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Soil moisture has a fundamental influence on the processes
and functions of tundra ecosystems. Yet, the local dynam-
ics of soil moisture are often ignored, due to the lack of fine
resolution, spatially extensive data. In this study, we mod-
elled soil moisture with twomechanistic models, SpaFHy (a
catchment-scale hydrological model) and JSBACH (a global
land surface model), and examined the results in compari-
sonwith extensive growing-season fieldmeasurements over
a mountain tundra area in northwestern Finland. Our re-
sults show that soil moisture varies considerably in the study
area and this variation creates a mosaic of moisture condi-
tions, ranging from dry ridges (growing season average 12
VWC%, Volumetric Water Content) to water-logged mires
(65 VWC%). The models, particularly SpaFHy, simulated
temporal soil moisture dynamics reasonably well in parts of
the landscape, but both underestimated the range of vari-
ation spatially and temporally. Soil properties and topogra-
phy were important drivers of spatial variation in soil mois-
ture dynamics. By testing the applicability of twomechanis-
tic models to predict fine-scale spatial and temporal vari-
ability in soil moisture, this study paves the way towards
understanding the functioning of tundra ecosystems under
climate change.
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1 | INTRODUCTION26

Soil moisture is a crucial part of the hydrological cycle, influencing interactions between the land surface and atmo-27

sphere (Robock et al., 2000; Koster et al., 2004; Seneviratne et al., 2010). In mountain tundra, the importance of28

soil moisture is highlighted in its connection with vegetation patterns and Earth surface processes (Aalto et al., 2013;29

le Roux et al., 2013). It is also strongly linked to plant performance and ecosystem functionality, emphasising its eco-30

logical relevance under contemporary climate change (Bjorkman et al., 2018). Tundra ecosystems are characterised31

by a short but intensive growing season and a prolonged snowmelt period, which is strongly correlated with local32

topography (Niittynen et al., 2018). In cold climates, topography also influences the distribution of a spatially uneven33

organic layer (Seibert et al., 2007; Zhu et al., 2019). Processes linked to climate, varying topography and vegetation34

characteristics interact with soil moisture, causing spatial and temporal variation in its fine-scale patterns (Kemppinen35

et al., 2018; Penna et al., 2009).36

At large scales, the spatio-temporal variation of soil moisture follows general climatic conditions (Seneviratne37

et al., 2010). However, at finer scales, its patterns are controlled by various landscape characteristics as well as local38

climate. Water flows within and above ground are controlled partly by soil hydraulic properties, topography and inten-39

sity of precipitation, while evapotranspiration is influenced by vegetation characteristics and radiation (Western et al.,40

2002; Seneviratne et al., 2010). These fine-scale variations of soil moisture can be considerable, particularly in het-41

erogeneous landscapes, such as in mountain tundra, and need to be understood when considering area-averaged soil42

moisture variations at larger scales (Western et al., 2002). They also have important local ecosystem impacts. Spatio-43

temporal variations of soil moisture are an important driver of greenhouse gas fluxes (Lohila et al., 2016; Virkkala,44

2020) as well as fine-scale patterns of vegetation properties (le Roux et al., 2013; Kemppinen, 2020). Therefore,45

through various feedback mechanisms, soil moisture in the tundra plays an important role in global change and its46

accurate predictions are fundamental to our ability to understand tundra ecosystems now and in the future.47

Mechanistic models are useful tools in examining dynamic and complex processes, such the hydrological cycle48

(Abbott et al., 1986; Fatichi et al., 2016). Models depicting soil moisture dynamics have been developed for various49

applications, such as estimating global wetland areas, improving catchment scale flood forecasts and simulating fine-50

scale species distribution patterns (Berthet et al., 2009;Maclean et al., 2012; Zhang et al., 2016). Therefore, the level of51

detail in how and which hydrological processes are described varies even amidst similar models such as land surface52

models (Dirmeyer et al., 2006; Koster et al., 2009; Romano, 2014). As a result, model comparison and evaluation53

studies have found considerable differences when simulating soil moisture and its dynamics (Dirmeyer et al., 2004;54

Koch et al., 2016; Yuan andQuiring, 2017). In mountain tundra, where landscape heterogeneity is an important aspect55

of soil hydrology, evaluating soil moisture model performances requires spatially detailed measurements. Recent56

developments of in situmeasurement techniques have improved the spatio-temporal resolution in which soil moisture57

can be measured and in turn provide more a comprehensive understanding of soil moisture dynamics and model58

performances (Kopecký et al., 2021; Vereecken et al., 2014; Wild et al., 2019).59

The objectives of this study are to 1) quantify the spatio-temporal variability of soil moisture and its drivers60

in mountain tundra and 2) evaluate soil moisture simulations of two mechanistic models using high-resolution soil61

moisture field measurements. To the best of our knowledge, this is the first time that extensive, high-resolution62

observation data are used in detailedmodel-based analysis to unravel themountain tundra soil moisture variability and63
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drivers. One of the models, JSBACH, has been developed for use with large-scale climate models and concentrates on64

interactions between the land surface and atmosphere (Reick et al., 2013). Understanding how variation in landscape65

characteristics realises itself in model results is important in order to better understand what uncertainties relate66

to large-scale simulations of the land surface. The other one, Spatial Forest Hydrology Model (SpaFHy), has been67

developed for simulating catchment-level hydrology in boreal forests (Launiainen et al., 2019). The soil moisture68

estimations in sloping terrain with patchy soil and vegetation require specific capabilities from models, some of which69

are found in the more soil-vegetation oriented models and some in hydrology oriented models. Here we assess the70

impact of soil type, layers and implementation of topographical redistribution on soil moisture variation and test the71

models’ ability to characterise the spatial and temporal variation of soil moisture with literature-based parameters.72

