than in the xeric and mesic

oimes. The minimum values in SpaFHy’s hydric regime decreased notably compared to average values, otherwise

tho minimum and maximum values in both models were close to regime averages (Fig. 2).
[Insert Table 2]

The correlation between modelled and measured timeseries also depended on the moisture regime (Fig. 3). The
highest R? for both models (0.60 for JSBACH and 0.72 for SpaFHy) was in the hydric regime while R? values in the
AciiC regime were around 0.5-0.6. However, in the mesic regime the results were more scattered, and thus, R2 was
lower for both models. The slopes for both models in the hydric regime were fairly large, indicating that while the
models are capable of producing the temporal patterns, their magnitudes are smaller compared to measurements.

SpaFHy’s RZ was higher than JSBACH in all regimes but it also had higher slopes in all regimes.

[Insert Figure 3]

3.2 | Spatial variation in soil moisture

[Insert Figure 4]

Spatial variation of soil moisture in the landscape was considerable (Fig. 4). Both model results and field measure-
ments showed that dry conditions (15 - 20 VWC%) dominate the landscape while wetter regimes (> 20 VWC%) are
_ncentrated mostly in flatter areas in the west and in the valley between the two fells. However, modelled spatial
variability of soil moisture across the landscape was smaller than observed, with model results concentrating close to
= _me averages and measured averages spread more evenly between regime averages.

Temporal variation was generally higher (range > 25 VWC%) in wetter areas in the field measurements. However,
range in field measurements was more scattered, with some drier (wetter) loggers also showing high (low) temporal
-iation (average VWC 15 % (75 %) and range 45 % (15 %)). In the model results however, there was significantly
less temporal variation in general, with maximum range values below 20 VWC%. In both models, wetter areas had
geneiany higher temporal variation as well.

The statistical model GAM explained 79 % of the spatial variation in average soil moisture (Fig. 5). Organic layer
_pth controlled a large part of the variation (effect size 29 VWC%) with thin organic layers resulting in lower VWC. In
thick organic layers (> 50 cm) the fitted function was associated with large uncertainty, partly due to fewer measure-
=~ ats. The second most influential variable was SWI (effect size 22 VWC%), which also had a positive relationship
with VWC, meaning that high SWI values, found in lowlands and local depressions, had on average higher VWC% than
up' nd areas. Other variables had only a minor or no clear effect on average soil moisture. In SpaFHy and JSBACH,
unly soil porosity had any notable effect on the average VWC% (effect size 36 VWC% and 42 VWC% respectively).

GAM explained 44 % of the temporal variation in the data. Organic layer depth and SWI had the largest effect
sizes (42 and 11 VWC% respectively). Other variables had no clear effects. In SpaFHy, vegetation cover had the
strongest influence on range of variation (effect size 7 VWC%), while in JSBACH soil type played the most important
role (effect size 8 VWC%).

[Insert Figure 5]
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4 | DISCUSSION

Our study shows that soil moisture exhibits considerable spatial and some temporal variation in the study area, cre-
ating distinct moisture regimes (Fig. 2 and Fig. 4). Most of the study area is characterised by dry average moisture
cor ditions (xeric regime) in which there is little variation between monthly averages during the growing season. Wet-

.. moisture conditions, including mesic and hydric regimes, are found in low-lying and depression areas with thicker
~==anic soil layers (> 25 cm) and exhibit higher average moisture conditions. There is greater temporal variation, par-
ticularly in the hydric regime. This is partly due to the lower water retention ability of coarse mineral soils compared
to * oils with more organic material.

The mechanistic models capture parts of the temporal variation fairly well (Fig. 2 and Fig. 3). Spatial and temporal

ation is similar in all three moisture regimes. In the xeric regime, the responses to precipitation events are similar in
the models and measurements, although JSBACH in particular underestimates the range of variation (Table 2). In the
...csic and hydric regimes, the average time series show little temporal variation compared to measurements, although
SpaFHy’s minimum values follow a similar monthly pattern as the measurements (Fig. 2). While average temporal and

[ial patterns are similar in the models and measurements, both models underestimated the range of variation.
Particularly temporal variation might benefit from adjusting soil properties in the model simulations. However, we

ited to retain the existing features and scalability of the regional model. Further, removing the cause of the lack
of variation in a proper way might require more than just parameter tuning, including re-think of the model set-up for
vegatation and soil.