We also use a statistical model to examine which environmental variables, namely soil, topography and vegetation,73

contribute most to the soil moisture variation, and whether these controls are well addressed in the models.74

2 | MATERIALS AND METHODS75

2.1 | Study area76

The study area is located in a valley between Mount Saana and Mount Jehkas in northwestern Fennoscandia (69◦03’77

N 20◦51’ E, Fig. 1). The region experiences a subarctic climate with monthly average temperatures ranging from78

-12.9 ◦C in January to 11.2 ◦C in July (averages during 1981–2010; Pirinen et al., 2012). The total annual precipitation79

is 487 mm and snow covers the ground largely from October to May, although late-lying snowpacks can persist far80

into the summer. The landscape is characterised by varying vegetation (Riihimäki et al., 2019), soil type, geomorphol-81

ogy (le Roux and Luoto, 2014) and topography (Kemppinen et al., 2018). Vegetation consists mainly of dwarf-shrub82

dominated mountain heath with sporadic meadows and mires (Kemppinen et al., 2018; Riihimäki et al., 2019). The83

ground surface consists of thin mineral and organic soil layers that are partly covered by eroded boulders and exposed84

bedrock. Tundra mires with thicker layers of organic soil have formed mainly in the valley and flat upland areas in the85

west. The environmental variation is driven by fine-scale variation of topography, with relative elevation difference86

reaching nearly 250 meters (Aalto et al., 2013; le Roux et al., 2013).87

[Insert Figure 1]88

2.2 | Study setting89

In this study, we measured the local variation of top soil moisture using 50 soil moisture loggers (TMS-4 datalogger;90

TOMST s.r.o., Prague, Czech Republic). Theywere installed in June 2018 and their locations recordedwith an accuracy91

≤ 6 cmusing a hand-heldGlobal Navigation Satellite System (GeoExplorer GeoXH6000 Series; Trimble Inc., Sunnyvale,92

CA, USA). The loggers were situated to represent the entire soil moisture gradient of the landscape (Fig. 1) based on93

previous field studies in the area, with particular attention paid to the extremes: the water-logged peatlands (average94

soil moisture level > 60 VWC% (Volumetric Water Content); 10 loggers) and the dry ridges and mountain tops (< 1595

VWC%; 10 loggers) (Happonen et al., 2019; Kemppinen et al., 2018, 2021). Some of the loggers are situated close to96

each other rather than evenly around the study area in order to describe the very fine-scale patterns of soil moisture97

variation caused by the spatially heterogeneous soil properties and topography of mountain tundra. They measure98

moisture to a depth of c. 14 cm below ground at 15 minute intervals (Wild et al., 2019). In the data processing, the99

raw time-domain transmission data were calibrated into VWC using a conversion tool provided by the manufacturer.100

Themeasurement uncertainties related to these loggers and their calibration have been discussed inWild et al. (2019).101
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Calibration curves were chosen based on field-quantified soil moisturemeasurements recordedwith a hand-held time-102

domain reflectometry sensor (FieldScout TDR 300; Spectrum Technologies Inc., Plainfield, IL, USA) during summer103

2018 (four measurement campaigns in July–August). Of the 50 loggers, two were excluded from the analyses since104

they had dislocated during the study period. Thus the final data consisted of 48 loggers.105

2.3 | Model input data106

[Insert Table 1]107

Environmental data required by SpaFHy and JSBACH were obtained from remote sensing techniques and field108

surveys (Table 1). The soil data, consisting of a rasterized classification of the surficial deposits (Fig. 1) and point109

measurements of the mineral and organic layer depths, have been described in detail by Kemppinen et al. (2018). In110

the brief, the surficial deposit mapwas created using field surveys and aerial images (0.5m * 0.5m resolution) provided111

by the National Land Survey of Finland. Three layer depth measurements in a 1 m * 1 m plot were taken every 50112

meters from the whole study area. Three soil types were then defined for both models. Glacial till, fluvial deposits113

and boulders from the surficial deposits map were classified as mineral soils and peat deposits as peat soils. A third114

soil type was defined as a mixture of organic and mineral soil based on the average proportion of each layer. This soil115

type was classified as a combination from the surficial deposits map and vegetation type map as meadow and mire116

vegetation overlaying mineral soil (glacial till, fluvial deposits or boulders). Soil parameters for SpaFHy were kept close117

to those used in Launiainen et al. (2019). While a full sensitivity analysis for soil parameters was outside the scope118

of this study, we adjusted the field capacity in peat soils following a sensitivity analysis (Figure A1). This was done119

because the original parameters led to noticeably drier VWC%which is likely due to differences in peat soil properties120

in this study area. Soil type specific parameters for JSBACH were taken from Hagemann and Stacke (2015) (Table A1).121

Both models describe vegetation by type and coverage. To create a raster of vegetation types, we utilised a122

Random Forest (RF) model trained by vegetation observations and five PlanetScope images (resolution 3 m * 3 m)123

from growing season 2018 (Breiman, 2001; Planet Team, 2017). The RF model was run 100 times by bootstrapping124

the training data. The final pixel values were determined as the most common class value from a five-class vegetation125

classification including meadows, deciduous shrubland, evergreen shrubland, barren tundra and wetlands. In SpaFHy,126

the parameters (Table A1) for these classes were obtained from the literature (Launiainen et al., 2019; Lin et al., 2015;127

Pop et al., 2000; Starr et al., 2008). In JSBACH, we used the plant functional types of peatland (wetland class), C3128

grass (meadow class) and tundra (deciduous and evergreen shrubland) with their default parameter values (Kattge129

et al., 2009; Knorr et al., 2010). To estimate vegetation cover, we calculated the Normalized Difference Vegetation130

Index (NDVI) from a Sentinel-2 image taken in August 2019 (ESA, 2021) using Eq. (1)131

NDV I =
NI R − r ed
N I R + r ed

(1)

where NIR and red refer to the near infrared and red bands (Huete et al., 2002). For SpaFHy, the maximum leaf area132

index (LAI) was then calculated from NDVI and the vegetation type map based on an approach by Street et al. (2007).133

Topography variables were calculated from a LiDAR-based (light detection and ranging) Digital Elevation Model134

(DEM; horizontal resolution 2 m *2 m, vertical resolution 30 cm; NLS, 2020). SAGAWetness Index (SWI) (Böhner and135

Selige, 2006) can be used as a proxy for soil moisture similarly as the original TopographicWetness Index (TWI) (Beven136

and Kirkby, 1979). However, SWI is an algorithm specific to SAGA GIS (Conrad et al., 2015) and is a modified version137

of theMultiple-flow Freeman algorithm (FD8f) (Freeman, 1991). Different from FD8f, SWI uses a modified catchment138

area. Thus, SWI produces a spatially smoothed TWI distribution, that is, a smooth stream network (Kopecký et al.,139
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2021). This means that compared to the original TWI, SWI allows low-lying flat areas close to flow channels to have140

higher index values (Böhner and Selige, 2006). We calculated SWI using t-value 10 (that is, the suction effect) and a141

filled DEM following Wang and Liu (2006) in SAGA GIS hydrology module (Böhner and Antonić, 2009) with specific142

catchment area and local slope methods following Eq. (2)143

SCAM = SCAmax
1

20

βexp (20β )
f or SCA < SCAmax

1

20

βexp (20β )

SW I = l n
SCAM
t an (β )

(2)

where SCA and SCAM are the specific and modified specific catchment areas, β is the slope angle and t an (β ) is the144

local slope (Böhner and Selige, 2006).145

The shadowing influence of topography on incoming solar radiation was calculated for each month of the year146

from the DEM using the potential incoming solar radiation module with a sky view factor option and lumped atmo-147

spheric transmittance in the RSAGA package (Böhner and Antonić, 2009). The monthly values were then divided148

by the potential radiation received by a flat surface in the same latitude, and interpolated to obtain daily correction149

factors for incoming solar radiation at each grid-cell for both models.150

The meteorological data for January 2015–September 2019 were obtained from the Finnish Meteorological In-151

stitute’s Kilpisjärvi kyläkeskus meteorological station (69◦02’ N 20◦47’ E, 480 m a.s.l.; Finnish Meteorological Insitute,152

2020) ca. 1.5 km southwest from the centre of the study area. The daily variables used were air temperature (◦C),153

precipitation (mm d−1), relative humidity (%), wind speed (m s−1), wind direction (◦) and air pressure (hPa). Global154

radiation (W m−2) was extracted from the 10 km * 10 km gridded dataset provided by Finnish Meteorological Insitute155

(2019).156

2.4 | Models157

2.4.1 | SpaFHy158

The Spatial Forest Hydrology Model (SpaFHy) is a semi-distributed hydrological model developed to simulate evapo-159

transpiration and water balance in a boreal forest landscape (Launiainen et al., 2019). It has been tested both at the160

stand and at the catchment level at various sites in Finland, including a catchment similar to this study area. SpaFHy161

consists of three submodules that simulate water balance above ground, within topsoil and within the catchment.162

Above-ground processes are included in the canopy module, which describes the processes related to vegetation,163

ground surface and snowpack. Vegetation is divided into classes, which in this study include deciduous and conif-164

erous shrubland and mire vegetation. These differ mainly in their seasonal cycle, water usage and photosynthetic165

capacities. Soil moisture is depicted as a two-layer bucket model which consists of an organic top layer and a root166

layer. The organic top layer is a shallow layer (4 cm) with soil properties similar to peat soils. The root layer depth167

was set to 20 cm to keep it close to the measured soil moisture. Finally, the TOPMODEL submodule links the grid168

cell water balance conceptually with the catchment-scale water balance through the subsurface storage bucket. The169

saturation deficit of each grid cell is linked to the average saturation deficit of the whole catchment subsurface storage170

so that grid cells with higher index values, in this study SWI values, are more likely to be saturated (Launiainen et al.,171

2019). This allows accumulation of soil water in lowland areas with high SWI values and dynamic formation of water-172

saturated areas. Using SWI instead of TWI means that soil water should accumulate more evenly in flatland areas with173

high index values. In general, this modelling approach allows recognising and describing the landscape-level hetero-174
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geneity in biogeophysical conditions through geospatial data and remote sensing methods and linking this variability175

to a spatially explicit mechanistic model in order to better understand landscape-level hydrological processes.176