Previous studies in the study area have linked the fine-scale spatial variation of soil moisture to the environmental
gradients of the landscape, such as the varying topographical conditions and soil properties (Kemppinen et al., 2018).
our results indicate that a large part of the spatial variation of soil moisture can be attributed to soil properties (Fig. 5).
" 1 mineral soils are not as efficient at retaining water as thick organic soils, and in turn, the former dry quickly after
precipitation events compared to the latter, which stay more stable by retaining soil moisture (Legates et al., 2011;
M? atfaetal., 2014). Although the importance of soil properties is also evident in the model results, it does demonstrate
a common problem in hydrological process-models and soil properties. Soil properties can vary considerably over short

ances, particularly in a landscape such as mountain tundra where the soil layer can be thin and the accumulation

of soil organic matter depends on topography (Migata et al., 2014; Seibert et al., 2007). However, measuring this

varability at a high spatial resolution and broad spatial extent is challenging, and consequently the input data in

sical models cannot account for real variability in soil hydrological properties. This and the lack of spatial

variation in the organic soil layer are likely to explain a large part of the underestimated spatio-temporal variation of
me leled soil moisture (Fig. 4 and Fig. 5).

Vegetation seems to little to no effect on average VWC% or its temporal range (Fig. 5). Previous studies have

shc wn that woody vegetation cover in particular can decrease soil moisture in the tundra (Kemppinen et al., 2021), for

.stance through increased transpiration (Pearson et al., 2013). The estimations on the influence of vegetation cover

on the temporal variation of soil moisture seem to differ in SpaFHy and JSBACH, which might explain the lack of spatial

.ation in JSBACH (Fig. 4). Figure A4 shows that in JSBACH vegetation cover does influence transpiration. However,

as transpiration extracts water first from a deeper soil depth, it does not instantaneously control soil moisture in the
. s0il layers. This leads to the apparently negligible influence of vegetation to the soil moisture in JSBACH.

Topography, here accounted through SWI, was found to influence spatial and temporal variability of soil moisture
(Fig. 5). Mechanistically modelling this variation is possible on catchment level models such as SpaFHy, but in this study
the influence of SWI on SpaFHy's results was small. This is likely because peatland areas in the study area are strongly

concentrated in areas with high SWI, as organic matter accumulates in local depressions and flatlands, similarly to soil
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moisture (Fig. 1). However, high SWI values in particular could explain the lack of temporal variation in the hydric
regime (Fig. 2), as the distribution of water in SpaFHy might cause these areas to be nearly constantly saturated. In
JSBACH, the influence of hillslope level topography on soil hydrology is ignored as global land surface models focus
on large-scale processes. However, hillslope level processes are important for land surface - atmosphere interactions
anc recent studies have focused on incorporating this subgrid variability in global scale models (Fan et al., 2019).
.other aspect of topography that might be important in this study area is snow distribution. While typically most of
tho snow in the study area melts by May, the spatially and temporally uneven snowmelt period creates hydrologically
distinct conditions such as meltwater streams and late-lying snowpacks, which in turn influence soil moisture far into
the growing season (Niittynen et al., 2018; Sturm et al., 2005; Woo et al., 2006). Incorporating this variation into
_.echanistic models and examining its influence on soil moisture variation is an important future research question,
now conditions are predicted to change considerably due to climate change (Bintanja and Andry, 2017; Fountain

et al., 2012).

Previous research into soil moisture products has revealed that different outputs may not be intercomparable
(Dirmeyer et al., 2006; Koster et al., 2009). In this study, we have compared three data sources for soil moisture and
e model parameters and input data have been harmonised in as much detail as the model structures allow, it is
important to understand how these results differ from each other. Firstly, the field loggers describe soil moisture
ditions in an exact point and are thus considerably influenced by for example fine-scale soil heterogeneity. In
comparison, the input data resolution and model configuration in both SpaFHy and JSBACH mean that they describe
inoisture conditions in a larger area. Thus, comparing specific measurements to their matching model grids is not
particularly helpful. Here, we have instead examined more generalised results by grouping both models and mea-
surements to moisture regimes to diminish the uncertainty related to specific point measurements. Secondly, the soil
moisture loggers describe topsoil conditions which interactions between land surface and atmosphere influence the
st. In some areas of the study site, the soils are shallow enough, and thus, we can assume that the loggers describe
the whole vertical soil moisture content which might not be the case in areas where soils are thick. The models also
de ribe moisture deeper than what the loggers can reach (> 15 cm depth) and in a larger vertical space than the
measurements. In SpaFHy, the root zone depth was set to 0.2 in order to make it more comparable with measure-
its and the average soil conditions in the study area. In areas with shallow soils, the results represent the measured
conditions fairly well. However, for example in areas with deep peat deposits, the model does not take the influence
o1 _oil depth into account. In JSBACH, which does simulate the vertical moisture profile more explicitly, the model
"lave been calculated from the top two layers in order to make them more comparable with the measurements.
However, the minimum depth of 0.5 m in JSBACH means that soil moisture variation in mineral soils particularly is
dar pened by buffering from deeper layers. These aspects may explain the relatively large slopes between modelled
and measured timeseries (Fig. 3). To conclude, the models and measurements are not entirely comparable with each
otk =r from all perspectives. However, while the precise estimates of VWC may vary, the similarities and disparities
.ween spatio-temporal dynamics of each product may still be compared and used to inform soil moisture dynamics
(Koster et al., 2009; Saleem and Salvucci, 2002).