SpaFHywas run in daily time steps as a catchment-scale version. For input data, it requires raster files ofmaximum177

LAI for each vegetation class, as well as canopy height, soil type, SWI and masks of the catchment area and water178

bodies. Spatial resolution was set to 10 m * 10 m. Canopy height was set to 0.5 m as its influence is negligible in low179

vegetation (Launiainen et al., 2019).180

2.4.2 | JSBACH181

JSBACH is the land surface model of the Max Planck Institute for Meteorology (MPI-M) Earth System Model (Gior-182

getta et al., 2013; Reick et al., 2013). It describes processes involved in the interactions between the lower level of the183

atmosphere and land surface and has been used in several studies simulating biogeophysical and -chemical processes,184

including hydrological research (Gößling and Reick, 2011; Gao et al., 2016; Heidkamp et al., 2018). Structurally, JS-185

BACH consists of several submodules that describe the terrestrial energy balance, heat transfer and water budget,186

vegetation dynamics and phenology, carbon cycle over land, land cover change and surface albedo (Böttcher et al.,187

2016; Groner et al., 2018; Hagemann and Stacke, 2015; Heidkamp et al., 2018; Raddatz et al., 2007; Thum et al.,188

2011). Vegetation is described through plant functional types, which are included in each grid cell as overlapping tiles.189

Each grid cell, of user-defined resolution, can thus have several vegetation types.190

In JSBACH, the vertical movement of soil moisture is depicted through one-dimensional Richard’s equation which191

is typically used in soil moisture modelling to study processes related to interactions between land surface and atmo-192

sphere (Romano, 2014). In the new hydrology scheme developed by Hagemann and Stacke (2015), the soil profile193

consists of five layers with increasing depths up to 10 m, improving descriptions of bare soil evaporation and soil194

moisture buffering. Soil properties in each layer are kept constant. The actual soil depth is controlled through a soil195

depth variable and a root depth variable controls the depth from which transpiration may occur. Water flow between196

grid cells is not accounted for and each grid cell acts as a separate hydrological unit.197

Here, JSBACHwas run as an offline version with user-generated meteorological forcing data with modules bethy,198

phenology, albedo and yasso turned on. The model was run over 210 independent grid cells to allow for spatial199

variation in the input data, namely in soil properties, vegetation characteristics and topographical shading of solar200

radiation. Unlike in global simulationswith spatially averaged soil properties, specific soil classes were used to describe201

soil conditions in the landscape. Surface parameters were taken fromHagemann (2002) using parameters for fens and202

bogs, upland tundra and polar deserts (Table A1). Minimum soil and rooting depths were set to 0.5 m as soil depths203

less than 0.5 m led to negligible transpiration and canopy conductance rates. A spin-up run of three years prior to204

the study period was performed for both models in order to equilibriate slowly changing variables. To visualize spatial205

variation in JSBACH, the point-based results were mapped to matching environmental conditions in the study area.206

2.4.3 | Statistical model207

Field data was used to address the drivers of soil moisture variation using a Generalised Additive Model (GAM). It208

allows for non-linearity in the relationship between response and predictor variables by splitting the regression line209

into segments to which the regression line is fitted using a user-controlled smoothing function (Hastie and Tibshirani,210

1987). We modelled the spatial variation of growing season average soil moisture and the temporal range of variation211

(growing seasonmaximumVWC% - growing seasonminimumVWC%) as a function of organic soil depth (up to 80 cm),212

vegetation cover (%), topographical shading of incoming solar radiation, elevation and SWI. The variables describing213
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soil and topography are commonly used in soil moisture research (Kemppinen et al., 2018; Williams et al., 2009).214

Vegetation cover has a more complex relationship with soil moisture but was used as a predictor variable due to its215

influence on temporal soil moisture dynamics in the mechanistic models used in this study.216

The model was fitted using the mgcv package in R (version 3.4.4; Wood, 2011; R Development Core Team, 2020),217

withmaximum degrees of smoothing restricted to three. The response variables were log-transformed to approximate218

normal distribution and then transformed back before plotting them. Effect sizes for each predictor were calculated219

based on the predicted minimum and maximum VWC% and range of VWC% over the field data while other terms220

were held constant at their mean values. To quantify observation-related uncertainty in model estimates, we used a221

bootstrap sampling with 200 repetitions. A similar model was developed for the results of SpaFHy and JSBACH using222

soil porosity, vegetation cover, SWI (in SpaFHy) and solar radiation as the predictor variables in order to estimate the223

influence of these variables in the mechanistic models.224

2.5 | Analysis of results225

The measurements and model simulations were grouped into three regimes in order to reduce uncertainty related to226

the accuracy of single logger data and to examine temporal variation of soil moisture. As soil conditions influenced227

the logger and model average VWC% considerably (Fig. A2), the field measurements were classified based on organic228

layer depth to xeric (organic depth < 5 cm, 20 loggers), mesic (organic depth 5–25 cm, 18 loggers) and hydric (organic229

depth > 25 cm, 10 loggers) regimes. Model results were classified similarly based on soil type. Growing-season230

months with no extensive snow cover (July–September) in 2018 and 2019 were selected for further analysis. For231

JSBACH, the weighted average VWC% of the top two soil layers (6 and 25 cm thick) was calculated (center depth 16232

cm), and the same was done for SpaFHy for the top and root zone layers (center depth 12 cm)(Table A1). In order233

to estimate soil moisture variation in the landscape, we calculated growing season averages from July–September234

2018–2019 and used range of variation VWC% of the same time period as a measure of temporal variation. To235

show the temporal correlation between the timeseries of modelled and measured VWC%, measurements and model236

ouputs were averaged over the regimes. Then the growing season average of each timeseries was deducted from237

each averaged timeseries for simpler plots and the amount of explained variance (R2) by a linear regression model was238

calculated in each regime.239

3 | RESULTS240

3.1 | Temporal variation of soil moisture241

The temporal patterns of soil moisture are distinctively different among the moisture regimes (Fig. 2, Fig. A3 and Table242

2). According to fieldmeasurements, the xeric regime has on average 14VWC% throughout the growing season. There243

is little variation in the VWC% but clear short-term responses to precipitation events. In the mesic regime, average244

VWC% is 26 %, and in the hydric regime 61 %. Variation between growing season months is higher in the hydric245

regime, with August being the driest month (10 VWC% variation). In the xeric and mesic regimes, monthly averages246

stay nearly constant (1–2 VWC% variation) and range of variation over the whole growing season is low (15 VWC%).247

Apart from one logger, the time series measured in the xeric regime are closer to each other compared to the hydric248

and mesic regimes.249

[Insert Figure 2]250

The modelled temporal variation of soil moisture followed the characteristics of these regimes reasonably closely251



8 Tyystjärvi et al.

(Fig. 2 and Fig. 3). Average growing season soil moisture ranged between 17–60 VWC% in JSBACH and 15–48252

VWC% in SpaFHy (Table 2). Modelled range of variation was lower than the measured range in all regimes, with253

JSBACH closer to measurements in the mesic (JSBACH 12 VWC%, measured 16 VWC%) and hydric (12 VWC% and254

44 VWC%) regimes and SpaFHy in the xeric regime (10 VWC% and 15 VWC%). Variation between monthly averages255

was low (< 3 VWC%) in all regimes, although variation was higher in the hydric regime than in the xeric and mesic256

regimes. The minimum values in SpaFHy’s hydric regime decreased notably compared to average values, otherwise257

the minimum and maximum values in both models were close to regime averages (Fig. 2).258

[Insert Table 2]259

The correlation between modelled and measured timeseries also depended on the moisture regime (Fig. 3). The260

highest R2 for both models (0.60 for JSBACH and 0.72 for SpaFHy) was in the hydric regime while R2 values in the261

xeric regime were around 0.5–0.6. However, in the mesic regime the results were more scattered, and thus, R2 was262

lower for both models. The slopes for both models in the hydric regime were fairly large, indicating that while the263

models are capable of producing the temporal patterns, their magnitudes are smaller compared to measurements.264

SpaFHy’s R2 was higher than JSBACH in all regimes but it also had higher slopes in all regimes.265

[Insert Figure 3]266

3.2 | Spatial variation in soil moisture267

[Insert Figure 4]268

Spatial variation of soil moisture in the landscape was considerable (Fig. 4). Both model results and field measure-269

ments showed that dry conditions (15 – 20 VWC%) dominate the landscape while wetter regimes (> 20 VWC%) are270

concentrated mostly in flatter areas in the west and in the valley between the two fells. However, modelled spatial271

variability of soil moisture across the landscape was smaller than observed, with model results concentrating close to272

regime averages and measured averages spread more evenly between regime averages.273

Temporal variation was generally higher (range > 25 VWC%) in wetter areas in the field measurements. However,274

range in field measurements was more scattered, with some drier (wetter) loggers also showing high (low) temporal275

variation (average VWC 15 % (75 %) and range 45 % (15 %)). In the model results however, there was significantly276

less temporal variation in general, with maximum range values below 20 VWC%. In both models, wetter areas had277

generally higher temporal variation as well.278

The statistical model GAM explained 79 % of the spatial variation in average soil moisture (Fig. 5). Organic layer279

depth controlled a large part of the variation (effect size 29 VWC%) with thin organic layers resulting in lower VWC. In280

thick organic layers (> 50 cm) the fitted function was associated with large uncertainty, partly due to fewer measure-281

ments. The second most influential variable was SWI (effect size 22 VWC%), which also had a positive relationship282

with VWC, meaning that high SWI values, found in lowlands and local depressions, had on average higher VWC% than283

upland areas. Other variables had only a minor or no clear effect on average soil moisture. In SpaFHy and JSBACH,284

only soil porosity had any notable effect on the average VWC% (effect size 36 VWC% and 42 VWC% respectively).285

GAM explained 44 % of the temporal variation in the data. Organic layer depth and SWI had the largest effect286

sizes (42 and 11 VWC% respectively). Other variables had no clear effects. In SpaFHy, vegetation cover had the287

strongest influence on range of variation (effect size 7 VWC%), while in JSBACH soil type played the most important288

role (effect size 8 VWC%).289

[Insert Figure 5]290
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4 | DISCUSSION291

Our study shows that soil moisture exhibits considerable spatial and some temporal variation in the study area, cre-292

ating distinct moisture regimes (Fig. 2 and Fig. 4). Most of the study area is characterised by dry average moisture293

conditions (xeric regime) in which there is little variation between monthly averages during the growing season. Wet-294

ter moisture conditions, including mesic and hydric regimes, are found in low-lying and depression areas with thicker295

organic soil layers (> 25 cm) and exhibit higher average moisture conditions. There is greater temporal variation, par-296

ticularly in the hydric regime. This is partly due to the lower water retention ability of coarse mineral soils compared297

to soils with more organic material.298

The mechanistic models capture parts of the temporal variation fairly well (Fig. 2 and Fig. 3). Spatial and temporal299

variation is similar in all three moisture regimes. In the xeric regime, the responses to precipitation events are similar in300

the models and measurements, although JSBACH in particular underestimates the range of variation (Table 2). In the301

mesic and hydric regimes, the average time series show little temporal variation compared to measurements, although302