Our results show that in order to model the spatio-temporal variation of soil moisture accurately in mountain
tundra, soil properties, including the thickness of the organic layer, are important. In spatially distributed models,
<1 as SpaFHy, this requires developing methods to depict the soil organic layer and ways to infer soil hydrological
properties at high spatial resolution. Recent advances in modelling spatial variation in soil properties based on DEMs (Li
et=l., 2020) could provide an option which should be further tested in mountain tundra. Another possibility is utilising
remotely sensed soil moisture datasets to better understand its spatial variation (Mohanty et al., 2017; Manninen

et al., 2021). Although global land surface models, such as JSBACH, cannot capture the fine-scale variation of soil
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properties or other environmental variables in a similar fashion to catchment-scale models, methods of describing
sub-grid heterogeneity in such models do exist. In JSBACH, vegetation cover is described through tiles to allow for
multiple plant functional types within one grid cell (Reick et al., 2013). Hydrologic response units have been used
similarly to include variation in soil properties (Chaney et al., 2016). Description of the soil organic layer has also been
found to be important in land surface models (Rinke et al., 2008; Ekici et al., 2015).

Considering temporal soil moisture dynamics, range of variability as a static measure ignores many aspects such
as temporal resolution (whether the variation is linked solely to short-term variation in, for example, precipitation, or
mo e seasonal variation) as well as temporal development in the land surface variables that influence soil moisture
"~ chas vegetation phenology and snowmelt dynamics). These aspects can be included in mechanistic models as well
ac astimates of future changes in, for example, climate or vegetation patterns. Thus, our findings suggest that more
effort should be made in considering local processes that influence soil moisture dynamics, possibly through a fusion

“ 2mote sensing, in situ data and mechanistic models. In a time of rapid environmental changes in the tundra, such

methods will be fundamental in making dynamical future predictions on the functioning of Arctic ecosystems.

~ | CONCLUSIONS

To contribute to the understanding soil moisture dynamics in mountain tundra, we modelled its spatial and temporal
variation using extensive field measurements and two mechanistic models, SpaFHy and JSBACH. We found substantial
-scale spatial variation in soil moisture ranging from dry mineral soils to wet peatlands. By investigating the soil

me sture dynamics, we identified distinct hydrological regimes over the landscape. Our results show that mechanistic
models are able to simulate average VWC% conditions within the regimes but underestimate both temporal and spatial
var ation compared to measurements. Spatial variation of soil moisture was largely related to soil properties in both
.odel simulations and measurements. Our results indicate that improving these descriptions as well as simulations
of <oil moisture variability in mechanistic models is needed to improve modelling of soil moisture dynamics in tundra
ecosystems. The results are important for understanding uncertainties related to global and regional analyses and

arm future model developments needed to understand the ecosystem consequences of the Arctic change.
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Tables

TABLE 1 Geospatial datasets used in the study. Soil layer data are based on field surveys, whereas vegetation

types and surficial deposits were classified based on a combination of field and remote sensing data. NDVI

(Nc rmalized Difference Vegetation Index) was calculated from a satellite image. Topographical variables were
culated from a Digital Elevation Model (DEM).

C-tegory Dataset Data source Spatial resolution Time Reference

Soil Surficial deposit map Field survey 0.5m*0.5m 2016-2019 Kemppinen et al. (2018)
Organic and Field survey Point measurements 2016-2018 Kemppinen et al. (2018)
mineral layer depths every 50 m

Vegetation NDVI Sentinel-2 10m*10m 2019 (ESA, 2021)
Vegetation type Field data and 3m*3m 2018 New data

PlanetScope
- pography  SAGA Wetness Index DEM 2m*2m 2016 NLS (2020)

potential solar radiation DEM 2m*2m 2016 NLS (2020)

TABLE 2 Growing season (u) and monthly averages, minimum, maximum and range of Volumetric Water Content
.v/C%)in 2018-2019. Values were calculated from the regime average timeseries.