SpaFHy’s minimum values follow a similar monthly pattern as the measurements (Fig. 2). While average temporal and303

spatial patterns are similar in the models and measurements, both models underestimated the range of variation.304

Particularly temporal variation might benefit from adjusting soil properties in the model simulations. However, we305

wanted to retain the existing features and scalability of the regional model. Further, removing the cause of the lack306

of variation in a proper way might require more than just parameter tuning, including re-think of the model set-up for307

vegetation and soil.308

Previous studies in the study area have linked the fine-scale spatial variation of soil moisture to the environmental309

gradients of the landscape, such as the varying topographical conditions and soil properties (Kemppinen et al., 2018).310

Our results indicate that a large part of the spatial variation of soil moisture can be attributed to soil properties (Fig. 5).311

Thin mineral soils are not as efficient at retaining water as thick organic soils, and in turn, the former dry quickly after312

precipitation events compared to the latter, which stay more stable by retaining soil moisture (Legates et al., 2011;313

Migała et al., 2014). Although the importance of soil properties is also evident in themodel results, it does demonstrate314

a common problem in hydrological process-models and soil properties. Soil properties can vary considerably over short315

distances, particularly in a landscape such as mountain tundra where the soil layer can be thin and the accumulation316

of soil organic matter depends on topography (Migała et al., 2014; Seibert et al., 2007). However, measuring this317

variability at a high spatial resolution and broad spatial extent is challenging, and consequently the input data in318

hydrological models cannot account for real variability in soil hydrological properties. This and the lack of spatial319

variation in the organic soil layer are likely to explain a large part of the underestimated spatio-temporal variation of320

modeled soil moisture (Fig. 4 and Fig. 5).321

Vegetation seems to little to no effect on average VWC% or its temporal range (Fig. 5). Previous studies have322

shown that woody vegetation cover in particular can decrease soil moisture in the tundra (Kemppinen et al., 2021), for323

instance through increased transpiration (Pearson et al., 2013). The estimations on the influence of vegetation cover324

on the temporal variation of soil moisture seem to differ in SpaFHy and JSBACH,whichmight explain the lack of spatial325

variation in JSBACH (Fig. 4). Figure A4 shows that in JSBACH vegetation cover does influence transpiration. However,326

as transpiration extracts water first from a deeper soil depth, it does not instantaneously control soil moisture in the327

topsoil layers. This leads to the apparently negligible influence of vegetation to the soil moisture in JSBACH.328

Topography, here accounted through SWI, was found to influence spatial and temporal variability of soil moisture329

(Fig. 5). Mechanisticallymodelling this variation is possible on catchment levelmodels such as SpaFHy, but in this study330

the influence of SWI on SpaFHy’s results was small. This is likely because peatland areas in the study area are strongly331

concentrated in areas with high SWI, as organic matter accumulates in local depressions and flatlands, similarly to soil332
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moisture (Fig. 1). However, high SWI values in particular could explain the lack of temporal variation in the hydric333

regime (Fig. 2), as the distribution of water in SpaFHy might cause these areas to be nearly constantly saturated. In334

JSBACH, the influence of hillslope level topography on soil hydrology is ignored as global land surface models focus335

on large-scale processes. However, hillslope level processes are important for land surface – atmosphere interactions336

and recent studies have focused on incorporating this subgrid variability in global scale models (Fan et al., 2019).337

Another aspect of topography that might be important in this study area is snow distribution. While typically most of338

the snow in the study area melts by May, the spatially and temporally uneven snowmelt period creates hydrologically339

distinct conditions such as meltwater streams and late-lying snowpacks, which in turn influence soil moisture far into340

the growing season (Niittynen et al., 2018; Sturm et al., 2005; Woo et al., 2006). Incorporating this variation into341

mechanistic models and examining its influence on soil moisture variation is an important future research question,342

as snow conditions are predicted to change considerably due to climate change (Bintanja and Andry, 2017; Fountain343

et al., 2012).344

Previous research into soil moisture products has revealed that different outputs may not be intercomparable345

(Dirmeyer et al., 2006; Koster et al., 2009). In this study, we have compared three data sources for soil moisture and346

while model parameters and input data have been harmonised in as much detail as the model structures allow, it is347

important to understand how these results differ from each other. Firstly, the field loggers describe soil moisture348

conditions in an exact point and are thus considerably influenced by for example fine-scale soil heterogeneity. In349

comparison, the input data resolution and model configuration in both SpaFHy and JSBACH mean that they describe350

moisture conditions in a larger area. Thus, comparing specific measurements to their matching model grids is not351

particularly helpful. Here, we have instead examined more generalised results by grouping both models and mea-352

surements to moisture regimes to diminish the uncertainty related to specific point measurements. Secondly, the soil353

moisture loggers describe topsoil conditions which interactions between land surface and atmosphere influence the354

most. In some areas of the study site, the soils are shallow enough, and thus, we can assume that the loggers describe355

the whole vertical soil moisture content which might not be the case in areas where soils are thick. The models also356

describe moisture deeper than what the loggers can reach (> 15 cm depth) and in a larger vertical space than the357

measurements. In SpaFHy, the root zone depth was set to 0.2 in order to make it more comparable with measure-358

ments and the average soil conditions in the study area. In areas with shallow soils, the results represent the measured359

conditions fairly well. However, for example in areas with deep peat deposits, the model does not take the influence360

of soil depth into account. In JSBACH, which does simulate the vertical moisture profile more explicitly, the model361

results have been calculated from the top two layers in order to make themmore comparable with the measurements.362

However, the minimum depth of 0.5 m in JSBACH means that soil moisture variation in mineral soils particularly is363

dampened by buffering from deeper layers. These aspects may explain the relatively large slopes between modelled364

and measured timeseries (Fig. 3). To conclude, the models and measurements are not entirely comparable with each365

other from all perspectives. However, while the precise estimates of VWC may vary, the similarities and disparities366

between spatio-temporal dynamics of each product may still be compared and used to inform soil moisture dynamics367

(Koster et al., 2009; Saleem and Salvucci, 2002).368

Our results show that in order to model the spatio-temporal variation of soil moisture accurately in mountain369

tundra, soil properties, including the thickness of the organic layer, are important. In spatially distributed models,370

such as SpaFHy, this requires developing methods to depict the soil organic layer and ways to infer soil hydrological371

properties at high spatial resolution. Recent advances inmodelling spatial variation in soil properties based onDEMs (Li372

et al., 2020) could provide an option which should be further tested in mountain tundra. Another possibility is utilising373

remotely sensed soil moisture datasets to better understand its spatial variation (Mohanty et al., 2017; Manninen374

et al., 2021). Although global land surface models, such as JSBACH, cannot capture the fine-scale variation of soil375
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properties or other environmental variables in a similar fashion to catchment-scale models, methods of describing376

sub-grid heterogeneity in such models do exist. In JSBACH, vegetation cover is described through tiles to allow for377

multiple plant functional types within one grid cell (Reick et al., 2013). Hydrologic response units have been used378

similarly to include variation in soil properties (Chaney et al., 2016). Description of the soil organic layer has also been379

found to be important in land surface models (Rinke et al., 2008; Ekici et al., 2015).380

Considering temporal soil moisture dynamics, range of variability as a static measure ignores many aspects such381

as temporal resolution (whether the variation is linked solely to short-term variation in, for example, precipitation, or382

more seasonal variation) as well as temporal development in the land surface variables that influence soil moisture383

(such as vegetation phenology and snowmelt dynamics). These aspects can be included in mechanistic models as well384

as estimates of future changes in, for example, climate or vegetation patterns. Thus, our findings suggest that more385

effort should be made in considering local processes that influence soil moisture dynamics, possibly through a fusion386

of remote sensing, in situ data and mechanistic models. In a time of rapid environmental changes in the tundra, such387

methods will be fundamental in making dynamical future predictions on the functioning of Arctic ecosystems.388

5 | CONCLUSIONS389

To contribute to the understanding soil moisture dynamics in mountain tundra, we modelled its spatial and temporal390

variation using extensive fieldmeasurements and twomechanisticmodels, SpaFHy and JSBACH.We found substantial391

fine-scale spatial variation in soil moisture ranging from dry mineral soils to wet peatlands. By investigating the soil392

moisture dynamics, we identified distinct hydrological regimes over the landscape. Our results show that mechanistic393

models are able to simulate averageVWC%conditionswithin the regimes but underestimate both temporal and spatial394

variation compared to measurements. Spatial variation of soil moisture was largely related to soil properties in both395

model simulations and measurements. Our results indicate that improving these descriptions as well as simulations396

of soil moisture variability in mechanistic models is needed to improve modelling of soil moisture dynamics in tundra397

ecosystems. The results are important for understanding uncertainties related to global and regional analyses and398

inform future model developments needed to understand the ecosystem consequences of the Arctic change.399
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Tables594

TABLE 1 Geospatial datasets used in the study. Soil layer data are based on field surveys, whereas vegetation
types and surficial deposits were classified based on a combination of field and remote sensing data. NDVI
(Normalized Difference Vegetation Index) was calculated from a satellite image. Topographical variables were
calculated from a Digital Elevation Model (DEM).
Category Dataset Data source Spatial resolution Time Reference
Soil Surficial deposit map Field survey 0.5 m * 0.5 m 2016–2019 Kemppinen et al. (2018)

Organic and Field survey Point measurements 2016–2018 Kemppinen et al. (2018)
mineral layer depths every 50 m

Vegetation NDVI Sentinel-2 10 m * 10 m 2019 (ESA, 2021)
Vegetation type Field data and 3 m * 3 m 2018 New data

PlanetScope
Topography SAGAWetness Index DEM 2 m * 2 m 2016 NLS (2020)

potential solar radiation DEM 2 m * 2 m 2016 NLS (2020)

TABLE 2 Growing season (µ) and monthly averages, minimum, maximum and range of Volumetric Water Content
(VWC%) in 2018–2019. Values were calculated from the regime average timeseries.