Regime  Model u July August September Min Range Max
Measured 13.5 135 12.9 14.5 6.2 151  21.3

Xeric JSBACH 16.7 16.1 16.4 17.9 130 64 194
SpaFHy 154 151 14.7 16.6 114 9.9 213

Measured 25.5 25.0 24.5 271 16.6 159 325

Mesic JSBACH 329 321 32.1 354 285 119 404
SpaFHy 273 270 27.1 279 2438 10.0 3438

_ Measured 614 66.2 54.9 641 36.7 444 811
Hydric  JSBACH 59.7 599 58.6 61.1 529 12.2  65.1
SpaFHy 47.7 479 46.9 492 431 9.7 528

Figure legends

FIGURE 1 The study setting consists of 50 soil moisture loggers situated to measure the different soil moisture

cor ditions of the landscape ((a), Digital Elevation Map provided by the National Land Survey of Finland 2020). The
.dy area is situated in northwestern Finland ((b), Digital Elevation Map provided by European Union, Copernicus

Land Monitoring Service 2020, European Environment Agency). Elevation (a), SAGA Wetness Index (SWI; (c)), and

the sum of potential incoming solar radiation in July (kW m=2, (d)) are topography-based variables. High SWI values

...dicate high wetness values (c). Soil surficial deposits (e) show the distribution of 1) glacial till, 2) peat deposits, 3)

fluvial deposits, 4) boulders and 5) rock outcrops. The Normalized Difference Vegetation Index (NDVI; (f)) represents
.« variation in vegetation cover, with higher values indicating high amounts of photosynthetic plant tissue.
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FIGURE 2 Field-quantified (a) and modelled (b) temporal variation of Volumetric Water Content (VWC%) in xeric

(20 loggers), mesic (18 loggers) and hydric (10 loggers) moisture regimes in July-September 2018 as well as daily

pre :ipitation sum (Finnish Meteorological Insitute, 2020). Logger measurements (a) are shown separately and model
Lults (b) through regime averages and the range within the regime. Variation within JSBACH results was very small

and thus, nearly indistinguishable from regime averages.

FIGURE 3 Correlation between modelled and measured time series of VWC% (Volumetric Water Content) in the

e soil moisture regimes during during July-September 2018-2019. The x-axis shows temporal variation in the
modelled average time series with respect to growing season averages (i.e. with the growing season mean deducted
£ nthe values to allow showing all regimes in one figure). The y-axis shows the same for measured regime average
time series. The slope s and R? of a linear regression are calculated for each regime and the dashed grey line is the 1 :
1 line.

FIGURE 4 Spatial and temporal variation in soil moisture over the study area during July-September
2078-2019. The spatial variation is quantified as average VWC% (Volumetric Water Content) and temporal
variation as range of variation. Field measurements are shown over the model results.

. 1GURE 5 GAM modelling the statistical relationship between environmental variables and average measured (a)
and modelled (b) VWC% (Volumetric Water Content) as well as measured (c) and modelled (d) range of variation

A ng July-September 2018-2019. The environmental variables used were thickness of the organic soil layer in the
measurements (cm) and soil porosity in the mechanistic models, proportion of vegetation cover, SAGA Wetness
In<"2x (SWI), potential incoming solar radiation (kW m~2) and elevation (for measurements). JSBACH does not
simulate water flow in the landscape based on topography so SWI was excluded.
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TABLE A1l Soil and vegetation parameters used for JSBACH and SpaFHy.

SpaFHy

Parameters (unit)
Soil

field capacity (%)

Sa Jrated hydraulic conductivity (m/s)
soil porosity (%)

witing point (%)

Clapp & Hornberger parameter

por~ size index

beta parameter

soil depth (m)

Vegetation

maximum photosynthetic rate (umol/(m2 s)
stomatal parameter (kPa0.5)

ligh ¢ response par. (W/m2)

ce-days for bud-burst
duration of leaf development (d)
day length for senescene start ()
du’ tion of leaf senescene (d)

<ground surface albedo

surface roughness length due to vegetation (m)

A pendices

coarse
mixture
peat
coarse
mixture
peat
coarse
mixture
peat
coarse
mixture
peat
coarse
mixture
peat
coarse
mixture
peat
coarse
mixture
peat
coarse
mixture

peat

deciduous shrubs
evergreen shrubs
sedge

deciduous shrubs
evergreen shrubs

sedge

tundra

mire

0.2
0.33
0.6
0.0001
1E-05
5E-05

31

0.1
0.3
0.6

JSBACH Note

19.4
418

88
1.4E-05
1.5E-06
2E-06

39.7
55.3
88
87
14.2
25.5
47
45

0.4
0.5
07

0.5
0.5
0.6

017
0.12
0.03

Assigned

Starr et al. (2008)

Lin et al. (2015)

Lin 2015

Launiainen et al. (2019)
Pop et al. (2000)

Hagemann (2002)

FIGURE A1 Influence of field capacity on SpaFHy’s modelled VWC% (Volumetric Water Content) in peat soil

ar« .s.

FIGURE A2 Relationship between organic layer and growing season average Volumetric Water Content (VWC).
Pe: son’s correlation coefficient between the two variables was 0.79.

FIGURE A3 (A) Field-quantified and (b) simulated temporal variation of soil moisture (Volumetric Water
Ceontent) in xeric, mesic and hydric moisture regimes in July-September 2019.
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URE A4 Transpiration in JSBACH based on vegetation cover.
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