Regime Model µ July August September Min Range Max

Xeric
Measured 13.5 13.5 12.9 14.5 6.2 15.1 21.3
JSBACH 16.7 16.1 16.4 17.9 13.0 6.4 19.4
SpaFHy 15.4 15.1 14.7 16.6 11.4 9.9 21.3

Mesic
Measured 25.5 25.0 24.5 27.1 16.6 15.9 32.5
JSBACH 32.9 32.1 32.1 35.4 28.5 11.9 40.4
SpaFHy 27.3 27.0 27.1 27.9 24.8 10.0 34.8

Hydric
Measured 61.4 66.2 54.9 64.1 36.7 44.4 81.1
JSBACH 59.7 59.9 58.6 61.1 52.9 12.2 65.1
SpaFHy 47.7 47.9 46.9 49.2 43.1 9.7 52.8

Figure legends595

F IGURE 1 The study setting consists of 50 soil moisture loggers situated to measure the different soil moisture
conditions of the landscape ((a), Digital Elevation Map provided by the National Land Survey of Finland 2020). The
study area is situated in northwestern Finland ((b), Digital Elevation Map provided by European Union, Copernicus
Land Monitoring Service 2020, European Environment Agency). Elevation (a), SAGA Wetness Index (SWI; (c)), and
the sum of potential incoming solar radiation in July (kW m−2, (d)) are topography-based variables. High SWI values
indicate high wetness values (c). Soil surficial deposits (e) show the distribution of 1) glacial till, 2) peat deposits, 3)
fluvial deposits, 4) boulders and 5) rock outcrops. The Normalized Difference Vegetation Index (NDVI; (f)) represents
the variation in vegetation cover, with higher values indicating high amounts of photosynthetic plant tissue.
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F IGURE 2 Field-quantified (a) and modelled (b) temporal variation of Volumetric Water Content (VWC%) in xeric
(20 loggers), mesic (18 loggers) and hydric (10 loggers) moisture regimes in July–September 2018 as well as daily
precipitation sum (Finnish Meteorological Insitute, 2020). Logger measurements (a) are shown separately and model
results (b) through regime averages and the range within the regime. Variation within JSBACH results was very small
and thus, nearly indistinguishable from regime averages.

F IGURE 3 Correlation between modelled and measured time series of VWC% (Volumetric Water Content) in the
three soil moisture regimes during during July–September 2018–2019. The x-axis shows temporal variation in the
modelled average time series with respect to growing season averages (i.e. with the growing season mean deducted
from the values to allow showing all regimes in one figure). The y-axis shows the same for measured regime average
time series. The slope s and R2 of a linear regression are calculated for each regime and the dashed grey line is the 1 :
1 line.

F IGURE 4 Spatial and temporal variation in soil moisture over the study area during July–September
2018–2019. The spatial variation is quantified as average VWC% (Volumetric Water Content) and temporal
variation as range of variation. Field measurements are shown over the model results.

F IGURE 5 GAMmodelling the statistical relationship between environmental variables and average measured (a)
and modelled (b) VWC% (Volumetric Water Content) as well as measured (c) and modelled (d) range of variation
during July–September 2018–2019. The environmental variables used were thickness of the organic soil layer in the
measurements (cm) and soil porosity in the mechanistic models, proportion of vegetation cover, SAGA Wetness
Index (SWI), potential incoming solar radiation (kW m−2) and elevation (for measurements). JSBACH does not
simulate water flow in the landscape based on topography so SWI was excluded.
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TABLE A1 Soil and vegetation parameters used for JSBACH and SpaFHy.
Parameters (unit) SpaFHy JSBACH Note

Soil

field capacity (%) coarse 0.2 19.4

mixture 0.33 41.8

peat 0.6 88

Saturated hydraulic conductivity (m/s) coarse 0.0001 1.4E-05

mixture 1E-05 1.5E-06

peat 5E-05 2E-06

soil porosity (%) coarse 40 39.7

mixture 50 55.3

peat 90 88

wilting point (%) coarse 8 8.7

mixture 14 14.2

peat 11 25.5

Clapp & Hornberger parameter coarse 4.7

mixture 4.5

peat 4

pore size index coarse 0.4

mixture 0.5

peat 0.7

beta parameter coarse 3.1

mixture 4

peat 6

soil depth (m) coarse 0.1 0.5 Assigned

mixture 0.3 0.5

peat 0.6 0.6

Vegetation

maximum photosynthetic rate (µmol/( m2 s) deciduous shrubs 11 Starr et al. (2008)

evergreen shrubs 6

sedge 8

stomatal parameter (kPa0.5) deciduous shrubs 3.9 Lin et al. (2015)

evergreen shrubs 1.5

sedge 1.8 Lin 2015

light response par. (W/m2) 50 Launiainen et al. (2019)

degree-days for bud-burst 87 Pop et al. (2000)

duration of leaf development (d) 17

day length for senescene start (h) 15

duration of leaf senescene (d) 11

background surface albedo tundra 0.17 Hagemann (2002)

mire 0.12

surface roughness length due to vegetation (m) 0.03

Appendices596

F IGURE A1 Influence of field capacity on SpaFHy’s modelled VWC% (Volumetric Water Content) in peat soil
areas.

F IGURE A2 Relationship between organic layer and growing season average Volumetric Water Content (VWC).
Pearson’s correlation coefficient between the two variables was 0.79.

F IGURE A3 (A) Field-quantified and (b) simulated temporal variation of soil moisture (Volumetric Water
Content) in xeric, mesic and hydric moisture regimes in July–September 2019.
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F IGURE A4 Transpiration in JSBACH based on vegetation cover.
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